1
|
Zhang J, Wu J, Liu L, Li J. The Crucial Role of Demannosylating Asparagine-Linked Glycans in ERADicating Misfolded Glycoproteins in the Endoplasmic Reticulum. FRONTIERS IN PLANT SCIENCE 2020; 11:625033. [PMID: 33510762 PMCID: PMC7835635 DOI: 10.3389/fpls.2020.625033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/08/2020] [Indexed: 05/04/2023]
Abstract
Most membrane and secreted proteins are glycosylated on certain asparagine (N) residues in the endoplasmic reticulum (ER), which is crucial for their correct folding and function. Protein folding is a fundamentally inefficient and error-prone process that can be easily interfered by genetic mutations, stochastic cellular events, and environmental stresses. Because misfolded proteins not only lead to functional deficiency but also produce gain-of-function cellular toxicity, eukaryotic organisms have evolved highly conserved ER-mediated protein quality control (ERQC) mechanisms to monitor protein folding, retain and repair incompletely folded or misfolded proteins, or remove terminally misfolded proteins via a unique ER-associated degradation (ERAD) mechanism. A crucial event that terminates futile refolding attempts of a misfolded glycoprotein and diverts it into the ERAD pathway is executed by removal of certain terminal α1,2-mannose (Man) residues of their N-glycans. Earlier studies were centered around an ER-type α1,2-mannosidase that specifically cleaves the terminal α1,2Man residue from the B-branch of the three-branched N-linked Man9GlcNAc2 (GlcNAc for N-acetylglucosamine) glycan, but recent investigations revealed that the signal that marks a terminally misfolded glycoprotein for ERAD is an N-glycan with an exposed α1,6Man residue generated by members of a unique folding-sensitive α1,2-mannosidase family known as ER-degradation enhancing α-mannosidase-like proteins (EDEMs). This review provides a historical recount of major discoveries that led to our current understanding on the role of demannosylating N-glycans in sentencing irreparable misfolded glycoproteins into ERAD. It also discusses conserved and distinct features of the demannosylation processes of the ERAD systems of yeast, mammals, and plants.
Collapse
Affiliation(s)
- Jianjun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jiarui Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Jianming Li, ;
| |
Collapse
|
2
|
The effects of microcarrier culture on recombinant CHO cells under biphasic hypothermic culture conditions. Cytotechnology 2009; 59:81-91. [PMID: 19412658 DOI: 10.1007/s10616-009-9196-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 04/20/2009] [Indexed: 10/20/2022] Open
Abstract
A Chinese hamster ovary (CHO) cell line, producing recombinant secreted human placental alkaline phosphatase (SEAP) was investigated under three different culture conditions (suspension cells, cells attached to Cytodex 3 and Cytopore 1 microcarriers) in a biphasic culture mode using a temperature shift to mild hypothermic conditions (33 degrees C) in a fed-batch bioreactor. The cell viability in both the suspension and the Cytodex 3 cultures was maintained for significantly longer periods under hypothermic conditions than in the single-temperature cultures, leading to higher integrated viable cell densities. For all culture conditions, the specific productivity of SEAP increased after the temperature reduction; the specific productivities of the microcarrier cultures increased approximately threefold while the specific productivity of the suspension culture increased nearly eightfold. The glucose and glutamine consumption rates and lactate and ammonia production rates were significantly lowered after the temperature reduction, as were the yields of lactate from glucose. However, the yield of ammonia from glutamine increased in response to the temperature shift.
Collapse
|
3
|
Wang X, Rao RP, Kosakowska-Cholody T, Masood MA, Southon E, Zhang H, Berthet C, Nagashim K, Veenstra TK, Tessarollo L, Acharya U, Acharya JK. Mitochondrial degeneration and not apoptosis is the primary cause of embryonic lethality in ceramide transfer protein mutant mice. ACTA ACUST UNITED AC 2009; 184:143-58. [PMID: 19139267 PMCID: PMC2615084 DOI: 10.1083/jcb.200807176] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ceramide transfer protein (CERT) functions in the transfer of ceramide from the endoplasmic reticulum (ER) to the Golgi. In this study, we show that CERT is an essential gene for mouse development and embryonic survival and, quite strikingly, is critical for mitochondrial integrity. CERT mutant embryos accumulate ceramide in the ER but also mislocalize ceramide to the mitochondria, compromising their function. Cells in mutant embryos show abnormal dilation of the ER and degenerating mitochondria. These subcellular changes manifest as heart defects and cause severely compromised cardiac function and embryonic death around embryonic day 11.5. In spite of ceramide accumulation, CERT mutant mice do not die as a result of enhanced apoptosis. Instead, cell proliferation is impaired, and expression levels of cell cycle–associated proteins are altered. Individual cells survive, perhaps because cell survival mechanisms are activated. Thus, global compromise of ER and mitochondrial integrity caused by ceramide accumulation in CERT mutant mice primarily affects organogenesis rather than causing cell death via apoptotic pathways.
Collapse
Affiliation(s)
- Xin Wang
- Laboratory of Cell and Developmental Signaling, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Nam JH, Ermonval M, Sharfstein ST. Cell Attachment to Microcarriers Affects Growth, Metabolic Activity, and Culture Productivity in Bioreactor Culture. Biotechnol Prog 2008; 23:652-60. [PMID: 17500530 DOI: 10.1021/bp070007l] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is not well understood how changes from suspension to microcarrier cultures affect cell growth, metabolism, and yield of recombinant proteins. To investigate the effects of culture conditions on cell characteristics, fed-batch bioreactor cultures were performed under different culture conditions (suspension cultures, cultures attached to Cytodex 3 and Cytopore 1 microcarriers) using two different Chinese hamster ovary cell lines producing either secreted human placental alkaline phosphatase (TR2-255) or tissue plasminogen activator (CHO 1-15-500). In controlled, agitated bioreactors, suspension cultures reached cell densities and product titers higher than those in microcarrier cultures, in contrast to the results in static flask cultures. Growth and metabolic activities showed similar trends in suspension and microcarrier culture regardless of cell line. However, the responses of the specific productivities to the different culture conditions differed significantly between the cell lines.
Collapse
Affiliation(s)
- Jong Hyun Nam
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | |
Collapse
|
5
|
Nam JH, Zhang F, Ermonval M, Linhardt RJ, Sharfstein ST. The effects of culture conditions on the glycosylation of secreted human placental alkaline phosphatase produced in Chinese hamster ovary cells. Biotechnol Bioeng 2008; 100:1178-92. [PMID: 18553404 PMCID: PMC2646593 DOI: 10.1002/bit.21853] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effects of different culture conditions, suspension and microcarrier culture and temperature reduction on the structures of N-linked glycans attached to secreted human placental alkaline phosphatase (SEAP) were investigated for CHO cells grown in a controlled bioreactor. Both mass spectrometry and anion-exchange chromatography were used to probe the N-linked glycan structures and distribution. Complex-type glycans were the dominant structures with small amounts of high mannose glycans observed in suspension and reduced temperature cultures. Biantennary glycans were the most common structures detected by mass spectrometry, but triantennary and tetraantennary forms were also detected. The amount of sialic acid present was relatively low, approximately 0.4 mol sialic acid/mol SEAP for suspension cultures. Microcarrier cultures exhibited a decrease in productivity compared with suspension culture due to a decrease in both maximum viable cell density (15-20%) and specific productivity (30-50%). In contrast, a biphasic suspension culture in which the temperature was reduced at the beginning of the stationary phase from 37 to 33 degrees C, showed a 7% increase in maximum viable cell density, a 62% increase in integrated viable cell density, and a 133% increase in specific productivity, leading to greater than threefold increase in total productivity. Both microcarrier and reduced temperature cultures showed increased sialylation and decreased fucosylation when compared to suspension culture. Our results highlight the importance of glycoform analysis after process modification as even subtle changes (e.g., changing from one microcarrier to another) may affect glycan distributions.
Collapse
Affiliation(s)
- Jong Hyun Nam
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | | | |
Collapse
|
6
|
Henquet M, Lehle L, Schreuder M, Rouwendal G, Molthoff J, Helsper J, van der Krol S, Bosch D. Identification of the gene encoding the alpha1,3-mannosyltransferase (ALG3) in Arabidopsis and characterization of downstream n-glycan processing. THE PLANT CELL 2008; 20:1652-64. [PMID: 18567790 PMCID: PMC2483356 DOI: 10.1105/tpc.108.060731] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 05/28/2008] [Accepted: 06/05/2008] [Indexed: 05/18/2023]
Abstract
Glycosyltransferases are involved in the biosynthesis of lipid-linked N-glycans. Here, we identify and characterize a mannosyltransferase gene from Arabidopsis thaliana, which is the functional homolog of the ALG3 (Dol-P-Man:Man5GlcNAc2-PP-Dol alpha1,3-mannosyl transferase) gene in yeast. The At ALG3 protein can complement a Deltaalg3 yeast mutant and is localized to the endoplasmic reticulum in yeast and in plants. A homozygous T-DNA insertion mutant, alg3-2, was identified in Arabidopsis with residual levels of wild-type ALG3, derived from incidental splicing of the 11th intron carrying the T-DNAs. N-glycan analysis of alg3-2 and alg3-2 in the complex-glycan-less mutant background, which lacks N-acetylglucosaminyl-transferase I activity, reveals that when ALG3 activity is strongly reduced, almost all N-glycans transferred to proteins are aberrant, indicating that the Arabidopsis oligosaccharide transferase complex is remarkably substrate tolerant. In alg3-2 plants, the aberrant glycans on glycoproteins are recognized by endogenous mannosidase I and N-acetylglucosaminyltransferase I and efficiently processed into complex-type glycans. Although no high-mannose-type glycoproteins are detected in alg3-2 plants, these plants do not show a growth phenotype under normal growth conditions. However, the glycosylation abnormalities result in activation of marker genes diagnostic of the unfolded protein response.
Collapse
Affiliation(s)
- Maurice Henquet
- Laboratory of Plant Physiology, Wageningen University, 6703 BD Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Olivari S, Molinari M. Glycoprotein folding and the role of EDEM1, EDEM2 and EDEM3 in degradation of folding-defective glycoproteins. FEBS Lett 2007; 581:3658-64. [PMID: 17499246 DOI: 10.1016/j.febslet.2007.04.070] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 04/19/2007] [Indexed: 11/20/2022]
Abstract
Proteins synthesized in the endoplasmic reticulum (ER) lumen are exposed to several dedicated chaperones and folding factors that ensure efficient maturation. Nevertheless, protein folding remains error-prone and mutations in the polypeptide sequence may significantly reduce folding-efficiency. Folding-incompetent proteins carrying N-glycans are extracted from futile folding cycles in the calnexin chaperone system upon intervention of EDEM1, EDEM2 and EDEM3, three ER-stress-induced members of the glycosyl hydrolase 47 family. This review describes current knowledge about mechanisms regulating folding and disposal of glycoproteins.
Collapse
Affiliation(s)
- Silvia Olivari
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland.
| | | |
Collapse
|
8
|
Ashida H, Maeda Y, Kinoshita T. DPM1, the catalytic subunit of dolichol-phosphate mannose synthase, is tethered to and stabilized on the endoplasmic reticulum membrane by DPM3. J Biol Chem 2005; 281:896-904. [PMID: 16280320 DOI: 10.1074/jbc.m511311200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dolichol-phosphate mannose (DPM) synthase is required for synthesis of the glycosylphosphatidylinositol (GPI) anchor, N-glycan precursor, protein O-mannose, and C-mannose. We previously identified DPM3, the third component of this enzyme, which was co-purified with DPM1 and DPM2. Here, we have established mutant Chinese hamster ovary (CHO) 2.38 cells that were defective in DPM3. CHO2.38 cells were negative for GPI-anchored proteins, and microsomes from these cells showed no detectable DPM synthase activity, indicating that DPM3 is an essential component of this enzyme. A coiled-coil domain near the C terminus of DPM3 was important for tethering DPM1, the catalytic subunit of the enzyme, to the endoplasmic reticulum membrane and, therefore, was critical for enzyme activity. On the other hand, two transmembrane regions in the N-terminal portion of DPM3 showed no specific functions. DPM1 was rapidly degraded by the proteasome in the absence of DPM3. Free DPM1 was strongly associated with the C terminus of Hsc70-interacting protein (CHIP), a chaperone-dependent E3 ubiquitin ligase, suggesting that DPM1 is ubiquitinated, at least in part, by CHIP.
Collapse
Affiliation(s)
- Hisashi Ashida
- Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University, Japan
| | | | | |
Collapse
|
9
|
Duvet S, Op De Beeck A, Cocquerel L, Wychowski C, Cacan R, Dubuisson J. Glycosylation of the hepatitis C virus envelope protein E1 occurs posttranslationally in a mannosylphosphoryldolichol-deficient CHO mutant cell line. Glycobiology 2002; 12:95-101. [PMID: 11886842 DOI: 10.1093/glycob/12.2.95] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The addition of N-linked glycans to a protein is catalyzed by oligosaccharyltransferase, an enzyme closely associated with the translocon. N-glycans are believed to be transferred as the protein is being synthesized and cotranslationally translocated in the lumen of the endoplasmic reticulum. We used a mannosylphosphoryldolichol-deficient Chinese hamster ovary mutant cell line (B3F7 cells) to study the temporal regulation of N-linked core glycosylation of hepatitis C virus envelope protein E1. In this cell line, truncated Glc(3)Man(5)GlcNAc(2) oligosaccharides are transferred onto nascent proteins. Pulse-chase analyses of E1 expressed in B3F7 cells show that the N-glycosylation sites of E1 are slowly occupied until up to 1 h after protein translation is completed. This posttranslational glycosylation of E1 indicates that the oligosaccharyltransferase has access to this protein in the lumen of the endoplasmic reticulum for at least 1 h after translation is completed. Comparisons with the N-glycosylation of other proteins expressed in B3F7 cells indicate that the posttranslational glycosylation of E1 is likely due to specific folding features of this acceptor protein.
Collapse
Affiliation(s)
- Sandrine Duvet
- CNRS-UMR 8576/USTL, 59655 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | |
Collapse
|
10
|
Ermonval M, Kitzmüller C, Mir AM, Cacan R, Ivessa NE. N-glycan structure of a short-lived variant of ribophorin I expressed in the MadIA214 glycosylation-defective cell line reveals the role of a mannosidase that is not ER mannosidase I in the process of glycoprotein degradation. Glycobiology 2001; 11:565-76. [PMID: 11447136 DOI: 10.1093/glycob/11.7.565] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A soluble form of ribophorin I (RI(332)) is rapidly degraded in Hela and Chinese hamster ovary (CHO) cells by a cytosolic proteasomal pathway, and the N-linked glycan present on the protein may play an important role in this process. Specifically, it has been suggested that endoplasmic reticulum (ER) mannosidase I could trigger the targeting of improperly folded glycoproteins to degradation. We used a CHO-derived glycosylation-defective cell line, MadIA214, for investigating the role of mannosidase(s) as a signal for glycoprotein degradation. Glycoproteins in MadIA214 cells carry truncated Glc(1)Man(5)GlcNAc(2) N-glycans. This oligomannoside structure interferes with protein maturation and folding, leading to an alteration of the ER morphology and the detection of high levels of soluble oligomannoside species caused by glycoprotein degradation. An HA-epitope-tagged soluble variant of ribophorin I (RI(332)-3HA) expressed in MadIA214 cells was rapidly degraded, comparable to control cells with the complete Glc(3)Man(9)GlcNAc(2) N-glycan. ER-associated degradation (ERAD) of RI(332)-3HA was also proteasome-mediated in MadIA214 cells, as demonstrated by inhibition of RI(332)-3HA degradation with agents specifically blocking proteasomal activities. Two inhibitors of alpha1,2-mannosidase activity also stabilized RI(332)-3HA in the glycosylation-defective cell line. This is striking, because the major mannosidase activity in the ER is the one of mannosidase I, specific for a mannose alpha1,2-linkage that is absent from the truncated Man(5) structure. Interestingly, though the Man(5) derivative was present in large amounts in the total protein pool, the two major species linked to RI(332)-3HA shortly after synthesis consisted of Glc(1)Man(5 )and Man(4), being replaced by Man(4 )and Man(3) when proteasomal degradation was inhibited. In contrast, the untrimmed intermediate of RI(332)-3HA was detected in mutant cells treated with mannosidase inhibitors. Our results unambiguously demonstrate that an alpha1,2-mannosidase that is not ER mannosidase I is involved in ERAD of RI(332-)3HA in the glycosylation-defective cell line, MadIA214.
Collapse
Affiliation(s)
- M Ermonval
- URA CNRS 1960, Département d'Immunologie Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
11
|
Anand M, Rush JS, Ray S, Doucey MA, Weik J, Ware FE, Hofsteenge J, Waechter CJ, Lehrman MA. Requirement of the Lec35 gene for all known classes of monosaccharide-P-dolichol-dependent glycosyltransferase reactions in mammals. Mol Biol Cell 2001; 12:487-501. [PMID: 11179430 PMCID: PMC30958 DOI: 10.1091/mbc.12.2.487] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Lec35 gene product (Lec35p) is required for utilization of the mannose donor mannose-P-dolichol (MPD) in synthesis of both lipid-linked oligosaccharides (LLOs) and glycosylphosphatidylinositols, which are important for functions such as protein folding and membrane anchoring, respectively. The hamster Lec35 gene is shown to encode the previously identified cDNA SL15, which corrects the Lec35 mutant phenotype and predicts a novel endoplasmic reticulum membrane protein. The mutant hamster alleles Lec35.1 and Lec35.2 are characterized, and the human Lec35 gene (mannose-P-dolichol utilization defect 1) was mapped to 17p12-13. To determine whether Lec35p was required only for MPD-dependent mannosylation of LLO and glycosylphosphatidylinositol intermediates, two additional lipid-mediated reactions were investigated: MPD-dependent C-mannosylation of tryptophanyl residues, and glucose-P-dolichol (GPD)-dependent glucosylation of LLO. Both were found to require Lec35p. In addition, the SL15-encoded protein was selective for MPD compared with GPD, suggesting that an additional GPD-selective Lec35 gene product remains to be identified. The predicted amino acid sequence of Lec35p does not suggest an obvious function or mechanism. By testing the water-soluble MPD analog mannose-beta-1-P-citronellol in an in vitro system in which the MPD utilization defect was preserved by permeabilization with streptolysin-O, it was determined that Lec35p is not directly required for the enzymatic transfer of mannose from the donor to the acceptor substrate. These results show that Lec35p has an essential role for all known classes of monosaccharide-P-dolichol-dependent reactions in mammals. The in vitro data suggest that Lec35p controls an aspect of MPD orientation in the endoplasmic reticulum membrane that is crucial for its activity as a donor substrate.
Collapse
Affiliation(s)
- M Anand
- Department of Pharmacology, UT-Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kaufmann H, Mazur X, Marone R, Bailey JE, Fussenegger M. Comparative analysis of two controlled proliferation strategies regarding product quality, influence on tetracycline-regulated gene expression, and productivity. Biotechnol Bioeng 2001. [DOI: 10.1002/1097-0290(20010320)72:6<592::aid-bit1024>3.0.co;2-j] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Duvet S, Chirat F, Mir AM, Verbert A, Dubuisson J, Cacan R. Reciprocal relationship between alpha1,2 mannosidase processing and reglucosylation in the rough endoplasmic reticulum of Man-P-Dol deficient cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1146-52. [PMID: 10672024 DOI: 10.1046/j.1432-1327.2000.01111.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The study of the glycosylation pathway of a mannosylphosphoryldolichol-deficient CHO mutant cell line (B3F7) reveals that truncated Glc(0-3)Man5GlcNAc2 oligosaccharides are transferred onto nascent proteins. Pulse-chase experiments indicate that these newly synthesized glycoproteins are retained in intracellular compartments and converted to Man4GlcNAc2 species. In this paper, we demonstrate that the alpha1,2 mannosidase, which is involved in the processing of Man5GlcNAc2 into Man4GlcNAc2, is located in the rough endoplasmic reticulum. The enzyme was shown to be inhibited by kifunensine and deoxymannojirimycin, indicating that it is a class I mannosidase. In addition, Man4GlcNAc2 species were produced at the expense of Glc1Man5GlcNAc2 species. Thus, the trimming of Man5GlcNAc2 to Man4GlcNAc2, which is catalyzed by this mannosidase, could be involved in the control of the glucose-dependent folding pathway.
Collapse
Affiliation(s)
- S Duvet
- Laboratoire de Chimie Biologique, CNRS-UMR 8576, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | | | | | | | | | | |
Collapse
|
14
|
Cacan R, Verbert A. Free and N-linked oligomannosides as markers of the quality control of newly synthesized glycoproteins. Biochem Biophys Res Commun 1999; 258:1-5. [PMID: 10222224 DOI: 10.1006/bbrc.1999.0549] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It appears increasingly evident that the oligomannoside type N-glycans play important roles in the fate of newly synthesized glycoproteins in the rough endoplasmic reticulum. The variety of protein-bound oligomannoside isomers are involved in the quality control of glycoprotein, in their transport into the Golgi and probably as a degradation signal. A prerequisite of the degradation in the cytosol by the proteasome pathway is the release of the glycans as free oligomannosides. These oligomannosides are further processed in the cytosol into a peculiar isomer of Man5GlcNAc1 which enters into the lysosome to be further degraded into monosaccharides. In this review, we will illustrate how the different species of N-linked and free oligomannosides either are involved or are markers of the quality control and fate of newly synthesized glycoproteins.
Collapse
Affiliation(s)
- R Cacan
- Laboratoire de Chimie Biologique, UMR n degrees 111 du CNRS, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq Cedex, 59655, France
| | | |
Collapse
|
15
|
Kaiden A, Rosenwald AG, Cacan R, Verbert A, Krag SS. Transfer of two oligosaccharides to protein in a Chinese hamster ovary cell B211 which utilizes polyprenol for its N-linked glycosylation intermediates. Arch Biochem Biophys 1998; 358:303-12. [PMID: 9784244 DOI: 10.1006/abbi.1998.0839] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
B211, a glycosylation mutant isolated from Chinese hamster ovary cells, synthesizes 10- to 15-fold less Glc3Man9GlcNAc2-P-P-lipid, the substrate used by the oligosaccharide transferase in the synthesis of asparagine-linked glycoproteins. B211 cells are also 10- to 15-fold deficient in the glucosylation of oligosaccharide-lipid. Despite these properties, protein glycosylation in B211 cells proceeds at a level similar to (50% of) parental cells. We asked whether the near wild-type level of glycosylation was due to the transfer of alternative oligosaccharide structures to protein in B211 cells. The aberrant size of [35S]methionine-labeled VSV G protein and the increased percentage of endoglycosidase H-resistant tryptic peptides as compared to parental cells supported this hypothesis. B211 cells were labeled with [2-3H]mannose either for 1 min or for 1 h in the presence of glycoprotein-processing inhibitors so that the oligosaccharides initially transferred to protein could be analyzed. In addition to Glc3Man9GlcNAc2, a second, endoglycosidase H-resistant oligosaccharide was transferred whose structure was determined by alpha-mannosidase digestion, gel filtration chromatography, and HPLC to be Glc0,1Man5GlcNAc2. Finally, since the synthesis of reduced amounts of Glc3Man9GlcNAc2-P-P-lipid was also a phenotype seen in another glycosylation mutant, Lec9, we analyzed the long-chain prenol in B211 cells. B211 cells synthesized and utilized polyprenol rather than dolichol for all N-linked glycosylation intermediates as determined by HPLC analysis of [3H]mevalonate-labeled lipids. Cell fusions analyzed by similar techniques indicated that B211, originally isolated as a concanavalin A-resistant cell line, is in the Lec9 complementation group.
Collapse
Affiliation(s)
- A Kaiden
- School of Hygiene and Public Health, The Johns Hopkins University, Baltimore, Maryland, 21205, USA
| | | | | | | | | |
Collapse
|
16
|
Jakob CA, Burda P, Roth J, Aebi M. Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure. J Biophys Biochem Cytol 1998; 142:1223-33. [PMID: 9732283 PMCID: PMC2149342 DOI: 10.1083/jcb.142.5.1223] [Citation(s) in RCA: 261] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In Saccharomyces cerevisiae, transfer of N-linked oligosaccharides is immediately followed by trimming of ER-localized glycosidases. We analyzed the influence of specific oligosaccharide structures for degradation of misfolded carboxypeptidase Y (CPY). By studying the trimming reactions in vivo, we found that removal of the terminal alpha1,2 glucose and the first alpha1,3 glucose by glucosidase I and glucosidase II respectively, occurred rapidly, whereas mannose cleavage by mannosidase I was slow. Transport and maturation of correctly folded CPY was not dependent on oligosaccharide structure. However, degradation of misfolded CPY was dependent on specific trimming steps. Degradation of misfolded CPY with N-linked oligosaccharides containing glucose residues was less efficient compared with misfolded CPY bearing the correctly trimmed Man8GlcNAc2 oligosaccharide. Reduced rate of degradation was mainly observed for misfolded CPY bearing Man6GlcNAc2, Man7GlcNAc2 and Man9GlcNAc2 oligosaccharides, whereas Man8GlcNAc2 and, to a lesser extent, Man5GlcNAc2 oligosaccharides supported degradation. These results suggest a role for the Man8GlcNAc2 oligosaccharide in the degradation process. They may indicate the presence of a Man8GlcNAc2-binding lectin involved in targeting of misfolded glycoproteins to degradation in S. cerevisiae.
Collapse
Affiliation(s)
- C A Jakob
- Division of Cell and Molecular Pathology, Department of Pathology, University of Zürich, CH-8091 Zürich, Switzerland
| | | | | | | |
Collapse
|
17
|
de Virgilio M, Weninger H, Ivessa NE. Ubiquitination is required for the retro-translocation of a short-lived luminal endoplasmic reticulum glycoprotein to the cytosol for degradation by the proteasome. J Biol Chem 1998; 273:9734-43. [PMID: 9545309 DOI: 10.1074/jbc.273.16.9734] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the endoplasmic reticulum (ER), an efficient "quality control system" operates to ensure that mutated and incorrectly folded proteins are selectively degraded. We are studying ER-associated degradation using a truncated variant of the rough ER-specific type I transmembrane glycoprotein, ribophorin I. The truncated polypeptide (RI332) consists of only the 332 amino-terminal amino acids of the protein corresponding to most of its luminal domain and, in contrast to the long-lived endogenous ribophorin I, is rapidly degraded. Here we show that the ubiquitin-proteasome pathway is involved in the destruction of the truncated ribophorin I. Thus, when RI332 that itself appears to be a substrate for ubiquitination was expressed in a mutant hamster cell line harboring a temperature-sensitive mutation in the ubiquitin-activating enzyme E1 affecting ubiquitin-dependent proteolysis, the protein is dramatically stabilized at the restrictive temperature. Moreover, inhibitors of proteasome function effectively block the degradation of RI332. Cell fractionation experiments indicate that RI332 accumulates in the cytosol when degradation is prevented by proteasome inhibitors but remains associated with the lumen of the ER under ubiquitination-deficient conditions, suggesting that the release of the protein into the cytosol is ubiquitination-dependent. Accordingly, when ubiquitination is impaired, a considerable amount of RI332 binds to the ER chaperone calnexin and to the Sec61 complex that could effect retro-translocation of the polypeptide to the cytosol. Before proteolysis of RI332, its N-linked oligosaccharide is cleaved in two distinct steps, the first of which might occur when the protein is still associated with the ER, as the trimmed glycoprotein intermediate efficiently interacts with calnexin and Sec61. From our data we conclude that the steps that lead a newly synthesized luminal ER glycoprotein to degradation by the proteasome are tightly coupled and that especially ubiquitination plays a crucial role in the retro-translocation of the substrate protein for proteolysis to the cytosol.
Collapse
Affiliation(s)
- M de Virgilio
- Department of Molecular Genetics, University and Biocenter Vienna, A-1030 Vienna, Austria
| | | | | |
Collapse
|