1
|
Kalvelage J, Rabus R. Multifaceted Dinoflagellates and the Marine Model Prorocentrum cordatum. Microb Physiol 2024; 34:197-242. [PMID: 39047710 DOI: 10.1159/000540520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Dinoflagellates are a monophyletic group within the taxon Alveolata, which comprises unicellular eukaryotes. Dinoflagellates have long been studied for their organismic and morphologic diversity as well as striking cellular features. They have a main size range of 10-100 µm, a complex "cell covering", exceptionally large genomes (∼1-250 Gbp with a mean of 50,000 protein-encoding genes) spread over a variable number of highly condensed chromosomes, and perform a closed mitosis with extranuclear spindles (dinomitosis). Photosynthetic, marine, and free-living Prorocentrum cordatum is a ubiquitously occurring, bloom-forming dinoflagellate, and an emerging model system, particularly with respect to systems biology. SUMMARY Focused ion beam/scanning electron microscopy (FIB/SEM) analysis of P. cordatum recently revealed (i) a flattened nucleus with unusual structural features and a total of 62 tightly packed chromosomes, (ii) a single, barrel-shaped chloroplast devoid of grana and harboring multiple starch granules, (iii) a single, highly reticular mitochondrion, and (iv) multiple phosphate and lipid storage bodies. Comprehensive proteomics of subcellular fractions suggested (i) major basic nuclear proteins to participate in chromosome condensation, (ii) composition of nuclear pores to differ from standard knowledge, (iii) photosystems I and II, chloroplast complex I, and chlorophyll a-b binding light-harvesting complex to form a large megacomplex (>1.5 MDa), and (iv) an extraordinary richness in pigment-binding proteins. Systems biology-level investigation of heat stress response demonstrated a concerted down-regulation of CO2-concentrating mechanisms, CO2-fixation, central metabolism, and monomer biosynthesis, which agrees with reduced growth yields. KEY MESSAGES FIB/SEM analysis revealed new insights into the remarkable subcellular architecture of P. cordatum, complemented by proteogenomic unraveling of novel nuclear structures and a photosynthetic megacomplex. These recent findings are put in the wider context of current understanding of dinoflagellates.
Collapse
Affiliation(s)
- Jana Kalvelage
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
2
|
Zaheri B, Morse D. An overview of transcription in dinoflagellates. Gene 2022; 829:146505. [PMID: 35447242 DOI: 10.1016/j.gene.2022.146505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 02/18/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022]
Abstract
Dinoflagellates are a vital diverse family of unicellular algae widespread in various aquatic environments. Typically large genomes and permanently condensed chromosomes without histones make these organisms unique among eukaryotes in terms of chromatin structure and gene expression. Genomic and transcriptomic sequencing projects have provided new insight into the genetic foundation of dinoflagellate behaviors. Genes in tandem arrays, trans-splicing of mRNAs and lower levels of transcriptional regulation compared to other eukaryotes all contribute to the differences seen. Here we present a general overview of transcription in dinoflagellates based on previously described work.
Collapse
Affiliation(s)
- Bahareh Zaheri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, 4101 Sherbrooke est, Université de Montréal, Montréal H1X 2B2, Canada
| | - David Morse
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, 4101 Sherbrooke est, Université de Montréal, Montréal H1X 2B2, Canada.
| |
Collapse
|
3
|
Deolal P, Mishra K. Regulation of diverse nuclear shapes: pathways working independently, together. Commun Integr Biol 2021; 14:158-175. [PMID: 34262635 PMCID: PMC8259725 DOI: 10.1080/19420889.2021.1939942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Membrane-bound organelles provide physical and functional compartmentalization of biological processes in eukaryotic cells. The characteristic shape and internal organization of these organelles is determined by a combination of multiple internal and external factors. The maintenance of the shape of nucleus, which houses the genetic material within a double membrane bilayer, is crucial for a seamless spatio-temporal control over nuclear and cellular functions. Dynamic morphological changes in the shape of nucleus facilitate various biological processes. Chromatin packaging, nuclear and cytosolic protein organization, and nuclear membrane lipid homeostasis are critical determinants of overall nuclear morphology. As such, a multitude of molecular players and pathways act together to regulate the nuclear shape. Here, we review the known mechanisms governing nuclear shape in various unicellular and multicellular organisms, including the non-spherical nuclei and non-lamin-related structural determinants. The review also touches upon cellular consequences of aberrant nuclear morphologies.
Collapse
Affiliation(s)
- Pallavi Deolal
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
4
|
Kirk AL, Clowez S, Lin F, Grossman AR, Xiang T. Transcriptome Reprogramming of Symbiodiniaceae Breviolum minutum in Response to Casein Amino Acids Supplementation. Front Physiol 2020; 11:574654. [PMID: 33329024 PMCID: PMC7710908 DOI: 10.3389/fphys.2020.574654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/18/2020] [Indexed: 01/08/2023] Open
Abstract
Dinoflagellates in the family Symbiodiniaceae can live freely in ocean waters or form a symbiosis with a variety of cnidarians including corals, sea anemones, and jellyfish. Trophic plasticity of Symbiodiniaceae is critical to its ecological success as it moves between environments. However, the molecular mechanisms underlying these trophic shifts in Symbiodiniaceae are still largely unknown. Using Breviolum minutum strain SSB01 (designated SSB01) as a model, we showed that Symbiodiniaceae go through a physiological and transcriptome reprogramming when the alga is grown with the organic nitrogen containing nutrients in hydrolyzed casein, but not with inorganic nutrients. SSB01 grows at a much faster rate and maintains stable photosynthetic efficiency when supplemented with casein amino acids compared to only inorganic nutrients or seawater. These physiological changes are driven by massive transcriptome changes in SSB01 supplemented with casein amino acids. The levels of transcripts encoding proteins involved in altering DNA conformation such as DNA topoisomerases, histones, and chromosome structural components were all significantly changed. Functional enrichment analysis also revealed processes involved in translation, ion transport, generation of second messengers, and phosphorylation. The physiological and molecular changes that underlie in vitro trophic transitions in Symbiodiniaceae can serve as an orthogonal platform to further understand the factors that impact the Symbiodiniaceae lifestyle.
Collapse
Affiliation(s)
- Andrea L. Kirk
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Sophie Clowez
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
| | - Fan Lin
- Brightseed Inc., San Francisco, CA, United States
| | - Arthur R. Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
| | - Tingting Xiang
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
5
|
Fajardo C, Amil-Ruiz F, Fuentes-Almagro C, De Donato M, Martinez-Rodriguez G, Escobar-Niño A, Carrasco R, Mancera JM, Fernandez-Acero FJ. An “omic” approach to Pyrocystis lunula: New insights related with this bioluminescent dinoflagellate. J Proteomics 2019; 209:103502. [DOI: 10.1016/j.jprot.2019.103502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 01/10/2023]
|
6
|
Riaz S, Sui Z, Niaz Z, Khan S, Liu Y, Liu H. Distinctive Nuclear Features of Dinoflagellates with A Particular Focus on Histone and Histone-Replacement Proteins. Microorganisms 2018; 6:E128. [PMID: 30558155 PMCID: PMC6313786 DOI: 10.3390/microorganisms6040128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/29/2018] [Accepted: 12/11/2018] [Indexed: 11/30/2022] Open
Abstract
Dinoflagellates are important eukaryotic microorganisms that play critical roles as producers and grazers, and cause harmful algal blooms. The unusual nuclei of dinoflagellates "dinokaryon" have led researchers to investigate their enigmatic nuclear features. Their nuclei are unusual in terms of their permanently condensed nucleosome-less chromatin, immense genome, low protein to DNA ratio, guanine-cytosine rich methylated DNA, and unique mitosis process. Furthermore, dinoflagellates are the only known group of eukaryotes that apparently lack histone proteins. Over the course of evolution, dinoflagellates have recruited other proteins, e.g., histone-like proteins (HLPs), from bacteria and dinoflagellates/viral nucleoproteins (DVNPs) from viruses as histone substitutes. Expression diversity of these nucleoproteins has greatly influenced the chromatin structure and gene expression regulation in dinoflagellates. Histone replacement proteins (HLPs and DVNPs) are hypothesized to perform a few similar roles as histone proteins do in other eukaryotes, i.e., gene expression regulation and repairing DNA. However, their role in bulk packaging of DNA is not significant as low amounts of proteins are associated with the gigantic genome. This review intends to summarize the discoveries encompassing unique nuclear features of dinoflagellates, particularly focusing on histone and histone replacement proteins. In addition, a comprehensive view of the evolution of dinoflagellate nuclei is presented.
Collapse
Affiliation(s)
- Sadaf Riaz
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| | - Zeeshan Niaz
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
- Department of Microbiology, Hazara University, Mansehra 21120, Pakistan.
| | - Sohrab Khan
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
- Department of Microbiology, Hazara University, Mansehra 21120, Pakistan.
| | - Yuan Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| | - Haoxin Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| |
Collapse
|
7
|
Preisner H, Habicht J, Garg SG, Gould SB. Intermediate filament protein evolution and protists. Cytoskeleton (Hoboken) 2018; 75:231-243. [PMID: 29573204 DOI: 10.1002/cm.21443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 01/20/2023]
Abstract
Metazoans evolved from a single protist lineage. While all eukaryotes share a conserved actin and tubulin-based cytoskeleton, it is commonly perceived that intermediate filaments (IFs), including lamin, vimentin or keratin among many others, are restricted to metazoans. Actin and tubulin proteins are conserved enough to be detectable across all eukaryotic genomes using standard phylogenetic methods, but IF proteins, in contrast, are notoriously difficult to identify by such means. Since the 1950s, dozens of cytoskeletal proteins in protists have been identified that seemingly do not belong to any of the IF families described for metazoans, yet, from a structural and functional perspective fit criteria that define metazoan IF proteins. Here, we briefly review IF protein discovery in metazoans and the implications this had for the definition of this protein family. We argue that the many cytoskeletal and filament-forming proteins of protists should be incorporated into a more comprehensive picture of IF evolution by aligning it with the recent identification of lamins across the phylogenetic diversity of eukaryotic supergroups. This then brings forth the question of how the diversity of IF proteins has unfolded. The evolution of IF proteins likely represents an example of convergent evolution, which, in combination with the speed with which these cytoskeletal proteins are evolving, generated their current diversity. IF proteins did not first emerge in metazoa, but in protists. Only the emergence of cytosolic IF proteins that appear to stem from a nuclear lamin is unique to animals and coincided with the emergence of true animal multicellularity.
Collapse
Affiliation(s)
- Harald Preisner
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jörn Habicht
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
8
|
Ciska M, Moreno Díaz de la Espina S. The intriguing plant nuclear lamina. FRONTIERS IN PLANT SCIENCE 2014; 5:166. [PMID: 24808902 PMCID: PMC4010787 DOI: 10.3389/fpls.2014.00166] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/08/2014] [Indexed: 05/19/2023]
Abstract
The nuclear lamina is a complex protein mesh attached to the inner nuclear membrane (INM), which is also associated with nuclear pore complexes. It provides mechanical support to the nucleus and nuclear envelope, and as well as facilitating the connection of the nucleoskeleton to the cytoskeleton, it is also involved in chromatin organization, gene regulation, and signaling. In metazoans, the nuclear lamina consists of a polymeric layer of lamins and other interacting proteins responsible for its association with the INM and chromatin. In plants, field emission scanning electron microscopy of nuclei, and thin section transmission electron microscopy of isolated nucleoskeletons, reveals the lamina to have a similar structure to that of metazoans. Moreover, although plants lack lamin genes and the genes encoding most lamin-binding proteins, the main functions of the lamina are fulfilled in plants. Hence, it would appear that the plant lamina is not based on lamins and that other proteins substitute for lamins in plant cells. The nuclear matrix constituent proteins are the best characterized structural proteins in the plant lamina. Although these proteins do not display strong sequence similarity to lamins, their predicted secondary structure and sub-nuclear distribution, as well as their influence on nuclear size and shape, and on heterochromatin organization, suggest they could be functional lamin analogs. In this review we shall summarize what is currently known about the organization and composition of the plant nuclear lamina and its interacting complexes, and we will discuss the activity of this structure in the plant cell and its nucleus.
Collapse
Affiliation(s)
| | - Susana Moreno Díaz de la Espina
- *Correspondence: Susana Moreno Díaz de la Espina, Department of Cell and Molecular Biology, Biological Research Centre – Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain e-mail:
| |
Collapse
|
9
|
Lyakhovetsky R, Gruenbaum Y. Studying lamins in invertebrate models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:245-62. [PMID: 24563351 DOI: 10.1007/978-1-4899-8032-8_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lamins are nuclear intermediate filament proteins that are conserved in all multicellular animals. Proteins that resemble lamins are also found in unicellular organisms and in plants. Lamins form a proteinaceous meshwork that outlines the nucleoplasmic side of the inner nuclear membrane, while a small fraction of lamin molecules is also present in the nucleoplasm. They provide structural support for the nucleus and help regulate many other nuclear activities. Much of our knowledge on the function of nuclear lamins and their associated proteins comes from studies in invertebrate organisms and specifically in the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. The simpler lamin system and the powerful genetic tools offered by these model organisms greatly promote such studies. Here we provide an overview of recent advances in the biology of invertebrate nuclear lamins, with special emphasis on their assembly, cellular functions and as models for studying the molecular basis underlying the pathology of human heritable diseases caused by mutations in lamins A/C.
Collapse
Affiliation(s)
- Roman Lyakhovetsky
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, 91904, Israel
| | | |
Collapse
|
10
|
Transcription and Maturation of mRNA in Dinoflagellates. Microorganisms 2013; 1:71-99. [PMID: 27694765 PMCID: PMC5029490 DOI: 10.3390/microorganisms1010071] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/10/2013] [Accepted: 10/14/2013] [Indexed: 01/17/2023] Open
Abstract
Dinoflagellates are of great importance to the marine ecosystem, yet scant details of how gene expression is regulated at the transcriptional level are available. Transcription is of interest in the context of the chromatin structure in the dinoflagellates as it shows many differences from more typical eukaryotic cells. Here we canvas recent transcriptome profiles to identify the molecular building blocks available for the construction of the transcriptional machinery and contrast these with those used by other systems. Dinoflagellates display a clear paucity of specific transcription factors, although surprisingly, the rest of the basic transcriptional machinery is not markedly different from what is found in the close relatives to the dinoflagellates.
Collapse
|
11
|
Sun S, Wong JTY, Liu M, Dong F. Counterion-mediated decompaction of liquid crystalline chromosomes. DNA Cell Biol 2012; 31:1657-64. [PMID: 23072628 DOI: 10.1089/dna.2012.1708] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Liquid crystalline phases of DNA and nucleosome core particles can be formed in vitro, indicating the crucial roles of these phases in the maintenance and compaction of genomes in vivo. In the present study, sequential levels of liquid crystalline decompaction were identified in highly purified nuclei of Karenia papilionacea in response to the gradual chelation of divalent counterions by ethylenediaminetetraacetic acid (EDTA); the decompaction was observed using polarizing light microscopy, confocal laser scanning microscopy, and transmission electron microscopy and further confirmed utilizing microcalorimetry. Nested fibrous coils in 150 nm arc-like bands of chromatin were observed in the early stages of chromosomal decompaction. The microcalorimetry spectra of isolated nuclei revealed that the dynamic processes of nuclear decompaction occurred in a nonlinear manner; in addition, an EDTA-sensitive thermal transition between 60°C-70°C, corresponding to a liquid-crystalline-phase transition of chromosomes, was found. The results suggested that nested coils of fibrous chromatin filaments are responsible for the establishment and stabilization of the liquid crystalline and birefringence features of the chromosomes of dinoflagellates. The results also indicated that positively charged divalent counterions play significant roles in modulating liquid crystalline phases to compact the chromosomes of dinoflagellates.
Collapse
Affiliation(s)
- Shiyong Sun
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan, China.
| | | | | | | |
Collapse
|
12
|
Wang T, Hou G, Wang Y, Xue L. Characterization and heterologous expression of a new matrix attachment region binding protein from the unicellular green alga Dunaliella salina. J Biochem 2010; 148:651-8. [PMID: 20926505 DOI: 10.1093/jb/mvq100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although interactions between the nuclear matrix and special regions of chromosomal DNA called matrix attachment regions (MARs) are implicated in various nuclear functions, the understanding of the regulatory mechanism of MARs is still poor. A few MAR-binding proteins (MARBP) have been isolated from some plants and animals, but not from the unicellular algae. Here, we identify a novel MAR-binding protein, namely DMBP-1, from the halotolerant alga Dunaliella salina. The cDNA of DMBP-1 is 2322-bp long and contains a 1626 bp of an open reading frame encoding a polypeptide of 542 amino acids (59 kDa). The DMBP-1 expressed in Escherichia coli specifically binds A/T-rich MAR DNA. The DMBP-1 fused to green fluorescent protein appears only inside the nuclei of Chinese hamster ovarian cells transfected with the pEGFP-MBP, indicating that the protein is located in the nuclei. The findings mentioned above may contribute to better understanding of the nuclear matrix-MAR interactions.
Collapse
Affiliation(s)
- Tianyun Wang
- Laboratory for Cell Biology, The First Affiliated Hospital, Zhengzhou University, 40 Daxue Road, Henan, China
| | | | | | | |
Collapse
|
13
|
Meiotic chromosome pairing and bouquet formation during Eimeria tenella sporulation. Int J Parasitol 2009; 40:453-62. [PMID: 19837073 DOI: 10.1016/j.ijpara.2009.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/01/2009] [Accepted: 09/29/2009] [Indexed: 01/12/2023]
Abstract
In Eimeria tenella, meiotic division occurs exclusively in oocysts within the first 8h of sporulation. Difficulties with the wall-oocyst breakage in gaining access to chromosomes during meiosis have resulted in a scarcity of morphological data on Eimeria chromosomes. This study tracks the general behaviour of telomeres, attachment plaques and synaptonemal complexes in the nucleus of the meiotic oocyst of E. tenella. Fluorescence microscopy methods, in combination with immunoelectron microscopy techniques, were applied to obtain a series of time-lapse images during oocyst sporulation. Antibodies to Structural Maintenance of Chromosome proteins SMC1 and SMC3, and lamin were labelled with either fluorescence or colloidal gold to visualise the telomeres, central elements of the synaptonemal complex (SC) and nuclear periphery, respectively, at both the structural and ultrastructural levels. Using oocyst spreads and ultrathin sections of fixed oocysts it was possible to study telomere dynamics at stages during meiosis. The stages of the meiotic prophase I are delineated on the basis of the telomere position and the SC synapsis and desynapsis. During the leptotene stage, at 4h following the start of sporulation, meiotic chromosomes attached to the nuclear envelope. At that stage, chromosome synapsis was initiated in the telomeric regions but no interstitial synapsis pairing was observed. In the zygotene stage, telomere signals were clustered in a limited area of the nuclear envelope. Bouquet formation occurred at 5h after the start of sporulation, whereas chromosomes did not appear completely synapsed until the pachytene stage at 6h of sporulation. Desynapsis was observed at 8h of sporulation during the diplotene stage. This study provides the first morphological description of both the behaviour of the chromosomes and the timing of the prophase I stages in the meiotic nucleus of E. tenella.
Collapse
|
14
|
Levi-Setti R, Gavrilov KL, Rizzo PJ. Divalent cation distribution in dinoflagellate chromosomes imaged by high-resolution ion probe mass spectrometry. Eur J Cell Biol 2008; 87:963-76. [DOI: 10.1016/j.ejcb.2008.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 06/22/2008] [Accepted: 06/25/2008] [Indexed: 11/29/2022] Open
|
15
|
Kim MS, Lim HS, Ahn SJ, Jeong YK, Kim CG, Lee HH. Enhanced expression of EGFP gene in CHSE-214 cells by an ARS element from mud loach (Misgurnus mizolepis). Plasmid 2007; 58:228-39. [PMID: 17586046 DOI: 10.1016/j.plasmid.2007.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 04/16/2007] [Accepted: 05/01/2007] [Indexed: 10/23/2022]
Abstract
The origins of replication are associated with nuclear matrices or are found in close proximity to matrix attachment regions (MARs). In this report, fish MARs were cloned into an autonomously replicating sequence (ARS) cloning vector and were screened for ARS elements in Saccharomyces cerevisiae. Sixteen clones were isolated that were able to grow on the selective plates. In particular, an ARS905 that shows high efficiency among them was selected for this study. Southern hybridization indicated the autonomous replication of the transformation vector containing the ARS905 element. DNA sequences analysis showed that the ARS905 contained two ARS consensus sequences as well as MAR motifs, such as AT tracts, ORI patterns, and ATC tracts. In vitro matrix binding analysis, major matrix binding activity and ARS function coincided in a subfragment of the ARS905. To analyze the effects of ARS905 on expression of a reporter gene, an ARS905(E1158) with ARS activity was inserted into pBaEGFP(+) containing mud loach beta-actin promoter, EGFP as a reporter gene, and SV40 poly(A) signal. The pBaEGFP(+)-ARS905(E1158) was transfected into a fish cell line, CHSE-214. The intensity of EGFP transfected cells was a 7-fold of the control at 11days post-transfection. These results indicate that ARS905 enhances the expression of the EGFP gene and that it should be as a component of expression vectors in further fish biotechnological studies.
Collapse
Affiliation(s)
- Moo-Sang Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, Republic of Korea
| | | | | | | | | | | |
Collapse
|
16
|
Melcer S, Gruenbaum Y, Krohne G. Invertebrate lamins. Exp Cell Res 2007; 313:2157-66. [PMID: 17451683 DOI: 10.1016/j.yexcr.2007.03.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 02/25/2007] [Accepted: 03/06/2007] [Indexed: 01/11/2023]
Abstract
Lamins are the main component of the nuclear lamina and considered to be the ancestors of all intermediate filament proteins. They are localized mainly at the nuclear periphery where they form protein complexes with integral proteins of the nuclear inner membrane, transcriptional regulators, histones and chromatin modifiers. Studying lamins in invertebrate species has unique advantages including the smaller number of lamin genes in the invertebrate genomes and powerful genetic analyses in Caenorhabditis elegans and Drosophila melanogaster. These simpler nuclear lamina systems allow direct analyses of their structure and functions. Here we give an overview of recent advances in the field of invertebrate nuclear lamins with special emphasis on their evolution, assembly and functions.
Collapse
Affiliation(s)
- Shai Melcer
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | |
Collapse
|
17
|
de Roos ADG. The origin of the eukaryotic cell based on conservation of existing interfaces. ARTIFICIAL LIFE 2006; 12:513-23. [PMID: 16953783 DOI: 10.1162/artl.2006.12.4.513] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Current theories about the origin of the eukaryotic cell all assume that during evolution a prokaryotic cell acquired a nucleus. Here, it is shown that a scenario in which the nucleus acquired a plasma membrane is inherently less complex because existing interfaces remain intact during evolution. Using this scenario, the evolution to the first eukaryotic cell can be modeled in three steps, based on the self-assembly of cellular membranes by lipid-protein interactions. First, the inclusion of chromosomes in a nuclear membrane is mediated by interactions between laminar proteins and lipid vesicles. Second, the formation of a primitive endoplasmic reticulum, or exomembrane, is induced by the expression of intrinsic membrane proteins. Third, a plasma membrane is formed by fusion of exomembrane vesicles on the cytoskeletal protein scaffold. All three self-assembly processes occur both in vivo and in vitro. This new model provides a gradual Darwinistic evolutionary model of the origins of the eukaryotic cell and suggests an inherent ability of an ancestral, primitive genome to induce its own inclusion in a membrane.
Collapse
Affiliation(s)
- Albert D G de Roos
- The Beagle Armada, Bioinformatics Division, Einsteinstraat 67, 3316GG Dordrecht, The Netherlands.
| |
Collapse
|
18
|
Mak CKM, Hung VKL, Wong JTY. Type II topoisomerase activities in both the G1 and G2/M phases of the dinoflagellate cell cycle. Chromosoma 2005; 114:420-31. [PMID: 16252092 DOI: 10.1007/s00412-005-0027-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 08/31/2005] [Accepted: 09/01/2005] [Indexed: 11/28/2022]
Abstract
Dinoflagellate genomes are large (up to 200 pg) and are encoded in histoneless chromosomes that are quasi-permanently condensed. This unique combination of chromosomal characteristics presents additional topological and cell cycle control problems for a eukaryotic cell, potentially exhibiting novel regulatory requirements of topoisomerase II. The heterotrophic dinoflagellate Crypthecodinium cohnii was used in this study. The topoisomerase II activities throughout its cell cycle were investigated by DNA flow cytometry following enzyme deactivation. Fluorescence microscopy was also used for studying the chromosome morphology of the treated cells. Two classes of topoisomerase II inhibitors were applied in our study, both of which caused G1 delay as well as G2/M arrest in the C. cohnii cell cycle. At high doses, the topoisomerase poisons amsacrine and ellipticine induced DNA fragmentation in C. cohnii cells. Topoisomerase II activities, as measured by the ability to decatenate kinetoplastid DNA (kDNA), are normally detected throughout the cell cycle in C. cohnii. Our results suggest that the requirement of type II topoisomerase activities during the G1 phase of the cell cycle may relate to the unwinding of quasi-permanently condensed chromosomes for the purpose of transcription. This was also the first time that topoisomerase II activity in dinoflagellate cells was detected.
Collapse
Affiliation(s)
- Carmen K M Mak
- Biology Department, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, People's Republic of China
| | | | | |
Collapse
|
19
|
Arikawa M, Saito A, Omura G, Mostafa Kamal Khan SM, Suetomo Y, Kakuta S, Suzaki T. Ca2+-dependent nuclear contraction in the heliozoon Actinophrys sol. Cell Calcium 2005; 38:447-55. [PMID: 16099499 DOI: 10.1016/j.ceca.2005.06.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 06/25/2005] [Accepted: 06/27/2005] [Indexed: 11/26/2022]
Abstract
Ca2+-dependent contractility was found to exist in the nucleus of the heliozoon protozoan Actinophrys sol. Upon addition of Ca2+ ([Ca2+]free = 2.0 x 10(-3) M), diameters of isolated and detergent-extracted nuclei became reduced from 16.5+/-1.7 microm to 11.0+/-1.3 microm. The threshold level of [Ca2+]free for the nuclear contraction was 2.9 x 10(-7) M. The nuclear contraction was not induced by Mg2+, and was not inhibited by colchicine or cytochalasin B. Contracted nuclei became expanded when Ca2+ was removed by EGTA; thus cycles of contraction and expansion could be repeated many times by alternating addition of Ca2+ and EGTA. The Ca2+-dependent nuclear contractility remained even after high salt treatment, suggesting a possible involvement of nucleoskeletal components in the nuclear contraction. Electron microscopy showed that, in the relaxed state, filamentous structures were observed to spread in the nucleus to form a network. After addition of Ca2+, they became aggregated and constructed a mass of thicker filaments, followed by re-distribution of the filaments spread around inside of the nucleus when Ca2+ was removed. These results suggest that the nuclear contraction is induced by Ca2+-dependent transformation of the filamentous structures in the nucleus.
Collapse
Affiliation(s)
- Mikihiko Arikawa
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Moreno Díaz de la Espina S, Alverca E, Cuadrado A, Franca S. Organization of the genome and gene expression in a nuclear environment lacking histones and nucleosomes: the amazing dinoflagellates. Eur J Cell Biol 2005; 84:137-49. [PMID: 15819396 DOI: 10.1016/j.ejcb.2005.01.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dinoflagellates are fascinating protists that have attracted researchers from different fields. The free-living species are major primary producers and the cause of harmful algal blooms sometimes associated with red tides. Dinoflagellates lack histones and nucleosomes and present a unique genome and chromosome organization, being considered the only living knockouts of histones. Their plastids contain genes organized in unigenic minicircles. Basic cell structure, biochemistry and molecular phylogeny place the dinoflagellates firmly among the eukaryotes. They have G1-S-G2-M cell cycles, repetitive sequences, ribosomal genes in tandem, nuclear matrix, snRNAs, and eukaryotic cytoplasm, whereas their nuclear DNA is different, from base composition to chromosome organization. They have a high G + C content, highly methylated and rare bases such as 5-hydroxymethyluracil (HOMeU), no TATA boxes, and form distinct interphasic dinochromosomes with a liquid crystalline organization of DNA, stabilized by metal cations and structural RNA. Without histones and with a protein:DNA mass ratio (1:10) lower than prokaryotes, they need a different way of packing their huge amounts of DNA into a functional chromatin. In spite of the high interest in the dinoflagellate system in genetics, molecular and cellular biology, their analysis until now has been very restricted. We review here the main achievements in the characterization of the genome, nucleus and chromosomes in this diversified phylum. The recent discovery of a eukaryotic structural and functional differentiation in the dinochromosomes and of the organization of gene expression in them, demonstrate that in spite of the secondary loss of histones, that produce a lack of nucleosomal and supranucleosomal chromatin organization, they keep a functional nuclear organization closer to eukaryotes than to prokaryotes.
Collapse
|
21
|
Costas E, Goyanes V. Architecture and evolution of dinoflagellate chromosomes: an enigmatic origin. Cytogenet Genome Res 2005; 109:268-75. [PMID: 15753586 DOI: 10.1159/000082409] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Accepted: 02/19/2004] [Indexed: 11/19/2022] Open
Abstract
Dinoflagellates are a highly diversified group of unicellular protists that present fascinating nuclear features which have intrigued researchers for many years. As examples, a dense nuclear matrix accommodates permanently condensed chromosomes that are composed of fibers organized without histones and nucleosomes in stacked rows of parallel nested arches. The macromolecular chromosome structure corresponds to cholesteric liquid crystals with a constant left-handed twist. RNA acts to maintain the chromosome structure. Whole mounted chromosomes have a left-handed screw-like configuration with coils which progressively increase their pitch. This helical arrangement seems to be the result of a couple of narrow strands coiling together. Chromosomes do not show Q, G and C banding patterns. However, a roughly spherical differentiated upper end (primitive kinetochore?) and two differentiated coiling regions, the upper one composed of two to three coils where a couple of sister strands run together and parallel to each other, and the lower one where sister strands run out of phase by 180 degrees angular difference along the immediate next turns, can be distinguished. The chromosome segregation into two daughter chromatids begins at the telomere that attaches to the nuclear envelope, follows along the chromosome axis constituting first a Y-shaped and afterwards a V-shaped chromosome, which packs the newly synthesized DNA inside the "old" chromosome. Dividing chromosomes remain highly condensed, and the diameters of the new chromatids and the undivided chromosome are similar, but the number of arches is twice as large in G1 as in G2. The nuclear envelope remains through the cell cycle and shows spindle fibers, which penetrate intranuclear cytoplasmic channels during mitosis constituting an extra nuclear spindle. These and other cytogenetic features suggest that dinoflagellates are a group of enigmatic protists, unique and different from the usual eukaryotes. In contrast, DNA sequence studies propose that dinoflagellates are true eukaryotes, closely related to Apicomplexa, and ciliates (Alveolata), suggesting that the unusual features of chromosome and nuclear organization are not primitive but derived characters. Nevertheless, dinoflagellates have reached enigmatic specific nuclear and chromosome solutions, extremely far from those of other living beings.
Collapse
Affiliation(s)
- E Costas
- Genetica (Produccion Animal), Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.
| | | |
Collapse
|
22
|
Saldarriaga JF, “Max” Taylor F, Cavalier-Smith T, Menden-Deuer S, Keeling PJ. Molecular data and the evolutionary history of dinoflagellates. Eur J Protistol 2004. [DOI: 10.1016/j.ejop.2003.11.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Cowan CR, Carlton PM, Cande WZ. The polar arrangement of telomeres in interphase and meiosis. Rabl organization and the bouquet. PLANT PHYSIOLOGY 2001; 125:532-8. [PMID: 11161011 PMCID: PMC1539364 DOI: 10.1104/pp.125.2.532] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- C R Cowan
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
24
|
Abstract
We review old and new insights into the structure of the nuclear envelope and the components responsible for its dynamic reassembly during mitosis. New information is coming to light about several of the proteins that mediate nuclear reassembly. These proteins include the lamins and their emerging relationship with proteins such as otefin and the MAN antigens: peripheral proteins that might participate in lamina structure. There are four identified proteins localized to the inner nuclear membrane: the lamina-associated proteins LAP1 and LAP2, emerin, and the lamin B receptor (LBR). LBR can interact independently with lamin B and a chromodomain protein, Hp1, and appears to be a central player in targeting nuclear membranes to chromatin. Intermediates in the assembly of nuclear pore complexes (NPCs) can now be studied biochemically and visualized by high resolution scanning electron microscopy. We discuss the possibility that the filament-forming proteins Tpr/p270, NuMA, and perhaps actin may have roles in nuclear assembly.
Collapse
Affiliation(s)
- T M Gant
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
25
|
Masuda K, Xu ZJ, Takahashi S, Ito A, Ono M, Nomura K, Inoue M. Peripheral framework of carrot cell nucleus contains a novel protein predicted to exhibit a long alpha-helical domain. Exp Cell Res 1997; 232:173-81. [PMID: 9141634 DOI: 10.1006/excr.1997.3531] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A monoclonal antibody, CML-1, raised against carrot (Daucus carota L.) nuclear-matrix proteins selectively labeled the nuclear periphery of carrot protoplasts when visualized by confocal and electron microscopy. To identify the constituent proteins of higher plant cells structurally homologous to the vertebrate nuclear lamina, we cloned overlapping cDNAs partially encoding a CML-1-recognized protein and determined the entire sequence including the open reading frame. When the deduced amino acid sequence was compared with other known protein sequences contained in major databases, no protein was found to show high sequence identity across the whole region of the protein, while the partial sequence showed strong similarities with myosin, tropomyosin, and some intermediate filament proteins. The protein, designated NMCP1, had an estimated molecular mass of 133.6 kDa and showed three characteristic domains. The central domain contains long alpha-helices exhibiting heptad repeats of apolar residues, demonstrating structural similarity to that of filament-forming proteins. The terminal domains are predominantly nonhelical and contain potential sequence motifs for nuclear localization signals. NMCP1 has many recognition motifs for different types of protein kinases, including cdc2 kinase and PKC. These results suggest that NMCP1 protein forms coiled-coil filaments and is a constituent of the peripheral architecture of the higher plant cell nucleus.
Collapse
Affiliation(s)
- K Masuda
- Faculty of Agriculture, Hokkaido University, Sapporo, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Moreno Díaz de la Espina SM. Nuclear matrix isolated from plant cells. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 162B:75-139. [PMID: 8557494 DOI: 10.1016/s0074-7696(08)62615-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Residual nuclear matrices can be successfully obtained from isolated nuclei of different monocot and dicot plant species using either high ionic or low ionic extraction protocols. The protein composition of isolated nuclear matrices depends on the details of isolation protocols. They are stable and present in all cases, a tripartite organization with a lamina, nucleolar matrix, and internal matrix network, and also maintain some of the basic architectural features of intact nuclei. In situ preparations demonstrate the continuity between the nuclear matrix and the plant cytoskeleton. Two-dimensional separation of isolated plant nuclear matrix proteins reveals a heterogeneous polypeptide composition corresponding rather to a complex multicomponent matrix than to a simple nucleoskeletal structure. Immunological identification of some plant nuclear matrix components such as A and B type lamins, topoisomerase II, and some components of the transcription and splicing machineries, internal intermediate filament proteins, and also specific nucleolar proteins like fibrillarin and nucleolin, which associate to specific matrix domains, establish a model of organization for the plant nuclear matrix similar to that of other eukaryotes. Components of the transcription, processing, and DNA-anchoring complexes are associated with a very stable nucleoskeleton. The plant matrix-attached regions share structural and functional characteristics with those of insects, vertebrates, and yeast, and some of them are active in animal cells. In conclusion, the available data support the view that the plant nuclear matrix is basically similar in animal and plant systems, and has been evolutionarily conserved in eukaryotes.
Collapse
|