1
|
Lin L, Xiao X, Guo X, Zhong C, Zhuang M, Xu J, Wang Y, Chen F. AKR1C3 mediates gastric cancer cell invasion and metastasis via the AKT and JNK/p-NF-κB signaling pathways. Sci Rep 2024; 14:30263. [PMID: 39632995 PMCID: PMC11618362 DOI: 10.1038/s41598-024-82039-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
Gastric cancer (GC) is globally recognized as the fifth most common cancer and the third leading cause of cancer-related mortality. Early metastasis in GC significantly contributes to its high mortality and unfavorable prognosis. However, the underlying mechanisms of this phenomenon remain largely unexplored. Among the various factors involved, AKR1C3 has emerged as a crucial component in the pathways of tumorigenesis and metastasis across multiple cancer types. Yet, the precise significance of AKR1C3 in GC patients' prognosis and its role in GC progression remain elusive. This study illuminated the significant downregulation of AKR1C3 in GC tissues, linking it to an aggressive phenotype and poor prognosis. Interestingly, while AKR1C3 overexpression did not affect the proliferation of GC cells, it significantly inhibited their ability to invade and metastasize. The underlying mechanism appears to involve AKR1C3's inhibition of the p-JNK pathway, which leads to reduced phosphorylation of IKKα/β and IKBα, lowering p-NF-κB levels and hindering its movement into the nucleus, thereby stifling the epithelial-mesenchymal transition (EMT) process in GC cells. These insights reveal AKR1C3's tumor-suppressive effects in GC and suggest its potential as a diagnostic and prognostic biomarker, offering new avenues for targeted therapies in gastric cancer management.
Collapse
Affiliation(s)
- Liying Lin
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Xinzhu Xiao
- Department of Infectious disease, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
- Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Xiaoxiong Guo
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Canmei Zhong
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Mingkai Zhuang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Jie Xu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Yin Wang
- Department of Gastroenterology, Tongan Ward of the First Affiliated Hospital of Xiamen University, Xiamen, 361026, Fujian, China
| | - Fenglin Chen
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
2
|
Awasthi BP, Chaudhary P, Lim D, Yadav K, Lee IH, Banskota S, Chaudhary CL, Karmacharya U, Lee J, Im SM, Nam Y, Eun JW, Lee S, Lee JM, Kim ES, Ryou C, Kim TH, Park HD, Kim JA, Nam TG, Jeong BS. G Protein-Coupled Estrogen Receptor-Mediated Anti-Inflammatory and Mucosal Healing Activity of a Trimethylpyridinol Analogue in Inflammatory Bowel Disease. J Med Chem 2024; 67:10601-10621. [PMID: 38896548 DOI: 10.1021/acs.jmedchem.3c02458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Inflammatory bowel disease (IBD) is characterized by abnormal immune responses, including elevated proinflammatory cytokines, such as tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6) in the gastrointestinal (GI) tract. This study presents the synthesis and anti-inflammatory evaluation of 2,4,5-trimethylpyridin-3-ol analogues, which exhibit dual inhibition of TNFα- and IL-6-induced inflammation. Analysis using in silico methods, including 3D shape-based target identification, modeling, and docking, identified G protein-coupled estrogen receptor 1 (GPER) as the molecular target for the most effective analogue, 6-26, which exhibits remarkable efficacy in ameliorating inflammation and restoring colonic mucosal integrity. This was further validated by surface plasmon resonance (SPR) assay results, which showed direct binding to GPER, and by the results showing that GPER knockdown abolished the inhibitory effects of 6-26 on TNFα and IL-6 actions. Notably, 6-26 displayed no cytotoxicity, unlike G1 and G15, a well-known GPER agonist and an antagonist, respectively, which induced necroptosis independently of GPER. These findings suggest that the GPER-selective compound 6-26 holds promise as a therapeutic candidate for IBD.
Collapse
Affiliation(s)
- Bhuwan Prasad Awasthi
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Prakash Chaudhary
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Dongchul Lim
- Innovo Therapeutics Inc., Daeduck Biz Center C-313, 17 Techno 4-ro, Yuseong-gu, Daejeon 34013, Republic of Korea
| | - Kiran Yadav
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Iyn-Hyang Lee
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Suhrid Banskota
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Chhabi Lal Chaudhary
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ujjwala Karmacharya
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jiwoo Lee
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - So Myoung Im
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - YeonJu Nam
- Bio Industry Department, Gyeonggido Business & Science Accelerator, Suwon 16229, Republic of Korea
| | - Ji Won Eun
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sungeun Lee
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Ji-Min Lee
- Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Eun Soo Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Chongsuk Ryou
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Tae Hun Kim
- Innovo Therapeutics Inc., Daeduck Biz Center C-313, 17 Techno 4-ro, Yuseong-gu, Daejeon 34013, Republic of Korea
| | - Hee Dong Park
- Innovo Therapeutics Inc., Daeduck Biz Center C-313, 17 Techno 4-ro, Yuseong-gu, Daejeon 34013, Republic of Korea
| | - Jung-Ae Kim
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tae-Gyu Nam
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Byeong-Seon Jeong
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
3
|
McKenzie M, Lian GY, Pennel KA, Quinn JA, Jamieson NB, Edwards J. NFκB signalling in colorectal cancer: Examining the central dogma of IKKα and IKKβ signalling. Heliyon 2024; 10:e32904. [PMID: 38975078 PMCID: PMC11226910 DOI: 10.1016/j.heliyon.2024.e32904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
The NFκB pathway, known as the central regulator of inflammation, has a well-established role in colorectal cancer (CRC) initiation, progression, and therapy resistance. Due to the pathway's overarching roles in CRC, there have been efforts to characterise NFκB family members and target the pathway for therapeutic intervention. Initial research illustrated that the canonical NFκB pathway, driven by central kinase IKKβ, was a promising target for drug intervention. However, dose limiting toxicities and specificity concerns have resulted in failure of IKKβ inhibitors in clinical trials. The field has turned to look at targeting the less dominant kinase, IKKα, which along with NFκB inducing kinase (NIK), drives the lesser researched non-canonical NFκB pathway. However prognostic studies of the non-canonical pathway have produced conflicting results. There is emerging evidence that IKKα is involved in other signalling pathways, which lie outside of canonical and non-canonical NFκB signalling. Evidence suggests that some of these alternative pathways involve a truncated form of IKKα, and this may drive poor cancer-specific survival in CRC. This review aims to explore the multiple components of NFκB signalling, highlighting that NIK may be the central kinase for non-canonical NFκB signalling, and that IKKα is involved in novel pathways which promote CRC.
Collapse
Affiliation(s)
- Molly McKenzie
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Guang-Yu Lian
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Kathryn A.F. Pennel
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Jean A. Quinn
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Nigel B. Jamieson
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Joanne Edwards
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| |
Collapse
|
4
|
Liu Y, Su W, Liu Z, Hu Z, Shen J, Zheng Z, Ding D, Huang W, Li W, Cai G, Wei S, Li N, Fang X, Li H, Qin J, Zhang H, Xiao Y, Bi Y, Cui A, Zhang C, Li Y. Macrophage CREBZF Orchestrates Inflammatory Response to Potentiate Insulin Resistance and Type 2 Diabetes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306685. [PMID: 38286660 PMCID: PMC10987118 DOI: 10.1002/advs.202306685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/23/2023] [Indexed: 01/31/2024]
Abstract
Chronic adipose tissue inflammation accompanied by macrophage accumulation and activation is implicated in the pathogenesis of insulin resistance and type 2 diabetes in humans. The transcriptional coregulator CREBZF is a key factor in hepatic metabolism, yet its role in modulating adipose tissue inflammation and type 2 diabetes remains elusive. The present study demonstrates that overnutrition-induced CREBZF links adipose tissue macrophage (ATM) proinflammatory activation to insulin resistance. CREBZF deficiency in macrophages, not in neutrophils, attenuates macrophage infiltration in adipose, proinflammatory activation, and hyperglycemia in diet-induced insulin-resistant mice. The coculture assays show that macrophage CREBZF deficiency improves insulin sensitivity in primary adipocytes and adipose tissue. Mechanistically, CREBZF competitively inhibits the binding of IκBα to p65, resulting in enhanced NF-κB activity. In addition, bromocriptine is identified as a small molecule inhibitor of CREBZF in macrophages, which suppresses the proinflammatory phenotype and improves metabolic dysfunction. Furthermore, CREBZF is highly expressed in ATM of obese humans and mice, which is positively correlated with proinflammatory genes and insulin resistance in humans. This study identifies a previously unknown role of CREBZF coupling ATM activation to systemic insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Yuxiao Liu
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Weitong Su
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Zhengshuai Liu
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Zhimin Hu
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jiaxin Shen
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Zengpeng Zheng
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Dong Ding
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Wei Huang
- Department of Endocrinology and MetabolismThe Affiliated Hospital of Southwest Medical UniversityMetabolic Vascular Diseases Key Laboratory of Sichuan ProvinceLuzhouSichuan646000China
| | - Wenjing Li
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Genxiang Cai
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Shuang Wei
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Xia Fang
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
- Department of Endocrinology and MetabolismThe Affiliated Hospital of Southwest Medical UniversityMetabolic Vascular Diseases Key Laboratory of Sichuan ProvinceLuzhouSichuan646000China
| | - Hong Li
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and HealthChinese Academy of SciencesShanghai200031China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Haibing Zhang
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Yan Bi
- Affiliated Drum Tower HospitalMedical School of Nanjing UniversityNanjingJiangsu210008China
| | - Aoyuan Cui
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Chunxiang Zhang
- Metabolic Vascular Disease Key Laboratory of Sichuan ProvinceThe Affiliated Hospital of Southwest Medical UniversityKey Laboratory of Medical ElectrophysiologyMinistry of EducationSouthwest Medical UniversityLuzhou646000China
| | - Yu Li
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| |
Collapse
|
5
|
Maliar NL, Talbot EJ, Edwards AR, Khoronenkova SV. Microglial inflammation in genome instability: A neurodegenerative perspective. DNA Repair (Amst) 2024; 135:103634. [PMID: 38290197 DOI: 10.1016/j.dnarep.2024.103634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/08/2024] [Accepted: 01/21/2024] [Indexed: 02/01/2024]
Abstract
The maintenance of genome stability is crucial for cell homeostasis and tissue integrity. Numerous human neuropathologies display chronic inflammation in the central nervous system, set against a backdrop of genome instability, implying a close interplay between the DNA damage and immune responses in the context of neurological disease. Dissecting the molecular mechanisms of this crosstalk is essential for holistic understanding of neuroinflammatory pathways in genome instability disorders. Non-neuronal cell types, specifically microglia, are major drivers of neuroinflammation in the central nervous system with neuro-protective and -toxic capabilities. Here, we discuss how persistent DNA damage affects microglial homeostasis, zooming in on the cytosolic DNA sensing cGAS-STING pathway and the downstream inflammatory response, which can drive neurotoxic outcomes in the context of genome instability.
Collapse
Affiliation(s)
- Nina L Maliar
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Emily J Talbot
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Abigail R Edwards
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | | |
Collapse
|
6
|
Shmakova A, Hugot C, Kozhevnikova Y, Schwager Karpukhina A, Tsimailo I, Gérard L, Boutboul D, Oksenhendler E, Szewczyk-Roszczenko O, Roszczenko P, Buzun K, Sheval EV, Germini D, Vassetzky Y. Chronic HIV-1 Tat action induces HLA-DR downregulation in B cells: A mechanism for lymphoma immune escape in people living with HIV. J Med Virol 2024; 96:e29423. [PMID: 38285479 DOI: 10.1002/jmv.29423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Despite the success of combination antiretroviral therapy, people living with human immunodeficiency virus (HIV) still have an increased risk of Epstein-Barr virus (EBV)-associated B cell malignancies. In the HIV setting, B cell physiology is altered by coexistence with HIV-infected cells and the chronic action of secreted viral proteins, for example, HIV-1 Tat that, once released, efficiently penetrates noninfected cells. We modeled the chronic action of HIV-1 Tat on B cells by ectopically expressing Tat or TatC22G mutant in two lymphoblastoid B cell lines. The RNA-sequencing analysis revealed that Tat deregulated the expression of hundreds of genes in B cells, including the downregulation of a subset of major histocompatibility complex (MHC) class II-related genes. Tat-induced downregulation of HLA-DRB1 and HLA-DRB5 genes led to a decrease in HLA-DR surface expression; this effect was reproduced by coculturing B cells with Tat-expressing T cells. Chronic Tat presence decreased the NF-ᴋB pathway activity in B cells; this downregulated NF-ᴋB-dependent transcriptional targets, including MHC class II genes. Notably, HLA-DRB1 and surface HLA-DR expression was also decreased in B cells from people with HIV. Tat-induced HLA-DR downregulation in B cells impaired EBV-specific CD4+ T cell response, which contributed to the escape from immune surveillance and could eventually promote B cell lymphomagenesis in people with HIV.
Collapse
Affiliation(s)
- Anna Shmakova
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
- Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Coline Hugot
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
| | - Yana Kozhevnikova
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
| | - Anna Schwager Karpukhina
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
- Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Ivan Tsimailo
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
| | - Laurence Gérard
- Service d'Immunopathologie Clinique, Hôpital St Louis, APHP, Paris, France
| | - David Boutboul
- Service d'Immunopathologie Clinique, Hôpital St Louis, APHP, Paris, France
| | - Eric Oksenhendler
- Service d'Immunopathologie Clinique, Hôpital St Louis, APHP, Paris, France
| | - Olga Szewczyk-Roszczenko
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Roszczenko
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | - Kamila Buzun
- Department of Pharmaceutical Sciences, Poznan University of Medical Sciences, Poznan, Poland
| | - Eugene V Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Cell Biology and Histology, Lomonosov Moscow State University, Moscow, Russia
| | - Diego Germini
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
| | - Yegor Vassetzky
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
- Koltzov Institute of Developmental Biology, Moscow, Russia
| |
Collapse
|
7
|
Chen W, Gunther TR, Baughman HER, Komives EA. Site-specific incorporation of biophysical probes into NF-ĸB with non-canonical amino acids. Methods 2023; 213:18-25. [PMID: 36940840 PMCID: PMC10688598 DOI: 10.1016/j.ymeth.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
The transcription factor NF-ĸB is a central mediator of immune and inflammatory responses. To understand the regulation of NF-ĸB, it is important to probe the underlying thermodynamics, kinetics, and conformational dynamics of the NF-ĸB/IĸBα/DNA interaction network. The development of genetic incorporation of non-canonical amino acids (ncAA) has enabled the installation of biophysical probes into proteins with site specificity. Recent single-molecule FRET (smFRET) studies of NF-ĸB with site-specific labeling via ncAA incorporation revealed the conformational dynamics for kinetic control of DNA-binding mediated by IĸBα. Here we report the design and protocols for incorporating the ncAA p-azidophenylalanine (pAzF) into NF-ĸB and site-specific fluorophore labeling with copper-free click chemistry for smFRET. We also expanded the ncAA toolbox of NF-ĸB to include p-benzoylphenylalanine (pBpa) for UV crosslinking mass spectrometry (XL-MS) and incorporated both pAzF and pBpa into the full-length NF-ĸB RelA subunit which includes the intrinsically disordered transactivation domain.
Collapse
Affiliation(s)
- Wei Chen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| | - Tristan R Gunther
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Hannah E R Baughman
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Wen S, Li X, Lv X, Liu K, Ren J, Zhai J, Song Y. Current progress on innate immune evasion mediated by N pro protein of pestiviruses. Front Immunol 2023; 14:1136051. [PMID: 37090696 PMCID: PMC10115221 DOI: 10.3389/fimmu.2023.1136051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
Interferon (IFN), the most effective antiviral cytokine, is involved in innate and adaptive immune responses and is essential to the host defense against virus invasion. Once the host was infected by pathogens, the pathogen-associated molecular patterns (PAMPs) were recognized by the host pattern recognition receptors (PRRs), which activates interferon regulatory transcription factors (IRFs) and nuclear factor-kappa B (NF-κB) signal transduction pathway to induce IFN expression. Pathogens have acquired many strategies to escape the IFN-mediated antiviral immune response. Pestiviruses cause massive economic losses in the livestock industry worldwide every year. The immune escape strategies acquired by pestiviruses during evolution are among the major difficulties in its control. Previous experiments indicated that Erns, as an envelope glycoprotein unique to pestiviruses with RNase activity, could cleave viral ss- and dsRNAs, therefore inhibiting the host IFN production induced by viral ss- and dsRNAs. In contrast, Npro, the other envelope glycoprotein unique to pestiviruses, mainly stimulates the degradation of transcription factor IRF-3 to confront the IFN response. This review mainly summarized the current progress on mechanisms mediated by Npro of pestiviruses to antagonize IFN production.
Collapse
Affiliation(s)
- Shubo Wen
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
- Beef Cattle Disease Control and Engineering Technology Research Center, Inner Mongolia Autonomous Region, Tongliao, China
| | - Xintong Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiangyu Lv
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Beef Cattle Disease Control and Engineering Technology Research Center, Inner Mongolia Autonomous Region, Tongliao, China
| | - Kai Liu
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Beef Cattle Disease Control and Engineering Technology Research Center, Inner Mongolia Autonomous Region, Tongliao, China
| | - Jingqiang Ren
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Zhejiang, Wenzhou, China
| | - Jingbo Zhai
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
| | - Yang Song
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
| |
Collapse
|
9
|
Deka K, Li Y. Transcriptional Regulation during Aberrant Activation of NF-κB Signalling in Cancer. Cells 2023; 12:788. [PMID: 36899924 PMCID: PMC10001244 DOI: 10.3390/cells12050788] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The NF-κB signalling pathway is a major signalling cascade involved in the regulation of inflammation and innate immunity. It is also increasingly recognised as a crucial player in many steps of cancer initiation and progression. The five members of the NF-κB family of transcription factors are activated through two major signalling pathways, the canonical and non-canonical pathways. The canonical NF-κB pathway is prevalently activated in various human malignancies as well as inflammation-related disease conditions. Meanwhile, the significance of non-canonical NF-κB pathway in disease pathogenesis is also increasingly recognized in recent studies. In this review, we discuss the double-edged role of the NF-κB pathway in inflammation and cancer, which depends on the severity and extent of the inflammatory response. We also discuss the intrinsic factors, including selected driver mutations, and extrinsic factors, such as tumour microenvironment and epigenetic modifiers, driving aberrant activation of NF-κB in multiple cancer types. We further provide insights into the importance of the interaction of NF-κB pathway components with various macromolecules to its role in transcriptional regulation in cancer. Finally, we provide a perspective on the potential role of aberrant NF-κB activation in altering the chromatin landscape to support oncogenic development.
Collapse
Affiliation(s)
- Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore 138673, Singapore
| |
Collapse
|
10
|
Krull CM, Li H, Pathak A. Nuclear export inhibition jumbles epithelial-mesenchymal states and gives rise to migratory disorder in healthy epithelia. eLife 2023; 12:e81048. [PMID: 36805020 PMCID: PMC9943065 DOI: 10.7554/elife.81048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Dynamic nucleocytoplasmic transport of E-M factors regulates cellular E-M states; yet, it remains unknown how simultaneously trapping these factors affects epithelia at the macroscale. To explore this question, we performed nuclear export inhibition (NEI) via leptomycin B and Selinexor treatment, which biases nuclear localization of CRM1-associated E-M factors. We examined changes in collective cellular phenotypes across a range of substrate stiffnesses. Following NEI, soft substrates elevate collective migration of MCF10A cells for up to 24 hr, while stiffer substrates reduce migration at all time points. Our results suggest that NEI disrupts migration through competition between intercellular adhesions and mechanoactivation, generally causing loss of cell-cell coordination. Specifically, across substrate stiffnesses, NEI fosters an atypical E-M state wherein MCF10A cells become both more epithelial and more mesenchymal. We observe that NEI fosters a range of these concurrent phenotypes, from more epithelial shYAP MCF10A cells to more mesenchymal MDCK II cells. α-Catenin emerges as a potential link between E-M states, where it maintains normal levels of intercellular adhesion and transmits mechanoactive characteristics to collective behavior. Ultimately, to accommodate the concurrent states observed here, we propose an expanded E-M model, which may help further understand fundamental biological phenomena and inform pathological treatments.
Collapse
Affiliation(s)
- Carly M Krull
- Department of Biomedical Engineering, Washington University in St. LouisSt LouisUnited States
| | - Haiyi Li
- Department of Computer Science and Engineering, Washington University in St. LouisSt LouisUnited States
| | - Amit Pathak
- Department of Biomedical Engineering, Washington University in St. LouisSt LouisUnited States
- Department of Mechanical Engineering and Materials Science, Washington University in St. LouisSt LouisUnited States
| |
Collapse
|
11
|
Liu Y, Trnka MJ, He L, Burlingame AL, Correia MA. In-Cell Chemical Crosslinking Identifies Hotspots for SQSTM-1/p62-IκBα Interaction That Underscore a Critical Role of p62 in Limiting NF-κB Activation Through IκBα Stabilization. Mol Cell Proteomics 2023; 22:100495. [PMID: 36634736 PMCID: PMC9947424 DOI: 10.1016/j.mcpro.2023.100495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
We have previously documented that in liver cells, the multifunctional protein scaffold p62/SQSTM1 is closely associated with IκBα, an inhibitor of the transcriptional activator NF-κB. Such an intimate p62-IκBα association we now document leads to a marked 18-fold proteolytic IκBα-stabilization, enabling its nuclear entry and termination of the NF-κB-activation cycle. In p62-/--cells, such termination is abrogated resulting in the nuclear persistence and prolonged activation of NF-κB following inflammatory stimuli. Utilizing various approaches both classic (structural deletion, site-directed mutagenesis) as well as novel (in-cell chemical crosslinking), coupled with proteomic analyses, we have defined the precise structural hotspots of p62-IκBα association. Accordingly, we have identified such IκBα hotspots to reside around N-terminal (K38, K47, and K67) and C-terminal (K238/C239) residues in its fifth ankyrin repeat domain. These sites interact with two hotspots in p62: One in its PB-1 subdomain around K13, and the other comprised of a positively charged patch (R183/R186/K187/K189) between its ZZ- and TB-subdomains. APEX proximity analyses upon IκBα-cotransfection of cells with and without p62 have enabled the characterization of the p62 influence on IκBα-protein-protein interactions. Interestingly, consistent with p62's capacity to proteolytically stabilize IκBα, its presence greatly impaired IκBα's interactions with various 20S/26S proteasomal subunits. Furthermore, consistent with p62 interaction with IκBα on an interface opposite to that of its NF-κB-interacting interface, p62 failed to significantly affect IκBα-NF-κB interactions. These collective findings together with the known dynamic p62 nucleocytoplasmic shuttling leads us to speculate that it may be involved in "piggy-back" nuclear transport of IκBα following its NF-κB-elicited transcriptional activation and de novo synthesis, required for termination of the NF-κB-activation cycle. Consequently, mice carrying a liver-specific deletion of p62-residues 68 to 252 reveal age-dependent-enhanced liver inflammation. Our findings reveal yet another mode of p62-mediated pathophysiologically relevant regulation of NF-κB.
Collapse
Affiliation(s)
- Yi Liu
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Liang He
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - A L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Maria Almira Correia
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA; The Liver Center, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
12
|
Han H, Lin T, Wang Z, Song J, Fang Z, Zhang J, You X, Du Y, Ye J, Zhou G. RNA-binding motif 4 promotes angiogenesis in HCC by selectively activating VEGF-A expression. Pharmacol Res 2023; 187:106593. [PMID: 36496136 DOI: 10.1016/j.phrs.2022.106593] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Increased angiogenesis in the liver plays a critical role in the progression of hepatocellular carcinoma (HCC). However, the molecular mechanism underlying increased angiogenesis in HCC is not well understood. Current study was designed to identify the potential angiogenic effect of RNA-binding motif 4 (RBM4)through a small-scale overexpression screening, followed by comparison of the expression level of RBM4 in cancer and adjacent tissues in multiple malignancies to explore the relationship between RBM4 and CD31 protein expression level and related clinical indicators, and understand the role of RBM4 in the hepatocellular carcinoma. To understand the specific mechanism of RBM4 in detail, transcriptome sequencing, mass spectrometry and multiple molecular cytological studies were performed. These cellular level results were verified by experiments in animal models of nude mice. The increased expression of RBM4 in cancer tissues, suggested its use as a prognostic biomarker. The RBM4 expression was found to be strongly correlated with tumor microvessel density. Mechanistically, RBM4 mediated its effects via interaction with HNRNP-M through the latter's WDR15 domain, which then stabilized RelA/p65 mRNA. Consequently, RBM4 induced the activation of the NF-kB signaling pathway, upregulating the expression of proangiogenic factor VEGF-A. The results confirmed the mechanism by which RBM4 promotes angiogenesis in hepatocellular carcinoma suggesting RBM4 as a crucial promoter of angiogenesis in HCC, helping understand regulation of NF-kB signaling in HCC.
Collapse
Affiliation(s)
- Hexu Han
- Department of Gastroenterology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Ting Lin
- Department of Pathophysiology, School of Medicine, Nantong University, Jiangsu 226001, China
| | - Zhenyu Wang
- Department of pediatric surgery, Affiliated Hospital of Nantong University, Nantong University, Jiangsu 226001, China
| | - Jingjing Song
- Department of Pediatrics, the Second Affiliated Hospital &Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang, China
| | - Ziyi Fang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Jiangsu 226001, China
| | - Jing Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Jiangsu 226001, China
| | - Xiaomin You
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Jiangsu 226001, China
| | - Yanping Du
- Department of Gastroenterology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Jun Ye
- Center for Translational Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China.
| | - Guoxiong Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Jiangsu 226001, China.
| |
Collapse
|
13
|
Mattinzoli D, Li M, Castellano G, Ikehata M, Armelloni S, Elli FM, Molinari P, Tsugawa K, Alfieri CM, Messa P. Fibroblast growth factor 23 level modulates the hepatocyte's alpha-2-HS-glycoprotein transcription through the inflammatory pathway TNFα/NFκB. Front Med (Lausanne) 2022; 9:1038638. [PMID: 36569120 PMCID: PMC9769965 DOI: 10.3389/fmed.2022.1038638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction High serum levels of fibroblast growth factor 23 (FGF23) characterize chronic kidney disease (CKD) since its early stages and have been suggested to contribute to inflammation and cardiovascular disease. However, the mechanisms linking FGF23 with these pathological conditions remain still incompletely defined. The alpha-2-HS-glycoprotein (AHSG), a liver-produced anti-inflammatory cytokine, is highly modulated by inflammation itself, also through the TNFα/NFκB signaling pathway. In our previous study, we found that FGF23 modulates the production of AHSG in the liver in a bimodal way, with stimulation and inhibition at moderately and highly increased FGF23 concentrations, respectively. Methods The present study, aiming to gain further insights into this bimodal behavior, was performed in hepatocyte human cells line (HepG2), using the following methods: immunochemistry, western blot, chromatin immunoprecipitation, fluorescence in situ hybridization (FISH), qRT-PCR, and gene SANGER sequencing. Results We found that FGF23 at 400 pg/ml activates nuclear translocation of NFκB, possibly increasing AHSG transcription. At variance, at 1,200 pg/ml, FGF23 inactivates NFκB through the activation of two specific NFκB inhibitors (IκBα and NKIRAS2) and induces its detachment from the AHSG promoter, reducing AHSG transcription. Conclusion These results add another piece to the puzzle of FGF23 involvement in the multifold interactions between CKD, inflammation, and cardiovascular disease, suggesting the involvement of the NFκB pathway, which might represent a potential therapeutic target in CKD.
Collapse
Affiliation(s)
- Deborah Mattinzoli
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Renal Research Laboratory, Milan, Italy,*Correspondence: Deborah Mattinzoli,
| | - Min Li
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Renal Research Laboratory, Milan, Italy
| | - Giuseppe Castellano
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Unit of Nephrology, Dialysis and Renal Transplant, Milan, Italy,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Masami Ikehata
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Renal Research Laboratory, Milan, Italy
| | - Silvia Armelloni
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Renal Research Laboratory, Milan, Italy,Silvia Armelloni,
| | - Francesca Marta Elli
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Milan, Italy
| | - Paolo Molinari
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Unit of Nephrology, Dialysis and Renal Transplant, Milan, Italy
| | - Koji Tsugawa
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Carlo Maria Alfieri
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Unit of Nephrology, Dialysis and Renal Transplant, Milan, Italy,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Piergiorgio Messa
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Unit of Nephrology, Dialysis and Renal Transplant, Milan, Italy,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
14
|
Mahdiani S, Omidkhoda N, Heidari S, Hayes AW, Karimi G. Protective effect of luteolin against chemical and natural toxicants by targeting NF-κB pathway. Biofactors 2022; 48:744-762. [PMID: 35861671 DOI: 10.1002/biof.1876] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022]
Abstract
Humans are continuously exposed to environmental, occupational, consumer and household products, food, and pharmaceutical substances. Luteolin, a flavone from the flavonoids family of compounds, is found in different fruits and vegetables. LUT is a strong anti-inflammatory (via inhibition of NF-κB, ERK1/2, MAPK, JNK, IL-6, IL-8, and TNF-α) and antioxidant agent (reducing ROS and enhancement of endogenous antioxidants). LUT can chelate transition metal ions responsible for ROS generation and consequently repress lipoxygenase. It has been proven that NF-κB, as a commom cellular pathway plays a considerable role in the progression of inflammatory process and stimulates the expression of genes encoding inducible pro-inflammatory enzymes (iNOS and COX-2) and cytokines including IL-1β, IL-6, and TNF-α. This review summarizes the available literature discussing LUT and its potential protective role against pharmaceuticals-, metals-, and environmental compounds-induced toxicities. Furthermore, the review explains the involved protective mechanisms, especially inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Sina Mahdiani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadi Heidari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Michigan State University, East Lansing, Michigan, USA
- University of South Florida, Tampa, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Gao J, Fu Y, Song L, Long M, Zhang Y, Qin J, Liu H. Proapoptotic Effect of Icariin on Human Ovarian Cancer Cells via the NF-[Formula: see text]B/PI3K-AKT Signaling Pathway: A Network Pharmacology-Directed Experimental Investigation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:589-619. [PMID: 35114909 DOI: 10.1142/s0192415x22500239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Based on network pharmacology tools and public bioinformatics databases, the pharmacodynamic target and key mechanism of icariin (ICA) in the treatment of ovarian cancer (OC) were identified and experimentally verified. Our previous research showed that TNF, MMP9, STAT3, PIK3CA, ERBB2, MTOR, IL2, PTGS2, KDR and F2 are important targets of ICA in the treatment of OC. TNF, as a hub gene in tumor tissues, was associated with poor prognosis. ICA acted on OC mainly through the biological functions of various kinases, and the pathway with the highest accuracy ([Formula: see text]-value) was PI3K. Meanwhile, we observed a close upstream and downstream relationship between NF-[Formula: see text]B and the Pl3K-AKT pathway. This study further verified the mechanism of ICA in promoting apoptosis of SKOV3 cells through the NF-[Formula: see text]B signaling pathway and the tandem relationship between NF-[Formula: see text]B and the Pl3K-AKT pathway. The assay results demonstrated that ICA can promote the apoptosis of SKOV3 cells as indicated by the proapoptotic markers Bax, Bcl-xl and Caspase-3 and the key factors of the NF-[Formula: see text]B signaling pathway (NF-[Formula: see text]Bp65, p-NF-[Formula: see text]Bp65, p-I[Formula: see text]B[Formula: see text] and I[Formula: see text]B[Formula: see text]. ICA can block the classical NF-[Formula: see text]B pathway by inhibiting I[Formula: see text]B[Formula: see text] phosphorylation and consequently blocking the activation of the NF-[Formula: see text]B pathway in SKOV3 cells. ICA can also promote apoptosis by blocking the activation of the NF-[Formula: see text]B pathway in SKOV3 cells via inhibition of NF-[Formula: see text]Bp65 nuclear translocation. After using a PI3K pathway inhibitor, we further discovered that ICA may reduce AKT signal transduction by inhibiting the level of Akt phosphorylation, resulting in a loss of PI3K/Akt-dependent activation of the NF-[Formula: see text]B pathway.
Collapse
Affiliation(s)
- Jingjing Gao
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Yanjin Fu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Linliang Song
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Mengsha Long
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Yiyao Zhang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Jiajia Qin
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Haiquan Liu
- Guangzhou University of Traditional Chinese Medicine, Huizhou Traditional Chinese Medicine Hospital, Huizhou, Guangdong 516001, P. R. China
| |
Collapse
|
16
|
The Immune Underpinnings of Barrett's-Associated Adenocarcinogenesis: a Retrial of Nefarious Immunologic Co-Conspirators. Cell Mol Gastroenterol Hepatol 2022; 13:1297-1315. [PMID: 35123116 PMCID: PMC8933845 DOI: 10.1016/j.jcmgh.2022.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/10/2022]
Abstract
There is no doubt that chronic gastroesophageal reflux disease increases the risk of esophageal adenocarcinoma (EAC) by several fold (odds ratio, 6.4; 95% CI, 4.6-9.1), and some relationships between reflux disease-mediated inflammation and oncogenic processes have been explored; however, the precise interconnections between the immune response and genomic instabilities underlying these pathologic processes only now are emerging. Furthermore, the precise cell of origin of the precancerous stages associated with EAC development, Barrett's esophagus, be it cardia resident or embryonic remnant, may shape our interpretation of the likely immune drivers. This review integrates the current collective knowledge of the immunology underlying EAC development and outlines a framework connecting proinflammatory pathways, such as those mediated by interleukin 1β, tumor necrosis factor α, leukemia inhibitory factor, interleukin 6, signal transduction and activator of transcription 3, nuclear factor-κB, cyclooxygenase-2, and transforming growth factor β, with oncogenic pathways in the gastroesophageal reflux disease-Barrett's esophagus-EAC cancer sequence. Further defining these immune and molecular railroads may show a map of the routes taken by gastroesophageal cells on their journey toward EAC tumor phylogeny. The selective pressures applied by this immune-induced journey likely impact the phenotype and genotype of the resulting oncogenic destination and further exploration of lesser-defined immune drivers may be useful in future individualized therapies or enhanced selective application of recent immune-driven therapeutics.
Collapse
|
17
|
Albarnaz JD, Ren H, Torres AA, Shmeleva EV, Melo CA, Bannister AJ, Brember MP, Chung BYW, Smith GL. Molecular mimicry of NF-κB by vaccinia virus protein enables selective inhibition of antiviral responses. Nat Microbiol 2022; 7:154-168. [PMID: 34949827 PMCID: PMC7614822 DOI: 10.1038/s41564-021-01004-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 10/21/2021] [Indexed: 12/16/2022]
Abstract
Infection of mammalian cells with viruses activates NF-κB to induce the expression of cytokines and chemokines and initiate an antiviral response. Here, we show that a vaccinia virus protein mimics the transactivation domain of the p65 subunit of NF-κB to inhibit selectively the expression of NF-κB-regulated genes. Using co-immunoprecipitation assays, we found that the vaccinia virus protein F14 associates with NF-κB co-activator CREB-binding protein (CBP) and disrupts the interaction between p65 and CBP. This abrogates CBP-mediated acetylation of p65, after which it reduces promoter recruitment of the transcriptional regulator BRD4 and diminishes stimulation of NF-κB-regulated genes CXCL10 and CCL2. Recruitment of BRD4 to the promoters of NFKBIA and CXCL8 remains unaffected by either F14 or JQ1 (a competitive inhibitor of BRD4 bromodomains), indicating that BRD4 recruitment is acetylation-independent. Unlike other viral proteins that are general antagonists of NF-κB, F14 is a selective inhibitor of NF-κB-dependent gene expression. An in vivo model of infection demonstrated that F14 promotes virulence. Molecular mimicry of NF-κB may be conserved because other orthopoxviruses, including variola, monkeypox and cowpox viruses, encode orthologues of F14.
Collapse
Affiliation(s)
- Jonas D Albarnaz
- Department of Pathology, University of Cambridge, Cambridge, UK.
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| | - Hongwei Ren
- Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, London, UK
| | - Alice A Torres
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Evgeniya V Shmeleva
- Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
| | - Carlos A Melo
- The Gurdon Institute, University of Cambridge, Cambridge, UK
| | | | | | - Betty Y-W Chung
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
18
|
Chen W, Lu W, Wolynes PG, Komives E. Single-molecule conformational dynamics of a transcription factor reveals a continuum of binding modes controlling association and dissociation. Nucleic Acids Res 2021; 49:11211-11223. [PMID: 34614173 PMCID: PMC8565325 DOI: 10.1093/nar/gkab874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Binding and unbinding of transcription factors to DNA are kinetically controlled to regulate the transcriptional outcome. Control of the release of the transcription factor NF-κB from DNA is achieved through accelerated dissociation by the inhibitor protein IκBα. Using single-molecule FRET, we observed a continuum of conformations of NF-κB in free and DNA-bound states interconverting on the subseconds to minutes timescale, comparable to in vivo binding on the seconds timescale, suggesting that structural dynamics directly control binding kinetics. Much of the DNA-bound NF-κB is partially bound, allowing IκBα invasion to facilitate DNA dissociation. IκBα induces a locked conformation where the DNA-binding domains of NF-κB are too far apart to bind DNA, whereas a loss-of-function IκBα mutant retains the NF-κB conformational ensemble. Overall, our results suggest a novel mechanism with a continuum of binding modes for controlling association and dissociation of transcription factors.
Collapse
Affiliation(s)
- Wei Chen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Wei Lu
- Center for Theoretical Biological Physics, Departments of Chemistry, Physics, and Biosciences, Rice University, Houston, Texas 77005, USA
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Departments of Chemistry, Physics, and Biosciences, Rice University, Houston, Texas 77005, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
19
|
Murphy CE, Walker AK, Weickert CS. Neuroinflammation in schizophrenia: the role of nuclear factor kappa B. Transl Psychiatry 2021; 11:528. [PMID: 34650030 PMCID: PMC8516884 DOI: 10.1038/s41398-021-01607-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation, particularly in the dorsolateral prefrontal cortex, is well-established in a subset of people with schizophrenia, with significant increases in inflammatory markers including several cytokines. Yet the cause(s) of cortical inflammation in schizophrenia remains unknown. Clues as to potential microenvironmental triggers and/or intracellular deficits in immunoregulation may be gleaned from looking further upstream of effector immune molecules to transcription factors that control inflammatory gene expression. Here, we focus on the 'master immune regulator' nuclear factor kappa B (NF-κB) and review evidence in support of NF-κB dysregulation causing or contributing to neuroinflammation in patients. We discuss the utility of 'immune biotyping' as a tool to analyse immune-related transcripts and proteins in patient tissue, and the insights into cortical NF-κB in schizophrenia revealed by immune biotyping compared to studies treating patients as a single, homogenous group. Though the ubiquitous nature of NF-κB presents several hurdles for drug development, targeting this key immunoregulator with novel or repurposed therapeutics in schizophrenia is a relatively underexplored area that could aid in reducing symptoms of patients with active neuroinflammation.
Collapse
Affiliation(s)
- Caitlin E. Murphy
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Randwick, NSW 2031 Australia
| | - Adam K. Walker
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Randwick, NSW 2031 Australia ,grid.1005.40000 0004 4902 0432School of Psychiatry, University of New South Wales, Randwick, NSW 2031 Australia ,grid.1002.30000 0004 1936 7857Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia. .,School of Psychiatry, University of New South Wales, Randwick, NSW, 2031, Australia. .,Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
20
|
Combinatorial treatment with Gefitinib and Bay11-7085 sensitizes primary Gefitinib-resistant OSCC cells by influencing the EGFR- NFκB signaling axis. Med Oncol 2021; 38:110. [PMID: 34357463 DOI: 10.1007/s12032-021-01557-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
EGFR-targeted therapies are reported to yield modest effect in OSCC. Activation of NFκB signaling is considered as molecular driver of EGFR inhibitor resistance in various cancers. In this scenario, present study focused on the molecular crosstalk between EGFR and NFκB signaling pathways and its therapeutic importance in OSCC. The EGFR- NFκB p65 co-expressed human OSCC cell lines UPCI:SCC066, UPCI:SCC040 and UM-SCC083B were used for in vitro studies. Recombinant human EGF, siRNAs, Western blot and qRT-PCR were used to dissect the molecular crosstalk between EGFR-NFκB signaling pathways in OSCCs. The effect of NFκB p65 knockdown on cancer hallmarks was studied by respective functional assays and RNA-Seq analysis was performed to identify the differentially expressed genes upon NFκB p65 knockdown. Gefitinib and Bay 11-7085 combination treatment was done to study the chemotherapeutic potential of EGFR- NFκB axis. Significant positive correlation between EGFR and NFκB p65 expression was observed in Head and Neck TCGA data set. EGFR induction or knockdown respectively stimulate or impair the NFκB signaling in EGFR- NFκB p65 co-expressed OSCC cell lines. NFκB p65 knockdown causes apoptosis and suppresses the viability, colony formation, migration, invasion, and spheroid formation. Using RNA-seq analysis, we identified PIK3CD as the NFκB target gene, which is commonly involved in these functions. Gefitinib and Bay 11-7085 combination treatment was found to be useful in chemosensitizing the Gefitinib-resistant OSCC cells by capitulating the EGFR- NFκB signaling axis. Combination treatment using Gefitinib and Bay 11-7085 enhanced the apoptosis and reduced cell viability and colony formation in a synergistic way. Our data demonstrated that EGFR-NFκB signaling axis plays a key role in the pathogenesis of OSCCs. Therefore, simultaneous therapeutic intervention of these pathways may be a good alternative approach for the management of OSCCs.
Collapse
|
21
|
Marruecos L, Bertran J, Álvarez-Villanueva D, Mulero MC, Guillén Y, Palma LG, Floor M, Vert A, Arce-Gallego S, Pecharroman I, Batlle L, Villà-Freixa J, Ghosh G, Bigas A, Espinosa L. Dynamic chromatin association of IκBα is regulated by acetylation and cleavage of histone H4. EMBO Rep 2021; 22:e52649. [PMID: 34224210 DOI: 10.15252/embr.202152649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/27/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
IκBs exert principal functions as cytoplasmic inhibitors of NF-kB transcription factors. Additional roles for IκB homologues have been described, including chromatin association and transcriptional regulation. Phosphorylated and SUMOylated IκBα (pS-IκBα) binds to histones H2A and H4 in the stem cell and progenitor cell compartment of skin and intestine, but the mechanisms controlling its recruitment to chromatin are largely unknown. Here, we show that serine 32-36 phosphorylation of IκBα favors its binding to nucleosomes and demonstrate that p-IκBα association with H4 depends on the acetylation of specific H4 lysine residues. The N-terminal tail of H4 is removed during intestinal cell differentiation by proteolytic cleavage by trypsin or chymotrypsin at residues 17-19, which reduces p-IκBα binding. Inhibition of trypsin and chymotrypsin activity in HT29 cells increases p-IκBα chromatin binding but, paradoxically, impaired goblet cell differentiation, comparable to IκBα deletion. Taken together, our results indicate that dynamic binding of IκBα to chromatin is a requirement for intestinal cell differentiation and provide a molecular basis for the understanding of the restricted nuclear distribution of p-IκBα in specific stem cell compartments.
Collapse
Affiliation(s)
- Laura Marruecos
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Barcelona, Spain
| | - Joan Bertran
- Faculty of Science and Technology, Bioinformatics and Medical Statistics Group, University of Vic - Central University of Catalonia, Barcelona, Spain
| | - Daniel Álvarez-Villanueva
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Barcelona, Spain
| | - María Carmen Mulero
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Barcelona, Spain.,Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Yolanda Guillén
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Barcelona, Spain
| | - Luis G Palma
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Barcelona, Spain
| | - Martin Floor
- Faculty of Science and Technology, Bioinformatics and Medical Statistics Group, University of Vic - Central University of Catalonia, Barcelona, Spain.,Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Anna Vert
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Barcelona, Spain
| | - Sara Arce-Gallego
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Barcelona, Spain
| | - Irene Pecharroman
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Barcelona, Spain
| | - Laura Batlle
- Tissue Engineering Unit. Center for Genomic Regulation (CRG), Barcelona, Spain
| | - Jordi Villà-Freixa
- Faculty of Science and Technology, Bioinformatics and Medical Statistics Group, University of Vic - Central University of Catalonia, Barcelona, Spain.,Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Gourisankar Ghosh
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Anna Bigas
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Barcelona, Spain
| | - Lluís Espinosa
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
22
|
A reaction-diffusion network model predicts a dual role of Cactus/IκB to regulate Dorsal/NFκB nuclear translocation in Drosophila. PLoS Comput Biol 2021; 17:e1009040. [PMID: 34043616 PMCID: PMC8189453 DOI: 10.1371/journal.pcbi.1009040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/09/2021] [Accepted: 05/03/2021] [Indexed: 11/19/2022] Open
Abstract
Dorsal-ventral patterning of the Drosophila embryo depends on the NFκB superfamily transcription factor Dorsal (Dl). Toll receptor activation signals for degradation of the IκB inhibitor Cactus (Cact), leading to a ventral-to-dorsal nuclear Dl gradient. Cact is critical for Dl nuclear import, as it binds to and prevents Dl from entering the nuclei. Quantitative analysis of cact mutants revealed an additional Cact function to promote Dl nuclear translocation in ventral regions of the embryo. To investigate this dual Cact role, we developed a predictive model based on a reaction-diffusion regulatory network. This network distinguishes non-uniform Toll-dependent Dl nuclear import and Cact degradation, from the Toll-independent processes of Cact degradation and reversible nuclear-cytoplasmic Dl flow. In addition, it incorporates translational control of Cact levels by Dl. Our model successfully reproduces wild-type data and emulates the Dl nuclear gradient in mutant dl and cact allelic combinations. Our results indicate that the dual role of Cact depends on the dynamics of Dl-Cact trimers along the dorsal-ventral axis: In the absence of Toll activation, free Dl-Cact trimers retain Dl in the cytoplasm, limiting the flow of Dl into the nucleus; in ventral-lateral regions, Dl-Cact trimers are recruited by Toll activation into predominant signaling complexes and promote Dl nuclear translocation. Simulations suggest that the balance between Toll-dependent and Toll-independent processes are key to this dynamics and reproduce the full assortment of Cact effects. Considering the high evolutionary conservation of these pathways, our analysis should contribute to understanding NFκB/c-Rel activation in other contexts such as in the vertebrate immune system and disease. In Drosophila, Toll pathway establishes spatially distinct gene expression territories that define the embryonic dorsal-ventral axis. Toll activation leads to degradation of the IκB inhibitor Cactus, releasing the NFκB superfamily transcription factor Dorsal for nuclear entry. Recently, quantitative analysis of cact mutants revealed that Cact displays an additional function to promote Dl nuclear translocation in ventral regions of the embryo. To understand this novel activity, we developed a predictive theoretical model that shows that the kinetics of Dorsal-Cactus complex formation prior to their recruitment to Toll-signaling complexes is an essential regulatory hub. Cactus controls the balance between the recruitment of these complexes by active Toll receptor and association-dissociation events that generate free Dorsal for direct nuclear import.
Collapse
|
23
|
El-Kadiry AEH, Merhi Y. The Role of the Proteasome in Platelet Function. Int J Mol Sci 2021; 22:3999. [PMID: 33924425 PMCID: PMC8069084 DOI: 10.3390/ijms22083999] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Platelets are megakaryocyte-derived acellular fragments prepped to maintain primary hemostasis and thrombosis by preserving vascular integrity. Although they lack nuclei, platelets harbor functional genomic mediators that bolster platelet activity in a signal-specific manner by performing limited de novo protein synthesis. Furthermore, despite their limited protein synthesis, platelets are equipped with multiple protein degradation mechanisms, such as the proteasome. In nucleated cells, the functions of the proteasome are well established and primarily include proteostasis among a myriad of other signaling processes. However, the role of proteasome-mediated protein degradation in platelets remains elusive. In this review article, we recapitulate the developing literature on the functions of the proteasome in platelets, discussing its emerging regulatory role in platelet viability and function and highlighting how its functional coupling with the transcription factor NF-κB constitutes a novel potential therapeutic target in atherothrombotic diseases.
Collapse
Affiliation(s)
- Abed El-Hakim El-Kadiry
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, Montreal, QC H1T 1C8, Canada;
- Biomedical Sciences Program, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Yahye Merhi
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, Montreal, QC H1T 1C8, Canada;
- Biomedical Sciences Program, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
24
|
Liu Y, Trnka MJ, Guan S, Kwon D, Kim DH, Chen JJ, Greer PA, Burlingame AL, Correia MA. A Novel Mechanism for NF-κB-activation via IκB-aggregation: Implications for Hepatic Mallory-Denk-Body Induced Inflammation. Mol Cell Proteomics 2020; 19:1968-1986. [PMID: 32912968 PMCID: PMC7710137 DOI: 10.1074/mcp.ra120.002316] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 11/06/2022] Open
Abstract
Mallory-Denk-bodies (MDBs) are hepatic protein aggregates associated with inflammation both clinically and in MDB-inducing models. Similar protein aggregation in neurodegenerative diseases also triggers inflammation and NF-κB activation. However, the precise mechanism that links protein aggregation to NF-κB-activation and inflammatory response remains unclear. Herein we find that treating primary hepatocytes with MDB-inducing agents (N-methylprotoporphyrin (NMPP), protoporphyrin IX (PPIX), or Zinc-protoporphyrin IX (ZnPP)) elicited an IκBα-loss with consequent NF-κB activation. Four known mechanisms of IκBα-loss i.e. the canonical ubiquitin-dependent proteasomal degradation (UPD), autophagic-lysosomal degradation, calpain degradation and translational inhibition, were all probed and excluded. Immunofluorescence analyses of ZnPP-treated cells coupled with 8 M urea/CHAPS-extraction revealed that this IκBα-loss was due to its sequestration along with IκBβ into insoluble aggregates, thereby releasing NF-κB. Through affinity pulldown, proximity biotinylation by antibody recognition, and other proteomic analyses, we verified that NF-κB subunit p65, which stably interacts with IκBα under normal conditions, no longer binds to it upon ZnPP-treatment. Additionally, we identified 10 proteins that interact with IκBα under baseline conditions, aggregate upon ZnPP-treatment, and maintain the interaction with IκBα after ZnPP-treatment, either by cosequestering into insoluble aggregates or through a different mechanism. Of these 10 proteins, the nucleoporins Nup153 and Nup358/RanBP2 were identified through RNA-interference, as mediators of IκBα-nuclear import. The concurrent aggregation of IκBα, NUP153, and RanBP2 upon ZnPP-treatment, synergistically precluded the nuclear entry of IκBα and its consequent binding and termination of NF-κB activation. This novel mechanism may account for the protein aggregate-induced inflammation observed in liver diseases, thus identifying novel targets for therapeutic intervention. Because of inherent commonalities this MDB cell model is a bona fide protoporphyric model, making these findings equally relevant to the liver inflammation associated with clinical protoporphyria.
Collapse
Affiliation(s)
- Yi Liu
- Departments of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Michael J Trnka
- Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Shenheng Guan
- Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Doyoung Kwon
- Departments of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Do-Hyung Kim
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, USA
| | - J-J Chen
- Institute for Medical Engineering and Science, MIT, Cambridge, Massachusetts, USA
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - A L Burlingame
- Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Maria Almira Correia
- Departments of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA; Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA; The Liver Center, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
25
|
Morvaridzadeh M, Sadeghi E, Agah S, Nachvak SM, Fazelian S, Moradi F, Persad E, Heshmati J. Effect of melatonin supplementation on oxidative stress parameters: A systematic review and meta-analysis. Pharmacol Res 2020; 161:105210. [PMID: 33007423 DOI: 10.1016/j.phrs.2020.105210] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Oxidative stress, defined as an imbalance between pro-oxidants and neutralizing antioxidants within the body, is a growing public health concern. Oxidative stress is involved in the progression of nearly all chronic diseases. Melatonin has been suggested to reduce oxidative stress by its potential radical scavenging properties. OBJECTIVE To determine the efficacy and safety of melatonin as a therapy for the improvement of oxidative stress parameters in randomized controlled trials. METHODS A systematic database search using Scopus, PubMed/Medline, EMBASE, Web of Science, the Cochrane Controlled Register of Trials and clinicaltrials.gov (https://clinicaltrials.gov) for studies published up to July 2020 was conducted. We included studies which investigated the effect of supplemental melatonin compared to placebo on oxidative stress parameters in unhealthy patients. Quantitative data synthesis was conducted using a random-effects model with standard mean difference (SMD) and 95 % confidence intervals (CI). Cochrane's Q and I2 values were used to evaluate heterogeneity. RESULTS A total of 12 randomized controlled trials (RCTs) were eligible. The meta-analysis indicated an association between melatonin intake and a significant increase in total antioxidant capacity (TAC) (SMD: 0.76; 95 % CI: 0.30, 1.21; I2 = 80.1 %), glutathione (GSH) levels (SMD: 0.57; 95 % CI: 0.32, 0.83; I2 = 15.1 %), superoxide dismutase (SOD) (SMD: 1.38; 95 % CI: 0.13, 2.62; I2 = 86.9 %), glutathione peroxidase (GPx) (SMD: 1.36; 95 % CI: 0.46, 2.30; I2 = 89.3 %), glutathione reductase (GR) (SMD: 1.21; 95 % CI: 0.65, 1.77; I2 = 00.0 %) activities, and a significant reduction in malondialdehyde (MDA) levels (SMD: -0.79; 95 % CI: -1.19, -0.39; I2 = 73.1 %). Melatonin intake was not shown to significantly affect nitric oxide (NO) levels (SMD: -0.24; 95 % CI: -0.61, 0.14; I2 = 00.0 %) or catalase (CAT) activity (SMD: -1.38; 95 % CI: -1.42, 4.18; I2 = 96.6 %). CONCLUSION Melatonin intake was shown to have a significant impact on improving Oxidative stress parameters. However, future research through large, well-designed randomized controlled trials are required to determine the effect of melatonin on oxidative stress parameters in different age groups and different disease types.
Collapse
Affiliation(s)
- Mojgan Morvaridzadeh
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Sadeghi
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mostafa Nachvak
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Siavash Fazelian
- Clinical Research Development Unit, Ayatollah Kashani Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Moradi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Emma Persad
- Department for Evidence-based Medicine and Evaluation, Danube University Krems, Krems, Austria
| | - Javad Heshmati
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
26
|
Romero N, Van Waesberghe C, Favoreel HW. Pseudorabies Virus Infection of Epithelial Cells Leads to Persistent but Aberrant Activation of the NF-κB Pathway, Inhibiting Hallmark NF-κB-Induced Proinflammatory Gene Expression. J Virol 2020; 94:e00196-20. [PMID: 32132236 PMCID: PMC7199412 DOI: 10.1128/jvi.00196-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/27/2020] [Indexed: 02/03/2023] Open
Abstract
The nuclear factor kappa B (NF-κB) is a potent transcription factor, activation of which typically results in robust proinflammatory signaling and triggering of fast negative feedback modulators to avoid excessive inflammatory responses. Here, we report that infection of epithelial cells, including primary porcine respiratory epithelial cells, with the porcine alphaherpesvirus pseudorabies virus (PRV) results in the gradual and persistent activation of NF-κB, illustrated by proteasome-dependent degradation of the inhibitory NF-κB regulator IκB and nuclear translocation and phosphorylation of the NF-κB subunit p65. PRV-induced persistent activation of NF-κB does not result in expression of negative feedback loop genes, like the gene for IκBα or A20, and does not trigger expression of prototypical proinflammatory genes, like the gene for tumor necrosis factor alpha (TNF-α) or interleukin-6 (IL-6). In addition, PRV infection inhibits TNF-α-induced canonical NF-κB activation. Hence, PRV infection triggers persistent NF-κB activation in an unorthodox way and dramatically modulates the NF-κB signaling axis, preventing typical proinflammatory gene expression and the responsiveness of cells to canonical NF-κB signaling, which may aid the virus in modulating early proinflammatory responses in the infected host.IMPORTANCE The NF-κB transcription factor is activated via different key inflammatory pathways and typically results in the fast expression of several proinflammatory genes as well as negative feedback loop genes to prevent excessive inflammation. In the current report, we describe that infection of cells with the porcine alphaherpesvirus pseudorabies virus (PRV) triggers a gradual and persistent aberrant activation of NF-κB, which does not result in expression of hallmark proinflammatory or negative feedback loop genes. In addition, although PRV-induced NF-κB activation shares some mechanistic features with canonical NF-κB activation, it also shows remarkable differences; e.g., it is largely independent of the canonical IκB kinase (IKK) and even renders infected cells resistant to canonical NF-κB activation by the inflammatory cytokine TNF-α. Aberrant PRV-induced NF-κB activation may therefore paradoxically serve as a viral immune evasion strategy and may represent an important tool to unravel currently unknown mechanisms and consequences of NF-κB activation.
Collapse
Affiliation(s)
- Nicolás Romero
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Cliff Van Waesberghe
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Herman W Favoreel
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
27
|
Marruecos L, Bertran J, Guillén Y, González J, Batlle R, López-Arribillaga E, Garrido M, Ruiz-Herguido C, Lisiero D, González-Farré M, Arce-Gallego S, Iglesias M, Nebreda AR, Miyamoto S, Bigas A, Espinosa L. IκBα deficiency imposes a fetal phenotype to intestinal stem cells. EMBO Rep 2020; 21:e49708. [PMID: 32270911 DOI: 10.15252/embr.201949708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 12/31/2022] Open
Abstract
The intestinal epithelium is a paradigm of adult tissue in constant regeneration that is supported by intestinal stem cells (ISCs). The mechanisms regulating ISC homeostasis after injury are poorly understood. We previously demonstrated that IκBα, the main regulator of NF-κB, exerts alternative nuclear functions as cytokine sensor in a subset of PRC2-regulated genes. Here, we show that nuclear IκBα is present in the ISC compartment. Mice deficient for IκBα show altered intestinal cell differentiation with persistence of a fetal-like ISC phenotype, associated with aberrant PRC2 activity at specific loci. Moreover, IκBα-deficient intestinal cells produce morphologically aberrant organoids carrying a PRC2-dependent fetal-like transcriptional signature. DSS treatment, which induces acute damage in the colonic epithelium of mice, results in a temporary loss of nuclear P-IκBα and its subsequent accumulation in early CD44-positive regenerating areas. Importantly, IκBα-deficient mice show higher resistance to damage, likely due to the persistent fetal-like ISC phenotype. These results highlight intestinal IκBα as a chromatin sensor of inflammation in the ISC compartment.
Collapse
Affiliation(s)
- Laura Marruecos
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| | - Joan Bertran
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain.,Faculty of Science and Technology, Bioinformatics and Medical Statistics Group, University of Vic-Central University of Catalonia, Vic, Spain
| | - Yolanda Guillén
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| | - Jéssica González
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| | - Raquel Batlle
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Erika López-Arribillaga
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| | - Marta Garrido
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| | - Cristina Ruiz-Herguido
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| | - Dominique Lisiero
- The McArdle Laboratory of Cancer Research, University of Wisconsin, Madison, WI, USA.,Department of Oncology, University of Wisconsin, Madison, WI, USA
| | - Mónica González-Farré
- Department of Pathology, CIBERONC, University Autonomous of Barcelona, Hospital del Mar, Barcelona, Spain
| | - Sara Arce-Gallego
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| | - Mar Iglesias
- Department of Pathology, CIBERONC, University Autonomous of Barcelona, Hospital del Mar, Barcelona, Spain
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Shigeki Miyamoto
- The McArdle Laboratory of Cancer Research, University of Wisconsin, Madison, WI, USA.,Department of Oncology, University of Wisconsin, Madison, WI, USA
| | - Anna Bigas
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| | - Lluís Espinosa
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
28
|
Schloop AE, Bandodkar PU, Reeves GT. Formation, interpretation, and regulation of the Drosophila Dorsal/NF-κB gradient. Curr Top Dev Biol 2019; 137:143-191. [PMID: 32143742 DOI: 10.1016/bs.ctdb.2019.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The morphogen gradient of the transcription factor Dorsal in the early Drosophila embryo has become one of the most widely studied tissue patterning systems. Dorsal is a Drosophila homolog of mammalian NF-κB and patterns the dorsal-ventral axis of the blastoderm embryo into several tissue types by spatially regulating upwards of 100 zygotic genes. Recent studies using fluorescence microscopy and live imaging have quantified the Dorsal gradient and its target genes, which has paved the way for mechanistic modeling of the gradient. In this review, we describe the mechanisms behind the initiation of the Dorsal gradient and its regulation of target genes. The main focus of the review is a discussion of quantitative and computational studies of the Dl gradient system, including regulation of the Dl gradient. We conclude with a discussion of potential future directions.
Collapse
Affiliation(s)
- Allison E Schloop
- Genetics Program, North Carolina State University, Raleigh, NC, United States
| | - Prasad U Bandodkar
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States
| | - Gregory T Reeves
- Genetics Program, North Carolina State University, Raleigh, NC, United States; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
29
|
Kojok K, El-Kadiry AEH, Merhi Y. Role of NF-κB in Platelet Function. Int J Mol Sci 2019; 20:E4185. [PMID: 31461836 PMCID: PMC6747346 DOI: 10.3390/ijms20174185] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 01/04/2023] Open
Abstract
Platelets are megakaryocyte-derived fragments lacking nuclei and prepped to maintain primary hemostasis by initiating blood clots on injured vascular endothelia. Pathologically, platelets undergo the same physiological processes of activation, secretion, and aggregation yet with such pronouncedness that they orchestrate and make headway the progression of atherothrombotic diseases not only through clot formation but also via forcing a pro-inflammatory state. Indeed, nuclear factor-κB (NF-κB) is largely implicated in atherosclerosis and its pathological complication in atherothrombotic diseases due to its transcriptional role in maintaining pro-survival and pro-inflammatory states in vascular and blood cells. On the other hand, we know little on the functions of platelet NF-κB, which seems to function in other non-genomic ways to modulate atherothrombosis. Therein, this review will resemble a rich portfolio for NF-κB in platelets, specifically showing its implications at the levels of platelet survival and function. We will also share the knowledge thus far on the effects of active ingredients on NF-κB in general, as an extrapolative method to highlight the potential therapeutic targeting of NF-κB in coronary diseases. Finally, we will unzip a new horizon on a possible extra-platelet role of platelet NF-κB, which will better expand our knowledge on the etiology and pathophysiology of atherothrombosis.
Collapse
Affiliation(s)
- Kevin Kojok
- The Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, 5000 Belanger Street, Montreal, H1T 1C8, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, H3T 1J4, QC, Canada
| | - Abed El-Hakim El-Kadiry
- The Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, 5000 Belanger Street, Montreal, H1T 1C8, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, H3T 1J4, QC, Canada
| | - Yahye Merhi
- The Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, 5000 Belanger Street, Montreal, H1T 1C8, QC, Canada.
- Faculty of Medicine, Université de Montréal, Montreal, H3T 1J4, QC, Canada.
| |
Collapse
|
30
|
Single-Cell Analysis of Multiple Steps of Dynamic NF-κB Regulation in Interleukin-1α-Triggered Tumor Cells Using Proximity Ligation Assays. Cancers (Basel) 2019; 11:cancers11081199. [PMID: 31426445 PMCID: PMC6721548 DOI: 10.3390/cancers11081199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
The frequently occurring heterogeneity of cancer cells and their functional interaction with immune cells in the tumor microenvironment raises the need to study signaling pathways at the single cell level with high precision, sensitivity, and spatial resolution. As aberrant NF-κB activity has been implicated in almost all steps of cancer development, we analyzed the dynamic regulation and activation status of the canonical NF-κB pathway in control and IL-1α-stimulated individual cells using proximity ligation assays (PLAs). These systematic experiments allowed the visualization of the dynamic dissociation and re-formation of endogenous p65/IκBα complexes and the nuclear translocation of NF-κB p50/p65 dimers. PLA combined with immunostaining for p65 or with NFKBIA single molecule mRNA-FISH facilitated the analysis of (i) further levels of the NF-κB pathway, (i) its functionality for downstream gene expression, and (iii) the heterogeneity of the NF-κB response in individual cells. PLA also revealed the interaction between NF-κB p65 and the P-body component DCP1a, a new p65 interactor that contributes to efficient p65 NF-κB nuclear translocation. In summary, these data show that PLA technology faithfully mirrored all aspects of dynamic NF-κB regulation, thus allowing molecular diagnostics of this key pathway at the single cell level which will be required for future precision medicine.
Collapse
|
31
|
Kabacaoglu D, Ruess DA, Ai J, Algül H. NF-κB/Rel Transcription Factors in Pancreatic Cancer: Focusing on RelA, c-Rel, and RelB. Cancers (Basel) 2019; 11:E937. [PMID: 31277415 PMCID: PMC6679104 DOI: 10.3390/cancers11070937] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Regulation of Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/Rel transcription factors (TFs) is extremely cell-type-specific owing to their ability to act disparately in the context of cellular homeostasis driven by cellular fate and the microenvironment. This is also valid for tumor cells in which every single component shows heterogenic effects. Whereas many studies highlighted a per se oncogenic function for NF-κB/Rel TFs across cancers, recent advances in the field revealed their additional tumor-suppressive nature. Specifically, pancreatic ductal adenocarcinoma (PDAC), as one of the deadliest malignant diseases, shows aberrant canonical-noncanonical NF-κB signaling activity. Although decades of work suggest a prominent oncogenic activity of NF-κB signaling in PDAC, emerging evidence points to the opposite including anti-tumor effects. Considering the dual nature of NF-κB signaling and how it is closely linked to many other cancer related signaling pathways, it is essential to dissect the roles of individual Rel TFs in pancreatic carcinogenesis and tumor persistency and progression. Here, we discuss recent knowledge highlighting the role of Rel TFs RelA, RelB, and c-Rel in PDAC development and maintenance. Next to providing rationales for therapeutically harnessing Rel TF function in PDAC, we compile strategies currently in (pre-)clinical evaluation.
Collapse
Affiliation(s)
- Derya Kabacaoglu
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Dietrich A Ruess
- Department of Surgery, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Jiaoyu Ai
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Hana Algül
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| |
Collapse
|
32
|
Egusquiaguirre SP, Yeh JE, Walker SR, Liu S, Frank DA. The STAT3 Target Gene TNFRSF1A Modulates the NF-κB Pathway in Breast Cancer Cells. Neoplasia 2018; 20:489-498. [PMID: 29621649 PMCID: PMC5916089 DOI: 10.1016/j.neo.2018.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/02/2018] [Accepted: 03/06/2018] [Indexed: 01/24/2023] Open
Abstract
The transcription factor STAT3 is activated inappropriately in 70% of breast cancers, most commonly in triple negative breast cancer (TNBC). Although the transcriptional function of STAT3 is essential for tumorigenesis, the key target genes regulated by STAT3 in driving tumor pathogenesis have remained unclear. To identify critical STAT3 target genes, we treated TNBC cell lines with two different compounds that block STAT3 transcriptional function, pyrimethamine and PMPTP. We then performed gene expression analysis to identify genes whose expression is strongly down-regulated by both STAT3 inhibitors. Foremost among the down-regulated genes was TNFRSF1A, which encodes a transmembrane receptor for TNFα. We showed that STAT3 binds directly to a regulatory region within the TNFRSF1A gene, and that TNFRSF1A levels are dependent on STAT3 function in both constitutive and cytokine-induced models of STAT3 activation. Furthermore, TNFRSF1A is a major mediator of both basal and TNFα-induced NF-κB activity in breast cancer cells. We extended these findings to primary human breast cancers, in which we found that high TNFRSF1A transcript levels correlated with STAT3 activation. In addition, and consistent with a causal role, increased TNFRSF1A expression was associated with an NF-κB gene expression in signature in breast cancers. Thus, TNFRSF1A is a STAT3 target gene that regulates the NF-κB pathway. These findings reveal a novel functional crosstalk between STAT3 and NF-κB signaling in breast cancer. Furthermore, elevated TNFRSF1A levels may predict a subset of breast tumors that are sensitive to STAT3 transcriptional inhibitors, and may be a biomarker for response to inhibition of this pathway.
Collapse
Affiliation(s)
- Susana P Egusquiaguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115; Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Jennifer E Yeh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115; Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Sarah R Walker
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115; Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Suhu Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115; Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - David A Frank
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115; Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115.
| |
Collapse
|
33
|
Pickens JA, Tripp RA. Verdinexor Targeting of CRM1 is a Promising Therapeutic Approach against RSV and Influenza Viruses. Viruses 2018; 10:E48. [PMID: 29361733 PMCID: PMC5795461 DOI: 10.3390/v10010048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Two primary causes of respiratory tract infections are respiratory syncytial virus (RSV) and influenza viruses, both of which remain major public health concerns. There are a limited number of antiviral drugs available for the treatment of RSV and influenza, each having limited effectiveness and each driving selective pressure for the emergence of drug-resistant viruses. Novel broad-spectrum antivirals are needed to circumvent problems with current disease intervention strategies, while improving the cytokine-induced immunopathology associated with RSV and influenza infections. In this review, we examine the use of Verdinexor (KPT-335, a novel orally bioavailable drug that functions as a selective inhibitor of nuclear export, SINE), as an antiviral with multifaceted therapeutic potential. KPT-335 works to (1) block CRM1 (i.e., Chromosome Region Maintenance 1; exportin 1 or XPO1) mediated export of viral proteins critical for RSV and influenza pathogenesis; and (2) repress nuclear factor κB (NF-κB) activation, thus reducing cytokine production and eliminating virus-associated immunopathology. The repurposing of SINE compounds as antivirals shows promise not only against RSV and influenza virus but also against other viruses that exploit the nucleus as part of their viral life cycle.
Collapse
Affiliation(s)
- Jennifer A Pickens
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
34
|
Szymańska Z, Cytowski M, Mitchell E, Macnamara CK, Chaplain MAJ. Computational Modelling of Cancer Development and Growth: Modelling at Multiple Scales and Multiscale Modelling. Bull Math Biol 2017. [PMID: 28634857 DOI: 10.1007/s11538-017-0292-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this paper, we present two mathematical models related to different aspects and scales of cancer growth. The first model is a stochastic spatiotemporal model of both a synthetic gene regulatory network (the example of a three-gene repressilator is given) and an actual gene regulatory network, the NF-[Formula: see text]B pathway. The second model is a force-based individual-based model of the development of a solid avascular tumour with specific application to tumour cords, i.e. a mass of cancer cells growing around a central blood vessel. In each case, we compare our computational simulation results with experimental data. In the final discussion section, we outline how to take the work forward through the development of a multiscale model focussed at the cell level. This would incorporate key intracellular signalling pathways associated with cancer within each cell (e.g. p53-Mdm2, NF-[Formula: see text]B) and through the use of high-performance computing be capable of simulating up to [Formula: see text] cells, i.e. the tissue scale. In this way, mathematical models at multiple scales would be combined to formulate a multiscale computational model.
Collapse
Affiliation(s)
- Zuzanna Szymańska
- ICM, University of Warsaw, ul. Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Maciej Cytowski
- ICM, University of Warsaw, ul. Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Elaine Mitchell
- Division of Mathematics, University of Dundee, Dundee, DD1 4HN, Scotland, UK
| | - Cicely K Macnamara
- School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS, Scotland, UK
| | - Mark A J Chaplain
- School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS, Scotland, UK.
| |
Collapse
|
35
|
BCA2/Rabring7 Interferes with HIV-1 Proviral Transcription by Enhancing the SUMOylation of IκBα. J Virol 2017; 91:JVI.02098-16. [PMID: 28122985 PMCID: PMC5375697 DOI: 10.1128/jvi.02098-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/18/2017] [Indexed: 12/18/2022] Open
Abstract
BCA2/Rabring7 is a BST2 cofactor that promotes the lysosomal degradation of trapped HIV-1 virions but also functions as a BST2-independent anti-HIV factor by targeting Gag for lysosomal degradation. Since many antiviral factors regulate the NF-κB innate signaling pathway, we investigated whether BCA2 is also connected to this proinflammatory cascade. Here, we show for the first time that BCA2 is induced by NF-κB-activating proinflammatory cytokines and that upregulation of BCA2 provides regulatory negative feedback on NF-κB. Specifically, BCA2 serves as an E3 SUMO ligase in the SUMOylation of IκBα, which in turn enhances the sequestration of NF-κB components in the cytoplasm. Since HIV-1 utilizes NF-κB to promote proviral transcription, the BCA2-mediated inhibition of NF-κB significantly decreases the transcriptional activity of HIV-1 (up to 4.4-fold in CD4+ T cells). Therefore, our findings indicate that BCA2 poses an additional barrier to HIV-1 infection: not only does BCA2 prevent assembly and release of nascent virions, it also significantly restricts HIV-1 transcription by inhibiting the NF-κB pathway.IMPORTANCE Understanding the interactions between HIV-1 and its host cells is highly relevant to the design of new drugs aimed at eliminating HIV-1 from infected individuals. We have previously shown that BCA2, a cofactor of BST2 in the restriction of HIV-1, also prevents virion assembly in a BST2-independent manner. In this study, we found that BCA2 negatively regulates the NF-κB pathway-a signaling cascade necessary for HIV-1 replication and infectivity-which in turn detrimentally affects proviral transcription and virus propagation. Thus, our results indicate that, besides its previously described functions as an antiviral factor, BCA2 poses an additional barrier to HIV-1 replication at the transcriptional level.
Collapse
|
36
|
Martincuks A, Andryka K, Küster A, Schmitz-Van de Leur H, Komorowski M, Müller-Newen G. Nuclear translocation of STAT3 and NF-κB are independent of each other but NF-κB supports expression and activation of STAT3. Cell Signal 2017; 32:36-47. [PMID: 28089769 DOI: 10.1016/j.cellsig.2017.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 12/31/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022]
Abstract
NF-κB and STAT3 are essential transcription factors in immunity and act at the interface of the transition from chronic inflammation to cancer. Different functional crosstalks between NF-κB and STAT3 have been recently described arguing for a direct interaction of both proteins. During a systematic analysis of NF-κB/STAT3 crosstalk we observed that appearance of the subcellular distribution of NF-κB and STAT3 in immunofluorescence heavily depends on the fixation procedure. Therefore, we established an optimized fixation protocol for the reliable simultaneous analysis of the subcellular distributions of both transcription factors. Using this protocol we found that cytokine-induced nuclear accumulation of NF-κB or STAT3 did not alter the subcellular distribution of the other transcription factor. Both knockout and overexpression of STAT3 does not have any major effect on canonical TNFα-NF-κB signalling in MEF or HeLa cells. Similarly, knockout of p65 did not alter nuclear accumulation of STAT3 in response to IL-6. However, p65 expression correlates with elevated total cellular levels of STAT3 and STAT1 and supports activation of these transcription factors. Our findings in MEF cells argue against a direct physical interaction of free cellular NF-κB and STAT3 but point to more intricate functional interactions.
Collapse
Affiliation(s)
- Antons Martincuks
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Katarzyna Andryka
- Systems Biology of Biochemical Signalling, Laboratory of Modelling in Biology and Medicine, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5b, 02-106 Warszawa, Poland
| | - Andrea Küster
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | | | - Michal Komorowski
- Systems Biology of Biochemical Signalling, Laboratory of Modelling in Biology and Medicine, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5b, 02-106 Warszawa, Poland
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.
| |
Collapse
|
37
|
Role for NF-κB inflammatory signalling pathway in tenofovir disoproxil fumarate (TDF) induced renal damage in rats. Food Chem Toxicol 2017; 99:103-118. [DOI: 10.1016/j.fct.2016.11.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/03/2016] [Accepted: 11/24/2016] [Indexed: 01/28/2023]
|
38
|
Kuri P, Ellwanger K, Kufer TA, Leptin M, Bajoghli B. A high-sensitivity bi-directional reporter to monitor NF-κB activity in cell culture and zebrafish in real time. J Cell Sci 2016; 130:648-657. [PMID: 27980067 DOI: 10.1242/jcs.196485] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor (NF)-κB transcription factors play major roles in numerous biological processes including development and immunity. Here, we engineered a novel bi-directional NF-κB-responsive reporter, pSGNluc, in which a high-affinity NF-κB promoter fragment simultaneously drives expression of luciferase and GFP. Treatment with TNFα (also known as TNF) induced a strong, dose-dependent luciferase signal in cell culture. The degree of induction over background was comparable to that of other NF-κB-driven luciferase reporters, but the absolute level of expression was at least 20-fold higher. This extends the sensitivity range of otherwise difficult assays mediated exclusively by endogenously expressed receptors, as we show for Nod1 signaling in HEK293 cells. To measure NF-κB activity in the living organism, we established a transgenic zebrafish line carrying the pSGNluc construct. Live in toto imaging of transgenic embryos revealed the activation patterns of NF-κB signaling during embryonic development and as responses to inflammatory stimuli. Taken together, by integrating qualitative and quantitative NF-κB reporter activity, pSGNluc is a valuable tool for studying NF-κB signaling at high spatiotemporal resolution in cultured cells and living animals that goes beyond the possibilities provided by currently available reporters.
Collapse
Affiliation(s)
- Paola Kuri
- Directors' Research Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Kornelia Ellwanger
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70593 Stuttgart, Germany
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70593 Stuttgart, Germany
| | - Maria Leptin
- Directors' Research Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany .,Institute of Genetics, University of Cologne, Zülpicherstrasse 47a, 50674 Cologne, Germany.,EMBO, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Baubak Bajoghli
- Directors' Research Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
39
|
Ankers JM, Awais R, Jones NA, Boyd J, Ryan S, Adamson AD, Harper CV, Bridge L, Spiller DG, Jackson DA, Paszek P, Sée V, White MR. Dynamic NF-κB and E2F interactions control the priority and timing of inflammatory signalling and cell proliferation. eLife 2016; 5. [PMID: 27185527 PMCID: PMC4869934 DOI: 10.7554/elife.10473] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 04/13/2016] [Indexed: 01/07/2023] Open
Abstract
Dynamic cellular systems reprogram gene expression to ensure appropriate cellular fate responses to specific extracellular cues. Here we demonstrate that the dynamics of Nuclear Factor kappa B (NF-κB) signalling and the cell cycle are prioritised differently depending on the timing of an inflammatory signal. Using iterative experimental and computational analyses, we show physical and functional interactions between NF-κB and the E2 Factor 1 (E2F-1) and E2 Factor 4 (E2F-4) cell cycle regulators. These interactions modulate the NF-κB response. In S-phase, the NF-κB response was delayed or repressed, while cell cycle progression was unimpeded. By contrast, activation of NF-κB at the G1/S boundary resulted in a longer cell cycle and more synchronous initial NF-κB responses between cells. These data identify new mechanisms by which the cellular response to stress is differentially controlled at different stages of the cell cycle. DOI:http://dx.doi.org/10.7554/eLife.10473.001 Investigating how cells adapt to the constantly changing environment inside the body is vitally important for understanding how the body responds to an injury or infection. One of the ways in which human cells adapt is by dividing to produce new cells. This takes place in a repeating pattern of events, known as the cell cycle, through which a cell copies its DNA (in a stage known as S-phase) and then divides to make two daughter cells. Each stage of the cell cycle is tightly controlled; for example, a family of proteins called E2 factors control the entry of the cell into S phase. “Inflammatory” signals produced by a wound or during an infection can activate a protein called Nuclear Factor-kappaB (NF-κB), which controls the activity of genes that allow cells to adapt to the situation. Research shows that the activity of NF-κB is also regulated by the cell cycle, but it has not been clear how this works. Here, Ankers et al. investigated whether the stage of the cell cycle might affect how NF-κB responds to inflammatory signals. The experiments show that the NF-κB response was stronger in cells that were just about to enter S-phase than in cells that were already copying their DNA. An E2 factor called E2F-1 –which accumulates in the run up to S-phase – interacts with NF-κB and can alter the activity of certain genes. However, during S-phase, another E2 factor family member called E2F-4 binds to NF-κB and represses its activation. Next, Ankers et al. used a mathematical model to understand how these protein interactions can affect the response of cells to inflammatory signals. These findings suggest that direct interactions between E2 factor proteins and NF-κB enable cells to decide whether to divide or react in different ways to inflammatory signals. The research tools developed in this study, combined with other new experimental techniques, will allow researchers to accurately predict how cells will respond to inflammatory signals at different points in the cell cycle. DOI:http://dx.doi.org/10.7554/eLife.10473.002
Collapse
Affiliation(s)
- John M Ankers
- Centre for Cell Imaging, Institute of Integrative Biology, Liverpool, United Kingdom
| | - Raheela Awais
- Centre for Cell Imaging, Institute of Integrative Biology, Liverpool, United Kingdom.,Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Nicholas A Jones
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - James Boyd
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Sheila Ryan
- Centre for Cell Imaging, Institute of Integrative Biology, Liverpool, United Kingdom.,Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Antony D Adamson
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Claire V Harper
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Lloyd Bridge
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom.,Department of Mathematics, University of Swansea, Swansea, United Kingdom
| | - David G Spiller
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Dean A Jackson
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Pawel Paszek
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Violaine Sée
- Centre for Cell Imaging, Institute of Integrative Biology, Liverpool, United Kingdom
| | - Michael Rh White
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| |
Collapse
|
40
|
Csizmok V, Follis AV, Kriwacki RW, Forman-Kay JD. Dynamic Protein Interaction Networks and New Structural Paradigms in Signaling. Chem Rev 2016; 116:6424-62. [PMID: 26922996 DOI: 10.1021/acs.chemrev.5b00548] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Understanding signaling and other complex biological processes requires elucidating the critical roles of intrinsically disordered proteins (IDPs) and regions (IDRs), which represent ∼30% of the proteome and enable unique regulatory mechanisms. In this review, we describe the structural heterogeneity of disordered proteins that underpins these mechanisms and the latest progress in obtaining structural descriptions of conformational ensembles of disordered proteins that are needed for linking structure and dynamics to function. We describe the diverse interactions of IDPs that can have unusual characteristics such as "ultrasensitivity" and "regulated folding and unfolding". We also summarize the mounting data showing that large-scale assembly and protein phase separation occurs within a variety of signaling complexes and cellular structures. In addition, we discuss efforts to therapeutically target disordered proteins with small molecules. Overall, we interpret the remodeling of disordered state ensembles due to binding and post-translational modifications within an expanded framework for allostery that provides significant insights into how disordered proteins transmit biological information.
Collapse
Affiliation(s)
- Veronika Csizmok
- Molecular Structure & Function, The Hospital for Sick Children , Toronto, ON M5G 0A4, Canada
| | - Ariele Viacava Follis
- Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center , Memphis, Tennessee 38163, United States
| | - Julie D Forman-Kay
- Molecular Structure & Function, The Hospital for Sick Children , Toronto, ON M5G 0A4, Canada.,Department of Biochemistry, University of Toronto , Toronto, ON M5S 1A8, Canada
| |
Collapse
|
41
|
Hochrainer K, Pejanovic N, Olaseun VA, Zhang S, Iadecola C, Anrather J. The ubiquitin ligase HERC3 attenuates NF-κB-dependent transcription independently of its enzymatic activity by delivering the RelA subunit for degradation. Nucleic Acids Res 2015; 43:9889-904. [PMID: 26476452 PMCID: PMC4787756 DOI: 10.1093/nar/gkv1064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/06/2015] [Indexed: 11/21/2022] Open
Abstract
Activation of NF-κB-dependent transcription represents an important hallmark of inflammation. While the acute inflammatory response is per se beneficial, it can become deleterious if its spatial and temporal profile is not tightly controlled. Classically, NF-κB activity is limited by cytoplasmic retention of the NF-κB dimer through binding to inhibitory IκB proteins. However, increasing evidence suggests that NF-κB activity can also be efficiently contained by direct ubiquitination of NF-κB subunits. Here, we identify the HECT-domain ubiquitin ligase HERC3 as novel negative regulator of NF-κB activity. We find that HERC3 restricts NF-κB nuclear import and DNA binding without affecting IκBα degradation. Instead HERC3 indirectly binds to the NF-κB RelA subunit after liberation from IκBα inhibitor leading to its ubiquitination and protein destabilization. Remarkably, the regulation of RelA activity by HERC3 is independent of its inherent ubiquitin ligase activity. Rather, we show that HERC3 and RelA are part of a multi-protein complex containing the proteasome as well as the ubiquitin-like protein ubiquilin-1 (UBQLN1). We present evidence that HERC3 and UBQLN1 provide a link between NF-κB RelA and the 26S proteasome, thereby facilitating RelA protein degradation. Our findings establish HERC3 as novel candidate regulating the inflammatory response initiated by NF-κB.
Collapse
Affiliation(s)
- Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY10065, USA
| | - Nadja Pejanovic
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY10065, USA Instituto Gulbenkian de Ciência, Apartado 14, Oeiras, Portugal
| | | | - Sheng Zhang
- Institute of Biotechnology and Life Sciences Biotechnologies, Cornell University, Ithaca, NY14853, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY10065, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY10065, USA
| |
Collapse
|
42
|
Ampofo E, Rudzitis-Auth J, Dahmke IN, Rössler OG, Thiel G, Montenarh M, Menger MD, Laschke MW. Inhibition of protein kinase CK2 suppresses tumor necrosis factor (TNF)-α-induced leukocyte–endothelial cell interaction. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2123-36. [DOI: 10.1016/j.bbadis.2015.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 06/29/2015] [Accepted: 07/15/2015] [Indexed: 12/22/2022]
|
43
|
Ji G, Liu M, Zhao XF, Liu XY, Guo QL, Guan ZF, Zhou HG, Guo JC. NF-κB Signaling is Involved in the Effects of Intranasally Engrafted Human Neural Stem Cells on Neurofunctional Improvements in Neonatal Rat Hypoxic-Ischemic Encephalopathy. CNS Neurosci Ther 2015; 21:926-35. [PMID: 26255634 DOI: 10.1111/cns.12441] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 12/22/2022] Open
Abstract
AIM Hypoxic-ischemic encephalopathy (HIE) is a common neurological disease in infants with persistent neurobehavioral impairments. Studies found that neural stem cell (NSC) therapy benefits HIE rats; however, the mechanisms underlying are still unclear. The current study investigated the efficacy and molecular events of human embryonic neural stem cells (hNSCs) in neonatal hypoxic-ischemic (HI) rats. METHODS PKH-26-labeled hNSCs were intranasally delivered to P7 Sprague Dawley rats 24 h after HI. Neurobehavioral tests were performed at the indicated time after delivery: righting reflex and gait testing at D1, 3, 5, and 7; grid walking at D7 and 14; social choice test (SCT) at D28; and Morris water maze from D35 to 40. Protein expression was determined by Western blot analysis. Brain damage was assessed by cresyl violet staining and MBP staining. hNSC distribution and differentiation were observed by in vivo bioluminescence imaging and immunofluorescence staining. RESULTS (1) hNSCs migrated extensively into brain areas within 24 h after the delivery, survived even at D42 with the majority in ipsi-hemisphere, and could be co-labeled with NeuN or GFAP. (2) hNSCs reduced the upregulation in cytosolic IL-1β, p-IκBα, and NF-κB p65 levels, whereas enhanced nuclear p65 expression in HI rats at D3 after the delivery. (3) hNSCs decreased HI-induced brain tissue loss and white matter injury at D42 after the delivery. (4) hNSCs improved neurological outcomes in HI rats in the tests of righting reflex (within 3 days), gait (D5), grid (D7), SCT (D28), and water maze (D42). CONCLUSION Intranasal delivery of hNSCs could prevent HI-induced brain injury and improve neurobehavioral outcomes in neonatal HI rats, which is possibly related to the modulation of NF-κB signaling.
Collapse
Affiliation(s)
- Gang Ji
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ming Liu
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiong-Fei Zhao
- Shanghai Angecon Biotechnology Co., Ltd., Shanghai, China
| | - Xiao-Yan Liu
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi-Lin Guo
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhu-Fei Guan
- Department of Geriatric Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hou-Guang Zhou
- Department of Geriatric Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing-Chun Guo
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Noh EM, Lee YR, Hong OY, Jung SH, Youn HJ, Kim JS. Aurora kinases are essential for PKC-induced invasion and matrix metalloproteinase-9 expression in MCF-7 breast cancer cells. Oncol Rep 2015; 34:803-10. [PMID: 26044736 DOI: 10.3892/or.2015.4027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/18/2015] [Indexed: 11/06/2022] Open
Abstract
The Aurora kinase family of serine/threonine kinases are known to be crucial for cell cycle control. Aurora kinases are considered a target of anticancer drugs. However, few studies have assessed the effect of Aurora kinases in breast cancer. In the present study, to determine whether Aurora kinases play a role in oncogenic actions of protein kinase C (PKC), we investigated the effect of Aurora kinases on PKC-induced invasion and MMP-9 expression using breast cancer cells. Treatment of MCF-7 cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) induced the upregulation and phosphorylation of Aurora kinases via the MAPK signaling pathway. Moreover, the inhibition of Aurora kinases by their siRNAs and inhibitors suppressed TPA-induced cell invasion and expression of MMP-9 by inhibiting the activation of NF-κB/AP-1, major transcription factors for MMP-9 expression in MCF-7 cells. These results suggested that Aurora kinases mediate PKC-MAPK signal to NF-κB/AP-1 with increasing MMP-9 expression and invasion of MCF-7 cells. To the best of our knowledge, this is the first study to show that Aurora kinases are key molecules in PKC-induced invasion in breast cancer cells.
Collapse
Affiliation(s)
- Eun-Mi Noh
- Department of Biochemistry and Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju 560‑182, Republic of Korea
| | - Young-Rae Lee
- Department of Oral Biochemistry and Institute of Biomaterials-Implant, School of Dentistry, Wonkwang University, Iksan 570-749, Republic of Korea
| | - On-Yu Hong
- Department of Biochemistry and Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju 560‑182, Republic of Korea
| | - Sung Hoo Jung
- Department of Surgery and Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju 560-182, Republic of Korea
| | - Hyun Jo Youn
- Department of Surgery and Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju 560-182, Republic of Korea
| | - Jong-Suk Kim
- Department of Biochemistry and Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju 560‑182, Republic of Korea
| |
Collapse
|
45
|
O’Connell MD, Reeves GT. The presence of nuclear cactus in the early Drosophila embryo may extend the dynamic range of the dorsal gradient. PLoS Comput Biol 2015; 11:e1004159. [PMID: 25879657 PMCID: PMC4400154 DOI: 10.1371/journal.pcbi.1004159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/28/2015] [Indexed: 11/18/2022] Open
Abstract
In a developing embryo, the spatial distribution of a signaling molecule, or a morphogen gradient, has been hypothesized to carry positional information to pattern tissues. Recent measurements of morphogen distribution have allowed us to subject this hypothesis to rigorous physical testing. In the early Drosophila embryo, measurements of the morphogen Dorsal, which is a transcription factor responsible for initiating the earliest zygotic patterns along the dorsal-ventral axis, have revealed a gradient that is too narrow to pattern the entire axis. In this study, we use a mathematical model of Dorsal dynamics, fit to experimental data, to determine the ability of the Dorsal gradient to regulate gene expression across the entire dorsal-ventral axis. We found that two assumptions are required for the model to match experimental data in both Dorsal distribution and gene expression patterns. First, we assume that Cactus, an inhibitor that binds to Dorsal and prevents it from entering the nuclei, must itself be present in the nuclei. And second, we assume that fluorescence measurements of Dorsal reflect both free Dorsal and Cactus-bound Dorsal. Our model explains the dynamic behavior of the Dorsal gradient at lateral and dorsal positions of the embryo, the ability of Dorsal to regulate gene expression across the entire dorsal-ventral axis, and the robustness of gene expression to stochastic effects. Our results have a general implication for interpreting fluorescence-based measurements of signaling molecules.
Collapse
Affiliation(s)
- Michael D. O’Connell
- North Carolina State University Department of Chemical and Biomolecular Engineering, Raleigh, North Carolina, United States of America
| | - Gregory T. Reeves
- North Carolina State University Department of Chemical and Biomolecular Engineering, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
46
|
Impeding the interaction between Nur77 and p38 reduces LPS-induced inflammation. Nat Chem Biol 2015; 11:339-46. [PMID: 25822914 DOI: 10.1038/nchembio.1788] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/02/2015] [Indexed: 01/10/2023]
Abstract
Sepsis, a hyperinflammatory response that can result in multiple organ dysfunctions, is a leading cause of mortality from infection. Here, we show that orphan nuclear receptor Nur77 (also known as TR3) can enhance resistance to lipopolysaccharide (LPS)-induced sepsis in mice by inhibiting NF-κB activity and suppressing aberrant cytokine production. Nur77 directly associates with p65 to block its binding to the κB element. However, this function of Nur77 is countered by the LPS-activated p38α phosphorylation of Nur77. Dampening the interaction between Nur77 and p38α would favor Nur77 suppression of the hyperinflammatory response. A compound, n-pentyl 2-[3,5-dihydroxy-2-(1-nonanoyl) phenyl]acetate, screened from a Nur77-biased library, blocked the Nur77-p38α interaction by targeting the ligand-binding domain of Nur77 and restored the suppression of the hyperinflammatory response through Nur77 inhibition of NF-κB. This study associates the nuclear receptor with immune homeostasis and implicates a new therapeutic strategy to treat hyperinflammatory responses by targeting a p38α substrate to modulate p38α-regulated functions.
Collapse
|
47
|
Wang Y, Wei H, Wang X, Du L, Zhang A, Zhou H. Cellular activation, expression analysis and functional characterization of grass carp IκBα: evidence for its involvement in fish NF-κB signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2015; 42:408-412. [PMID: 25434741 DOI: 10.1016/j.fsi.2014.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
IκBα is a well-known member of the inhibitors of kappa B (IκB) family that controls NF-κB signaling by blocking NF-κB translocation from cytoplasm to nucleus. In the present study, an IκBα homologue was identified from grass carp (gcIκBα), showing the structural characteristics of IκB family. Moreover, mRNA expression of this molecule in grass carp periphery blood lymphocytes (PBLs) was enhanced significantly by both LPS and PHA in a time- and dose-dependent manner, indicating the involvement of gcIκBα in fish immune response. Further analysis demonstrated that LPS but not PHA induced gcIκBα phosphorylation and protein degradation in PBLs, implying different signaling pathways mediated by LPS and PHA in gcIκBα expression regulation in grass carp PBLs. In particular, the time-dependent oscillation of gcIκBα phosphorylation and total protein levels induced by LPS is in accordance with the characteristics of mammalian IκBα phosphorylation followed by protein degradation during NF-κB activation. In support of this notion, overexpression of gcIκBα was able to block both basal and LPS-stimulated NF-κB activity in grass carp kidney cell line, indicating the negatively regulatory role of gcIκBα in NF-κB activity as seen in mammals. Therefore, our results not only reveal a dynamic variation of NF-κB activity based on the activation and expression of IκBα for the first time, but also provide the direct evidence for the involvement of IκBα in NF-κB signaling in fish immune cells.
Collapse
Affiliation(s)
- Yanan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - He Wei
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Linyong Du
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
48
|
Abstract
The discovery and characterization of the nuclear factor-kappa B (NF-κB) family of transcription factors was predicated on the technical ability to detect protein binding to defined sequences of DNA. Proteins capable of binding to specific sequences of nucleic acid are detected through the use of the electrophoretic mobility shift assay (EMSA), also called a gel shift assay. While newer techniques, including chromatin immunoprecipitation (ChIP), are widely used to assess NF-κB binding to the promoters and enhancers of specific genes, the EMSA remains a powerful experimental tool to quickly test for the presence of NF-κB that is capable of binding DNA. In this way, the EMSA is a useful general readout of the activation state of the NF-κB pathway and an essential tool for the investigation of this important transcription factor family.
Collapse
Affiliation(s)
- Sitharam Ramaswami
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | | |
Collapse
|
49
|
Lee S, Challa-Malladi M, Bratton SB, Wright CW. Nuclear factor-κB-inducing kinase (NIK) contains an amino-terminal inhibitor of apoptosis (IAP)-binding motif (IBM) that potentiates NIK degradation by cellular IAP1 (c-IAP1). J Biol Chem 2014; 289:30680-30689. [PMID: 25246529 PMCID: PMC4215246 DOI: 10.1074/jbc.m114.587808] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/03/2014] [Indexed: 12/20/2022] Open
Abstract
Activation of the noncanonical NF-κB pathway hinges on the stability of the NF-κB-inducing kinase (NIK), which is kept at low levels basally by a protein complex consisting of the E3 ubiquitin ligases cellular inhibitor of apoptosis 1 and 2 (c-IAP1/2) proteins and the tumor necrosis factor receptor-associated factors 2 and 3 (TRAF2/3). NIK is brought into close proximity to the c-IAPs through a TRAF2-TRAF3 bridge where TRAF2 recruits c-IAP1/2 and TRAF3 binds to NIK. However, it is not clear how the c-IAPs specifically recognize and ubiquitylate NIK in the complex. We have identified an IAP-binding motif (IBM) at the amino terminus of NIK. IBMs are utilized by a number of proapoptotic proteins to antagonize IAP function. Here, we utilize mutational studies to demonstrate that wild-type NIK is destabilized in the presence of c-IAP1, whereas the NIK IBM mutant is stable. NIK interacts with the second baculovirus IAP repeat (BIR2) domain of c-IAP1 via the IBM, and this interaction, in turn, provides substrate recognition for c-IAP1 mediated ubiquitylation and degradation of NIK. Furthermore, in the presence of the NIK IBM mutant, we observed an elevated processing of p100 to p52 followed by increased expression of NF-κB target genes. Together, these findings reveal the novel identification and function of the NIK IBM, which promotes c-IAP1-dependent ubiquitylation of NIK, resulting in optimal NIK turnover to ensure that noncanonical NF-κB signaling is off in the absence of an activating signal.
Collapse
Affiliation(s)
- Sunhee Lee
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, and
| | - Madhavi Challa-Malladi
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, and
| | - Shawn B Bratton
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, and; Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, Texas 78957
| | - Casey W Wright
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, and; Center for Molecular and Cellular Toxicology in the Division of Pharmacology and Toxicology, College of Pharmacy and The University of Texas at Austin, Austin, Texas 78712.
| |
Collapse
|
50
|
González-Pardo V, Verstuyf A, Boland R, Russo de Boland A. Vitamin D analogue TX 527 down-regulates the NF-κB pathway and controls the proliferation of endothelial cells transformed by Kaposi sarcoma herpesvirus. Br J Pharmacol 2014; 169:1635-45. [PMID: 23647513 DOI: 10.1111/bph.12219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 02/14/2013] [Accepted: 04/25/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE The Kaposi sarcoma (KS)-associated herpesvirus GPCR (vGPCR) is a key molecule in the pathogenesis of KS, where it increases NF-κB gene expression and activates the NF-κB pathway. We investigated whether the less calcemic vitamin D analogue TX 527 inhibited the proliferation of endothelial cells transformed by vGPCR by modulation of the NF-κB pathway. EXPERIMENTAL APPROACH Endothelial cells transformed by vGPCR (SVEC-vGPCR) were treated with TX 527. Proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) and cell cycle by flow cytometry. mRNA and protein levels were measured by real-time quantitative reverse transcriptase-PCR (qRT-PCR) and immunoblot analysis respectively. KEY RESULTS TX 527, similar to bortezomib (0.5 nM), a proteasome inhibitor that inhibits the activation of NF-κB, reduced proliferation and induced G0/G1 cell cycle arrest in SVEC-vGPCR. TX 527 like 1α,25(OH)2 D3 , biological active form of vitamin D, decreased the activity of NF-κB comparable with the effect of bortezomib. Time-response studies showed that TX 527 significantly decreased NF-κB and increased IκBα mRNA and protein levels. The increase of IκBα was accompanied by a reduction in p65/NF-κB translocation to the nucleus. These responses were abolished when vitamin D receptor (VDR) expression was suppressed by stable transfection of shRNA against VDR. In parallel with NF-κB inhibition, there was a down-regulation of inflammatory genes such as IL-6, CCL2/MCP and CCL20/MIP3α. CONCLUSIONS AND IMPLICATIONS These results suggest that the anti-proliferative effects of the vitamin D analogue TX 527 in SVEC-vGPCR occur by modulation of the NF-κB pathway and are VDR dependent.
Collapse
Affiliation(s)
- V González-Pardo
- Departamento de Biología, Bioquímica & Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas & Técnicas (CONICET), Bahía Blanca, Argentina.
| | | | | | | |
Collapse
|