1
|
Waizumi T, Sakuta H, Hayashi M, Tsumoto K, Takiguchi K, Yoshikawa K. Polymerization/depolymerization of actin cooperates with the morphology and stability of cell-sized droplets generated in a polymer solution under a depletion effect. J Chem Phys 2021; 155:075101. [PMID: 34418942 DOI: 10.1063/5.0055460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Intercellular fluids in living organisms contain high concentrations of macromolecules such as nucleic acid and protein. Over the past few decades, several studies have examined membraneless organelles in terms of liquid-liquid phase separation. These studies have investigated aggregation/attraction among a rich variety of biomolecules. Here, we studied the association between the polymerization/depolymerization of actin, interconversion between monomeric (G-actin) and filamentous states (F-actin), and water/water phase separation in a binary polymer solution using polyethylene glycol (PEG) and dextran (DEX). We found that actin, which is a representative cytoskeleton, changes its distribution in a PEG/DEX binary solution depending on its polymerization state: monomeric G-actin is distributed homogeneously throughout the solution, whereas polymerized F-actin is localized only within the DEX-rich phase. We extended our study by using fragmin, which is a representative actin-severing and -depolymerizing factor. It took hours to restore a homogeneous actin distribution from localization within the DEX-rich phase, even with the addition of fragmin in an amount that causes complete depolymerization. In contrast, when actin that had been depolymerized by fragmin in advance was added to a solution with microphase-separation, F-actin was found in DEX-rich phase droplets. The micro-droplets tended to deform into a non-spherical morphology under conditions where they contained F-actin. These findings suggest that microphase-separation is associated with the dynamics of polymerization and localization of the actin cytoskeleton. We discuss our observations by taking into consideration the polymer depletion effect.
Collapse
Affiliation(s)
- Tatsuyuki Waizumi
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hiroki Sakuta
- Faculty of Life and Medical Sciences, Doshisha University, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Masahito Hayashi
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Kanta Tsumoto
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, Kurimamachiya-cho 1577, Tsu, Mie 514-8507, Japan
| | - Kingo Takiguchi
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| |
Collapse
|
2
|
He PH, Dong WX, Chu XL, Feng MG, Ying SH. The cellular proteome is affected by a gelsolin (BbGEL1
) during morphological transitions in aerobic surface versus liquid growth in the entomopathogenic fungus Beauveria bassiana. Environ Microbiol 2016; 18:4153-4169. [DOI: 10.1111/1462-2920.13500] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/23/2016] [Accepted: 08/13/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Pu-Hong He
- College of Life Sciences; Institute of Microbiology, Zhejiang University; Hangzhou 310058 China
| | - Wei-Xia Dong
- College of Life Sciences; Institute of Microbiology, Zhejiang University; Hangzhou 310058 China
| | - Xin-Ling Chu
- College of Life Sciences; Institute of Microbiology, Zhejiang University; Hangzhou 310058 China
| | - Ming-Guang Feng
- College of Life Sciences; Institute of Microbiology, Zhejiang University; Hangzhou 310058 China
| | - Sheng-Hua Ying
- College of Life Sciences; Institute of Microbiology, Zhejiang University; Hangzhou 310058 China
| |
Collapse
|
3
|
Isoforms of gelsolin from lobster striated muscles differ in Calcium-dependence. Arch Biochem Biophys 2013; 536:38-45. [DOI: 10.1016/j.abb.2013.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 05/07/2013] [Accepted: 05/10/2013] [Indexed: 11/30/2022]
|
4
|
Bou Daher F, Geitmann A. Actin is Involved in Pollen Tube Tropism Through Redefining the Spatial Targeting of Secretory Vesicles. Traffic 2011; 12:1537-51. [DOI: 10.1111/j.1600-0854.2011.01256.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Ueda KI, Takagi S, Nishiura Y, Nakagaki T. Mathematical model for contemplative amoeboid locomotion. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:021916. [PMID: 21405872 DOI: 10.1103/physreve.83.021916] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 11/09/2010] [Indexed: 05/30/2023]
Abstract
It has recently been reported that even single-celled organisms appear to be "indecisive" or "contemplative" when confronted with an obstacle. When the amoeboid organism Physarum plasmodium encounters the chemical repellent quinine during migration along a narrow agar lane, it stops for a period of time (typically several hours) and then suddenly begins to move again. When movement resumes, three distinct types of behavior are observed: The plasmodium continues forward, turns back, or migrates in both directions simultaneously. Here, we develop a continuum mathematical model of the cell dynamics of contemplative amoeboid movement. Our model incorporates the dynamics of the mass flow of the protoplasmic sol, in relation to the generation of pressure based on the autocatalytic kinetics of pseudopod formation and retraction (mainly, sol-gel conversion accompanying actin-myosin dynamics). The biological justification of the model is tested by comparing with experimentally measured spatiotemporal profiles of the cell thickness. The experimentally observed types of behavior are reproduced in simulations based on our model, and the core logic of the modeled behavior is clarified by means of nonlinear dynamics. An on-off transition between the refractory and activated states of the chemical reactivity that takes place at the leading edge of the plasmodium plays a key role in the emergence of contemplative behavior.
Collapse
Affiliation(s)
- Kei-Ichi Ueda
- Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
6
|
Ren H, Xiang Y. The function of actin-binding proteins in pollen tube growth. PROTOPLASMA 2007; 230:171-82. [PMID: 17458632 DOI: 10.1007/s00709-006-0231-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 03/29/2006] [Indexed: 05/03/2023]
Abstract
Pollen tube growth is a key step in sexual reproduction of higher plants. The pollen tube is a typical example of tip-growing cells and shows a polarized cytoplasm. To develop and maintain polarized growth, pollen tubes need a carefully regulated actin cytoskeleton. It is well known that actin-binding proteins are responsible for the direct control of dynamic actin filaments and serve as a link between signal transduction pathways and dynamic actin changes in determining cellular architecture. Several of these classes have been identified in pollen tubes and their detailed characterisation is progressing rapidly. Here, we aim to survey what is known about the major actin-binding proteins that affect actin assembly and dynamics, and their higher-order organisation in pollen tube growth.
Collapse
Affiliation(s)
- Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Science, Beijing Normal University, Beijing, People's Republic of China.
| | | |
Collapse
|
7
|
Shirai Y, Sasaki N, Kishi Y, Izumi A, Itoh K, Sameshima M, Kobayashi T, Murakami-Murofushi K. Regulation of levels of actin threonine phosphorylation during life cycle of Physarum polycephalum. ACTA ACUST UNITED AC 2006; 63:77-87. [PMID: 16374832 DOI: 10.1002/cm.20110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Under various environmental stresses, the true slime mold Physarum polycephalum converts into dormant forms, such as microcysts, sclerotia, and spores, which can survive in adverse environments for a considerable period of time. In drought-induced sclerotia, actin is threonine phosphorylated, which blocks its ability to polymerize into filaments. It is known that fragmin and actin-fragmin kinase (AFK) mediate this phosphorylation event. In this work, we demonstrate that high levels of actin threonine phosphorylation are also found in other dormant cells, including microcysts and spores. As the threonine phosphorylation of actin in microcysts and sclerotia were induced by drought stress but not by other stresses, we suggest that drought stress is essential for actin phosphorylation in both cell types. Although characteristic filamentous actin structures (dot- or rod-like structures) were observed in microcysts, sclerotia, and spores, actin phosphorylation was not required for the formation of these structures. Prior to the formation of both microcysts and sclerotia, AFK mRNA expression was activated transiently, whereas fragmin mRNA levels decreased. Our results suggest that drought stress and AFK might be involved in the threonine phosphorylation of actin.
Collapse
Affiliation(s)
- Yuki Shirai
- Department of Biology, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Canton DA, Litchfield DW. The shape of things to come: an emerging role for protein kinase CK2 in the regulation of cell morphology and the cytoskeleton. Cell Signal 2005; 18:267-75. [PMID: 16126370 DOI: 10.1016/j.cellsig.2005.07.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 07/04/2005] [Accepted: 07/18/2005] [Indexed: 01/24/2023]
Abstract
Protein kinase CK2 is a highly conserved, pleiotropic, protein serine/threonine kinase that is essential for life in eukaryotes. CK2 has been implicated in diverse cellular processes such as cell cycle regulation, circadian rhythms, apoptosis, transformation and tumorigenesis. In addition, there is increasing evidence that CK2 is involved in the maintenance of cell morphology and cell polarity, and in the regulation of the actin and tubulin cytoskeletons. Accordingly, this review will highlight published evidence in experimental models ranging from yeast to mammals documenting the emerging roles of protein kinase CK2 in the regulation of cell polarity, cell morphology and the cytoskeleton.
Collapse
Affiliation(s)
- David A Canton
- Regulatory Biology and Functional Genomics Group, Siebens-Drake Medical Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | |
Collapse
|
9
|
Marwan W. Detecting functional interactions in a gene and signaling network by time-resolved somatic complementation analysis. Bioessays 2003; 25:950-60. [PMID: 14505362 DOI: 10.1002/bies.10342] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Somatic complementation by fusion of two mutant cells and mixing of their cytoplasms occurs when the genetic defect of one fusion partner is cured by the functional gene product provided by the other. We have found that complementation of mutational defects in the network mediating stimulus-induced commitment and sporulation of Physarum polycephalum may reflect time-dependent changes in the signaling state of its molecular building blocks. Network perturbation by fusion of mutant plasmodial cells in different states of activation, and the time-resolved analysis of somatic complementation effects can be used to systematically probe network structure and dynamics. Time-resolved somatic complementation quantitatively detects regulatory interactions between the functional modules of a network, independent of their biochemical composition or subcellular localization, and without being limited to direct physical interactions.
Collapse
Affiliation(s)
- Wolfgang Marwan
- Institut für Biologie III, Albert-Ludwigs-Universität, Schänzlestrasse 1, 79104 Freiburg im Breisgau, Germany.
| |
Collapse
|
10
|
Van Impe K, De Corte V, Eichinger L, Bruyneel E, Mareel M, Vandekerckhove J, Gettemans J. The Nucleo-cytoplasmic actin-binding protein CapG lacks a nuclear export sequence present in structurally related proteins. J Biol Chem 2003; 278:17945-52. [PMID: 12637565 DOI: 10.1074/jbc.m209946200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite thorough structure-function analyses, it remains unclear how CapG, a ubiquitous F-actin barbed end capping protein that controls actin microfilament turnover in cells, is able to reside in the nucleus and cytoplasm, whereas structurally related actin-binding proteins are predominantly cytoplasmic. Here we report the molecular basis for the different subcellular localization of CapG, severin, and fragminP. Green fluorescent protein-tagged fragminP and severin accumulate in the nucleus upon treatment of transfected cells with the CRM1 inhibitor leptomycin B. We identified a nuclear export sequence in severin and fragminP, which is absent in CapG. Deletion of amino acids Met(1)-Leu(27) resulted in nuclear accumulation of severin and fragminP. Tagging this sequence to CapG triggered nuclear export, whereas mutation of single leucine residues (Leu(17), Leu(21), and Leu(27)) in the export sequence inhibited nuclear export. Based on these findings, a nuclear export signal was identified in myopodin, a muscle-specific actin-binding protein, and the Bloom syndrome protein, a RecQ-like helicase. Deletion of the myopodin nuclear export sequence blocked invasion into collagen type I of C2C12 cells transiently overexpressing myopodin. Our findings explain regulated subcellular targeting of distinct classes of actin-binding proteins.
Collapse
Affiliation(s)
- Katrien Van Impe
- Department of Biochemistry, Flanders Interuniversity Institute for Biotechnology, Faculty of Medicine and Health Sciences, Ghent University, Rommelaere Institute, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
11
|
Sklyarova T, De Corte V, Meerschaert K, Devriendt L, Vanloo B, Bailey J, Cook LJ, Goethals M, Van Damme J, Puype M, Vandekerckhove J, Gettemans J. Fragmin60 encodes an actin-binding protein with a C2 domain and controls actin Thr-203 phosphorylation in Physarum plasmodia and sclerotia. J Biol Chem 2002; 277:39840-9. [PMID: 12167630 DOI: 10.1074/jbc.m207052200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the isolation of a cDNA clone encoding a 60-kDa protein termed fragmin60 that cross-reacts with fragmin antibodies. Unlike other gelsolin-related proteins, fragmin60 contains a unique N-terminal domain that shows similarity with C2 domains of aczonin, protein kinase C, and synaptotagmins. The fragmin60 C2 domain binds three calcium ions, one with nanomolar affinity and two with micromolar affinity. Actin binding by fragmin60 requires higher calcium concentrations than does binding of actin by a fragmin60 mutant lacking the C2 domain, suggesting that the C2 domain secures the actin binding moiety in a conformation preventing actin binding at low calcium concentrations. The fragmin60 C2 domain does not bind phospholipids but interacts with the endogenous homologue of Saccharomyces cerevisiae S-phase kinase-associated protein (Skp1), as shown by pull-down assays and co-expression in mammalian cells. Recombinant fragmin60 promotes in vitro phosphorylation of actin Thr-203 by the actin-fragmin kinase. We further show that in vivo phosphorylation of actin in the fragmin60-actin complex occurs in sclerotia, a dormant stage of Physarum development, as well as in plasmodia. Our findings indicate that we have cloned a novel type of gelsolin-related actin-binding protein that is involved in controlling regulation of actin phosphorylation in vivo.
Collapse
Affiliation(s)
- Tatyana Sklyarova
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Rommelaere Institute, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
T'Jampens D, Devriendt L, De Corte V, Vandekerckhove J, Gettemans J. Selected BTB/POZ-kelch proteins bind ATP. FEBS Lett 2002; 516:20-6. [PMID: 11959095 DOI: 10.1016/s0014-5793(02)02456-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Proteins with a bric-à-brac, tramtrack, broad-complex/Poxvirus zinc fingers (BTB/POZ) domain are implicated in a broad variety of biological processes, including DNA binding, regulation of gene transcription and organization of macromolecular structures. Kelch domain containing BTB/POZ proteins like Mayven and Keap1 display limited sequence similarity with the actin-fragmin kinase from Physarum, a protein kinase with a kelch domain. We show that mouse Keap1, a Caenorhabditis elegans protein that we named CKR, and human Mayven bind 5'-p-fluorosulfonyl-benzoyl-adenosine (FSBA), a covalently modifying ATP analogue. Binding with 2-azido-ATP or ATP-Sepharose is also demonstrated. In contrast to Mayven, FSBA binding by CKR and Keap1 was specifically inhibited by excess ATP. The ATP binding pocket is located in the N-terminal half of Keap1. Our findings indicate that several, but not all, BTB/POZ-kelch domain proteins possess an inconspicuous ATP binding cassette.
Collapse
Affiliation(s)
- Davy T'Jampens
- Flanders Interuniversity Institute for Biotechnology (V.I.B.), Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Baertsoenkaai 3, B-9000, Ghent, Belgium
| | | | | | | | | |
Collapse
|
13
|
Kawamoto S, Suzuki T, Aki T, Katsutani T, Tsuboi S, Shigeta S, Ono K. Der f 16: a novel gelsolin-related molecule identified as an allergen from the house dust mite, Dermatophagoides farinae. FEBS Lett 2002; 516:234-8. [PMID: 11959139 DOI: 10.1016/s0014-5793(02)02540-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Allergen from the house dust mite (Dermatophagoides sp.) is a major trigger factor of allergic disorders, and its characterization is crucial for the development of specific diagnosis or immunotherapy. Here we report the identification of a novel dust mite (Dermatophagoides farinae) antigen whose primary structure belongs to the gelsolin family, a group of actin cytoskeleton-regulatory proteins. Isolated mite cDNA, termed Der f 16, encodes 480 amino acids comprising a four-repeated gelsolin-like segmental structure, which is not seen in conventional gelsolin family members. Enzyme immunoassay indicated that recombinant Der f 16 protein, prepared using an Escherichia coli expression system, bound IgE from mite-allergic patients at 47% (8/17) frequency. This is the first evidence that the gelsolin family represents a new class of allergen recognizable by atopic patient IgE.
Collapse
Affiliation(s)
- Seiji Kawamoto
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, 739-8530, Higashi-Hiroshima, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Cortez-Herrera E, Yamamoto RR, Rodrigues JJ, Farias SE, Ferreira HB, Zaha A. Echinococcus granulosus: Cloning and Functional in Vitro Characterization of an Actin Filament Fragmenting Protein. Exp Parasitol 2001; 97:215-25. [PMID: 11384165 DOI: 10.1006/expr.2001.4605] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the isolation and characterization of an Echinococcus granulosus gene that codes for a protein with actin filament fragmenting and nucleating activities (EgAFFP). The genomic region corresponding to the EgAFFP gene presents a coding sequence of 1110 bp that is interrupted by eight introns. The EgAFFP deduced amino acid sequence is about 40% homologous to those of several members of the gelsolin family, such as Physarum polycephalum fragmin, Dictyostelium discoideum severin, and Lumbricus terrestris actin modulator. As do other proteins of the same family, EgAFFP presents three repeated domains, each one characterized by internal conserved amino acid motifs. Assays with fluorescence-labeled actin showed that the full-length recombinant EgAFFP effectively binds actin monomers in both a calcium-dependent and calcium-independent manner and also presents actin nucleating and severing activities.
Collapse
|
15
|
Waelkens E, de Corte V, Merlevede W, Vandekerckhove J, Gettemans J. A novel endogenous PP2C-like phosphatase dephosphorylates casein kinase II-phosphorylated Physarum fragmin. Biochem Biophys Res Commun 2000; 279:438-44. [PMID: 11118305 DOI: 10.1006/bbrc.2000.3990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plasmodial fragmin, a Physarum polycephalum F-actin severing and capping protein, is phosphorylated by casein kinase II at Ser(266) (De Corte, V., Gettemans, J., De Ville, Y., Waelkens, E., and Vandekerckchove, J. (1996), Biochemistry 35, 5472-5480). In this study, we report the purification and characterization of the corresponding fragmin phosphatases. One of the enzymes was purified to near homogeneity from a cytosolic extract; it dephosphorylates CKII-phosphorylated fragmin, a peptide encompassing the CKII phosphorylation site of fragmin as well as histone 2A, CKII-phosphorylated casein and the CKII model-peptide substrate: R(3)E(3)S(P)E(3). Its activity was highly stimulated by Mn(2+) and Mg(2+), and based on its lack of sensitivity toward phosphatase effectors we could exclude similarities with PP1, PP2A and PP2B phosphatases. All biochemical properties of the phosphatase point to a PP2C-like enzyme. A second phosphatase dephosphorylating fragmin was identified as a Physarum alkaline phosphatase.
Collapse
Affiliation(s)
- E Waelkens
- Division of Biochemistry, Katholieke Universiteit Leuven, Leuven, B-3000, Belgium
| | | | | | | | | |
Collapse
|
16
|
T'jampens D, Bailey J, Cook LJ, Constantin B, Vandekerckhove J, Gettemans J. Physarum amoebae express a distinct fragmin-like actin-binding protein that controls in vitro phosphorylation of actin by the actin-fragmin kinase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:240-50. [PMID: 10491179 DOI: 10.1046/j.1432-1327.1999.00721.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Amoebae and plasmodia constitute the two vegetative growth phases of the Myxomycete Physarum. In vitro and in vivo phosphorylation of actin in plasmodia is tightly controlled by fragmin P, a plasmodium-specific actin-binding protein that enables actin phosphorylation by the actin-fragmin kinase. We investigated whether amoebal actin is phosphorylated by this kinase, in spite of the lack of fragmin P. Strong actin phosphorylation was detected only following addition of recombinant actin-fragmin kinase to cell-free extracts of amoebae, suggesting that amoebae contain a protein with properties similar to plasmodial fragmin. We purified the complex between actin and this protein to homogeneity. Using an antibody that specifically recognizes phosphorylated actin, we demonstrate that Thr203 in actin can be phosphorylated in this complex. A full-length amoebal fragmin cDNA was cloned and the deduced amino acid sequence shows 65% identity with plasmodial fragmin. However, the fragmins are encoded by different genes. Northern blots using RNA from a developing Physarum strain demonstrate that this fragmin isoform (fragmin A) is not expressed in plasmodia. In situ localization showed that fragmin A is present mainly underneath the plasma membrane. Our results indicate that Physarum amoebae express a fragmin P-like isoform which shares the property of binding actin and converting the latter into a substrate for the actin-fragmin kinase.
Collapse
Affiliation(s)
- D T'jampens
- Flanders Interuniversity Institute for Biotechnology (VIB), Department of Medical Protein Research, Faculty of Medicine, University of Gent, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- A L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-0446, USA
| | | | | |
Collapse
|
18
|
Robbens J, Louahed J, De Pestel K, Van Colen I, Ampe C, Vandekerckhove J, Renauld JC. Murine adseverin (D5), a novel member of the gelsolin family, and murine adseverin are induced by interleukin-9 in T-helper lymphocytes. Mol Cell Biol 1998; 18:4589-96. [PMID: 9671468 PMCID: PMC109044 DOI: 10.1128/mcb.18.8.4589] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We identified a number of upregulated genes by differential screening of interleukin-9-stimulated T-helper lymphocytes. Interestingly, two of these messengers encode proteins that are similar to proteins of the gelsolin family. The first displays a typical structure of six homologous domains and shows a high level of identity (90%) with bovine adseverin (or scinderin) and may therefore be considered the murine adseverin homolog. The second encodes a protein with only five segments. Sequence comparison shows that most of the fifth segment and a short amino-terminal part of the sixth segment (amino acids 528 to 628 of adseverin) are missing, and thus, this form may represent an alternatively spliced product derived from the same gene. The corresponding protein is called mouse adseverin (D5). We expressed both proteins in Escherichia coli and show that mouse adseverin displays the typical characteristics of all members of the gelsolin family with respect to actin binding (capping, severing, and nucleation) and its regulation by Ca2+. In contrast, mouse adseverin (D5) fails to nucleate actin polymerization, although like mouse adseverin and gelsolin, it severs and caps actin filaments in a Ca2+-dependent manner. Adseverin is present in all of the tissues and most of the cell lines tested, although at low concentrations. Mouse adseverin (D5) was found only in blood cells and in cell lines derived from T-helper lymphocytes and mast cells, where it is weakly expressed. In a gel filtration experiment, we demonstrated that mouse adseverin forms a 1:2 complex with G actin which is stable only in the presence of Ca2+, while no stable complex was observed for mouse adseverin (D5).
Collapse
Affiliation(s)
- J Robbens
- V.I.B., Flanders Interuniversity Institute for Biotechnology and Department of Biochemistry, Faculty of Medicine, Universiteit Gent, B-9000 Gent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
19
|
Decout A, Labeur C, Goethals M, Brasseur R, Vandekerckhove J, Rosseneu M. Enhanced efficiency of a targeted fusogenic peptide. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1372:102-16. [PMID: 9651495 DOI: 10.1016/s0005-2736(98)00050-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Membrane targeting was investigated as a potential strategy to increase the fusogenic activity of an isolated fusion peptide. This was achieved by coupling the fusogenic carboxy-terminal part of the beta-amyloid peptide (Abeta, amino acids 29-40), involved in Alzheimer's disease, to a positively charged peptide (PIP2-binding peptide, PBP) interacting specifically with a naturally occurring negatively charged phospholipid, phosphatidylinositol 4, 5-bisphosphate (PIP2). Peptide-induced vesicle fusion was spectroscopically evidenced by: (i) mixing of membrane lipids, (ii) mixing of aqueous vesicular contents, and (iii) an irreversible increase in vesicle size, at concentrations five to six times lower than the Abeta(29-40) peptide. In contrast, at these concentrations the PBP-Abeta(29-40) peptide did not display any significant activity on neutral vesicles, indicating that negatively charged phospholipids included as targets in the membranes, are required to compensate for the lower hydrophobicity of this peptide. When the alpha-helical structure of the chimeric peptide was induced by dissolving it in trifluoroethanol, an increase of the fusogenic potential of the peptide was observed, supporting the hypothesis that the alpha-helical conformation of the peptide is crucial to trigger the lipid-peptide interaction. The specificity of the interaction between PIP2 and the PBP moiety, was shown by the less efficient targeting of the chimeric peptide to membranes charged with phosphatidylserine. These data thus demonstrate that the specific properties of both the Abeta(29-40) and the PBP peptide are conserved in the chimeric peptide, and that a synergetic effect is reached through chemical linkage of these two fragments.
Collapse
Affiliation(s)
- A Decout
- Laboratory for Lipoprotein Chemistry, Department of Biochemistry, Universiteit Gent, B-9000 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
20
|
Constantin B, Meerschaert K, Vandekerckhove J, Gettemans J. Disruption of the actin cytoskeleton of mammalian cells by the capping complex actin-fragmin is inhibited by actin phosphorylation and regulated by Ca2+ ions. J Cell Sci 1998; 111 ( Pt 12):1695-706. [PMID: 9601099 DOI: 10.1242/jcs.111.12.1695] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Fragmin from Physarum polycephalum is a gelsolin-like actin-binding protein and interferes with the growth of actin filaments in vitro by severing actin filaments and capping their barbed ends through formation of an actin-fragmin dimer in a Ca2+-dependent manner. The actin-fragmin dimer is phosphorylated in vivo and in vitro on the actin subunit by the actin-fragmin kinase. We have studied the properties of these capping proteins and their regulation by actin phosphorylation and Ca2+ ions in living PtK2, CV1 and NIH3T3 cultured cells by microinjection or by expression in conjunction with immunostaining and fluorescence microscopy. Microinjection of the actin-fragmin dimer disintegrated the actin cytoskeleton and altered cell morphology. This in vivo effect could be blocked by phosphorylation of the actin subunit by the actin-fragmin kinase in low Ca2+ conditions, and the capping activity could be recovered by high Ca2+ concentration, probably through activation of the second actin-binding site in fragmin. This suggests that in Physarum microplasmodia, actin polymerization can be controlled in a Ca2+-dependent manner through the phosphorylation of actin. Microinjected or overexpressed recombinant fragmin did not affect the actin-based cytoskeleton or cell morphology of resting cells, unless the cytosolic free Ca2+ concentration was increased by microinjection of a Ca2+-containing buffer. The cells were able to revert to their normal phenotype which indicates that endogenous regulatory mechanisms counteracted fragmin activity, probably by uncapping fragmin from the barbed ends of filaments. Fragmin also antagonized formation of stress fibers induced by lysophosphatidic acid. Our findings demonstrate that the interactions between actin and fragmin are tightly regulated by the cytosolic Ca2+ concentration and this provides a basis for a more general mechanism in higher organisms to regulate microfilament organization.
Collapse
Affiliation(s)
- B Constantin
- Flanders Interuniversity Institute for Biotechnology (V.I.B.) and Department of Biochemistry, Faculty of Medicine, Universiteit Gent, Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | |
Collapse
|
21
|
Bailey J. Building a plasmodium: Development in the acellular slime mouldPhysarum polycephalum. Bioessays 1997. [DOI: 10.1002/bies.950191108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|