1
|
Tsunemine S, Mori M, Murakami Y. A fission yeast CENP-B homolog Abp1 prevents RNAi-mediated heterochromatin formation at ribosomal DNA repeats. Genetics 2025; 230:iyaf050. [PMID: 40132111 DOI: 10.1093/genetics/iyaf050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
In response to nutritional starvation, living cells sensitively regulate the production rates of molecules required for survival. Under glucose starvation, a facultative heterochromatinization of ribosomal DNA is considered to regulate ribosomal RNA production. However, the molecular mechanism is still unclear. Here, we report a novel function of CENP-B homolog Abp1 in forming facultative heterochromatin at ribosomal DNA repeats. We find that the loss of Abp1 induces an ectopic nucleosome assembly at rDNA repeats. Interestingly, the loss of Abp1 induces two mutually exclusive changes at ribosomal DNA repeats: an excess accumulation of methylation of histone H3 at lysine 9, a hallmark of heterochromatin, and an active RNA polymerase II transcription. This excess heterochromatin represses ribosomal RNA expression and requires RNA interference machinery for its formation. Furthermore, we show that the excess heterochromatin does not affect cellular viability under glucose starvation but prevents the return to the proliferation cycle in recovering glucose-rich conditions. Since glucose starvation rapidly induces partial Abp1 disassociation from ribosomal DNA repeats, we propose that Abp1 regulates activity of RNA polymerase II transcription that is paradoxically required for RNA interference-mediated heterochromatin formation and controls an appropriate level of heterochromatinization at ribosomal DNA repeats under glucose starvation.
Collapse
Affiliation(s)
- Satoru Tsunemine
- Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Miyuki Mori
- Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yota Murakami
- Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
2
|
Ohtsuka H, Kawai S, Ito Y, Kato Y, Shimasaki T, Imada K, Otsubo Y, Yamashita A, Mishiro‐Sato E, Kuwata K, Aiba H. Novel TORC1 inhibitor Ecl1 is regulated by phosphorylation in fission yeast. Aging Cell 2025; 24:e14450. [PMID: 39910760 PMCID: PMC11984688 DOI: 10.1111/acel.14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/11/2024] [Accepted: 12/02/2024] [Indexed: 02/07/2025] Open
Abstract
Extender of chronological lifespan 1 (Ecl1) inhibits target of rapamycin complex 1 (TORC1) and is necessary for appropriate cellular responses to various stressors, such as starvation, in fission yeast. However, little is known about the effect of posttranslational modifications on Ecl1 regulation. Thus, we investigated the phosphorylation levels of Ecl1 extracted from yeast under conditions of sulfur or metal starvation. Mass spectrometry analysis revealed that Ecl1 was phosphorylated at Thr7, and the level was decreased by starvation. The phosphorylation-mimetic mutation of Thr7 significantly reduced the effects of Ecl1-induced cellular responses to starvation, suggesting that Ecl1 function was suppressed by Thr7 phosphorylation. By contrast, regardless of starvation exposure, TORC1 was significantly suppressed, even when Thr7 phosphorylation-mimetic Ecl1 was overexpressed. This indicated that Ecl1 suppressed TORC1 regardless of Thr7 phosphorylation. We newly identified that Ecl1 physically interacted with TORC1 subunit RAPTOR (Mip1). Based on these evidences, we propose that, Ecl1 has dual functional modes: quantity-dependent TORC1 inhibition and Thr7 phosphorylation-dependent control of cellular function.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Sawa Kawai
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Yurika Ito
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Yuka Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Takafumi Shimasaki
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Kazuki Imada
- Department of Chemistry and BiochemistrySuzuka College, National Institute of Technology (KOSEN)SuzukaJapan
- Department of Biology, Graduate School of ScienceOsaka City UniversityOsakaJapan
| | - Yoko Otsubo
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
- Life Science NetworkThe University of TokyoTokyoJapan
| | - Akira Yamashita
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
| | - Emi Mishiro‐Sato
- Institute of Transformative bio‐MoleculesTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Keiko Kuwata
- Institute of Transformative bio‐MoleculesTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Hirofumi Aiba
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| |
Collapse
|
3
|
Tan ZY, Cai 蔡舒君 S, Paithankar SA, Liu T, Nie X, Shi J, Gan 甘露 L. Macromolecular and cytological changes in fission yeast G0 nuclei. J Cell Sci 2025; 138:jcs263654. [PMID: 40013339 DOI: 10.1242/jcs.263654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 02/19/2025] [Indexed: 02/28/2025] Open
Abstract
When starved of nitrogen, cells of the fission yeast Schizosaccharomyces pombe enter a quiescent 'G0' state with smaller nuclei and transcriptional repression. The genomics of S. pombe G0 cells has been well studied, but much of its nuclear cell biology remains unknown. Here, we use confocal microscopy, immunoblots and electron cryotomography to investigate the cytological, biochemical and ultrastructural differences between S. pombe proliferating, G1-arrested and G0 cell nuclei, with an emphasis on the histone acetylation, RNA polymerase II fates and macromolecular complex packing. Compared to proliferating cells, G0 cells have lower levels of histone acetylation, nuclear RNA polymerase II and active transcription. The G0 nucleus has similar macromolecular crowding yet fewer chromatin-associated multi-megadalton globular complexes. Induced histone hyperacetylation during nitrogen starvation results in cells that have larger nuclei and therefore chromatin that is less compact. However, these histone-hyperacetylated cells remain transcriptionally repressed with similar nuclear crowding. Canonical nucleosomes - those that resemble the crystal structure - are rare in proliferating, G1-arrested and G0 cells. Our study therefore shows that extreme changes in nucleus physiology are possible without extreme reorganization at the macromolecular level.
Collapse
Affiliation(s)
- Zhi Yang Tan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Shujun Cai 蔡舒君
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Saayli A Paithankar
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Tingsheng Liu
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Xin Nie
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Jian Shi
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Lu Gan 甘露
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| |
Collapse
|
4
|
Suma M, Arakawa O, Tahara Y, Sajiki K, Saitoh S, Yanagida M. S. pombe Mis4 is required for exit from G0 as it is necessary for full nuclear separation during the subsequent M phase. J Cell Sci 2025; 138:JCS263747. [PMID: 39916665 DOI: 10.1242/jcs.263747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 02/03/2025] [Indexed: 03/12/2025] Open
Abstract
The evolutionarily conserved Mis4 protein establishes cohesion between replicated sister chromatids in vegetatively proliferating cells. In the fission yeast, Schizosaccharomyces pombe, defects in Mis4 lead to premature separation of sister chromatids, resulting in fatal chromosome mis-segregation during mitosis. In humans, NIPBL, an ortholog of Mis4, is responsible for a multisystem disorder called Cornelia de Lange syndrome. We have previously reported that Mis4 is also essential in non-proliferating quiescent cells. Whereas wild-type fission yeast cells can maintain high viability for long periods without cell division in the quiescent G0 phase, mis4-450 mutant cells cannot. Here, we show that Mis4 is not required for cells to enter G0 phase, but is essential for them to exit from it. When resuming mitosis after a passage of G0, mis4 mutant cells segregated sister chromatids successfully, but failed to separate daughter nuclei completely and consequently formed dikaryon-like cells. These findings suggest a novel role for Mis4/NIPBL in quiescent cells, which is a prerequisite for full nuclear separation upon resumed mitosis. As most human cells are in a quiescent state, this study might facilitate development of novel therapies for human diseases caused by Mis4/NIPBL deficiency.
Collapse
Affiliation(s)
- Michiko Suma
- Institute of Life Science, Kurume University, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| | - Orie Arakawa
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Yuria Tahara
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Kenichi Sajiki
- Illumina K.K., 5-36-7 Shiba, Minato-ku, Tokyo 108-0014, Japan
| | - Shigeaki Saitoh
- Institute of Life Science, Kurume University, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| | - Mitsuhiro Yanagida
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
5
|
Vázquez-Bolado A, Wu PYJ. Mapping Active RNA Polymerases in Proliferating and Quiescent Fission Yeast Cells Using Precision Run-On Sequencing. Methods Mol Biol 2025; 2862:121-139. [PMID: 39527197 DOI: 10.1007/978-1-0716-4168-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of next-generation sequencing (NGS) approaches to investigate the functioning of RNA polymerases has led to groundbreaking advances in the field of transcriptional regulation. One powerful method, Precision nuclear Run-On sequencing (PRO-seq), maps the locations of RNA polymerase active sites genome-wide at high resolution. PRO-seq provides a snapshot of strand-specific transcriptional activity and does not rely on immunoprecipitation of the polymerase of interest. Notably, this technique has been utilized to investigate the control of the RNA polymerase II transcription cycle in a variety of model systems. However, the initially published PRO-seq method required significant amounts of starting sample and was technically challenging, both of which were deterrents for its broader use. Recently, an improved and simplified version called qPRO-seq that reduced the length of the experiment and the quantity of necessary input sample was developed for human and Drosophila cell lines. Here we provide an updated, step-by-step protocol in which we have validated and optimized qPRO-seq for the fission yeast Schizosaccharomyces pombe. Importantly, we have implemented this method for assessing RNA polymerase activity in nutrient-limiting conditions, for both proliferating and nitrogen-depleted quiescent cells.
Collapse
Affiliation(s)
- Alicia Vázquez-Bolado
- Institute of Biochemistry and Cellular Genetics, CNRS UMR 5095 and University of Bordeaux, Bordeaux, France
| | - Pei-Yun Jenny Wu
- Institute of Biochemistry and Cellular Genetics, CNRS UMR 5095 and University of Bordeaux, Bordeaux, France.
| |
Collapse
|
6
|
Deng X, Yao Q, Horvath A, Jiang Z, Zhao J, Fischer T, Sugiyama T. The fission yeast ortholog of Coilin, Mug174, forms Cajal body-like nuclear condensates and is essential for cellular quiescence. Nucleic Acids Res 2024; 52:9174-9192. [PMID: 38828770 PMCID: PMC11347179 DOI: 10.1093/nar/gkae463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
The Cajal body, a nuclear condensate, is crucial for ribonucleoprotein assembly, including small nuclear RNPs (snRNPs). While Coilin has been identified as an integral component of Cajal bodies, its exact function remains unclear. Moreover, no Coilin ortholog has been found in unicellular organisms to date. This study unveils Mug174 (Meiosis-upregulated gene 174) as the Coilin ortholog in the fission yeast Schizosaccharomyces pombe. Mug174 forms phase-separated condensates in vitro and is often associated with the nucleolus and the cleavage body in vivo. The generation of Mug174 foci relies on the trimethylguanosine (TMG) synthase Tgs1. Moreover, Mug174 interacts with Tgs1 and U snRNAs. Deletion of the mug174+ gene in S. pombe causes diverse pleiotropic phenotypes, encompassing defects in vegetative growth, meiosis, pre-mRNA splicing, TMG capping of U snRNAs, and chromosome segregation. In addition, we identified weak homology between Mug174 and human Coilin. Notably, human Coilin expressed in fission yeast colocalizes with Mug174. Critically, Mug174 is indispensable for the maintenance of and transition from cellular quiescence. These findings highlight the Coilin ortholog in fission yeast and suggest that the Cajal body is implicated in cellular quiescence, thereby preventing human diseases.
Collapse
Affiliation(s)
- Xiaoling Deng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qinglian Yao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Attila Horvath
- The John Curtin School of Medical Research, The Australian National University, Canberra 2601, Australia
| | - Ziling Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Junjie Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tamás Fischer
- The John Curtin School of Medical Research, The Australian National University, Canberra 2601, Australia
| | - Tomoyasu Sugiyama
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
7
|
Ohtsuka H, Ohara K, Shimasaki T, Hatta Y, Maekawa Y, Aiba H. A novel transcription factor Sdr1 involving sulfur depletion response in fission yeast. Genes Cells 2024; 29:667-680. [PMID: 39105351 DOI: 10.1111/gtc.13136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 08/07/2024]
Abstract
In the fission yeast Schizosaccharomyces pombe, the response to sulfur depletion has been less studied compared to the response to nitrogen depletion. Our study reveals that the fission yeast gene, SPCC417.09c, plays a significant role in the sulfur depletion response. This gene encodes a protein with a Zn2Cys6 fungal-type DNA-binding domain and a transcription factor domain, and we have named it sdr1+ (sulfur depletion response 1). Interestingly, while sulfur depletion typically induces autophagy akin to nitrogen depletion, we found that autophagy was not induced under sulfur depletion in the absence of sdr1+. This suggests that sdr1+ is necessary for the induction of autophagy under conditions of sulfur depletion. Although sdr1+ is not essential for the growth of fission yeast, its overexpression, driven by the nmt1 promoter, inhibits growth. This implies that Sdr1 may possess cell growth-inhibitory capabilities. In addition, our analysis of Δsdr1 cells revealed that sdr1+ also plays a role in regulating the expression of genes associated with the phosphate depletion response. In conclusion, our study introduces Sdr1 as a novel transcription factor that contributes to an appropriate cellular nutrient starvation response. It does so by inhibiting inappropriate cell growth and inducing autophagy in response to sulfur depletion.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Kotaro Ohara
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yoshiko Hatta
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yasukichi Maekawa
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
8
|
Ohtsuka H, Kawai S, Otsubo Y, Shimasaki T, Yamashita A, Aiba H. Metarhizium robertsii COH1 functionally complements Schizosaccharomyces pombe Ecl family proteins. J GEN APPL MICROBIOL 2024; 69:335-338. [PMID: 37813640 DOI: 10.2323/jgam.2023.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The fission yeast Schizosaccharomyces pombe ecl family genes respond to various starvation signals and induce appropriate intracellular responses, including the extension of chronological lifespan and induction of sexual differentiation. Herein, we propose that the colonization of hemocoel 1 (COH1) protein of Metarhizium robertsii, an insect-pathogenic fungus, is a functional homolog of S. pombe Ecl1 family proteins.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University
| | - Sawa Kawai
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University
| | - Yoko Otsubo
- Interdisciplinary Research Unit, National Institute for Basic Biology
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University
| | - Akira Yamashita
- Interdisciplinary Research Unit, National Institute for Basic Biology
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University
| |
Collapse
|
9
|
Liu Q, Sheng N, Zhang Z, He C, Zhao Y, Sun H, Chen J, Yang X, Tang C. Initial nutrient condition determines the recovery speed of quiescent cells in fission yeast. Heliyon 2024; 10:e26558. [PMID: 38455543 PMCID: PMC10918017 DOI: 10.1016/j.heliyon.2024.e26558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024] Open
Abstract
Most of microbe cells spend the majority of their times in quiescence due to unfavorable environmental conditions. The study of this dominant state is crucial for understanding the basic cell physiology. Retained recovery ability is a critical property of quiescent cells, which consists of two features: how long the cells can survive (the survivability) and how fast they can recover (the recovery activity). While the survivability has been extensively studied under the background of chronological aging, how the recovery activity depends on the quiescent time and what factors influence its dynamics have not been addressed quantitatively. In this work, we systematically quantified both the survivability and the recovery activity of long-lived quiescent fission yeast cells at the single cell level under various nutrient conditions. It provides the most profound evolutionary dynamics of quiescent cell regeneration ability described to date. We found that the single cell recovery time linearly increased with the starvation time before the survivability significantly declined. This linearity was robust under various nutrient conditions and the recovery speed was predetermined by the initial nutrient condition. Transcriptome profiling further revealed that quiescence states under different nutrient conditions evolve in a common trajectory but with different speed. Our results demonstrated that cellular quiescence has a continuous spectrum of depths and its physiology is greatly influenced by environmental conditions.
Collapse
Affiliation(s)
- Qi Liu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Nan Sheng
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zhiwen Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Chenjun He
- College of Life Science and Technology, Huazhong Agriculture University, Wuhan, 430070, China
| | - Yao Zhao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Haoyuan Sun
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jianguo Chen
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaojing Yang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Chao Tang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- School of Physics, Peking University, Beijing, 100871, China
| |
Collapse
|
10
|
Ohtsuka H, Otsubo Y, Shimasaki T, Yamashita A, Aiba H. ecl family genes: Factors linking starvation and lifespan extension in Schizosaccharomyces pombe. Mol Microbiol 2023; 120:645-657. [PMID: 37525511 DOI: 10.1111/mmi.15134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
In the fission yeast Schizosaccharomyces pombe, the duration of survival in the stationary phase, termed the chronological lifespan (CLS), is affected by various environmental factors and the corresponding gene activities. The ecl family genes were identified in the genomic region encoding non-coding RNA as positive regulators of CLS in S. pombe, and subsequently shown to encode relatively short proteins. Several studies revealed that ecl family genes respond to various nutritional starvation conditions via different mechanisms, and they are additionally involved in stress resistance, autophagy, sexual differentiation, and cell cycle control. Recent studies reported that Ecl family proteins strongly suppress target of rapamycin complex 1, which is a conserved eukaryotic nutrient-sensing kinase complex that also regulates longevity in a variety of organisms. In this review, we introduce the regulatory mechanisms of Ecl family proteins and discuss their emerging findings.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yoko Otsubo
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Akira Yamashita
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
11
|
Gal C, Cochrane GA, Morgan BA, Rallis C, Bähler J, Whitehall SK. The longevity and reversibility of quiescence in Schizosaccharomyces pombe are dependent upon the HIRA histone chaperone. Cell Cycle 2023; 22:1921-1936. [PMID: 37635373 PMCID: PMC10599175 DOI: 10.1080/15384101.2023.2249705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Quiescence (G0) is a reversible non-dividing state that facilitates cellular survival in adverse conditions. Here, we demonstrate that the HIRA histone chaperone complex is required for the reversibility and longevity of nitrogen starvation-induced quiescence in Schizosaccharomyces pombe. The HIRA protein, Hip1 is not required for entry into G0 or the induction of autophagy. Although hip1Δ cells retain metabolic activity in G0, they rapidly lose the ability to resume proliferation. After a short period in G0 (1 day), hip1Δ mutants can resume cell growth in response to the restoration of a nitrogen source but do not efficiently reenter the vegetative cell cycle. This correlates with a failure to induce the expression of MBF transcription factor-dependent genes that are critical for S phase. In addition, hip1Δ G0 cells rapidly progress to a senescent state in which they can no longer re-initiate growth following nitrogen source restoration. Analysis of a conditional hip1 allele is consistent with these findings and indicates that HIRA is required for efficient exit from quiescence and prevents an irreversible cell cycle arrest.
Collapse
Affiliation(s)
- Csenge Gal
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Grace A. Cochrane
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Brian A. Morgan
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Charalampos Rallis
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Jürg Bähler
- Department of Genetics, Evolution and Environment and Institute of Healthy Ageing, University College London, London, UK
| | - Simon K. Whitehall
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
12
|
Garg A, Sanchez AM, Miele M, Schwer B, Shuman S. Cellular responses to long-term phosphate starvation of fission yeast: Maf1 determines fate choice between quiescence and death associated with aberrant tRNA biogenesis. Nucleic Acids Res 2023; 51:3094-3115. [PMID: 36794724 PMCID: PMC10123115 DOI: 10.1093/nar/gkad063] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
Inorganic phosphate is an essential nutrient acquired by cells from their environment. Here, we characterize the adaptative responses of fission yeast to chronic phosphate starvation, during which cells enter a state of quiescence, initially fully reversible upon replenishing phosphate after 2 days but resulting in gradual loss of viability during 4 weeks of starvation. Time-resolved analyses of changes in mRNA levels revealed a coherent transcriptional program in which phosphate dynamics and autophagy were upregulated, while the machineries for rRNA synthesis and ribosome assembly, and for tRNA synthesis and maturation, were downregulated in tandem with global repression of genes encoding ribosomal proteins and translation factors. Consistent with the transcriptome changes, proteome analysis highlighted global depletion of 102 ribosomal proteins. Concomitant with this ribosomal protein deficit, 28S and 18S rRNAs became vulnerable to site-specific cleavages that generated temporally stable rRNA fragments. The finding that Maf1, a repressor of RNA polymerase III transcription, was upregulated during phosphate starvation prompted a hypothesis that its activity might prolong lifespan of the quiescent cells by limiting production of tRNAs. Indeed, we found that deletion of maf1 results in precocious death of phosphate-starved cells via a distinctive starvation-induced pathway associated with tRNA overproduction and dysfunctional tRNA biogenesis.
Collapse
Affiliation(s)
- Angad Garg
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ana M Sanchez
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Matthew Miele
- Microchemistry and Proteomics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Beate Schwer
- Correspondence may also be addressed to Beate Schwer. Tel: +1 212 746 6518;
| | - Stewart Shuman
- To whom correspondence should be addressed. Tel: +1 212 639 7145;
| |
Collapse
|
13
|
Arcangioli B, Gangloff S. The Fission Yeast Mating-Type Switching Motto: "One-for-Two" and "Two-for-One". Microbiol Mol Biol Rev 2023; 87:e0000821. [PMID: 36629411 PMCID: PMC10029342 DOI: 10.1128/mmbr.00008-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Schizosaccharomyces pombe is an ascomycete fungus that divides by medial fission; it is thus commonly referred to as fission yeast, as opposed to the distantly related budding yeast Saccharomyces cerevisiae. The reproductive lifestyle of S. pombe relies on an efficient genetic sex determination system generating a 1:1 sex ratio and using alternating haploid/diploid phases in response to environmental conditions. In this review, we address how one haploid cell manages to generate two sister cells with opposite mating types, a prerequisite to conjugation and meiosis. This mating-type switching process depends on two highly efficient consecutive asymmetric cell divisions that rely on DNA replication, repair, and recombination as well as the structure and components of heterochromatin. We pay special attention to the intimate interplay between the genetic and epigenetic partners involved in this process to underscore the importance of basic research and its profound implication for a better understanding of chromatin biology.
Collapse
Affiliation(s)
- Benoît Arcangioli
- Genome Dynamics Unit, Genomes and Genetics Department, Pasteur Institute, Paris, France
| | - Serge Gangloff
- Genome Dynamics Unit, Genomes and Genetics Department, Pasteur Institute, Paris, France
- UMR3525, Genetics of Genomes, CNRS-Pasteur Institute, Paris, France
| |
Collapse
|
14
|
Webster AK, Chitrakar R, Taylor SM, Baugh LR. Alternative somatic and germline gene-regulatory strategies during starvation-induced developmental arrest. Cell Rep 2022; 41:111473. [PMID: 36223742 PMCID: PMC9608353 DOI: 10.1016/j.celrep.2022.111473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Nutrient availability governs growth and quiescence, and many animals arrest development when starved. Using C. elegans L1 arrest as a model, we show that gene expression changes deep into starvation. Surprisingly, relative expression of germline-enriched genes increases for days. We conditionally degrade the large subunit of RNA polymerase II using the auxin-inducible degron system and analyze absolute expression levels. We find that somatic transcription is required for survival, but the germline maintains transcriptional quiescence. Thousands of genes are continuously transcribed in the soma, though their absolute abundance declines, such that relative expression of germline transcripts increases given extreme transcript stability. Aberrantly activating transcription in starved germ cells compromises reproduction, demonstrating important physiological function of transcriptional quiescence. This work reveals alternative somatic and germline gene-regulatory strategies during starvation, with the soma maintaining a robust transcriptional response to support survival and the germline maintaining transcriptional quiescence to support future reproductive success. Webster et al. show that the transcriptional response to starvation is mounted early in larval somatic cells supporting survival but that it wanes over time. In contrast, they show that the germline remains transcriptionally quiescent deep into starvation, supporting reproductive potential, while maintaining its transcriptome via transcript stability.
Collapse
Affiliation(s)
- Amy K. Webster
- Department of Biology, Duke University, Durham, NC 27708, USA,Present address: Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Rojin Chitrakar
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Seth M. Taylor
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - L. Ryan Baugh
- Department of Biology, Duke University, Durham, NC 27708, USA,Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA,Lead contact,Correspondence:
| |
Collapse
|
15
|
Sakuraba Y, Zhuo M, Yanagisawa S. RWP-RK domain-containing transcription factors in the Viridiplantae: biology and phylogenetic relationships. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4323-4337. [PMID: 35605260 DOI: 10.1093/jxb/erac229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The RWP-RK protein family is a group of transcription factors containing the RWP-RK DNA-binding domain. This domain is an ancient motif that emerged before the establishment of the Viridiplantae-the green plants, consisting of green algae and land plants. The domain is mostly absent in other kingdoms but widely distributed in Viridiplantae. In green algae, a liverwort, and several angiosperms, RWP-RK proteins play essential roles in nitrogen responses and sexual reproduction-associated processes, which are seemingly unrelated phenomena but possibly interdependent in autotrophs. Consistent with related but diversified roles of the RWP-RK proteins in these organisms, the RWP-RK protein family appears to have expanded intensively, but independently, in the algal and land plant lineages. Thus, bryophyte RWP-RK proteins occupy a unique position in the evolutionary process of establishing the RWP-RK protein family. In this review, we summarize current knowledge of the RWP-RK protein family in the Viridiplantae, and discuss the significance of bryophyte RWP-RK proteins in clarifying the relationship between diversification in the RWP-RK protein family and procurement of sophisticated mechanisms for adaptation to the terrestrial environment.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mengna Zhuo
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
16
|
Ohtsuka H, Imada K, Shimasaki T, Aiba H. Sporulation: A response to starvation in the fission yeast Schizosaccharomyces pombe. Microbiologyopen 2022; 11:e1303. [PMID: 35765188 PMCID: PMC9214231 DOI: 10.1002/mbo3.1303] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe employs two main strategies to adapt to the environment and survive when starved for nutrients. The strategies employ sporulation via sexual differentiation and extension of the chronological lifespan. When a cell is exposed to nutrient starvation in the presence of a cell of the opposite sex, the cells undergo fusion through conjugation and sporulation through meiosis. S. pombe spores are highly resistant to diverse stresses and may survive for a very long time. In this minireview, among the various sexual differentiation processes induced by starvation, we focused on and summarized the findings of the molecular mechanisms of spore formation in fission yeast. Furthermore, comparative measurements of the chronological lifespan of stationary phase cells and G0 cells and the survival period of spore cells revealed that the spore cells survived for a long period, indicating the presence of an effective mechanism for survival. Currently, many molecules involved in sporulation and their functions are being discovered; however, our understanding of these is not complete. Further understanding of spores may not only deepen our comprehension of sexual differentiation but may also provide hints for sustaining life.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| | - Kazuki Imada
- Department of Chemistry and BiochemistryNational Institute of Technology (KOSEN), Suzuka CollegeSuzukaJapan
- Department of Biology, Graduate School of ScienceOsaka City UniversitySumiyoshi‐kuOsakaJapan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| |
Collapse
|
17
|
Kondoh H, Teruya T, Kameda M, Yanagida M. Decline of ergothioneine in frailty and cognition impairment. FEBS Lett 2022; 596:1270-1278. [PMID: 35090053 DOI: 10.1002/1873-3468.14299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/08/2022]
Abstract
Ergothioneine is a well-known anti-oxidant that is abundant in both human red blood cells and in fission yeast responding to nutritional stress. In frail elderly people, whose aging organs undergo functional decline, there is a correlation between ergothioneine levels and cognitive, but not skeletal muscle decline. In patients suffering from dementia, including Alzheimer's disease with hippocampal atrophy, deteriorating cognitive ability is correlated with declining ergothioneine levels. S-methyl-ergothioneine, trimethyl-histidine, and three other trimethyl-ammonium compounds also decrease sharply in dementia, whereas compounds such as indoxyl-sulfate and quinolinic acid increase, possibly exacerbating the disease. Using these opposing dementia markers, not only diagnosis, but also therapeutic interventions to mitigate cognitive decline may now become possible.
Collapse
Affiliation(s)
- Hiroshi Kondoh
- Geriatric unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayuki Teruya
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Masahiro Kameda
- Geriatric unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| |
Collapse
|
18
|
Bonitto K, Sarathy K, Atai K, Mitra M, Coller HA. Is There a Histone Code for Cellular Quiescence? Front Cell Dev Biol 2021; 9:739780. [PMID: 34778253 PMCID: PMC8586460 DOI: 10.3389/fcell.2021.739780] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022] Open
Abstract
Many of the cells in our bodies are quiescent, that is, temporarily not dividing. Under certain physiological conditions such as during tissue repair and maintenance, quiescent cells receive the appropriate stimulus and are induced to enter the cell cycle. The ability of cells to successfully transition into and out of a quiescent state is crucial for many biological processes including wound healing, stem cell maintenance, and immunological responses. Across species and tissues, transcriptional, epigenetic, and chromosomal changes associated with the transition between proliferation and quiescence have been analyzed, and some consistent changes associated with quiescence have been identified. Histone modifications have been shown to play a role in chromatin packing and accessibility, nucleosome mobility, gene expression, and chromosome arrangement. In this review, we critically evaluate the role of different histone marks in these processes during quiescence entry and exit. We consider different model systems for quiescence, each of the most frequently monitored candidate histone marks, and the role of their writers, erasers and readers. We highlight data that support these marks contributing to the changes observed with quiescence. We specifically ask whether there is a quiescence histone “code,” a mechanism whereby the language encoded by specific combinations of histone marks is read and relayed downstream to modulate cell state and function. We conclude by highlighting emerging technologies that can be applied to gain greater insight into the role of a histone code for quiescence.
Collapse
Affiliation(s)
- Kenya Bonitto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kirthana Sarathy
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kaiser Atai
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mithun Mitra
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hilary A Coller
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
19
|
Daignan-Fornier B, Laporte D, Sagot I. Quiescence Through the Prism of Evolution. Front Cell Dev Biol 2021; 9:745069. [PMID: 34778256 PMCID: PMC8586652 DOI: 10.3389/fcell.2021.745069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/11/2021] [Indexed: 01/13/2023] Open
Abstract
Being able to reproduce and survive is fundamental to all forms of life. In primitive unicellular organisms, the emergence of quiescence as a reversible proliferation arrest has most likely improved cell survival under unfavorable environmental conditions. During evolution, with the repeated appearances of multicellularity, several aspects of unicellular quiescence were conserved while new quiescent cell intrinsic abilities arose. We propose that the formation of a microenvironment by neighboring cells has allowed disconnecting quiescence from nutritional cues. In this new context, non-proliferative cells can stay metabolically active, potentially authorizing the emergence of new quiescent cell properties, and thereby favoring cell specialization. Through its co-evolution with cell specialization, quiescence may have been a key motor of the fascinating diversity of multicellular complexity.
Collapse
|
20
|
Regulation of inorganic polyphosphate is required for proper vacuolar proteolysis in fission yeast. J Biol Chem 2021; 297:100891. [PMID: 34147496 PMCID: PMC8294586 DOI: 10.1016/j.jbc.2021.100891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023] Open
Abstract
Regulation of cellular proliferation and quiescence is a central issue in biology that has been studied using model unicellular eukaryotes, such as the fission yeast Schizosaccharomyces pombe. We previously reported that the ubiquitin/proteasome pathway and autophagy are essential to maintain quiescence induced by nitrogen deprivation in S. pombe; however, specific ubiquitin ligases that maintain quiescence are not fully understood. Here we investigated the SPX-RING-type ubiquitin ligase Pqr1, identified as required for quiescence in a genetic screen. Pqr1 is found to be crucial for vacuolar proteolysis, the final step of autophagy, through proper regulation of phosphate and its polymer polyphosphate. Pqr1 restricts phosphate uptake into the cell through ubiquitination and subsequent degradation of phosphate transporters on plasma membranes. We hypothesized that Pqr1 may act as the central regulator for phosphate control in S. pombe, through the function of the SPX domain involved in phosphate sensing. Deletion of pqr1+ resulted in hyperaccumulation of intracellular phosphate and polyphosphate and in improper autophagy-dependent proteolysis under conditions of nitrogen starvation. Polyphosphate hyperaccumulation in pqr1+-deficient cells was mediated by the polyphosphate synthase VTC complex in vacuoles. Simultaneous deletion of VTC complex subunits rescued Pqr1 mutant phenotypes, including defects in proteolysis and loss of viability during quiescence. We conclude that excess polyphosphate may interfere with proteolysis in vacuoles by mechanisms that as yet remain unknown. The present results demonstrate a connection between polyphosphate metabolism and vacuolar functions for proper autophagy-dependent proteolysis, and we propose that polyphosphate homeostasis contributes to maintenance of cellular viability during quiescence.
Collapse
|
21
|
Ohtsuka H, Shimasaki T, Aiba H. Extension of chronological lifespan in Schizosaccharomyces pombe. Genes Cells 2021; 26:459-473. [PMID: 33977597 PMCID: PMC9290682 DOI: 10.1111/gtc.12854] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 01/08/2023]
Abstract
There are several examples in the nature wherein the mechanism of longevity control of unicellular organisms is evolutionarily conserved with that of higher multicellular organisms. The present microreview focuses on aging and longevity studies, particularly on chronological lifespan (CLS) concerning the unicellular eukaryotic fission yeast Schizosaccharomyces pombe. In S. pombe, >30 compounds, 8 types of nutrient restriction, and >80 genes that extend CLS have been reported. Several CLS control mechanisms are known to be involved in nutritional response, energy utilization, stress responses, translation, autophagy, and sexual differentiation. In unicellular organisms, the control of CLS is directly linked to the mechanism by which cells are maintained in limited‐resource environments, and their genetic information is left to posterity. We believe that this important mechanism may have been preserved as a lifespan control mechanism for higher organisms.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
22
|
Ohtsuka H, Kobayashi M, Shimasaki T, Sato T, Akanuma G, Kitaura Y, Otsubo Y, Yamashita A, Aiba H. Magnesium depletion extends fission yeast lifespan via general amino acid control activation. Microbiologyopen 2021; 10:e1176. [PMID: 33970532 PMCID: PMC8088111 DOI: 10.1002/mbo3.1176] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/31/2022] Open
Abstract
Nutrients including glucose, nitrogen, sulfur, zinc, and iron are involved in the regulation of chronological lifespan (CLS) of yeast, which serves as a model of the lifespan of differentiated cells of higher organisms. Herein, we show that magnesium (Mg2+) depletion extends CLS of the fission yeast Schizosaccharomyces pombe through a mechanism involving the Ecl1 gene family. We discovered that ecl1+ expression, which extends CLS, responds to Mg2+ depletion. Therefore, we investigated the underlying intracellular responses. In amino acid auxotrophic strains, Mg2+ depletion robustly induces ecl1+ expression through the activation of the general amino acid control (GAAC) pathway—the equivalent of the amino acid response of mammals. Polysome analysis indicated that the expression of Ecl1 family genes was required for regulating ribosome amount when cells were starved, suggesting that Ecl1 family gene products control the abundance of ribosomes, which contributes to longevity through the activation of the evolutionarily conserved GAAC pathway. The present study extends our understanding of the cellular response to Mg2+ depletion and its influence on the mechanism controlling longevity.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Mikuto Kobayashi
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Teppei Sato
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Genki Akanuma
- Department of Life Science, College of Sciences, Rikkyo University, Tokyo, Japan.,Department of Life Science, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Yasuyuki Kitaura
- Laboratory of Nutritional Biochemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yoko Otsubo
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Japan.,National Institute for Fusion Science, Toki, Japan.,Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Japan
| | - Akira Yamashita
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Japan.,Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies, Okazaki, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
23
|
Di Caprio F. A fattening factor to quantify the accumulation ability of microorganisms under N-starvation. N Biotechnol 2021; 66:70-78. [PMID: 33862285 DOI: 10.1016/j.nbt.2021.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 01/04/2023]
Abstract
Many microorganisms can accumulate biomass in the form of lipids and polysaccharides, which can be used for biofuels, bioplastics, food and feed. Some innovative bioprocesses exploit the competitive advantage provided by such accumulation ability, mainly under N-starvation, to select high-accumulating strains against biological contaminants, by using uncoupled nutrient feeding. However, there is no general and easily comparable parameter available to compare biomass accumulation ability among different microbial strains, which could measure the competitive advantage. Here, a parameter termed "fattening factor" (ηx) is described to quantify such strain-specific biomass accumulation ability in bacteria, yeasts and microalgae. This parameter measures how many fold a microbial population can increase its biomass just as the result of accumulation. It is derived from considerations about the main metabolic aspects of cells' response to N-starvation, which induces variations in cell cycle, biomass production and biochemical composition. The fattening factor described here should be easily estimatable in N-starvation for every culturable microbial strain, by measuring the amount of accumulated biomass.
Collapse
Affiliation(s)
- Fabrizio Di Caprio
- Department of Chemistry, University Sapienza of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
24
|
Di Caprio F. Cultivation processes to select microorganisms with high accumulation ability. Biotechnol Adv 2021; 49:107740. [PMID: 33838283 DOI: 10.1016/j.biotechadv.2021.107740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/26/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
The microbial ability to accumulate biomolecules is fundamental for different biotechnological applications aiming at the production of biofuels, food and bioplastics. However, high accumulation is a selective advantage only under certain stressful conditions, such as nutrient depletion, characterized by lower growth rate. Conventional bioprocesses maintain an optimal and stable environment for large part of the cultivation, that doesn't reward cells for their accumulation ability, raising the risk of selection of contaminant strains with higher growth rate, but lower accumulation of products. Here in this work the physiological responses of different microorganisms (microalgae, bacteria, yeasts) under N-starvation and energy starvation are reviewed, with the aim to furnish relevant insights exploitable to develop tailored bioprocesses to select specific strains for their higher accumulation ability. Microorganism responses to starvation are reviewed focusing on cell cycle, biomass production and variations in biochemical composition. Then, the work describes different innovative bioprocess configurations exploiting uncoupled nutrient feeding strategies (feast-famine), tailored to maintain a selective pressure to reward the strains with higher accumulation ability in mixed microbial populations. Finally, the main models developed in recent studies to describe and predict microbial growth and intracellular accumulation upon N-starvation and feast-famine conditions have been reviewed.
Collapse
Affiliation(s)
- Fabrizio Di Caprio
- Department of Chemistry, University Sapienza of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
25
|
Ohtsuka H, Shimasaki T, Aiba H. Genes affecting the extension of chronological lifespan in Schizosaccharomyces pombe (fission yeast). Mol Microbiol 2020; 115:623-642. [PMID: 33064911 PMCID: PMC8246873 DOI: 10.1111/mmi.14627] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/17/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
So far, more than 70 genes involved in the chronological lifespan (CLS) of Schizosaccharomyces pombe (fission yeast) have been reported. In this mini‐review, we arrange and summarize these genes based on the reported genetic interactions between them and the physical interactions between their products. We describe the signal transduction pathways that affect CLS in S. pombe: target of rapamycin complex 1, cAMP‐dependent protein kinase, Sty1, and Pmk1 pathways have important functions in the regulation of CLS extension. Furthermore, the Php transcription complex, Ecl1 family proteins, cyclin Clg1, and the cyclin‐dependent kinase Pef1 are important for the regulation of CLS extension in S. pombe. Most of the known genes involved in CLS extension are related to these pathways and genes. In this review, we focus on the individual genes regulating CLS extension in S. pombe and discuss the interactions among them.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
26
|
Zulkifli M, Neff JK, Timbalia SA, Garza NM, Chen Y, Watrous JD, Murgia M, Trivedi PP, Anderson SK, Tomar D, Nilsson R, Madesh M, Jain M, Gohil VM. Yeast homologs of human MCUR1 regulate mitochondrial proline metabolism. Nat Commun 2020; 11:4866. [PMID: 32978391 PMCID: PMC7519068 DOI: 10.1038/s41467-020-18704-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria house evolutionarily conserved pathways of carbon and nitrogen metabolism that drive cellular energy production. Mitochondrial bioenergetics is regulated by calcium uptake through the mitochondrial calcium uniporter (MCU), a multi-protein complex whose assembly in the inner mitochondrial membrane is facilitated by the scaffold factor MCUR1. Intriguingly, many fungi that lack MCU contain MCUR1 homologs, suggesting alternate functions. Herein, we characterize Saccharomyces cerevisiae homologs Put6 and Put7 of MCUR1 as regulators of mitochondrial proline metabolism. Put6 and Put7 are tethered to the inner mitochondrial membrane in a large hetero-oligomeric complex, whose abundance is regulated by proline. Loss of this complex perturbs mitochondrial proline homeostasis and cellular redox balance. Yeast cells lacking either Put6 or Put7 exhibit a pronounced defect in proline utilization, which can be corrected by the heterologous expression of human MCUR1. Our work uncovers an unexpected role of MCUR1 homologs in mitochondrial proline metabolism.
Collapse
Affiliation(s)
- Mohammad Zulkifli
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - John K Neff
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Shrishiv A Timbalia
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Natalie M Garza
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Yingqi Chen
- Departments of Medicine and Pharmacology, University of California, San Diego, 9500 Gilman Avenue, La Jolla, CA, 92093, USA
| | - Jeramie D Watrous
- Departments of Medicine and Pharmacology, University of California, San Diego, 9500 Gilman Avenue, La Jolla, CA, 92093, USA
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, 35121, Padua, Italy
- Max-Planck-Institute of Biochemistry, Martinsried, 82152, Germany
| | - Prachi P Trivedi
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Steven K Anderson
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Dhanendra Tomar
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Roland Nilsson
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Division of Cardiovascular Medicine, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Muniswamy Madesh
- Department of Medicine, Cardiology Division, Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Mohit Jain
- Departments of Medicine and Pharmacology, University of California, San Diego, 9500 Gilman Avenue, La Jolla, CA, 92093, USA
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
27
|
Coulon S, Vaurs M. Telomeric Transcription and Telomere Rearrangements in Quiescent Cells. J Mol Biol 2020; 432:4220-4231. [PMID: 32061930 DOI: 10.1016/j.jmb.2020.01.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Despite the condensed nature of terminal sequences, the telomeres are transcribed into a group of noncoding RNAs, including the TElomeric Repeat-containing RNA (TERRA). Since the discovery of TERRA, its evolutionary conserved function has been confirmed, and its involvement in telomere length regulation, heterochromatin establishment, and telomere recombination has been demonstrated. We previously reported that TERRA is upregulated in quiescent fission yeast cells, although the global transcription is highly reduced. Elevated telomeric transcription was also detected when telomeres detach from the nuclear periphery. These intriguing observations unveil unexpected facets of telomeric transcription in arrested cells. In this review, we present the different aspects of TERRA transcription during quiescence and discuss their implications for telomere maintenance and cell fate.
Collapse
Affiliation(s)
- Stéphane Coulon
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue contre le Cancer, Marseille, F-13009, France.
| | - Mélina Vaurs
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue contre le Cancer, Marseille, F-13009, France
| |
Collapse
|
28
|
Ohtsuka H, Kato T, Sato T, Shimasaki T, Kojima T, Aiba H. Leucine depletion extends the lifespans of leucine-auxotrophic fission yeast by inducing Ecl1 family genes via the transcription factor Fil1. Mol Genet Genomics 2019; 294:1499-1509. [PMID: 31456006 DOI: 10.1007/s00438-019-01592-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/28/2019] [Indexed: 11/30/2022]
Abstract
Many studies show that lifespans of various model organisms can be extended by limiting the quantities of nutrients that are necessary for proliferation. In Schizosaccharomyces pombe, the Ecl1 family genes have been associated with lifespan control and are necessary for cell responses to nutrient depletion, but their functions and mechanisms of action remain uncharacterized. Herein, we show that leucine depletion extends the chronological lifespan (CLS) of leucine-auxotrophic cells. Furthermore, depletion of leucine extended CLS and caused cell miniaturization and cell cycle arrest at the G1 phase, and all of these processes depended on Ecl1 family genes. Although depletion of leucine raises the expression of ecl1+ by about 100-fold in leucine-auxotrophic cells, these conditions did not affect ecl1+ expression in leucine-auxotrophic fil1 mutants that were isolated in deletion set screens using 79 mutants disrupting a transcription factor. Fil1 is a GATA-type zinc finger transcription factor that reportedly binds directly to the upstream regions of ecl1+ and ecl2+. Accordingly, we suggest that Ecl1 family genes are induced in response to environmental stresses, such as oxidative stress and heat stress, or by nutritional depletion of nitrogen or sulfur sources or the amino acid leucine. We also propose that these genes play important roles in the maintenance of cell survival until conditions that favor proliferation are restored.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Takanori Kato
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Teppei Sato
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Takaaki Kojima
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
29
|
Coordinated Roles of the Putative Ceramide-Conjugation Protein, Cwh43, and a Mn 2+-Transporting, P-Type ATPase, Pmr1, in Fission Yeast. G3-GENES GENOMES GENETICS 2019; 9:2667-2676. [PMID: 31201205 PMCID: PMC6686924 DOI: 10.1534/g3.119.400281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Genetically controlled mechanisms of cell division and quiescence are vital for responding to changes in the nutritional environment and for cell survival. Previously, we have characterized temperature-sensitive (ts) mutants of the cwh43 gene in fission yeast, Schizosaccharomyces pombe, which is required for both cell proliferation and nitrogen starvation-induced G0 quiescence. Cwh43 encodes an evolutionarily conserved transmembrane protein that localizes in endoplasmic reticulum (ER). Defects in this protein fail to divide in low glucose and lose mitotic competence under nitrogen starvation, and also affect lipid metabolism. Here, we identified mutations of the pmr1 gene, which encodes an evolutionarily conserved Ca2+/Mn2+-transporting P-type ATPase, as potent extragenic suppressors of ts mutants of the cwh43 gene. Intriguingly, these pmr1 mutations specifically suppressed the ts phenotype of cwh43 mutants, among five P-type Ca2+- and/or Mn2+-ATPases reported in this organism. Cwh43 and Pmr1 co-localized in the ER. In cwh43 mutant cells, addition of excessive manganese to culture media enhanced the severe defect in cell morphology, and caused abnormal accumulation of a cell wall component, 1, 3-β-glucan. In contrast, these abnormal phenotypes were abolished by deletion of the pmr1 + gene, as well as by removal of Mn2+ from the culture medium. Furthermore, nutrition-related phenotypes of cwh43 mutant cells were rescued in the absence of Pmr1. Our findings indicate that the cellular processes regulated by Cwh43 are appropriately balanced with Pmr1-mediated Mn2+ transport into the ER.
Collapse
|
30
|
Chen C, Rodriguez Pino M, Haller PR, Verde F. Conserved NDR/LATS kinase controls RAS GTPase activity to regulate cell growth and chronological lifespan. Mol Biol Cell 2019; 30:2598-2616. [PMID: 31390298 PMCID: PMC6740195 DOI: 10.1091/mbc.e19-03-0172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Adaptation to the nutritional environment is critical for all cells. RAS GTPase is a highly conserved GTP-binding protein with crucial functions for cell growth and differentiation in response to environmental conditions. Here, we describe a novel mechanism connecting RAS GTPase to nutrient availability in fission yeast. We report that the conserved NDR/LATS kinase Orb6 responds to nutritional cues and regulates Ras1 GTPase activity. Orb6 increases the protein levels of an Ras1 GTPase activator, the guanine nucleotide exchange factor Efc25, by phosphorylating Sts5, a protein bound to efc25 mRNA. By manipulating the extent of Orb6-mediated Sts5 assembly into RNP granules, we can modulate Efc25 protein levels, Ras1 GTPase activity, and, as a result, cell growth and cell survival. Thus, we conclude that the Orb6-Sts5-Ras1 regulatory axis plays a crucial role in promoting cell adaptation, balancing the opposing demands of promoting cell growth and extending chronological lifespan.
Collapse
Affiliation(s)
- Chuan Chen
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Marbelys Rodriguez Pino
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Patrick Roman Haller
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Fulvia Verde
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
31
|
Oya E, Durand-Dubief M, Cohen A, Maksimov V, Schurra C, Nakayama JI, Weisman R, Arcangioli B, Ekwall K. Leo1 is essential for the dynamic regulation of heterochromatin and gene expression during cellular quiescence. Epigenetics Chromatin 2019; 12:45. [PMID: 31315658 PMCID: PMC6636030 DOI: 10.1186/s13072-019-0292-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/10/2019] [Indexed: 11/16/2022] Open
Abstract
Background Cellular quiescence is a reversible differentiation state during which cells modify their gene expression program to inhibit metabolic functions and adapt to a new cellular environment. The epigenetic changes accompanying these alterations are not well understood. We used fission yeast cells as a model to study the regulation of quiescence. When these cells are starved for nitrogen, the cell cycle is arrested in G1, and the cells enter quiescence (G0). A gene regulatory program is initiated, including downregulation of thousands of genes—for example, those related to cell proliferation—and upregulation of specific genes—for example, autophagy genes—needed to adapt to the physiological challenge. These changes in gene expression are accompanied by a marked alteration of nuclear organization and chromatin structure. Results Here, we investigated the role of Leo1, a subunit of the conserved RNA polymerase-associated factor 1 (Paf1) complex, in the quiescence process using fission yeast as the model organism. Heterochromatic regions became very dynamic in fission yeast in G0 during nitrogen starvation. The reduction of heterochromatin in early G0 was correlated with reduced target of rapamycin complex 2 (TORC2) signaling. We demonstrated that cells lacking Leo1 show reduced survival in G0. In these cells, heterochromatic regions, including subtelomeres, were stabilized, and the expression of many genes, including membrane transport genes, was abrogated. TOR inhibition mimics the effect of nitrogen starvation, leading to the expression of subtelomeric genes, and this effect was suppressed by genetic deletion of leo1. Conclusions We identified a protein, Leo1, necessary for survival during quiescence. Leo1 is part of a conserved protein complex, Paf1C, linked to RNA polymerase II. We showed that Leo1, acting downstream of TOR, is crucial for the dynamic reorganization of chromosomes and the regulation of gene expression during cellular quiescence. Genes encoding membrane transporters are not expressed in quiescent leo1 mutant cells, and cells die after 2 weeks of nitrogen starvation. Taken together, our results suggest that Leo1 is essential for the dynamic regulation of heterochromatin and gene expression during cellular quiescence. Electronic supplementary material The online version of this article (10.1186/s13072-019-0292-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eriko Oya
- Department of Biosciences and Nutrition, Karolinska Institutet, NEO Building, 141 83, Huddinge, Sweden
| | - Mickaël Durand-Dubief
- Department of Biosciences and Nutrition, Karolinska Institutet, NEO Building, 141 83, Huddinge, Sweden
| | - Adiel Cohen
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel
| | - Vladimir Maksimov
- Department of Biosciences and Nutrition, Karolinska Institutet, NEO Building, 141 83, Huddinge, Sweden
| | - Catherine Schurra
- Unite Dynamique du Génome, Département Génomes et Génétique, Pasteur Institute, Paris, France
| | - Jun-Ichi Nakayama
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki, Japan
| | - Ronit Weisman
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel
| | - Benoit Arcangioli
- Unite Dynamique du Génome, Département Génomes et Génétique, Pasteur Institute, Paris, France
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institutet, NEO Building, 141 83, Huddinge, Sweden.
| |
Collapse
|
32
|
Bhattacharjee S, Roche B, Martienssen RA. RNA-induced initiation of transcriptional silencing (RITS) complex structure and function. RNA Biol 2019; 16:1133-1146. [PMID: 31213126 DOI: 10.1080/15476286.2019.1621624] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heterochromatic regions of the genome are epigenetically regulated to maintain a heritable '"silent state"'. In fission yeast and other organisms, epigenetic silencing is guided by nascent transcripts, which are targeted by the RNA interference pathway. The key effector complex of the RNA interference pathway consists of small interfering RNA molecules (siRNAs) associated with Argonaute, assembled into the RNA-induced transcriptional silencing (RITS) complex. This review focuses on our current understanding of how RITS promotes heterochromatin formation, and in particular on the role of Argonaute-containing complexes in many other functions such as quelling, release of RNA polymerases, cellular quiescence and genome defense.
Collapse
Affiliation(s)
- Sonali Bhattacharjee
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| | - Benjamin Roche
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| | - Robert A Martienssen
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| |
Collapse
|
33
|
Sajiki K, Tahara Y, Villar-Briones A, Pluskal T, Teruya T, Mori A, Hatanaka M, Ebe M, Nakamura T, Aoki K, Nakaseko Y, Yanagida M. Genetic defects in SAPK signalling, chromatin regulation, vesicle transport and CoA-related lipid metabolism are rescued by rapamycin in fission yeast. Open Biol 2019; 8:rsob.170261. [PMID: 29593117 PMCID: PMC5881033 DOI: 10.1098/rsob.170261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/19/2018] [Indexed: 12/20/2022] Open
Abstract
Rapamycin inhibits TOR (target of rapamycin) kinase, and is being used clinically to treat various diseases ranging from cancers to fibrodysplasia ossificans progressiva. To understand rapamycin mechanisms of action more comprehensively, 1014 temperature-sensitive (ts) fission yeast (Schizosaccharomyces pombe) mutants were screened in order to isolate strains in which the ts phenotype was rescued by rapamycin. Rapamycin-rescued 45 strains, among which 12 genes responsible for temperature sensitivity were identified. These genes are involved in stress-activated protein kinase (SAPK) signalling, chromatin regulation, vesicle transport, and CoA- and mevalonate-related lipid metabolism. Subsequent metabolome analyses revealed that rapamycin upregulated stress-responsive metabolites, while it downregulated purine biosynthesis intermediates and nucleotide derivatives. Rapamycin alleviated abnormalities in cell growth and cell division caused by sty1 mutants (Δsty1) of SAPK. Notably, in Δsty1, rapamycin reduced greater than 75% of overproduced metabolites (greater than 2× WT), like purine biosynthesis intermediates and nucleotide derivatives, to WT levels. This suggests that these compounds may be the points at which the SAPK/TOR balance regulates continuous cell proliferation. Rapamycin might be therapeutically useful for specific defects of these gene functions.
Collapse
Affiliation(s)
- Kenichi Sajiki
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Yuria Tahara
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Alejandro Villar-Briones
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Tomáš Pluskal
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Takayuki Teruya
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Ayaka Mori
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Mitsuko Hatanaka
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Masahiro Ebe
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Takahiro Nakamura
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Keita Aoki
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yukinobu Nakaseko
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuhiro Yanagida
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
34
|
Aono S, Haruna Y, Watanabe YH, Mochida S, Takeda K. The fission yeast Greatwall-Endosulfine pathway is required for proper quiescence/G 0 phase entry and maintenance. Genes Cells 2019; 24:172-186. [PMID: 30584685 DOI: 10.1111/gtc.12665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 12/30/2022]
Abstract
Cell proliferation and cellular quiescence/G0 phase must be regulated in response to intra-/extracellular environments, and such regulation is achieved by the orchestration of protein kinases and protein phosphatases. Here, we investigated fission yeast potential orthologs (Cek1, Ppk18 and Ppk31) of the metazoan Greatwall kinase (Gwl), which inhibits type-2A protein phosphatase with B55 subunit (PP2AB55 ) by phosphorylating and activating the PP2AB55 inhibitors, α-endosulfine/ARPP-19 (Ensa/ARPP-19). Gwl and Ensa/ARPP-19 regulate mitosis; however, we found Ppk18, Cek1 and Mug134/Igo1, the counterpart of Ensa/ARPP-19, are not essential for normal mitosis but regulate nitrogen starvation (-N)-induced proper G0 entry and maintenance. Genetic and biochemical analyses indicated that the conserved Gwl site (serine 64) was phosphorylated in the G0 phase in a Ppk18-dependent manner, and the phosphorylated Mug134/Igo1 inhibited PP2AB55 in vitro. The alanine substitution of the serine 64 caused defects in G0 entry and maintenance as well as the mug134/igo1+ deletion. These results indicate that PP2AB55 activity must be regulated properly to establish the G0 phase. Consistently, simultaneous deletion of the B55 gene with mug134/igo1+ partially rescued the Mug134/Igo1 mutant phenotype. We suggest that in fission yeast, PP2AB55 regulation by the Ppk18-Mug134/Igo1 pathway is required for G0 entry and establishment of robust viability during the G0 phase.
Collapse
Affiliation(s)
- Soma Aono
- Department of Biology, Faculty of Science and Engineering, Konan Uiversity, Kobe, Japan
| | - Yui Haruna
- Department of Biology, Faculty of Science and Engineering, Konan Uiversity, Kobe, Japan
| | - Yo-Hei Watanabe
- Department of Biology, Faculty of Science and Engineering, Konan Uiversity, Kobe, Japan.,Institute for Integrative Neurobiology, Konan University, Kobe, Japan
| | - Satoru Mochida
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan.,PRESTO Program, Japan Science and Technology Agency
| | - Kojiro Takeda
- Department of Biology, Faculty of Science and Engineering, Konan Uiversity, Kobe, Japan.,Institute for Integrative Neurobiology, Konan University, Kobe, Japan
| |
Collapse
|
35
|
Nakazawa N, Arakawa O, Ebe M, Yanagida M. Casein kinase II-dependent phosphorylation of DNA topoisomerase II suppresses the effect of a catalytic topo II inhibitor, ICRF-193, in fission yeast. J Biol Chem 2019; 294:3772-3782. [PMID: 30635402 PMCID: PMC6416453 DOI: 10.1074/jbc.ra118.004955] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/04/2019] [Indexed: 11/06/2022] Open
Abstract
DNA topoisomerase II (topo II) regulates the topological state of DNA and is necessary for DNA replication, transcription, and chromosome segregation. Topo II has essential functions in cell proliferation and therefore is a critical target of anticancer drugs. In this study, using Phos-tag SDS-PAGE analysis in fission yeast (Schizosaccharomyces pombe), we identified casein kinase II (Cka1/CKII)-dependent phosphorylation at the C-terminal residues Ser1363 and Ser1364 in topo II. We found that this phosphorylation decreases the inhibitory effect of an anticancer catalytic inhibitor of topo II, ICRF-193, on mitosis. Consistent with the constitutive activity of Cka1/CKII, Ser1363 and Ser1364 phosphorylation of topo II was stably maintained throughout the cell cycle. We demonstrate that ICRF-193-induced chromosomal mis-segregation is further exacerbated in two temperature-sensitive mutants, cka1-372 and cka1/orb5-19, of the catalytic subunit of CKII or in the topo II nonphosphorylatable alanine double mutant top2-S1363A,S1364A but not in cells of the phosphomimetic glutamate double mutant top2-S1363E,S1364E Our results suggest that Ser1363 and Ser1364 in topo II are targeted by Cka1/CKII kinase and that their phosphorylation facilitates topo II ATPase activity in the N-terminal region, which regulates protein turnover on chromosome DNA. Because CKII-mediated phosphorylation of the topo II C-terminal domain appears to be evolutionarily conserved, including in humans, we propose that attenuation of CKII-controlled topo II phosphorylation along with catalytic topo II inhibition may promote anticancer effects.
Collapse
Affiliation(s)
- Norihiko Nakazawa
- From the G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Orie Arakawa
- From the G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Masahiro Ebe
- From the G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Mitsuhiro Yanagida
- From the G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
36
|
Liu M, Heimlicher MB, Bächler M, Ibeneche-Nnewihe CC, Florin EL, Brunner D, Hoenger A. Glucose starvation triggers filamentous septin assemblies in an S. pombe septin-2 deletion mutant. Biol Open 2019; 8:8/1/bio037622. [PMID: 30602528 PMCID: PMC6361201 DOI: 10.1242/bio.037622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Using correlative light and electron microscopy (CLEM), we studied the intracellular organization by of glucose-starved fission yeast cells (Schizosaccharomyces pombe) with regards to the localization of septin proteins throughout the cytoplasm. Thereby, we found that for cells carrying a deletion of the gene encoding septin-2 (spn2Δ), starvation causes a GFP-tagged version of septin-3 (spn3-GFP) and family members, to assemble into a single, prominent filamentous structure. It was previously shown that during exponential growth, spn2Δ cells form septin-3 polymers. However, the polymers we observed during exponential growth are different from the spn3p-GFP structure we observed in starved cells. Using CLEM, in combination with anti-GFP immunolabeling on plastic-sections, we could assign spn3p-GFP to the filaments we have found in EM pictures. Besides septin-3, these filamentous assemblies most likely also contain septin-1 as an RFP-tagged version of this protein forms a very similar structure in starved spn2Δ cells. Our data correlate phase-contrast and fluorescence microscopy with electron micrographs of plastic-embedded cells, and further on with detailed views of tomographic 3D reconstructions. Cryo-electron microscopy of spn2Δ cells in vitrified sections revealed a very distinct overall morphology of the spn3p-GFP assembly. The fine-structured, regular density pattern suggests the presence of assembled septin-3 filaments that are clearly different from F-actin bundles. Furthermore, we found that starvation causes substantial mitochondria fission, together with massive decoration of their outer membrane by ribosomes.
Collapse
Affiliation(s)
- Minghua Liu
- University of Colorado at Boulder, Department of Molecular, Cellular and Developmental Biology, UCB-0347, Boulder, CO 80309, USA
| | - Maria B Heimlicher
- University of Zürich, Department of Molecular Life Sciences, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Mirjam Bächler
- University of Zürich, Department of Molecular Life Sciences, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Chieze C Ibeneche-Nnewihe
- University of Texas at Austin, Center for Nonlinear Dynamics and Department of Physics, Austin, TX 78712, USA
| | - Ernst-Ludwig Florin
- University of Texas at Austin, Center for Nonlinear Dynamics and Department of Physics, Austin, TX 78712, USA
| | - Damian Brunner
- University of Zürich, Department of Molecular Life Sciences, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Andreas Hoenger
- University of Colorado at Boulder, Department of Molecular, Cellular and Developmental Biology, UCB-0347, Boulder, CO 80309, USA
| |
Collapse
|
37
|
Sagot I, Laporte D. The cell biology of quiescent yeast – a diversity of individual scenarios. J Cell Sci 2019; 132:132/1/jcs213025. [DOI: 10.1242/jcs.213025] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT
Most cells, from unicellular to complex organisms, spend part of their life in quiescence, a temporary non-proliferating state. Although central for a variety of essential processes including tissue homeostasis, development and aging, quiescence is poorly understood. In fact, quiescence encompasses various cellular situations depending on the cell type and the environmental niche. Quiescent cell properties also evolve with time, adding another layer of complexity. Studying quiescence is, above all, limited by the fact that a quiescent cell can be recognized as such only after having proved that it is capable of re-proliferating. Recent cellular biology studies in yeast have reported the relocalization of hundreds of proteins and the reorganization of several cellular machineries upon proliferation cessation. These works have revealed that quiescent cells can display various properties, shedding light on a plethora of individual behaviors. The deciphering of the molecular mechanisms beyond these reorganizations, together with the understanding of their cellular functions, have begun to provide insights into the physiology of quiescent cells. In this Review, we discuss recent findings and emerging concepts in Saccharomyces cerevisiae quiescent cell biology.
Collapse
Affiliation(s)
- Isabelle Sagot
- Centre National de la Recherche Scientifique, Université de Bordeaux-Institut de Biochimie et Génétique Cellulaires, UMR5095-33077 Bordeaux cedex, France
| | - Damien Laporte
- Centre National de la Recherche Scientifique, Université de Bordeaux-Institut de Biochimie et Génétique Cellulaires, UMR5095-33077 Bordeaux cedex, France
| |
Collapse
|
38
|
Sajiki K, Tahara Y, Uehara L, Sasaki T, Pluskal T, Yanagida M. Genetic regulation of mitotic competence in G 0 quiescent cells. SCIENCE ADVANCES 2018; 4:eaat5685. [PMID: 30116786 PMCID: PMC6093628 DOI: 10.1126/sciadv.aat5685] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/04/2018] [Indexed: 05/03/2023]
Abstract
Quiescent (G0 phase) cells must maintain mitotic competence (MC) to restart the cell cycle. This is essential for reproduction in unicellular organisms and also for development and cell replacement in higher organisms. Recently, suppression of MC has gained attention as a possible therapeutic strategy for cancer. Using a Schizosaccharomyces pombe deletion-mutant library, we identified 85 genes required to maintain MC during the G0 phase induced by nitrogen deprivation. G0 cells must recycle proteins and RNA, governed by anabolism, catabolism, transport, and availability of small molecules such as antioxidants. Protein phosphatases are also essential to maintain MC. In particular, Nem1-Spo7 protects the nucleus from autophagy by regulating Ned1, a lipin. These genes, designated GZE (G-Zero Essential) genes, reveal the landscape of genetic regulation of MC.
Collapse
Affiliation(s)
- Kenichi Sajiki
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
- Corresponding author. (K.S.); (M.Y.)
| | - Yuria Tahara
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| | - Lisa Uehara
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| | - Toshio Sasaki
- Research Support Imaging Section, OIST, Onna, Okinawa, Japan
| | - Tomáš Pluskal
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
- Corresponding author. (K.S.); (M.Y.)
| |
Collapse
|
39
|
Hayashi T, Teruya T, Chaleckis R, Morigasaki S, Yanagida M. S-Adenosylmethionine Synthetase Is Required for Cell Growth, Maintenance of G0 Phase, and Termination of Quiescence in Fission Yeast. iScience 2018; 5:38-51. [PMID: 30240645 PMCID: PMC6123894 DOI: 10.1016/j.isci.2018.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/04/2018] [Accepted: 06/27/2018] [Indexed: 01/04/2023] Open
Abstract
S-adenosylmethionine is an important compound, because it serves as the methyl donor in most methyl transfer reactions, including methylation of proteins, nucleic acids, and lipids. However, cellular defects in the genetic disruption of S-adenosylmethionine synthesis are not well understood. Here, we report the isolation and characterization of temperature-sensitive mutants of fission yeast S-adenosylmethionine synthetase (Sam1). Levels of S-adenosylmethionine and methylated histone H3 were greatly diminished in sam1 mutants. sam1 mutants stopped proliferating in vegetative culture and arrested specifically in G2 phase without cell elongation. Furthermore, sam1 mutants lost viability during nitrogen starvation-induced G0 phase quiescence. After release from the G0 state, sam1 mutants could neither increase in cell size nor re-initiate DNA replication in the rich medium. Sam1 is thus required for cell growth and proliferation, and maintenance of and exit from quiescence. sam1 mutants lead to broad cellular and drug response defects, as expected, since S. pombe contains more than 90 S-adenosylmethionine-dependent methyltransferases.
Collapse
Affiliation(s)
- Takeshi Hayashi
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Takayuki Teruya
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Romanas Chaleckis
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Susumu Morigasaki
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
40
|
Ohtsuka H, Aiba H. Factors extending the chronological lifespan of yeast: Ecl1 family genes. FEMS Yeast Res 2018; 17:4085637. [PMID: 28934413 DOI: 10.1093/femsyr/fox066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/18/2017] [Indexed: 01/10/2023] Open
Abstract
Ecl1 family genes are conserved among yeast, in which their overexpression extends chronological lifespan. Ecl1 family genes were first identified in the fission yeast Schizosaccharomyces pombe; at the time, they were considered noncoding RNA owing to their short coding sequence of fewer than 300 base pairs. Schizosaccharomyces pombe carries three Ecl1 family genes, ecl1+, ecl2+ and ecl3+, whereas Saccharomyces cerevisiae has one, ECL1. Their overexpression extends chronological lifespan, increases oxidative stress resistance and induces sexual development in fission yeast. A recent study indicated that Ecl1 family genes play a significant role in responding to environmental zinc or sulfur depletion. In this review, we focus on Ecl1 family genes in fission yeast and describe the relationship between nutritional depletion and cellular output, as the latter depends on Ecl1 family genes. Furthermore, we present the roles and functions of Ecl1 family genes characterized to date.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
41
|
Nakazawa N, Teruya T, Sajiki K, Kumada K, Villar-Briones A, Arakawa O, Takada J, Saitoh S, Yanagida M. Fission yeast ceramide ts mutants cwh43 exhibit defects in G0 quiescence, nutrient metabolism, and lipid homeostasis. J Cell Sci 2018; 131:jcs.217331. [DOI: 10.1242/jcs.217331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022] Open
Abstract
Cellular nutrient states control whether cells proliferate, or whether they enter or exit quiescence. Here, we report characterizations of fission yeast temperature-sensitive (ts) mutants of the evolutionarily conserved transmembrane protein, Cwh43, and explore its relevance to utilization of glucose, nitrogen-source, and lipids. GFP-tagged Cwh43 localizes at ER associated with the nuclear envelope and the plasma membrane, as in budding yeast. We found that cwh43 mutants failed to divide in low glucose and lost viability during quiescence under nitrogen starvation. In cwh43 mutant, comprehensive metabolome analysis demonstrated dramatic changes in marker metabolites that altered under low glucose and/or nitrogen starvation, although cwh43 apparently consumed glucose in the culture media. Furthermore, we found that cwh43 mutant had elevated levels of triacylglycerols (TGs) and coenzyme A, and that it accumulated lipid droplets. Notably, TG biosynthesis was required to maintain cell division in cwh43 mutant. Thus, Cwh43 affects utilization of glucose and nitrogen-sources, as well as storage lipid metabolism. These results may fit to a notion developed in budding yeast that Cwh43 conjugates ceramide to GPI (glycosylphosphatidylinositol)-anchored proteins and maintains integrity of membrane organization.
Collapse
Affiliation(s)
- Norihiko Nakazawa
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Takayuki Teruya
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Kenichi Sajiki
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Kazuki Kumada
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Alejandro Villar-Briones
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Orie Arakawa
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Junko Takada
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Shigeaki Saitoh
- Institute of Life Science, Kurume University, Hyakunen-Kohen 1-1, Kurume, Fukuoka 839-0864, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
42
|
Joh RI, Khanduja JS, Calvo IA, Mistry M, Palmieri CM, Savol AJ, Ho Sui SJ, Sadreyev RI, Aryee MJ, Motamedi M. Survival in Quiescence Requires the Euchromatic Deployment of Clr4/SUV39H by Argonaute-Associated Small RNAs. Mol Cell 2017; 64:1088-1101. [PMID: 27984744 DOI: 10.1016/j.molcel.2016.11.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/14/2016] [Accepted: 11/09/2016] [Indexed: 01/10/2023]
Abstract
Quiescence (G0) is a ubiquitous stress response through which cells enter reversible dormancy, acquiring distinct properties including reduced metabolism, resistance to stress, and long life. G0 entry involves dramatic changes to chromatin and transcription of cells, but the mechanisms coordinating these processes remain poorly understood. Using the fission yeast, here, we track G0-associated chromatin and transcriptional changes temporally and show that as cells enter G0, their survival and global gene expression programs become increasingly dependent on Clr4/SUV39H, the sole histone H3 lysine 9 (H3K9) methyltransferase, and RNAi proteins. Notably, G0 entry results in RNAi-dependent H3K9 methylation of several euchromatic pockets, prior to which Argonaute1-associated small RNAs from these regions emerge. Overall, our data reveal another function for constitutive heterochromatin proteins (the establishment of the global G0 transcriptional program) and suggest that stress-induced alterations in Argonaute-associated sRNAs can target the deployment of transcriptional regulatory proteins to specific sequences.
Collapse
Affiliation(s)
- Richard I Joh
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jasbeer S Khanduja
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Isabel A Calvo
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Meeta Mistry
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Christina M Palmieri
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Andrej J Savol
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shannan J Ho Sui
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Martin J Aryee
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mo Motamedi
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
43
|
Bestul AJ, Yu Z, Unruh JR, Jaspersen SL. Molecular model of fission yeast centrosome assembly determined by superresolution imaging. J Cell Biol 2017; 216:2409-2424. [PMID: 28619713 PMCID: PMC5551712 DOI: 10.1083/jcb.201701041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/17/2017] [Accepted: 05/10/2017] [Indexed: 01/06/2023] Open
Abstract
Microtubule-organizing centers (MTOCs), known as centrosomes in animals and spindle pole bodies (SPBs) in fungi, are important for the faithful distribution of chromosomes between daughter cells during mitosis as well as for other cellular functions. The cytoplasmic duplication cycle and regulation of the Schizosaccharomyces pombe SPB is analogous to centrosomes, making it an ideal model to study MTOC assembly. Here, we use superresolution structured illumination microscopy with single-particle averaging to localize 14 S. pombe SPB components and regulators, determining both the relationship of proteins to each other within the SPB and how each protein is assembled into a new structure during SPB duplication. These data enabled us to build the first comprehensive molecular model of the S. pombe SPB, resulting in structural and functional insights not ascertained through investigations of individual subunits, including functional similarities between Ppc89 and the budding yeast SPB scaffold Spc42, distribution of Sad1 to a ring-like structure and multiple modes of Mto1 recruitment.
Collapse
Affiliation(s)
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO .,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
44
|
Abstract
Most cells in nature are not actively dividing, yet are able to return to the cell cycle given the appropriate environmental signals. There is now ample evidence that quiescent G0 cells are not shut-down but still metabolically and transcriptionally active. Quiescent cells must maintain a basal transcriptional capacity to maintain transcripts and proteins necessary for survival. This implies a tight control over RNA polymerases: RNA pol II for mRNA transcription during G0, but especially RNA pol I and RNA pol III to maintain an appropriate level of structural RNAs, raising the possibility that specific transcriptional control mechanisms evolved in quiescent cells. In accordance with this, we recently discovered that RNA interference is necessary to control RNA polymerase I transcription during G0. While this mini-review focuses on yeast model organisms (Saccharomyces cerevisiae and Schizosaccharomyces pombe), parallels are drawn to other eukaryotes and mammalian systems, in particular stem cells.
Collapse
Affiliation(s)
- Benjamin Roche
- a Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA
| | - Benoit Arcangioli
- b Genome Dynamics Unit , UMR 3525 CNRS, Institut Pasteur, 25-28 rue du Docteur Roux , Paris , France
| | - Robert Martienssen
- a Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA.,c Howard Hughes Medical Institute-Gordon and Betty Moore Foundation (HHMI-GBM) Investigator , NY , USA
| |
Collapse
|
45
|
Ohtsuka H, Takinami M, Shimasaki T, Hibi T, Murakami H, Aiba H. Sulfur restriction extends fission yeast chronological lifespan through Ecl1 family genes by downregulation of ribosome. Mol Microbiol 2017; 105:84-97. [PMID: 28388826 DOI: 10.1111/mmi.13686] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/20/2017] [Accepted: 03/30/2017] [Indexed: 01/11/2023]
Abstract
Nutritional restrictions such as calorie restrictions are known to increase the lifespan of various organisms. Here, we found that a restriction of sulfur extended the chronological lifespan (CLS) of the fission yeast Schizosaccharomyces pombe. The restriction decreased cellular size, RNA content, and ribosomal proteins and increased sporulation rate. These responses depended on Ecl1 family genes, the overexpression of which results in the extension of CLS. We also showed that the Zip1 transcription factor results in the sulfur restriction-dependent expression of the ecl1+ gene. We demonstrated that a decrease in ribosomal activity results in the extension of CLS. Based on these observations, we propose that sulfur restriction extends CLS through Ecl1 family genes in a ribosomal activity-dependent manner.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Masahiro Takinami
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Takahide Hibi
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hiroshi Murakami
- Department of Biological Science, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
46
|
Mutavchiev DR, Leda M, Sawin KE. Remodeling of the Fission Yeast Cdc42 Cell-Polarity Module via the Sty1 p38 Stress-Activated Protein Kinase Pathway. Curr Biol 2016; 26:2921-2928. [PMID: 27746023 PMCID: PMC5106388 DOI: 10.1016/j.cub.2016.08.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/24/2016] [Accepted: 08/19/2016] [Indexed: 01/27/2023]
Abstract
The Rho family GTPase Cdc42 is a key regulator of eukaryotic cellular organization and cell polarity [1]. In the fission yeast Schizosaccharomyces pombe, active Cdc42 and associated effectors and regulators (the "Cdc42 polarity module") coordinate polarized growth at cell tips by controlling the actin cytoskeleton and exocytosis [2-4]. Localization of the Cdc42 polarity module to cell tips is thus critical for its function. Here we show that the fission yeast stress-activated protein kinase Sty1, a homolog of mammalian p38 MAP kinase, regulates localization of the Cdc42 polarity module. In wild-type cells, treatment with latrunculin A, a drug that leads to actin depolymerization, induces dispersal of the Cdc42 module from cell tips and cessation of polarized growth [5, 6]. We show that latrunculin A treatment also activates the Sty1 MAP kinase pathway and, strikingly, we find that loss of Sty1 MAP kinase signaling prevents latrunculin A-induced dispersal of the Cdc42 module, allowing polarized growth even in complete absence of the actin cytoskeleton. Regulation of the Cdc42 module by Sty1 is independent of Sty1's role in stress-induced gene expression. We also describe a system for activation of Sty1 kinase "on demand" in the absence of any external stress, and use this to show that Sty1 activation alone is sufficient to disperse the Cdc42 module from cell tips in otherwise unperturbed cells. During nitrogen-starvation-induced quiescence, inhibition of Sty1 converts non-growing, depolarized cells into growing, polarized cells. Our results place MAP kinase Sty1 as an important physiological regulator of the Cdc42 polarity module.
Collapse
Affiliation(s)
- Delyan R Mutavchiev
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Marcin Leda
- SynthSys (Centre for Synthetic and Systems Biology), School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Kenneth E Sawin
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
47
|
Roche B, Arcangioli B, Martienssen RA. RNA interference is essential for cellular quiescence. Science 2016; 354:science.aah5651. [PMID: 27738016 DOI: 10.1126/science.aah5651] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022]
Abstract
Quiescent cells play a predominant role in most organisms. Here we identify RNA interference (RNAi) as a major requirement for quiescence (G0 phase of the cell cycle) in Schizosaccharomyces pombe RNAi mutants lose viability at G0 entry and are unable to maintain long-term quiescence. We identified suppressors of G0 defects in cells lacking Dicer (dcr1Δ), which mapped to genes involved in chromosome segregation, RNA polymerase-associated factors, and heterochromatin formation. We propose a model in which RNAi promotes the release of RNA polymerase in cycling and quiescent cells: (i) RNA polymerase II release mediates heterochromatin formation at centromeres, allowing proper chromosome segregation during mitotic growth and G0 entry, and (ii) RNA polymerase I release prevents heterochromatin formation at ribosomal DNA during quiescence maintenance. Our model may account for the codependency of RNAi and histone H3 lysine 9 methylation throughout eukaryotic evolution.
Collapse
Affiliation(s)
- B Roche
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - B Arcangioli
- Dynamics of the Genome Unit, Department of Genomes and Genetics, Institut Pasteur, UMR3525, 25-28 rue du Docteur Roux, Paris 75015, France
| | - R A Martienssen
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
48
|
Nuñez I, Rodriguez Pino M, Wiley DJ, Das ME, Chen C, Goshima T, Kume K, Hirata D, Toda T, Verde F. Spatial control of translation repression and polarized growth by conserved NDR kinase Orb6 and RNA-binding protein Sts5. eLife 2016; 5. [PMID: 27474797 PMCID: PMC5011436 DOI: 10.7554/elife.14216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/28/2016] [Indexed: 12/18/2022] Open
Abstract
RNA-binding proteins contribute to the formation of ribonucleoprotein (RNP) granules by phase transition, but regulatory mechanisms are not fully understood. Conserved fission yeast NDR (Nuclear Dbf2-Related) kinase Orb6 governs cell morphogenesis in part by spatially controlling Cdc42 GTPase. Here we describe a novel, independent function for Orb6 kinase in negatively regulating the recruitment of RNA-binding protein Sts5 into RNPs to promote polarized cell growth. We find that Orb6 kinase inhibits Sts5 recruitment into granules, its association with processing (P) bodies, and degradation of Sts5-bound mRNAs by promoting Sts5 interaction with 14-3-3 protein Rad24. Many Sts5-bound mRNAs encode essential factors for polarized cell growth, and Orb6 kinase spatially and temporally controls the extent of Sts5 granule formation. Disruption of this control system affects cell morphology and alters the pattern of polarized cell growth, revealing a role for Orb6 kinase in the spatial control of translational repression that enables normal cell morphogenesis.
Collapse
Affiliation(s)
- Illyce Nuñez
- Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
| | - Marbelys Rodriguez Pino
- Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
| | - David J Wiley
- Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
| | - Maitreyi E Das
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, United States
| | - Chuan Chen
- Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
| | - Tetsuya Goshima
- National Research Institute of Brewing, Higashi-Hiroshima, Japan
| | - Kazunori Kume
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Dai Hirata
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Toda
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan.,The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, United Kingdom
| | - Fulvia Verde
- Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States.,Marine Biological Laboratory, Woods Hole, United States
| |
Collapse
|
49
|
Abstract
Here, we summarize the composition and uses of Schizosaccharomyces pombe media and discuss key issues for consideration in the generation of S. pombe cultures. We discuss the concept of "culture memory," in which the growth state and stress experienced by a strain during storage, propagation, and starter culture preparation can alter experimental outcomes at later stages. We also describe the triggers that are widely used to manipulate signaling through the environment sensing pathways.
Collapse
Affiliation(s)
- Janni Petersen
- Flinders University, Flinders Centre for Innovation in Cancer, School of Medicine, FMST, Bedford Park, SA 5042, Adelaide Australia
| | - Paul Russell
- Department of Cell and Molecular Biology. The Scripps Research Institute 10550 N. Torrey Pines Road, MB3, La Jolla, CA 92037 – USA
| |
Collapse
|
50
|
Masuda F, Ishii M, Mori A, Uehara L, Yanagida M, Takeda K, Saitoh S. Glucose restriction induces transient G2 cell cycle arrest extending cellular chronological lifespan. Sci Rep 2016; 6:19629. [PMID: 26804466 PMCID: PMC4726166 DOI: 10.1038/srep19629] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/16/2015] [Indexed: 01/15/2023] Open
Abstract
While glucose is the fundamental source of energy in most eukaryotes, it is not always abundantly available in natural environments, including within the human body. Eukaryotic cells are therefore thought to possess adaptive mechanisms to survive glucose-limited conditions, which remain unclear. Here, we report a novel mechanism regulating cell cycle progression in response to abrupt changes in extracellular glucose concentration. Upon reduction of glucose in the medium, wild-type fission yeast cells undergo transient arrest specifically at G2 phase. This cell cycle arrest is dependent on the Wee1 tyrosine kinase inhibiting the key cell cycle regulator, CDK1/Cdc2. Mutant cells lacking Wee1 are not arrested at G2 upon glucose limitation and lose viability faster than the wild-type cells under glucose-depleted quiescent conditions, suggesting that this cell cycle arrest is required for extension of chronological lifespan. Our findings indicate the presence of a novel cell cycle checkpoint monitoring glucose availability, which may be a good molecular target for cancer therapy.
Collapse
Affiliation(s)
- Fumie Masuda
- Institute of Life Science, Kurume University, Hyakunen-Khoen 1-1, Kurume, Fukuoka 839-0864, Japan
| | - Mahiro Ishii
- Department of Biology, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan
| | - Ayaka Mori
- Okinawa Institute of Science and Technology Graduate School, Tancha 1919-1, Onna, Okinawa 904-0495, Japan
| | - Lisa Uehara
- Okinawa Institute of Science and Technology Graduate School, Tancha 1919-1, Onna, Okinawa 904-0495, Japan
| | - Mitsuhiro Yanagida
- Okinawa Institute of Science and Technology Graduate School, Tancha 1919-1, Onna, Okinawa 904-0495, Japan
| | - Kojiro Takeda
- Department of Biology, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan.,Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan
| | - Shigeaki Saitoh
- Institute of Life Science, Kurume University, Hyakunen-Khoen 1-1, Kurume, Fukuoka 839-0864, Japan
| |
Collapse
|