1
|
Littleton SH, Trang KB, Volpe CM, Cook K, DeBruyne N, Maguire JA, Weidekamp MA, Hodge KM, Boehm K, Lu S, Chesi A, Bradfield JP, Pippin JA, Anderson SA, Wells AD, Pahl MC, Grant SFA. Variant-to-function analysis of the childhood obesity chr12q13 locus implicates rs7132908 as a causal variant within the 3' UTR of FAIM2. CELL GENOMICS 2024; 4:100556. [PMID: 38697123 PMCID: PMC11099382 DOI: 10.1016/j.xgen.2024.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024]
Abstract
The ch12q13 locus is among the most significant childhood obesity loci identified in genome-wide association studies. This locus resides in a non-coding region within FAIM2; thus, the underlying causal variant(s) presumably influence disease susceptibility via cis-regulation. We implicated rs7132908 as a putative causal variant by leveraging our in-house 3D genomic data and public domain datasets. Using a luciferase reporter assay, we observed allele-specific cis-regulatory activity of the immediate region harboring rs7132908. We generated isogenic human embryonic stem cell lines homozygous for either rs7132908 allele to assess changes in gene expression and chromatin accessibility throughout a differentiation to hypothalamic neurons, a key cell type known to regulate feeding behavior. The rs7132908 obesity risk allele influenced expression of FAIM2 and other genes and decreased the proportion of neurons produced by differentiation. We have functionally validated rs7132908 as a causal obesity variant that temporally regulates nearby effector genes and influences neurodevelopment and survival.
Collapse
Affiliation(s)
- Sheridan H Littleton
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Khanh B Trang
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christina M Volpe
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kieona Cook
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Psychiatry, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nicole DeBruyne
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean Ann Maguire
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mary Ann Weidekamp
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kenyaita M Hodge
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Keith Boehm
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sumei Lu
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan P Bradfield
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Quantinuum Research LLC, San Diego, CA 92101, USA
| | - James A Pippin
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stewart A Anderson
- Department of Child and Adolescent Psychiatry, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew C Pahl
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Littleton SH, Trang KB, Volpe CM, Cook K, DeBruyne N, Ann Maguire J, Ann Weidekamp M, Boehm K, Chesi A, Pippin JA, Anderson SA, Wells AD, Pahl MC, Grant SF. Variant-to-function analysis of the childhood obesity chr12q13 locus implicates rs7132908 as a causal variant within the 3' UTR of FAIM2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.553157. [PMID: 37662342 PMCID: PMC10473629 DOI: 10.1101/2023.08.21.553157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The ch12q13 obesity locus is among the most significant childhood obesity loci identified in genome-wide association studies. This locus resides in a non-coding region within FAIM2; thus, the underlying causal variant(s) presumably influence disease susceptibility via an influence on cis-regulation within the genomic region. We implicated rs7132908 as a putative causal variant at this locus leveraging a combination of our inhouse 3D genomic data, public domain datasets, and several computational approaches. Using a luciferase reporter assay in human primary astrocytes, we observed allele-specific cis-regulatory activity of the immediate region harboring rs7132908. Motivated by this finding, we went on to generate isogenic human embryonic stem cell lines homozygous for either rs7132908 allele with CRISPR-Cas9 homology-directed repair to assess changes in gene expression due to genotype and chromatin accessibility throughout a differentiation to hypothalamic neurons, a key cell type known to regulate feeding behavior. We observed that the rs7132908 obesity risk allele influenced the expression of FAIM2 along with other genes, decreased the proportion of neurons produced during differentiation, up-regulated cell death gene sets, and conversely down-regulated neuron differentiation gene sets. We have therefore functionally validated rs7132908 as a causal obesity variant which temporally regulates nearby effector genes at the ch12q13 locus and influences neurodevelopment and survival.
Collapse
Affiliation(s)
- Sheridan H. Littleton
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Khanh B. Trang
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christina M. Volpe
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kieona Cook
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Psychiatry, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nicole DeBruyne
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean Ann Maguire
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mary Ann Weidekamp
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keith Boehm
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James A. Pippin
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stewart A. Anderson
- Department of Child and Adolescent Psychiatry, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew D. Wells
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew C. Pahl
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Struan F.A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Khan S. Endoplasmic Reticulum in Metaplasticity: From Information Processing to Synaptic Proteostasis. Mol Neurobiol 2022; 59:5630-5655. [PMID: 35739409 DOI: 10.1007/s12035-022-02916-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/05/2022] [Indexed: 11/29/2022]
Abstract
The ER (endoplasmic reticulum) is a Ca2+ reservoir and the unique protein-synthesizing machinery which is distributed throughout the neuron and composed of multiple different structural domains. One such domain is called EMC (endoplasmic reticulum membrane protein complex), pleiotropic nature in cellular functions. The ER/EMC position inside the neurons unmasks its contribution to synaptic plasticity via regulating various cellular processes from protein synthesis to Ca2+ signaling. Since presynaptic Ca2+ channels and postsynaptic ionotropic receptors are organized into the nanodomains, thus ER can be a crucial player in establishing TMNCs (transsynaptic molecular nanocolumns) to shape efficient neural communications. This review hypothesized that ER is not only involved in stress-mediated neurodegeneration but also axon regrowth, remyelination, neurotransmitter switching, information processing, and regulation of pre- and post-synaptic functions. Thus ER might not only be a protein-synthesizing and quality control machinery but also orchestrates plasticity of plasticity (metaplasticity) within the neuron to execute higher-order brain functions and neural repair.
Collapse
Affiliation(s)
- Shumsuzzaman Khan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
4
|
Li L, Yu J, Ji SJ. Axonal mRNA localization and translation: local events with broad roles. Cell Mol Life Sci 2021; 78:7379-7395. [PMID: 34698881 PMCID: PMC11072051 DOI: 10.1007/s00018-021-03995-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/17/2021] [Accepted: 10/14/2021] [Indexed: 12/19/2022]
Abstract
Messenger RNA (mRNA) can be transported and targeted to different subcellular compartments and locally translated. Local translation is an evolutionally conserved mechanism that in mammals, provides an important tool to exquisitely regulate the subcellular proteome in different cell types, including neurons. Local translation in axons is involved in processes such as neuronal development, function, plasticity, and diseases. Here, we summarize the current progress on axonal mRNA transport and translation. We focus on the regulatory mechanisms governing how mRNAs are transported to axons and how they are locally translated in axons. We discuss the roles of axonally synthesized proteins, which either function locally in axons, or are retrogradely trafficked back to soma to achieve neuron-wide gene regulation. We also examine local translation in neurological diseases. Finally, we give a critical perspective on the remaining questions that could be answered to uncover the fundamental rules governing local translation, and discuss how this could lead to new therapeutic targets for neurological diseases.
Collapse
Affiliation(s)
- Lichao Li
- School of Life Sciences, Department of Biology, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Jun Yu
- School of Life Sciences, Department of Biology, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Sheng-Jian Ji
- School of Life Sciences, Department of Biology, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
5
|
Chen Q, Lin G, Huang J, Chen L, Liu Y, Huang J, Zhang S, Lin Q. Inhibition of miR-193a-3p protects human umbilical vein endothelial cells against intermittent hypoxia-induced endothelial injury by targeting FAIM2. Aging (Albany NY) 2020; 12:1899-1909. [PMID: 32003752 PMCID: PMC7053631 DOI: 10.18632/aging.102729] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/02/2020] [Indexed: 04/11/2023]
Abstract
OBJECTIVE The functions and molecular regulatory mechanisms of miR-193a-3p in cardiac injury induced by obstructive sleep apnea (OSA) are poorly understood. This study aimed to explore the role of miR-193a-3p in intermittent hypoxia(IH)-induced human umbilical vein endothelial cells (HUVECs) injury. RESULTS In this study, we found that IH significantly decreased viability but enhanced cell apoptosis. Concurrently, the miR-193a-3p expression level was increased in HUVECs after IH. Subsequent experiments showed that IH-induced injury was ameliorated through miR-193a-3p silence. Fas apoptotic inhibitory molecule 2 (FAIM2) was predicted by bioinformatics analysis and further identified as a direct target gene of miR-193a-3p. Interestingly, the effect of miR-193a-3p inhibition under IH could be reversed by down-regulating FAIM2 expression. CONCLUSION In conclusion, our study first revealed that miR-193a-3p inhibition could protect HUVECs against intermittent hypoxia-induced damage by negatively regulating FAIM2. These findings could advance our understanding of the underlying mechanisms for OSA-related cardiac injury. METHODS We exposed HUVECs to IH condition; the expression levels of miR-193a-3p were detected by RT-qPCR. Cell viability, and the expressions of apoptosis-associated proteins were examined via CCK-8, and western blotting, respectively. Target genes of miR-193a-3p were confirmed by dual-luciferase reporter assay.
Collapse
Affiliation(s)
- Qingshi Chen
- The Second Affiliated Hospital of Fujian Medical University, Licheng 362000, Quanzhou, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Taijiang 350005, Fuzhou, China
| | - Guofu Lin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Taijiang 350005, Fuzhou, China
| | - Jianchai Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Taijiang 350005, Fuzhou, China
| | - Lida Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Taijiang 350005, Fuzhou, China
- Department of Respiratory and Critical Care Medicine, Zhangzhou Affiliated Hospital of Fujian Medical University, Xiangcheng 363000, Zhangzhou, China
| | - Yibin Liu
- The Second Affiliated Hospital of Fujian Medical University, Licheng 362000, Quanzhou, China
| | - Jiefeng Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Taijiang 350005, Fuzhou, China
| | - Shuyi Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Taijiang 350005, Fuzhou, China
| | - Qichang Lin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Taijiang 350005, Fuzhou, China
| |
Collapse
|
6
|
Pacheco A, Merianda TT, Twiss JL, Gallo G. Mechanism and role of the intra-axonal Calreticulin translation in response to axonal injury. Exp Neurol 2019; 323:113072. [PMID: 31669485 DOI: 10.1016/j.expneurol.2019.113072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
Following injury, sensory axons locally translate mRNAs that encode proteins needed for the response to injury, locally and through retrograde signaling, and for regeneration. In this study, we addressed the mechanism and role of axotomy-induced intra-axonal translation of the ER chaperone Calreticulin. In vivo peripheral nerve injury increased Calreticulin levels in sensory axons. Using an in vitro model system of sensory neurons amenable to mechanistic dissection we provide evidence that axotomy induces local translation of Calreticulin through PERK (protein kinase RNA-like endoplasmic reticulum kinase) mediated phosphorylation of eIF2α by a mechanism that requires both 5' and 3'UTRs (untranslated regions) elements in Calreticulin mRNA. ShRNA mediated depletion of Calreticulin or inhibition of PERK signaling increased axon retraction following axotomy. In contrast, expression of axonally targeted, but not somatically restricted, Calreticulin mRNA decreased retraction and promoted axon regeneration following axotomy in vitro. Collectively, these data indicate that the intra-axonal translation of Calreticulin in response to axotomy serves to minimize the ensuing retraction, and overexpression of axonally targeted Calreticulin mRNA promotes axon regeneration.
Collapse
Affiliation(s)
- Almudena Pacheco
- Temple University School of Medicine, Shriners Pediatric Research Center, Department of Anatomy and Cell Biology, 3500 North Broad St, Philadelphia, PA 19140, United States of America.
| | - Tanuja T Merianda
- Drexel University, Department of Biology, Philadelphia, PA 19104, United States of America
| | - Jeffery L Twiss
- University of South Carolina, Department of Biological Sciences, Columbia 29208, SC, United States of America.
| | - Gianluca Gallo
- Temple University School of Medicine, Shriners Pediatric Research Center, Department of Anatomy and Cell Biology, 3500 North Broad St, Philadelphia, PA 19140, United States of America.
| |
Collapse
|
7
|
Guo G, Xu M, Chang Y, Luyten T, Seitaj B, Liu W, Zhu P, Bultynck G, Shi L, Quick M, Liu Q. Ion and pH Sensitivity of a TMBIM Ca 2+ Channel. Structure 2019; 27:1013-1021.e3. [PMID: 30930064 PMCID: PMC6560632 DOI: 10.1016/j.str.2019.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/25/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022]
Abstract
The anti-apoptotic transmembrane Bax inhibitor motif (TMBIM) containing protein family regulates Ca2+ homeostasis, cell death, and the progression of diseases including cancers. The recent crystal structures of the TMBIM homolog BsYetJ reveal a conserved Asp171-Asp195 dyad that is proposed in regulating a pH-dependent Ca2+ translocation. Here we show that BsYetJ mediates Ca2+ fluxes in permeabilized mammalian cells, and its interaction with Ca2+ is sensitive to protons and other cations. We report crystal structures of BsYetJ in additional states, revealing the flexibility of the dyad in a closed state and a pore-opening mechanism. Functional studies show that the dyad is responsible for both Ca2+ affinity and pH dependence. Computational simulations suggest that protonation of Asp171 weakens its interaction with Arg60, leading to an open state. Our integrated analysis provides insights into the regulation of the BsYetJ Ca2+ channel that may inform understanding of human TMBIM proteins regarding their roles in cell death and diseases.
Collapse
Affiliation(s)
- Gongrui Guo
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA; NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Min Xu
- Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MA 21224, USA
| | - Yanqi Chang
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA
| | - Tomas Luyten
- Laboratory Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I Bus 802, Herestraat 49 3000 Leuven, Belgium
| | - Bruno Seitaj
- Laboratory Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I Bus 802, Herestraat 49 3000 Leuven, Belgium
| | - Wu Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA; NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ping Zhu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Geert Bultynck
- Laboratory Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I Bus 802, Herestraat 49 3000 Leuven, Belgium
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MA 21224, USA.
| | - Matthias Quick
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA.
| | - Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA; NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA.
| |
Collapse
|
8
|
Single-molecule analysis of endogenous β-actin mRNA trafficking reveals a mechanism for compartmentalized mRNA localization in axons. Proc Natl Acad Sci U S A 2018; 115:E9697-E9706. [PMID: 30254174 PMCID: PMC6187124 DOI: 10.1073/pnas.1806189115] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
De novo protein synthesis in neuronal axons plays important roles in neural circuit formation, maintenance, and disease. Key to the selectivity of axonal protein synthesis is whether an mRNA is present at the right place to be translated, but the mechanisms behind axonal mRNA localization remain poorly understood. In this work, we quantitatively analyze the link between axonal β-actin mRNA trafficking and its localization patterns. By developing a single-molecule approach to live-image β-actin mRNAs in axons, we explore the biophysical drivers behind β-actin mRNA motion and uncover a mechanism for generating increased density at the axon tip by differences in motor protein-driven transport speeds. These results provide mechanistic insight into the control of local translation through mRNA trafficking. During embryonic nervous system assembly, mRNA localization is precisely regulated in growing axons, affording subcellular autonomy by allowing controlled protein expression in space and time. Different sets of mRNAs exhibit different localization patterns across the axon. However, little is known about how mRNAs move in axons or how these patterns are generated. Here, we couple molecular beacon technology with highly inclined and laminated optical sheet microscopy to image single molecules of identified endogenous mRNA in growing axons. By combining quantitative single-molecule imaging with biophysical motion models, we show that β-actin mRNA travels mainly as single copies and exhibits different motion-type frequencies in different axonal subcompartments. We find that β-actin mRNA density is fourfold enriched in the growth cone central domain compared with the axon shaft and that a modicum of directed transport is vital for delivery of mRNA to the axon tip. Through mathematical modeling we further demonstrate that directional differences in motor-driven mRNA transport speeds are sufficient to generate β-actin mRNA enrichment at the growth cone. Our results provide insight into how mRNAs are trafficked in axons and a mechanism for generating different mRNA densities across axonal subcompartments.
Collapse
|
9
|
González C, Cornejo VH, Couve A. Golgi bypass for local delivery of axonal proteins, fact or fiction? Curr Opin Cell Biol 2018; 53:9-14. [PMID: 29631154 DOI: 10.1016/j.ceb.2018.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023]
Abstract
Although translation of cytosolic proteins is well described in axons, much less is known about the synthesis, processing and trafficking of transmembrane and secreted proteins. A canonical rough endoplasmic reticulum or a stacked Golgi apparatus has not been detected in axons, generating doubts about the functionality of a local route. However, axons contain mRNAs for membrane and secreted proteins, translation factors, ribosomal components, smooth endoplasmic reticulum and post-endoplasmic reticulum elements that may contribute to local biosynthesis and plasma membrane delivery. Here we consider the evidence supporting a local secretory system in axons. We discuss exocytic elements and examples of autonomous axonal trafficking that impact development and maintenance. We also examine whether unconventional post-endoplasmic reticulum pathways may replace the canonical Golgi apparatus.
Collapse
Affiliation(s)
- Carolina González
- Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Chile; Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Chile
| | - Víctor Hugo Cornejo
- Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Chile; Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Chile
| | - Andrés Couve
- Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Chile; Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Chile.
| |
Collapse
|
10
|
Costa CJ, Willis DE. To the end of the line: Axonal mRNA transport and local translation in health and neurodegenerative disease. Dev Neurobiol 2017; 78:209-220. [PMID: 29115051 DOI: 10.1002/dneu.22555] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/20/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022]
Abstract
Axons and growth cones, by their very nature far removed from the cell body, encounter unique environments and require distinct populations of proteins. It seems only natural, then, that they have developed mechanisms to locally synthesize a host of proteins required to perform their specialized functions. Acceptance of this ability has taken decades; however, there is now consensus that axons do indeed have the capacity for local translation, and that this capacity is even retained into adulthood. Accumulating evidence supports the role of locally synthesized proteins in the proper development, maintenance, and function of neurons, and newly emerging studies also suggest that disruption in this process has implications in a number of neurodevelopmental and neurodegenerative diseases. Here, we briefly review the long history of axonal mRNA localization and local translation, and the role that these locally synthesized proteins play in normal neuronal function. Additionally, we highlight the emerging evidence that dysregulation in these processes contributes to a wide range of pathophysiology, including neuropsychiatric disorders, Alzheimer's, and motor neuron diseases such as spinal muscular atrophy and Amyotrophic Lateral Sclerosis. © 2017 Wiley Periodicals, Inc. Develop. Neurobiol 78: 209-220, 2018.
Collapse
Affiliation(s)
| | - Dianna E Willis
- Burke Medical Research Institute, White Plains, New York, 10605.,Brain & Mind Research Institute, Weill Cornell Medicine, New York, New York
| |
Collapse
|
11
|
Kar AN, Lee SJ, Twiss JL. Expanding Axonal Transcriptome Brings New Functions for Axonally Synthesized Proteins in Health and Disease. Neuroscientist 2017; 24:111-129. [PMID: 28593814 DOI: 10.1177/1073858417712668] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intra-axonal protein synthesis has been shown to play critical roles in both development and repair of axons. Axons provide long-range connectivity in the nervous system, and disruption of their function and/or structure is seen in several neurological diseases and disorders. Axonally synthesized proteins or losses in axonally synthesized proteins contribute to neurodegenerative diseases, neuropathic pain, viral transport, and survival of axons. Increasing sensitivity of RNA detection and quantitation coupled with methods to isolate axons to purity has shown that a surprisingly complex transcriptome exists in axons. This extends across different species, neuronal populations, and physiological conditions. These studies have helped define the repertoire of neuronal mRNAs that can localize into axons and imply previously unrecognized functions for local translation in neurons. Here, we review the current state of transcriptomics studies of isolated axons, contrast axonal mRNA profiles between different neuronal types and growth states, and discuss how mRNA transport into and translation within axons contribute to neurological disorders.
Collapse
Affiliation(s)
- Amar N Kar
- 1 Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Seung Joon Lee
- 1 Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Jeffery L Twiss
- 1 Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.,2 Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
12
|
Cornejo VH, Luarte A, Couve A. Global and local mechanisms sustain axonal proteostasis of transmembrane proteins. Traffic 2017; 18:255-266. [PMID: 28220989 DOI: 10.1111/tra.12472] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/02/2017] [Accepted: 02/16/2017] [Indexed: 12/22/2022]
Abstract
The control of neuronal protein homeostasis or proteostasis is tightly regulated both spatially and temporally, assuring accurate and integrated responses to external or intrinsic stimuli. Local or autonomous responses in dendritic and axonal compartments are crucial to sustain function during development, physiology and in response to damage or disease. Axons are responsible for generating and propagating electrical impulses in neurons, and the establishment and maintenance of their molecular composition are subject to extreme constraints exerted by length and size. Proteins that require the secretory pathway, such as receptors, transporters, ion channels or cell adhesion molecules, are fundamental for axonal function, but whether axons regulate their abundance autonomously and how they achieve this is not clear. Evidence supports the role of three complementary mechanisms to maintain proteostasis of these axonal proteins, namely vesicular transport, local translation and trafficking and transfer from supporting cells. Here, we review these mechanisms, their molecular machineries and contribution to neuronal function. We also examine the signaling pathways involved in local translation and their role during development and nerve injury. We discuss the relative contributions of a transport-controlled proteome directed by the soma (global regulation) versus a local-controlled proteome based on local translation or cell transfer (local regulation).
Collapse
Affiliation(s)
- Víctor Hugo Cornejo
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - Alejandro Luarte
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - Andrés Couve
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Neural Progenitor Cells Promote Axonal Growth and Alter Axonal mRNA Localization in Adult Neurons. eNeuro 2017; 4:eN-NWR-0171-16. [PMID: 28197547 PMCID: PMC5291088 DOI: 10.1523/eneuro.0171-16.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 01/16/2023] Open
Abstract
The inhibitory environment of the spinal cord and the intrinsic properties of neurons prevent regeneration of axons following CNS injury. However, both ascending and descending axons of the injured spinal cord have been shown to regenerate into grafts of embryonic neural progenitor cells (NPCs). Previous studies have shown that grafts composed of glial-restricted progenitors (GRPs) and neural-restricted progenitors (NRPs) can provide a permissive microenvironment for axon growth. We have used cocultures of adult rat dorsal root ganglion (DRG) neurons together with NPCs, which have shown significant enhancement of axon growth by embryonic rat GRP and GRPs/NRPs, both in coculture conditions and when DRGs are exposed to conditioned medium from the NPC cultures. This growth-promoting effect of NPC-conditioned medium was also seen in injury-conditioned neurons. DRGs cocultured with GRPs/NRPs showed altered expression of regeneration-associated genes at transcriptional and post-transcriptional levels. We found that levels of GAP-43 mRNA increased in DRG cell bodies and axons. However, hepcidin antimicrobial peptide (HAMP) mRNA decreased in the cell bodies of DRGs cocultured with GRPs/NRPs, which is distinct from the increase in cell body HAMP mRNA levels seen in DRGs after injury conditioning. Endogenous GAP-43 and β-actin mRNAs as well as reporter RNAs carrying axonally localizing 3'UTRs of these transcripts showed significantly increased levels in distal axons in the DRGs cocultured with GRPs/NRPs. These results indicate that axon growth promoted by NPCs is associated not only with enhanced transcription of growth-associated genes but also can increase localization of some mRNAs into growing axons.
Collapse
|
14
|
Kar AN, Vargas JNS, Chen CY, Kowalak JA, Gioio AE, Kaplan BB. Molecular determinants of cytochrome C oxidase IV mRNA axonal trafficking. Mol Cell Neurosci 2017; 80:32-43. [PMID: 28161363 DOI: 10.1016/j.mcn.2017.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 01/10/2017] [Accepted: 01/29/2017] [Indexed: 01/17/2023] Open
Abstract
In previous studies, we identified a putative 38-nucleotide stem-loop structure (zipcode) in the 3' untranslated region of the cytochrome c oxidase subunit IV (COXIV) mRNA that was necessary and sufficient for the axonal localization of the message in primary superior cervical ganglion (SCG) neurons. However, little is known about the proteins that interact with the COXIV-zipcode and regulate the axonal trafficking and local translation of the COXIV message. To identify proteins involved in the axonal transport of the COXIV mRNA, we used the biotinylated 38-nucleotide COXIV RNA zipcode as bait in the affinity purification of COXIV zipcode binding proteins. Gel-shift assays of the biotinylated COXIV zipcode indicated that the putative stem-loop structure functions as a nucleation site for the formation of ribonucleoprotein complexes. Mass spectrometric analysis of the COXIV zipcode ribonucleoprotein complex led to the identification of a large number RNA binding proteins, including fused in sarcoma/translated in liposarcoma (FUS/TLS), and Y-box protein 1 (YB-1). Validation experiments, using western analyses, confirmed the presence of the candidate proteins in the COXIV zipcode affinity purified complexes obtained from SCG axons. Immunohistochemical studies show that FUS, and YB-1 are present in SCG axons. Importantly, RNA immunoprecipitation studies show that FUS, and YB-1 interact with endogenous axonal COXIV transcripts. siRNA-mediated downregulation of the candidate proteins FUS and YB-1 expression in the cell-bodies diminishes the levels of COXIV mRNA in the axon, suggesting functional roles for these proteins in the axonal trafficking of COXIV mRNA.
Collapse
Affiliation(s)
- Amar N Kar
- Section on Neurobiology, Laboratory of Molecular Biology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Jose Norberto S Vargas
- Section on Neurobiology, Laboratory of Molecular Biology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Cai-Yun Chen
- Section on Neurobiology, Laboratory of Molecular Biology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey A Kowalak
- NIMH-NINDS Clinical Proteomics Unit, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Anthony E Gioio
- Section on Neurobiology, Laboratory of Molecular Biology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Barry B Kaplan
- Section on Neurobiology, Laboratory of Molecular Biology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Liu Q. TMBIM-mediated Ca 2+ homeostasis and cell death. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:850-857. [PMID: 28064000 DOI: 10.1016/j.bbamcr.2016.12.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 11/25/2022]
Abstract
Ca2+ is a ubiquitous intracellular messenger that regulates numerous physiological activities in humans, animals, plants, and bacteria. Cytosolic Ca2+ is kept at a low level, but subcellular organelles such as the endoplasmic reticulum (ER) and Golgi apparatus maintain high-concentration Ca2+ stores. Under resting conditions, store Ca2+ homeostasis is dynamically regulated to equilibrate between active Ca2+ uptake and passive Ca2+ leak processes. The evolutionarily conserved Transmembrane BAX Inhibitor-1 Motif-containing (TMBIM) proteins mediate Ca2+ homeostasis and cell death. This review focuses on recent advances in functional and structural analysis of TMBIM proteins in regulation of the two related functions. The roles of TMBIM proteins in pathogen infection and cancer are also discussed with prospects for treatment. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| |
Collapse
|
16
|
Phay M, Kim HH, Yoo S. Analysis of piRNA-Like Small Non-coding RNAs Present in Axons of Adult Sensory Neurons. Mol Neurobiol 2016; 55:483-494. [PMID: 27966078 DOI: 10.1007/s12035-016-0340-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022]
Abstract
Small non-coding RNAs (sncRNAs) have been shown to play pivotal roles in spatiotemporal-specific gene regulation that is linked to many different biological functions. PIWI-interacting RNAs (piRNAs), typically 25-34-nucleotide long, are originally identified and thought to be restricted in germline cells. However, recent studies suggest that piRNAs associate with neuronal PIWI proteins, contributing to neuronal development and function. Here, we identify a cohort of piRNA-like sncRNAs (piLRNAs) in rat sciatic nerve axoplasm and directly contrast temporal changes of piLRNA levels in the nerve following injury, as compared with those in an uninjured nerve using deep sequencing. We find that 32 of a total of 53 annotated piLRNAs show significant changes in their levels in the regenerating nerve, suggesting that individual axonal piLRNAs may play important regulatory roles in local messenger RNA (mRNA) translation during regeneration. Bioinformatics and biochemical analyses show that these piLRNAs carry characteristic features of mammalian piRNAs, including sizes, a sequence bias for uracil at the 5'-end and a 2'-O-methylation at the 3'-end. Their axonal expression is directly visualized by fluorescence in situ hybridization in cultured dorsal root ganglion neurons as well as immunoprecipitation with MIWI. Further, depletion of MIWI protein using RNAi from cultured sensory neurons increases axon growth rates, decreases axon retraction after injury, and increases axon regrowth after injury. All these data suggest more general roles for MIWI/piLRNA pathway that could confer a unique advantage for coordinately altering the population of proteins generated in growth cones and axons of neurons by targeting mRNA cohorts.
Collapse
Affiliation(s)
- Monichan Phay
- Nemours Biomedical Research, Alfred I duPont Hospital for Children, Wilmington, DE, 19803, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Hak Hee Kim
- Nemours Biomedical Research, Alfred I duPont Hospital for Children, Wilmington, DE, 19803, USA
| | - Soonmoon Yoo
- Nemours Biomedical Research, Alfred I duPont Hospital for Children, Wilmington, DE, 19803, USA. .,Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
17
|
Planells-Ferrer L, Urresti J, Coccia E, Galenkamp KMO, Calleja-Yagüe I, López-Soriano J, Carriba P, Barneda-Zahonero B, Segura MF, Comella JX. Fas apoptosis inhibitory molecules: more than death-receptor antagonists in the nervous system. J Neurochem 2016; 139:11-21. [DOI: 10.1111/jnc.13729] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/14/2016] [Accepted: 07/02/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Laura Planells-Ferrer
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Jorge Urresti
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Elena Coccia
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Koen M. O. Galenkamp
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Isabel Calleja-Yagüe
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Joaquín López-Soriano
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Paulina Carriba
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Bruna Barneda-Zahonero
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Miguel F. Segura
- Group of Translational Research in Childhood and Adolescent Cancer; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
| | - Joan X. Comella
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| |
Collapse
|
18
|
Affiliation(s)
- Shruti Jain
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Kristy Welshhans
- Department of Biological Sciences, Kent State University, Kent, OH, USA; School of Biomedical Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
19
|
There and back again: coordinated transcription, translation and transport in axonal survival and regeneration. Curr Opin Neurobiol 2016; 39:62-8. [PMID: 27131422 DOI: 10.1016/j.conb.2016.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/07/2016] [Accepted: 04/13/2016] [Indexed: 11/23/2022]
Abstract
Neurons are highly polarized cells with axonal and dendritic projections that extend over long distances. Target-derived neurotrophins provide local axonal cues that function in developing neurons, while physical or chemical injuries to long axons initiate local environmental cues in mature neurons. In both instances initial responses at the location of stimulation or injury must be coordinated with changes in the transcriptional program and subsequent changes in axonal protein content. To achieve this coordination, intracellular signals move 'there and back again' between axons and the nucleus. Here, we review new findings on neuronal responses to growth factors and injury and highlight the coordination of transcription, translation and transport required to mediate communication between axons and cell bodies.
Collapse
|
20
|
Briese M, Saal L, Appenzeller S, Moradi M, Baluapuri A, Sendtner M. Whole transcriptome profiling reveals the RNA content of motor axons. Nucleic Acids Res 2015; 44:e33. [PMID: 26464439 PMCID: PMC4770199 DOI: 10.1093/nar/gkv1027] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 09/28/2015] [Indexed: 12/26/2022] Open
Abstract
Most RNAs within polarized cells such as neurons are sorted subcellularly in a coordinated manner. Despite advances in the development of methods for profiling polyadenylated RNAs from small amounts of input RNA, techniques for profiling coding and non-coding RNAs simultaneously are not well established. Here, we optimized a transcriptome profiling method based on double-random priming and applied it to serially diluted total RNA down to 10 pg. Read counts of expressed genes were robustly correlated between replicates, indicating that the method is both reproducible and scalable. Our transcriptome profiling method detected both coding and long non-coding RNAs sized >300 bases. Compared to total RNAseq using a conventional approach our protocol detected 70% more genes due to reduced capture of ribosomal RNAs. We used our method to analyze the RNA composition of compartmentalized motoneurons. The somatodendritic compartment was enriched for transcripts with post-synaptic functions as well as for certain nuclear non-coding RNAs such as 7SK. In axons, transcripts related to translation were enriched including the cytoplasmic non-coding RNA 7SL. Our profiling method can be applied to a wide range of investigations including perturbations of subcellular transcriptomes in neurodegenerative diseases and investigations of microdissected tissue samples such as anatomically defined fiber tracts.
Collapse
Affiliation(s)
- Michael Briese
- Institute for Clinical Neurobiology, University of Wuerzburg, 97078 Wuerzburg, Germany
| | - Lena Saal
- Institute for Clinical Neurobiology, University of Wuerzburg, 97078 Wuerzburg, Germany
| | - Silke Appenzeller
- Core Unit Systems Medicine, University of Wuerzburg, 97080 Wuerzburg, Germany
| | - Mehri Moradi
- Institute for Clinical Neurobiology, University of Wuerzburg, 97078 Wuerzburg, Germany
| | - Apoorva Baluapuri
- Institute for Clinical Neurobiology, University of Wuerzburg, 97078 Wuerzburg, Germany
| | - Michael Sendtner
- Institute for Clinical Neurobiology, University of Wuerzburg, 97078 Wuerzburg, Germany
| |
Collapse
|
21
|
mRNAs and Protein Synthetic Machinery Localize into Regenerating Spinal Cord Axons When They Are Provided a Substrate That Supports Growth. J Neurosci 2015; 35:10357-70. [PMID: 26180210 DOI: 10.1523/jneurosci.1249-15.2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Although intra-axonal protein synthesis is well recognized in cultured neurons and during development in vivo, there have been few reports of mRNA localization and/or intra-axonal translation in mature CNS axons. Indeed, previous work indicated that mature CNS axons contain much lower quantities of translational machinery than PNS axons, leading to the conclusion that the capacity for intra-axonal protein synthesis is linked to the intrinsic capacity of a neuron for regeneration, with mature CNS neurons showing much less growth after injury than PNS neurons. However, when regeneration by CNS axons is facilitated, it is not known whether the intra-axonal content of translational machinery changes or whether mRNAs localize into these axons. Here, we have used a peripheral nerve segment grafted into the transected spinal cord of adult rats as a supportive environment for regeneration by ascending spinal axons. By quantitative fluorescent in situ hybridization combined with immunofluorescence to unambiguously distinguish intra-axonal mRNAs, we show that regenerating spinal cord axons contain β-actin, GAP-43, Neuritin, Reg3a, Hamp, and Importin β1 mRNAs. These axons also contain 5S rRNA, phosphorylated S6 ribosomal protein, eIF2α translation factor, and 4EBP1 translation factor inhibitory protein. Different levels of these mRNAs in CNS axons from regenerating PNS axons may relate to differences in the growth capacity of these neurons, although the presence of mRNA transport and likely local translation in both CNS and PNS neurons suggests an active role in the regenerative process. SIGNIFICANCE STATEMENT Although peripheral nerve axons retain the capacity to locally synthesize proteins into adulthood, previous studies have argued that mature brain and spinal cord axons cannot synthesize proteins. Protein synthesis in peripheral nerve axons is increased during regeneration, and intra-axonally synthesized proteins have been shown to contribute to nerve regeneration. Here, we show that mRNAs and translational machinery are transported into axons regenerating from the spinal cord into the permissive environment of a peripheral nerve graft. Our data raise the possibility that spinal cord axons may make use of localized protein synthesis for regeneration.
Collapse
|
22
|
Sachdeva R, Theisen CC, Ninan V, Twiss JL, Houlé JD. Exercise dependent increase in axon regeneration into peripheral nerve grafts by propriospinal but not sensory neurons after spinal cord injury is associated with modulation of regeneration-associated genes. Exp Neurol 2015; 276:72-82. [PMID: 26366525 DOI: 10.1016/j.expneurol.2015.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/28/2015] [Accepted: 09/08/2015] [Indexed: 01/04/2023]
Abstract
Insufficient regeneration of central nervous system (CNS) axons contributes to persisting neurological dysfunction after spinal cord injury (SCI). Peripheral nerve grafts (PNGs) support regeneration by thousands of injured intraspinal axons and help them bypass some of the extracellular barriers that form after SCI. However this number represents but a small portion of the total number of axons that are injured. Here we tested if rhythmic sensory stimulation during cycling exercise would boost the intrinsic regenerative state of neurons to enhance axon regeneration into PNGs after a lower thoracic (T12) spinal transection of adult rats. Using True Blue retrograde tracing, we show that 4 weeks of cycling improves regeneration into a PNG from lumbar interneurons but not by primary sensory neurons. The majority of neurons that regenerate their axon are within 5 mm of the lesion and their number increased 70% with exercise. Importantly propriospinal neurons in more distant regions (5-20 mm from the lesion) that routinely exhibit very limited regeneration responded to exercise by increasing the number of regenerating neurons by 900%. There was no exercise-associated increase in regeneration from sensory neurons. Analyses using fluorescent in situ hybridization showed that this increase in regenerative response is associated with changes in levels of mRNAs encoding the regeneration associated genes (RAGs) GAP43, β-actin and Neuritin. While propriospinal neurons showed increased mRNA levels in response to SCI alone and then to grafting and exercise, sensory neurons did not respond to SCI, but there was a response to the presence of a PNG. Thus, exercise is a non-invasive approach to modulate gene expression in injured neurons leading to an increase in regeneration. This sets the stage for future studies to test whether exercise will promote axon outgrowth beyond the PNG and reconnection with spinal cord neurons, thereby demonstrating a potential clinical application of this combined therapeutic intervention.
Collapse
Affiliation(s)
- Rahul Sachdeva
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Catherine C Theisen
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Vinu Ninan
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - John D Houlé
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
23
|
Dynamic Change and Target Prediction of Axon-Specific MicroRNAs in Regenerating Sciatic Nerve. PLoS One 2015; 10:e0137461. [PMID: 26331719 PMCID: PMC4557935 DOI: 10.1371/journal.pone.0137461] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/17/2015] [Indexed: 12/17/2022] Open
Abstract
Injury to axons in the peripheral nervous system induces rapid and local regenerative responses to form a new growth cone, and to generate a retrogradely transporting injury signal. The evidence for essential roles of intra-axonal protein synthesis during regeneration is now compelling. MicroRNA (miRNA) has recently been recognized as a prominent player in post-transcriptional regulation of axonal protein synthesis. Here, we directly contrast temporal changes of miRNA levels in the sciatic nerve following injury, as compared to those in an uninjured nerve using deep sequencing. Small RNAs (<200 nucleotides in length) were fractionated from the proximal nerve stumps to improve the representation of differential miRNA levels. Of 141 axoplasmic miRNAs annotated, 63 rat miRNAs showed significantly differential levels at five time points following injury, compared to an uninjured nerve. The differential changes in miRNA levels responding to injury were processed for hierarchical clustering analyses, and used to predict target mRNAs by Targetscan and miRanda. By overlapping these predicted targets with 2,924 axonally localizing transcripts previously reported, the overlapping set of 214 transcripts was further analyzed by the Gene Ontology enrichment and Ingenuity Pathway Analyses. These results suggest the possibility that the potential targets for these miRNAs play key roles in numerous neurological functions involved in ER stress response, cytoskeleton dynamics, vesicle formation, and neuro-degeneration and-regeneration. Finally, our results suggest that miRNAs could play a direct role in regenerative response and may be manipulated to promote regenerative ability of injured nerves.
Collapse
|
24
|
Abstract
Cytoskeleton-dependent RNA transport and local translation in axons are gaining increased attention as key processes in the maintenance and functioning of neurons. Specific axonal transcripts have been found to play roles in many aspects of axonal physiology including axon guidance, axon survival, axon to soma communication, injury response and regeneration. This axonal transcriptome requires long-range transport that is achieved by motor proteins carrying transcripts as messenger ribonucleoprotein (mRNP) complexes along microtubules. Other than transport, the mRNP complex plays a major role in the generation, maintenance, and regulation of the axonal transcriptome. Identification of axonal RNA-binding proteins (RBPs) and analyses of the dynamics of their mRNPs are of high interest to the field. Here, we describe methods for the study of interactions between RNA and proteins in axons. First, we describe a protocol for identifying binding proteins for an RNA of interest by using RNA affinity chromatography. Subsequently, we discuss immunoprecipitation (IP) methods allowing the dissection of protein-RNA and protein-protein interactions in mRNPs under various physiological conditions.
Collapse
|
25
|
Cho Y, Park D, Cavalli V. Filamin A is required in injured axons for HDAC5 activity and axon regeneration. J Biol Chem 2015; 290:22759-70. [PMID: 26157139 DOI: 10.1074/jbc.m115.638445] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Indexed: 11/06/2022] Open
Abstract
Microtubule dynamics are important for axon growth during development as well as axon regeneration after injury. We have previously identified HDAC5 as an injury-regulated tubulin deacetylase that functions at the injury site to promote axon regeneration. However, the mechanisms involved in the spatial control of HDAC5 activity remain poorly understood. Here we reveal that HDAC5 interacts with the actin binding protein filamin A via its C-terminal domain. Filamin A plays critical roles in HDAC5-dependent tubulin deacetylation because, in cells lacking filamin A, the levels of acetylated tubulin are elevated markedly. We found that nerve injury increases filamin A axonal expression in a protein synthesis-dependent manner. Reducing filamin A levels or interfering with the interaction between HDAC5 and filamin A prevents injury-induced tubulin deacetylation as well as HDAC5 localization at the injured axon tips. In addition, neurons lacking filamin A display reduced axon regeneration. Our findings suggest a model in which filamin A local translation following axon injury controls localized HDAC5 activity to promote axon regeneration.
Collapse
Affiliation(s)
- Yongcheol Cho
- From the Department of Anatomy and Neurobiology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri 63110 and
| | - Dongeun Park
- the School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Valeria Cavalli
- From the Department of Anatomy and Neurobiology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri 63110 and
| |
Collapse
|
26
|
Abstract
High mobility group (HMG) proteins concentrate in the nucleus, interacting with chromatin. Amphoterin is an HMG protein (HMGB1) that has been shown to have extranuclear functions and can be secreted from some cell types. Exogenous amphoterin can increase neurite growth, suggesting that the secreted protein may have growth promoting activities in neurons. Consistent with this, we show that depletion of amphoterin mRNA from cultured adult rat DRG neurons attenuates neurite outgrowth, pointing to autocrine or paracrine mechanisms for its growth-promoting effects. The mRNA encoding amphoterin localizes to axonal processes and we showed recently that its 3'-UTR is sufficient for axonal localization of heterologous transcripts (Donnelly et al., 2013). Here, we show that amphoterin mRNA is transported constitutively into axons of adult DRG neurons. A preconditioning nerve injury increases the levels of amphoterin protein in axons without a corresponding increase in amphoterin mRNA in the axons. A 60 nucleotide region of the amphoterin mRNA 3'-UTR is necessary and sufficient for its localization into axons of cultured sensory neurons. Amphoterin mRNA 3'-UTR is also sufficient for axonal localization in distal axons of DRG neurons in vivo. Overexpression of axonally targeted amphoterin mRNA increases axon outgrowth in cultured sensory neurons, but axon growth is not affected when the overexpressed mRNA is restricted to the cell body.
Collapse
|
27
|
Kim HH, Kim P, Phay M, Yoo S. Identification of precursor microRNAs within distal axons of sensory neuron. J Neurochem 2015; 134:193-9. [PMID: 25919946 DOI: 10.1111/jnc.13140] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 11/30/2022]
Abstract
A set of specific precursor microRNAs (pre-miRNAs) are reported to localize into neuronal dendrites, where they could be processed locally to control synaptic protein synthesis and plasticity. However, it is not clear whether specific pre-miRNAs are also transported into distal axons to autonomously regulate intra-axonal protein synthesis. Here, we show that a subset of pre-miRNAs, whose mature miRNAs are enriched in axonal compartment of sympathetic neurons, are present in axons of neurons both in vivo and in vitro by quantitative PCR and by in situ hybridization. Some pre-miRNAs (let 7c-a and pre-miRs-16, 23a, 25, 125b-1, 433, and 541) showed elevated axonal levels, while others (pre-miRs-138-2, 185, and 221) were decreased in axonal levels following injury. Dicer and KSRP proteins are also present in distal axons, but Drosha is found restricted to the cell body. These findings suggest that specific pre-miRNAs are selected for localization into distal axons of sensory neurons and are presumably processed to mature miRNAs in response to extracellular stimuli. This study supports the notion that local miRNA biogenesis effectively provides another level of temporal control for local protein synthesis in axons.
Collapse
Affiliation(s)
- Hak Hee Kim
- Nemours Biomedical Research, Alfred I. DuPont Hospital for Children, Wilmington, Delaware, USA
| | - Paul Kim
- Nemours Biomedical Research, Alfred I. DuPont Hospital for Children, Wilmington, Delaware, USA
| | - Monichan Phay
- Nemours Biomedical Research, Alfred I. DuPont Hospital for Children, Wilmington, Delaware, USA.,Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Soonmoon Yoo
- Nemours Biomedical Research, Alfred I. DuPont Hospital for Children, Wilmington, Delaware, USA
| |
Collapse
|
28
|
Growth Cone Localization of the mRNA Encoding the Chromatin Regulator HMGN5 Modulates Neurite Outgrowth. Mol Cell Biol 2015; 35:2035-50. [PMID: 25825524 DOI: 10.1128/mcb.00133-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/24/2015] [Indexed: 12/28/2022] Open
Abstract
Neurons exploit local mRNA translation and retrograde transport of transcription factors to regulate gene expression in response to signaling events at distal neuronal ends. Whether epigenetic factors could also be involved in such regulation is not known. We report that the mRNA encoding the high-mobility group N5 (HMGN5) chromatin binding protein localizes to growth cones of both neuron-like cells and of hippocampal neurons, where it has the potential to be translated, and that HMGN5 can be retrogradely transported into the nucleus along neurites. Loss of HMGN5 function induces transcriptional changes and impairs neurite outgrowth, while HMGN5 overexpression induces neurite outgrowth and chromatin decompaction; these effects are dependent on growth cone localization of Hmgn5 mRNA. We suggest that the localization and local translation of transcripts coding for epigenetic factors couple the dynamic neuronal outgrowth process with chromatin regulation in the nucleus.
Collapse
|
29
|
Engel PA. Does metabolic failure at the synapse cause Alzheimer's disease? Med Hypotheses 2014; 83:802-8. [PMID: 25456790 DOI: 10.1016/j.mehy.2014.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/15/2014] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) a neurodegenerative disorder of widely distributed cortical networks evolves over years while A beta (Aβ) oligomer neurotoxicity occurs within seconds to minutes. This disparity combined with disappointing outcomes of anti-amyloid clinical trials challenges the centrality of Aβ as principal mediator of neurodegeneration. Reconsideration of late life AD as the end-product of intermittent regional failure of the neuronal support system to meet the needs of vulnerable brain areas offers an alternative point of view. This model introduces four ideas: (1) That Aβ is a synaptic signaling peptide that becomes toxic in circumstances of metabolic stress. (2) That intense synaptic energy and maintenance requirements of cortical hubs may exceed resources during peak demand initiating a neurotoxic cascade in these selectively vulnerable regions. (3) That axonal transport to and from neuron soma cannot account fully for high mitochondrial densities and other requirements of distant terminal axons. (4) That neurons as specialists in information management, delegate generic support functions to astrocytes and other cell types. Astrocytes use intercellular transport by exosomes and tunneling nanotubes (TNTs) to deliver mitochondria, substrates and protein reprocessing services to axonal sites distant from neuronal soma. This viewpoint implicates the brain's support system and its disruption by various age and disease-related insults as significant mediators of neurodegenerative disease. A better understanding of this system should broaden concepts of neurodegeneration and facilitate development of effective treatments.
Collapse
Affiliation(s)
- Peter A Engel
- Geriatric Research, Education and Clinical Center, VA Boston Healthcare System, Harvard Medical School, United States.
| |
Collapse
|
30
|
Cho Y, Di Liberto V, Carlin D, Abe N, Li KH, Burlingame AL, Guan S, Michaelevski I, Cavalli V. Syntaxin13 expression is regulated by mammalian target of rapamycin (mTOR) in injured neurons to promote axon regeneration. J Biol Chem 2014; 289:15820-32. [PMID: 24737317 DOI: 10.1074/jbc.m113.536607] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Injured peripheral neurons successfully activate intrinsic signaling pathways to enable axon regeneration. We have previously shown that dorsal root ganglia (DRG) neurons activate the mammalian target of rapamycin (mTOR) pathway following injury and that this activity enhances their axon growth capacity. mTOR plays a critical role in protein synthesis, but the mTOR-dependent proteins enhancing the regenerative capacity of DRG neurons remain unknown. To identify proteins whose expression is regulated by injury in an mTOR-dependent manner, we analyzed the protein composition of DRGs from mice in which we genetically activated mTOR and from mice with or without a prior nerve injury. Quantitative label-free mass spectrometry analyses revealed that the injury effects were correlated with mTOR activation. We identified a member of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family of proteins, syntaxin13, whose expression was increased by injury in an mTOR-dependent manner. Increased syntaxin13 levels in injured nerves resulted from local protein synthesis and not axonal transport. Finally, knockdown of syntaxin13 in cultured DRG neurons prevented axon growth and regeneration. Together, these data suggest that syntaxin13 translation is regulated by mTOR in injured neurons to promote axon regeneration.
Collapse
Affiliation(s)
- Yongcheol Cho
- From the Department of Anatomy and Neurobiology, Washington University in St Louis, School of Medicine, St. Louis, Missouri 63110
| | - Valentina Di Liberto
- From the Department of Anatomy and Neurobiology, Washington University in St Louis, School of Medicine, St. Louis, Missouri 63110
| | - Dan Carlin
- From the Department of Anatomy and Neurobiology, Washington University in St Louis, School of Medicine, St. Louis, Missouri 63110
| | - Namiko Abe
- From the Department of Anatomy and Neurobiology, Washington University in St Louis, School of Medicine, St. Louis, Missouri 63110
| | - Kathy H Li
- the Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94158-2517, and
| | - Alma L Burlingame
- the Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94158-2517, and
| | - Shenheng Guan
- the Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94158-2517, and
| | - Izhak Michaelevski
- the Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Valeria Cavalli
- From the Department of Anatomy and Neurobiology, Washington University in St Louis, School of Medicine, St. Louis, Missouri 63110,
| |
Collapse
|
31
|
Gomes C, Merianda TT, Lee SJ, Yoo S, Twiss JL. Molecular determinants of the axonal mRNA transcriptome. Dev Neurobiol 2014; 74:218-32. [PMID: 23959706 PMCID: PMC3933445 DOI: 10.1002/dneu.22123] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/05/2013] [Accepted: 08/13/2013] [Indexed: 12/12/2022]
Abstract
Axonal protein synthesis has been shown to play a role in developmental and regenerative growth, as well as in cell body responses to axotomy. Recent studies have begun to identify the protein products that contribute to these autonomous responses of axons. In the peripheral nervous system, intra-axonal protein synthesis has been implicated in the localized in vivo responses to neuropathic stimuli, and there is emerging evidence for protein synthesis in CNS axons in vivo. Despite that hundreds of mRNAs have now been shown to localize into the axonal compartment, knowledge of what RNA binding proteins are responsible for this is quite limited. Here, we review the current state of knowledge of RNA transport mechanisms and highlight recently uncovered mechanisms for dynamically altering the axonal transcriptome. Both changes in the levels or activities of components of the RNA transport apparatus and alterations in transcription of transported mRNAs can effectively shift the axonal mRNA population. Consistent with this, the axonal RNA population shifts with development, with changes in growth state, and in response to extracellular stimulation. Each of these events must impact the transcriptional and transport apparatuses of the neuron, thus directly and indirectly modifying the axonal transcriptome.
Collapse
Affiliation(s)
- Cynthia Gomes
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 USA
| | - Tanuja T. Merianda
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 USA
| | - Seung Joon Lee
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 USA
| | - Soonmoon Yoo
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803 USA
| | - Jeffery L. Twiss
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 USA
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29201
| |
Collapse
|
32
|
Axonal localization of neuritin/CPG15 mRNA in neuronal populations through distinct 5' and 3' UTR elements. J Neurosci 2013; 33:13735-42. [PMID: 23966695 DOI: 10.1523/jneurosci.0962-13.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Many neuronal mRNAs are actively transported into distal axons. The 3' untranslated regions (UTRs) of axonal mRNAs often contain cues for their localization. The 3' UTR of neuritin mRNA was shown to be sufficient for localization into axons of hippocampal neurons. Here, we show that neuritin mRNA localizes into axons of rat sensory neurons, but this is predominantly driven by the 5' rather than 3' UTR. Neuritin mRNA shifts from cell body to axon predominantly after nerve crush injury, suggesting that it encodes a growth-associated protein. Consistent with this, overexpression of neuritin increases axon growth but only when its mRNA localizes into the axons.
Collapse
|
33
|
Peripheral nerve axons contain machinery for co-translational secretion of axonally-generated proteins. Neurosci Bull 2013; 29:493-500. [PMID: 23839054 DOI: 10.1007/s12264-013-1360-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/19/2013] [Indexed: 10/26/2022] Open
Abstract
The axonal compartment of developing neurons and mature peripheral nervous system (PNS) neurons has the capacity to locally synthesize proteins. Axonally-synthesized proteins have been shown to facilitate axonal pathfinding and maintenance in developing central nervous system (CNS) and PNS neurons, and to facilitate the regeneration of mature PNS neurons. RNA-profiling studies of the axons of cultured neurons have shown a surprisingly complex population of mRNAs that encode proteins for a myriad of functions. Although classic-appearing rough endoplasmic reticulum (RER), smooth endoplasmic reticulum (ER) and Golgi apparatus have not been documented in axons by ultrastructural studies, axonal RNA profiling studies show several membrane and secreted protein-encoding mRNAs whose translation products would need access to a localized secretory mechanism. We previously showed that the axons of cultured neurons contain functional equivalents of RER and Golgi apparatus. Here, we show that markers for the signal-recognition particle, RER, ER, and Golgi apparatus are present in PNS axons in vivo. Co-localization of these proteins mirrors that seen for cultured axons where locally-translated proteins are localized to the axoplasmic membrane. Moreover, nerve injury increases the levels and/or aggregation of these proteins, suggesting that the regenerating axon has an increased capacity for membrane targeting of locally synthesized proteins.
Collapse
|
34
|
Yoo S, Kim HH, Kim P, Donnelly CJ, Kalinski AL, Vuppalanchi D, Park M, Lee SJ, Merianda TT, Perrone-Bizzozero NI, Twiss JL. A HuD-ZBP1 ribonucleoprotein complex localizes GAP-43 mRNA into axons through its 3' untranslated region AU-rich regulatory element. J Neurochem 2013; 126:792-804. [PMID: 23586486 DOI: 10.1111/jnc.12266] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 04/01/2013] [Accepted: 04/01/2013] [Indexed: 11/29/2022]
Abstract
Localized translation of axonal mRNAs contributes to developmental and regenerative axon growth. Although untranslated regions (UTRs) of many different axonal mRNAs appear to drive their localization, there has been no consensus RNA structure responsible for this localization. We recently showed that limited expression of ZBP1 protein restricts axonal localization of both β-actin and GAP-43 mRNAs. β-actin 3'UTR has a defined element for interaction with ZBP1, but GAP-43 mRNA shows no homology to this RNA sequence. Here, we show that an AU-rich regulatory element (ARE) in GAP-43's 3'UTR is necessary and sufficient for its axonal localization. Axonal GAP-43 mRNA levels increase after in vivo injury, and GAP-43 mRNA shows an increased half-life in regenerating axons. GAP-43 mRNA interacts with both HuD and ZBP1, and HuD and ZBP1 co-immunoprecipitate in an RNA-dependent fashion. Reporter mRNA with the GAP-43 ARE competes with endogenous β-actin mRNA for axonal localization and decreases axon length and branching similar to the β-actin 3'UTR competing with endogenous GAP-43 mRNA. Conversely, over-expressing GAP-43 coding sequence with its 3'UTR ARE increases axonal elongation and this effect is lost when just the ARE is deleted from GAP-43's 3'UTR. We have recently found that over-expression of GAP-43 using an axonally targeted construct with the 3'UTRs of GAP-43 promoted elongating growth of axons, while restricting the mRNA to the cell body with the 3'UTR of γ-actin had minimal effect on axon length. In this study, we show that the ARE in GAP-43's 3'UTR is responsible for localization of GAP-43 mRNA into axons and is sufficient for GAP-43 protein's role in elongating axonal growth.
Collapse
Affiliation(s)
- Soonmoon Yoo
- Nemours Biomedical Research, Alfred I. duPont Hosp. for Children, Wilmington, Delaware, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|