1
|
Liu J, Wang C, Kong L, Yang Y, Cui X, Li K, Nian H. Rho2 involved in development, stress response and pathogenicity of Fusarium oxysporum. World J Microbiol Biotechnol 2023; 39:272. [PMID: 37548840 DOI: 10.1007/s11274-023-03720-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
Rho GTPases regulate the activity of cell wall biosynthesis, actin assembly and polar cell secretion. However, the function of Rho GTPase in filamentous fungi is poorly understood. To understand the role of Rho2 GTPase in Fusarium oxysporum, which is one of root rot pathogens of Panax notoginseng, △rho2 mutant was constructed. Phenotypes of △rho2, including conidiation, germination of spores, stresses (osmotic-, cell membrane-, cell wall disturbing-, metal-, and high temperature-) tolerance and pathogenicity were analyzed. The results showed that the growth of △rho2 was destroyed under cell wall disturbing stress and high temperature stress, suggesting that Rho2 regulated the response of F. oxysporum to cell wall synthesis inhibitors and high temperature stress. Germination of spores and pathogenicity to P. notoginseng were reduced in △rho2 mutant. Western blot results showed that rho2 deletion increased the phosphorylation level of Mpk1. To identify genes regulated by Rho2, transcriptome sequencing was carried out. 2477 genes were identified as upregulated genes and 2177 genes were identified as downregulated genes after rho2 was deleted. These genes provide clues for further study of rho2 function.
Collapse
Affiliation(s)
- Jia Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chengsong Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Lei Kong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, 650500, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, 650500, China
| | - Kunzhi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hongjuan Nian
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
2
|
Morishita J, Nurse P. Identification of a small RhoA GTPase inhibitor effective in fission yeast and human cells. Open Biol 2023; 13:220185. [PMID: 36854376 PMCID: PMC9974304 DOI: 10.1098/rsob.220185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
The Rho GTPase family proteins are key regulators of cytoskeletal dynamics. Deregulated activity of Rho GTPases is associated with cancers and neurodegenerative diseases, and their potential as drug targets has long been recognized. Using an economically effective drug screening workflow in fission yeast and human cells, we have identified a Rho GTPase inhibitor, O1. By a suppressor mutant screen in fission yeast, we find a point mutation in the rho1 gene that confers resistance to O1. Consistent with the idea that O1 is the direct inhibitor of Rho1, O1 reduced the cellular amount of activated, GTP-bound Rho1 in wild-type cells, but not in the O1-resistant mutant cells, in which the evolutionarily conserved Ala62 residue is mutated to Thr. Similarly, O1 inhibits activity of the human orthologue RhoA GTPase in tissue culture cells. Our studies illustrate the power of yeast phenotypic screens in the identification and characterization of drugs relevant to human cells and have identified a novel GTPase inhibitor for fission yeast and human cells.
Collapse
Affiliation(s)
- Jun Morishita
- Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY 10065, USA
| | - Paul Nurse
- Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY 10065, USA
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
3
|
Cansado J, Soto T, Franco A, Vicente-Soler J, Madrid M. The Fission Yeast Cell Integrity Pathway: A Functional Hub for Cell Survival upon Stress and Beyond. J Fungi (Basel) 2021; 8:jof8010032. [PMID: 35049972 PMCID: PMC8781887 DOI: 10.3390/jof8010032] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
The survival of eukaryotic organisms during environmental changes is largely dependent on the adaptive responses elicited by signal transduction cascades, including those regulated by the Mitogen-Activated Protein Kinase (MAPK) pathways. The Cell Integrity Pathway (CIP), one of the three MAPK pathways found in the simple eukaryote fission of yeast Schizosaccharomyces pombe, shows strong homology with mammalian Extracellular signal-Regulated Kinases (ERKs). Remarkably, studies over the last few decades have gradually positioned the CIP as a multi-faceted pathway that impacts multiple functional aspects of the fission yeast life cycle during unperturbed growth and in response to stress. They include the control of mRNA-stability through RNA binding proteins, regulation of calcium homeostasis, and modulation of cell wall integrity and cytokinesis. Moreover, distinct evidence has disclosed the existence of sophisticated interplay between the CIP and other environmentally regulated pathways, including Stress-Activated MAP Kinase signaling (SAPK) and the Target of Rapamycin (TOR). In this review we present a current overview of the organization and underlying regulatory mechanisms of the CIP in S. pombe, describe its most prominent functions, and discuss possible targets of and roles for this pathway. The evolutionary conservation of CIP signaling in the dimorphic fission yeast S. japonicus will also be addressed.
Collapse
|
4
|
Vicente-Soler J, Soto T, Franco A, Cansado J, Madrid M. The Multiple Functions of Rho GTPases in Fission Yeasts. Cells 2021; 10:1422. [PMID: 34200466 PMCID: PMC8228308 DOI: 10.3390/cells10061422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/20/2023] Open
Abstract
The Rho family of GTPases represents highly conserved molecular switches involved in a plethora of physiological processes. Fission yeast Schizosaccharomyces pombe has become a fundamental model organism to study the functions of Rho GTPases over the past few decades. In recent years, another fission yeast species, Schizosaccharomyces japonicus, has come into focus offering insight into evolutionary changes within the genus. Both fission yeasts contain only six Rho-type GTPases that are spatiotemporally controlled by multiple guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and whose intricate regulation in response to external cues is starting to be uncovered. In the present review, we will outline and discuss the current knowledge and recent advances on how the fission yeasts Rho family GTPases regulate essential physiological processes such as morphogenesis and polarity, cellular integrity, cytokinesis and cellular differentiation.
Collapse
Affiliation(s)
| | | | | | - José Cansado
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.V.-S.); (T.S.); (A.F.)
| | - Marisa Madrid
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.V.-S.); (T.S.); (A.F.)
| |
Collapse
|
5
|
Pérez P, Cortés JC, Cansado J, Ribas JC. Fission yeast cell wall biosynthesis and cell integrity signalling. ACTA ACUST UNITED AC 2018; 4:1-9. [PMID: 32743131 PMCID: PMC7388972 DOI: 10.1016/j.tcsw.2018.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 02/02/2023]
Abstract
The cell wall is a structure external to the plasma membrane that is essential for the survival of the fungi. This polysaccharidic structure confers resistance to the cell internal turgor pressure and protection against mechanical injury. The fungal wall is also responsible for the shape of these organisms due to different structural polysaccharides, such as β-(1,3)-glucan, which form fibers and confer rigidity to the cell wall. These polysaccharides are not present in animal cells and therefore they constitute excellent targets for antifungal chemotherapies. Cell wall damage leads to the activation of MAPK signaling pathways, which respond to the damage by activating the repair of the wall and the maintenance of the cell integrity. Fission yeast Schizosaccharomyces pombe is a model organism for the study morphogenesis, cell wall, and how different inputs might regulate this structure. We present here a short overview of the fission yeast wall composition and provide information about the main biosynthetic activities that assemble this cell wall. Additionally, we comment the recent advances in the knowledge of the cell wall functions and discuss the role of the cell integrity MAPK signaling pathway in the regulation of fission yeast wall.
Collapse
Affiliation(s)
- Pilar Pérez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas and Universidad de Salamanca, 37007 Salamanca, Spain
- Corresponding author.
| | - Juan C.G. Cortés
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas and Universidad de Salamanca, 37007 Salamanca, Spain
| | - Jose Cansado
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain
| | - Juan C. Ribas
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas and Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
6
|
Oeste CL, Pinar M, Schink KO, Martínez-Turrión J, Stenmark H, Peñalva MA, Pérez-Sala D. An isoprenylation and palmitoylation motif promotes intraluminal vesicle delivery of proteins in cells from distant species. PLoS One 2014; 9:e107190. [PMID: 25207810 PMCID: PMC4160200 DOI: 10.1371/journal.pone.0107190] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/07/2014] [Indexed: 12/22/2022] Open
Abstract
The C-terminal ends of small GTPases contain hypervariable sequences which may be posttranslationally modified by defined lipid moieties. The diverse structural motifs generated direct proteins towards specific cellular membranes or organelles. However, knowledge on the factors that determine these selective associations is limited. Here we show, using advanced microscopy, that the isoprenylation and palmitoylation motif of human RhoB (–CINCCKVL) targets chimeric proteins to intraluminal vesicles of endolysosomes in human cells, displaying preferential co-localization with components of the late endocytic pathway. Moreover, this distribution is conserved in distant species, including cells from amphibians, insects and fungi. Blocking lipidic modifications results in accumulation of CINCCKVL chimeras in the cytosol, from where they can reach endolysosomes upon release of this block. Remarkably, CINCCKVL constructs are sorted to intraluminal vesicles in a cholesterol-dependent process. In the lower species, neither the C-terminal sequence of RhoB, nor the endosomal distribution of its homologs are conserved; in spite of this, CINCCKVL constructs also reach endolysosomes in Xenopus laevis and insect cells. Strikingly, this behavior is prominent in the filamentous ascomycete fungus Aspergillus nidulans, in which GFP-CINCCKVL is sorted into endosomes and vacuoles in a lipidation-dependent manner and allows monitoring endosomal movement in live fungi. In summary, the isoprenylated and palmitoylated CINCCKVL sequence constitutes a specific structure which delineates an endolysosomal sorting strategy operative in phylogenetically diverse organisms.
Collapse
Affiliation(s)
- Clara L. Oeste
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mario Pinar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Kay O. Schink
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Oslo, Norway
| | - Javier Martínez-Turrión
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Oslo, Norway
| | - Miguel A. Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- * E-mail:
| |
Collapse
|
7
|
Muñoz S, Manjón E, Sánchez Y. The putative exchange factor Gef3p interacts with Rho3p GTPase and the septin ring during cytokinesis in fission yeast. J Biol Chem 2014; 289:21995-2007. [PMID: 24947517 DOI: 10.1074/jbc.m114.548792] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The small GTP-binding proteins of the Rho family and its regulatory proteins play a central role in cytokinetic actomyosin ring assembly and cytokinesis. Here we show that the fission yeast guanine nucleotide exchange factor Gef3p interacts with Rho3p at the division site. Gef3p contains a putative DH homology domain and a BAR/IMD-like domain. The protein localized to the division site late in mitosis, where it formed a ring that did not constrict with actomyosin ring (cytokinetic actomyosin ring) invagination; instead, it split into a double ring that resembled the septin ring. Gef3p co-localized with septins and Mid2p and required septins and Mid2p for its localization. Gef3p interacts physically with the GTP-bound form of Rho3p. Although Gef3p is not essential for cell separation, the simultaneous disruption of gef3(+) and Rho3p-interacting proteins, such as Sec8p, an exocyst component, Apm1p, a subunit of the clathrin adaptor complex or For3p, an actin-polymerizing protein, yielded cells with strong defects in septation and polarity respectively. Our results suggest that interactions between septins and Rho-GEFs provide a new targeting mechanism for GTPases in cytokinesis, in this case probably contributing to Rho3p function in vesicle tethering and vesicle trafficking in the later steps of cell separation.
Collapse
Affiliation(s)
- Sofía Muñoz
- From the Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas and Departamento de Microbiología y Genética, Universidad de Salamanca, C/ Zacarías González, s/n. 37007 Salamanca, Spain
| | - Elvira Manjón
- From the Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas and Departamento de Microbiología y Genética, Universidad de Salamanca, C/ Zacarías González, s/n. 37007 Salamanca, Spain
| | - Yolanda Sánchez
- From the Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas and Departamento de Microbiología y Genética, Universidad de Salamanca, C/ Zacarías González, s/n. 37007 Salamanca, Spain
| |
Collapse
|
8
|
Sánchez-Mir L, Soto T, Franco A, Madrid M, Viana RA, Vicente J, Gacto M, Pérez P, Cansado J. Rho1 GTPase and PKC ortholog Pck1 are upstream activators of the cell integrity MAPK pathway in fission yeast. PLoS One 2014; 9:e88020. [PMID: 24498240 PMCID: PMC3909290 DOI: 10.1371/journal.pone.0088020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/02/2014] [Indexed: 12/22/2022] Open
Abstract
In the fission yeast Schizosaccharomyces pombe the cell integrity pathway (CIP) orchestrates multiple biological processes like cell wall maintenance and ionic homeostasis by fine tuning activation of MAPK Pmk1 in response to various environmental conditions. The small GTPase Rho2 positively regulates the CIP through protein kinase C ortholog Pck2. However, Pmk1 retains some function in mutants lacking either Rho2 or Pck2, suggesting the existence of additional upstream regulatory elements to modulate its activity depending on the nature of the environmental stimulus. The essential GTPase Rho1 is a candidate to control the activity of the CIP by acting upstream of Pck2, whereas Pck1, a second PKC ortholog, appears to negatively regulate Pmk1 activity. However, the exact regulatory nature of these two proteins within the CIP has remained elusive. By exhaustive characterization of strains expressing a hypomorphic Rho1 allele (rho1-596) in different genetic backgrounds we show that both Rho1 and Pck1 are positive upstream regulatory members of the CIP in addition to Rho2 and Pck2. In this new model Rho1 and Rho2 control Pmk1 basal activity during vegetative growth mainly through Pck2. Notably, whereas Rho2-Pck2 elicit Pmk1 activation in response to most environmental stimuli, Rho1 drives Pmk1 activation through either Pck2 or Pck1 exclusively in response to cell wall damage. Our study reveals the intricate and complex functional architecture of the upstream elements participating in this signaling pathway as compared to similar routes from other simple eukaryotic organisms.
Collapse
Affiliation(s)
- Laura Sánchez-Mir
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Teresa Soto
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Alejandro Franco
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Marisa Madrid
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Raúl A. Viana
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas/Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Jero Vicente
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Mariano Gacto
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas/Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - José Cansado
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- * E-mail:
| |
Collapse
|
9
|
Negative functional interaction between cell integrity MAPK pathway and Rho1 GTPase in fission yeast. Genetics 2013; 195:421-32. [PMID: 23934882 DOI: 10.1534/genetics.113.154807] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rho1 GTPase is the main activator of cell wall glucan biosynthesis and regulates actin cytoskeleton in fungi, including Schizosaccharomyces pombe. We have obtained a fission yeast thermosensitive mutant strain carrying the rho1-596 allele, which displays reduced Rho1 GTPase activity. This strain has severe cell wall defects and a thermosensitive growth, which is partially suppressed by osmotic stabilization. In a global screening for rho1-596 multicopy suppresors the pmp1+ gene was identified. Pmp1 is a dual specificity phosphatase that negatively regulates the Pmk1 mitogen-activated protein kinase (MAPK) cell integrity pathway. Accordingly, elimination of Pmk1 MAPK partially rescued rho1-596 thermosensitivity, corroborating the unexpected antagonistic functional relationship of these genes. We found that rho1-596 cells displayed increased basal activation of the cell integrity MAPK pathway and therefore were hypersensitive to MgCl2 and FK506. Moreover, the absence of calcineurin was lethal for rho1-596. We found a higher level of calcineurin activity in rho1-596 than in wild-type cells, and overexpression of constitutively active calcineurin partially rescued rho1-596 thermosensitivity. All together our results suggest that loss of Rho1 function causes an increase in the cell integrity MAPK activity, which is detrimental to the cells and turns calcineurin activity essential.
Collapse
|
10
|
Corvest V, Bogliolo S, Follette P, Arkowitz RA, Bassilana M. Spatiotemporal regulation of Rho1 and Cdc42 activity duringCandida albicansfilamentous growth. Mol Microbiol 2013; 89:626-48. [DOI: 10.1111/mmi.12302] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2013] [Indexed: 01/02/2023]
|
11
|
Sánchez-Mir L, Franco A, Madrid M, Vicente-Soler J, Villar-Tajadura MA, Soto T, Pérez P, Gacto M, Cansado J. Biological significance of nuclear localization of mitogen-activated protein kinase Pmk1 in fission yeast. J Biol Chem 2012; 287:26038-51. [PMID: 22685296 DOI: 10.1074/jbc.m112.345611] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathways play a fundamental role in the response of eukaryotic cells to environmental changes. Also, much evidence shows that the stimulus-dependent nuclear targeting of this class of regulatory kinases is crucial for adequate regulation of distinct cellular events. In the fission yeast Schizosaccharomyces pombe, the cell integrity MAPK pathway, whose central element is the MAPK Pmk1, regulates multiple processes such as cell wall integrity, vacuole fusion, cytokinesis, and ionic homeostasis. In non-stressed cells Pmk1 is constitutively localized in both cytoplasm and nucleus, and its localization pattern appears unaffected by its activation status or in response to stress, thus questioning the biological significance of the presence of this MAPK into the nucleus. We have addressed this issue by characterizing mutants expressing Pmk1 versions excluded from the cell nucleus and anchored to the plasma membrane in different genetic backgrounds. Although nuclear Pmk1 partially regulates cell wall integrity at a transcriptional level, membrane-tethered Pmk1 performs many of the biological functions assigned to wild type MAPK like regulation of chloride homeostasis, vacuole fusion, and cellular separation. However, we found that down-regulation of nuclear Pmk1 by MAPK phosphatases induced by the stress activated protein kinase pathway is important for the fine modulation of extranuclear Pmk1 activity. These results highlight the importance of the control of MAPK activity at subcellular level.
Collapse
Affiliation(s)
- Laura Sánchez-Mir
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología. Universidad de Murcia, 30071 Murcia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sorais F, Barreto L, Leal JA, Bernabé M, San-Blas G, Niño-Vega GA. Cell wall glucan synthases and GTPases in Paracoccidioides brasiliensis. Med Mycol 2010; 48:35-47. [PMID: 19225978 DOI: 10.3109/13693780802713356] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this report we identified orthologues of fungal AGS1, RHO1, RHO2, RAC1 and CDC42 genes in the dimorphic fungus Paracoccidioides brasiliensis. Based on its homology to known fungal sequences, P. brasiliensis Ags1 was identified as an alpha-1,3-glucan synthase, while Rho1, Rho2, Rac1 and Cdc42 proteins were classified into the Rho1, Rho2, Rac1 and Cdc42 subgroups of fungal Rho GTPases, respectively. Of them, Rho1 is one of two subunits of a putative beta-1,3-glucan synthase complex, the other being the synthase itself (Fks1), while Rho2 has been associated to the alpha-1,3-glucan synthase (Ags1). Expression studies showed that mRNAs levels of RHO2 and AGS1 kept a direct relationship but the levels of RHO1 and FKS1 did not. P. brasiliensis RHO1 successfully restored growth of Saccharomyces cerevisiae rho1 mutant under restrictive temperature conditions. Chemical analyses of P. brasiliensis alpha-1,3-glucan, synthesized by Ags1p, indicated that it is essentially a linear polysaccharide, with <3% of alpha-1,4-linked glucose branches, occasionally attached as single units to the alpha-1,3-backbone.
Collapse
Affiliation(s)
- Françoise Sorais
- Instituto Venezolano de Investigaciones Científicas, Centro de Microbiología y Biología Celular, Caracas, Venezuela
| | | | | | | | | | | |
Collapse
|
13
|
Cooperation between the septins and the actomyosin ring and role of a cell-integrity pathway during cell division in fission yeast. Genetics 2010; 186:897-915. [PMID: 20739711 DOI: 10.1534/genetics.110.119842] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A major question about cytokinesis concerns the role of the septin proteins, which localize to the division site in all animal and fungal cells but are essential for cytokinesis only in some cell types. For example, in Schizosaccharomyces pombe, four septins localize to the division site, but deletion of the four genes produces only a modest delay in cell separation. To ask if the S. pombe septins function redundantly in cytokinesis, we conducted a synthetic-lethal screen in a septin-deficient strain and identified seven mutations. One mutation affects Cdc4, a myosin light chain that is an essential component of the cytokinetic actomyosin ring. Five others cause frequent cell lysis during cell separation and map to two loci. These mutations and their dosage suppressors define a signaling pathway (including Rho1 and a novel arrestin) for repairing cell-wall damage. The seventh mutation affects the poorly understood RNA-binding protein Scw1 and severely delays cell separation when combined either with a septin mutation or with a mutation affecting the septin-interacting, anillin-like protein Mid2, suggesting that Scw1 functions in a pathway parallel to that of the septins. Taken together, our results suggest that the S. pombe septins participate redundantly in one or more pathways that cooperate with the actomyosin ring during cytokinesis and that a septin defect causes septum defects that can be repaired effectively only when the cell-integrity pathway is intact.
Collapse
|
14
|
Abstract
Eukaryotic cells display a wide range of morphologies important for cellular function and development. A particular cell shape is made via the generation of asymmetry in the organization of cytoskeletal elements, usually leading to actin localization at sites of growth. The Rho family of GTPases is present in all eukaryotic cells, from yeast to mammals, and their role as key regulators in the signalling pathways that control actin organization and morphogenetic processes is well known. In the present review we will discuss the role of Rho GTPases as regulators of yeasts' polarized growth, their mechanism of activation and signalling pathways in Saccharomyces cerevisiae and Schizosaccharomyces pombe. These two model yeasts have been very useful in the study of the molecular mechanisms responsible for cell polarity. As in other organisms with cell walls, yeast's polarized growth is closely related to cell-wall biosynthesis, and Rho GTPases are critical modulators of this process. They provide the co-ordinated regulation of cell-wall biosynthetic enzymes and actin organization required to maintain cell integrity during vegetative growth.
Collapse
|
15
|
Soto T, Villar-Tajadura MA, Madrid M, Vicente J, Gacto M, Pérez P, Cansado J. Rga4 modulates the activity of the fission yeast cell integrity MAPK pathway by acting as a Rho2 GTPase-activating protein. J Biol Chem 2010; 285:11516-25. [PMID: 20164182 DOI: 10.1074/jbc.m109.071027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rho GTPase-activating proteins (GAPs) are responsible for the inactivation of Rho GTPases, which are involved in the regulation of critical biological responses in eukaryotic cells, ranging from cell cycle control to cellular morphogenesis. The genome of fission yeast Schizosaccharomyces pombe contains six genes coding for putative Rho GTPases, whereas nine genes code for predicted Rho GAPs (Rga1 to Rga9). One of them, Rga4, has been recently described as a Cdc42 GAP, involved in the control of cell diameter and symmetry in fission yeast. In this work we show that Rga4 is also a Rho2 GAP that negatively modulates the activity of the cell integrity pathway and its main effector, MAPK Pmk1. The DYRK-type protein kinase Pom1, which regulates both the localization and phosphorylation state of Rga4, is also a negative regulator of the Pmk1 pathway, but this control is not dependent upon the Rga4 role as a Rho2-GAP. Hence, two subsets of Rga4 negatively regulate Cdc42 and Rho2 functions in a specific and unrelated way. Finally, we show that Rga7, another Rho2 GAP, down-regulates the Pmk1 pathway in addition to Rga4. These results reinforce the notion of the existence of complex mechanisms determining the selectivity of Rho GAPs toward Rho GTPases and their functions.
Collapse
Affiliation(s)
- Teresa Soto
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Moscatelli A, Idilli AI. Pollen tube growth: a delicate equilibrium between secretory and endocytic pathways. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:727-39. [PMID: 19686370 DOI: 10.1111/j.1744-7909.2009.00842.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although pollen tube growth is a prerequisite for higher plant fertilization and seed production, the processes leading to pollen tube emission and elongation are crucial for understanding the basic mechanisms of tip growth. It was generally accepted that pollen tube elongation occurs by accumulation and fusion of Golgi-derived secretory vesicles (SVs) in the apical region, or clear zone, where they were thought to fuse with a restricted area of the apical plasma membrane (PM), defining the apical growth domain. Fusion of SVs at the tip reverses outside cell wall material and provides new segments of PM. However, electron microscopy studies have clearly shown that the PM incorporated at the tip greatly exceeds elongation and a mechanism of PM retrieval was already postulated in the mid-nineteenth century. Recent studies on endocytosis during pollen tube growth showed that different endocytic pathways occurred in distinct zones of the tube, including the apex, and led to a new hypothesis to explain vesicle accumulation at the tip; namely, that endocytic vesicles contribute substantially to V-shaped vesicle accumulation in addition to SVs and that exocytosis does not involve the entire apical domain. New insights suggested the intriguing hypothesis that modulation between exo- and endocytosis in the apex contributes to maintain PM polarity in terms of lipid/protein composition and showed distinct degradation pathways that could have different functions in the physiology of the cell. Pollen tube growth in vivo is closely regulated by interaction with style molecules. The study of endocytosis and membrane recycling in pollen tubes opens new perspectives to studying pollen tube-style interactions in vivo.
Collapse
Affiliation(s)
- Alessandra Moscatelli
- Dipartimento di Biologia L. Gorini, Università degli Studi di Milano, Milano, Italy.
| | | |
Collapse
|
17
|
Garcia P, Tajadura V, Sanchez Y. The Rho1p exchange factor Rgf1p signals upstream from the Pmk1 mitogen-activated protein kinase pathway in fission yeast. Mol Biol Cell 2008; 20:721-31. [PMID: 19037094 DOI: 10.1091/mbc.e08-07-0673] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Schizosaccharomyces pombe exchange factor Rgf1p specifically regulates Rho1p during polarized growth. Rgf1p activates the beta-glucan synthase (GS) complex containing the catalytic subunit Bgs4p and is involved in the activation of growth at the second end, a transition that requires actin reorganization. In this work, we investigated Rgf1p signaling and observed that Rgf1p acted upstream from the Pck2p-Pmk1p MAPK signaling pathway. We noted that Rgf1p and calcineurin play antagonistic roles in Cl(-) homeostasis; rgf1Delta cells showed the vic phenotype (viable in the presence of immunosuppressant and chlorine ion) and were unable to grow in the presence of high salt concentrations, both phenotypes being characteristic of knockouts of the MAPK components. In addition, mutations that perturb signaling through the MAPK pathway resulted in defective cell integrity (hypersensitivity to caspofungin and beta-glucanase). Rgf1p acts by positively regulating a subset of stimuli toward the Pmk1p-cell integrity pathway. After osmotic shock and cell wall damage HA-tagged Pmk1p was phosphorylated in wild-type cells but not in rgf1Delta cells. Finally, we provide evidence to show that Rgf1p regulates Pmk1p activation in a process that involves the activation of Rho1p and Pck2p, and we demonstrate that Rgf1p is unique in this signaling process, because Pmk1p activation was largely independent of the other two Rho1p-specific GEFs, Rgf2p and Rgf3p.
Collapse
Affiliation(s)
- Patricia Garcia
- Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | |
Collapse
|
18
|
Villar-Tajadura MA, Coll PM, Madrid M, Cansado J, Santos B, Pérez P. Rga2 is a Rho2 GAP that regulates morphogenesis and cell integrity in S. pombe. Mol Microbiol 2008; 70:867-81. [PMID: 18793338 DOI: 10.1111/j.1365-2958.2008.06447.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Schizosaccharomyces pombe Rho2 GTPase regulates alpha-D-glucan synthesis and acts upstream of Pck2 to activate the MAP kinase pathway for cell integrity. However, little is known about its regulation. Here we describe Rga2 as a Rho2 GTPase-activating protein (GAP) that regulates cell morphology. rga2+ gene is not essential for growth but its deletion causes longer and thinner cells whereas rga2+ overexpression causes shorter and broader cells. rga2+ overexpression also causes abnormal accumulation of Calcofluor-stained material and cell lysis, suggesting that it also participates in cell wall integrity. Rga2 localizes to growth tips and septum region. The N-terminal region of the protein is required for its correct localization whereas the PH domain is necessary exclusively for Rga2 localization to the division area. Also, Rga2 localization depends on polarity markers and on actin polymerization. Rga2 interacts with Rho2 and possesses in vitro and in vivo GAP activity for this GTPase. Accordingly, rga2Delta cells contain more alpha-D-glucan and therefore partially suppress the thermosensitivity of mok1-664 cells, which have a defective alpha-D-glucan synthase. Additionally, genetic interactions and biochemical analysis suggest that Rga2 regulates Rho2-Pck2 interaction and might participate in the regulation of the MAPK cell integrity pathway.
Collapse
Affiliation(s)
- M Antonia Villar-Tajadura
- Instituto de Microbiología Bioquímica, Consejo Superior de Investigaciones Científicas (CSIC)/Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, 37007 Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Ma L, Xie B, Hong Z, Verma DPS, Zhang Z. A novel RNA-binding protein associated with cell plate formation. PLANT PHYSIOLOGY 2008; 148:223-34. [PMID: 18621982 PMCID: PMC2528124 DOI: 10.1104/pp.108.120527] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 07/07/2008] [Indexed: 05/20/2023]
Abstract
Building a cell plate during cytokinesis in plant cells requires the participation of a number of proteins in a multistep process. We previously identified phragmoplastin as a cell plate-specific protein involved in creating a tubulovesicular network at the cell plate. We report here the identification and characterization of a phragmoplastin-interacting protein, PHIP1, in Arabidopsis (Arabidopsis thaliana). It contains multiple functional motifs, including a lysine-rich domain, two RNA recognition motifs, and three CCHC-type zinc fingers. Polypeptides with similar motif structures were found only in plant protein databases, but not in the sequenced prokaryotic, fungal, and animal genomes, suggesting that PHIP1 represents a plant-specific RNA-binding protein. In addition to phragmoplastin, two Arabidopsis small GTP-binding proteins, Rop1 and Ran2, are also found to interact with PHIP1. The zinc fingers of PHIP1 were not required for its interaction with Rop1 and phragmoplastin, but they may participate in its binding with the Ran2 mRNA. Immunofluorescence, in situ RNA hybridization, and green fluorescent protein tagging experiments showed the association of PHIP1 with the forming cell plate during cytokinesis. Taken together, our data suggest that PHIP1 is a novel RNA-binding protein and may play a unique role in the polarized mRNA transport to the vicinity of the cell plate.
Collapse
Affiliation(s)
- Lian Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|
20
|
Activation of the cell integrity pathway is channelled through diverse signalling elements in fission yeast. Cell Signal 2008; 20:748-57. [PMID: 18255266 DOI: 10.1016/j.cellsig.2007.12.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 12/14/2007] [Indexed: 11/22/2022]
Abstract
MAPK Pmk1p is the central element of a cascade involved in the maintenance of cell integrity and other functions in Schizosaccharomyces pombe. Pmk1p becomes activated by multiple stressing situations and also during cell separation. GTPase Rho2p acts upstream of the protein kinase C homolog Pck2p to activate the Pmk1 signalling pathway through direct interaction with MAPKKK Mkh1p. In this work we analyzed the functional significance of both Rho2p and Pck2p in the transduction of various stress signals by the cell integrity pathway. The results indicate that basal Pmk1p activity can be positively regulated by alternative mechanisms which are independent on the control by Rho2p and/or Pck2p. Unexpectedly, Pck1p, another protein kinase C homolog, negatively modulates Pmk1p basal activity by an unknown mechanism. Moreover, different elements appear to regulate the stress-induced activation of Pmk1p depending on the nature of the triggering stimuli. Whereas Pmk1p activation induced by hyper- or hypotonic stresses is channeled through Rho2p-Pck2p, other stressors, like glucose deprivation or cell wall disturbance, are transduced via other pathways in addition to that of Rho2p-Pck2p. On the contrary, Pmk1p activation observed during cell separation or after treatment with hydrogen peroxide does not involve Rho2p-Pck2p. Finally, Pck2p function is critical to maintain a Pmk1p basal activity that allows Pmk1p activation induced by heat stress. These data demonstrate the existence of a complex signalling network modulating Pmk1p activation in response to a variety of stresses in fission yeast.
Collapse
|
21
|
García P, Tajadura V, García I, Sánchez Y. Role of Rho GTPases and Rho-GEFs in the regulation of cell shape and integrity in fission yeast. Yeast 2007; 23:1031-43. [PMID: 17072882 DOI: 10.1002/yea.1409] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Rho family of GTPases are highly conserved molecular switches that control some of the most fundamental processes of cell biology, including morphogenesis, vesicular transport, cell division and motility. Guanine nucleotide-exchange factors (GEFs) are directly responsible for the activation of Rho-family GTPases in response to extracellular stimuli. In fission yeast, there are seven Dbl-related GEFs and they activate six Rho-type GTPases within a particular spatio-temporal context. The failure to do so might have consequences reflected in aberrant phenotypes and in some cases lead to cell death. In this review, we briefly summarize the role of Rho GTPases and Rho-GEFs in the establishment and maintenance of cell polarity and cell integrity in Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Patricia García
- Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
22
|
Rincón SA, Santos B, Pérez P. Fission yeast Rho5p GTPase is a functional paralogue of Rho1p that plays a role in survival of spores and stationary-phase cells. EUKARYOTIC CELL 2006; 5:435-46. [PMID: 16524899 PMCID: PMC1398058 DOI: 10.1128/ec.5.3.435-446.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Rho GTPase family and their effectors are key regulators involved in many eukaryotic cell functions related to actin organization and polarity establishment. Schizosaccharomyces pombe Rho1p is essential, directly activates the (1,3)-beta-d-glucan synthase, and participates in regulation of cell wall growth and morphogenesis. Here we describe the characterization of the fission yeast Rho5p GTPase, highly homologous to Rho1p, sharing 86% identity and 95% similarity. Overexpression of the hyperactive allele rho5-G15V causes a morphological effect similar to that of rho1-G15V, but the penetrance is significantly lower, and overexpression of the dominant-negative allele rho5-T20N causes lysis like that of rho1-T20N. Importantly, overexpression of rho5(+) but no other rho genes is able to rescue the lethality of rho1Delta cells. Shutoff experiments indicated that Rho5p can replace Rho1p, but it is not as effective in maintaining cell wall integrity or actin organization. rho5(+) expression is hardly detected during log-phase growth but is induced under nutritional starvation conditions. rho5Delta cells are viable and do not display any defects during logarithmic growth. However, when rho1(+) expression is repressed during stationary phase, rho5Delta cells display reduced viability. Ascospores lacking Rho5p are less resistant to heat or lytic enzymes than wild-type spores. Moreover, h(90) mutant strains carrying the hyperactive rho5-G15V or the dominant-negative rho5-T20N alleles display severe ascospore formation defects. These results suggest that Rho5p functions in a way similar to, but less efficient than, Rho1p, plays a nonessential role during stationary phase, and participates in the spore wall formation.
Collapse
Affiliation(s)
- Sergio A Rincón
- Instituto Microbiología-Bioquímica, CSIC/Universidad de Salamanca, Campus Unamuno, 37007 Salamanca, Spain
| | | | | |
Collapse
|
23
|
Mutoh T, Nakano K, Mabuchi I. Rho1-GEFs Rgf1 and Rgf2 are involved in formation of cell wall and septum, while Rgf3 is involved in cytokinesis in fission yeast. Genes Cells 2006; 10:1189-202. [PMID: 16324155 DOI: 10.1111/j.1365-2443.2005.00908.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Rho GTPase acts as a binary molecular switch by converting between a GDP-bound inactive and a GTP-bound active conformational state. The guanine nucleotide exchange factors (GEFs) are critical activators of Rho. Rho1 has been shown to regulate actin cytoskeleton and cell wall synthesis in the fission yeast Schizosaccharomyces pombe. Here we studied function of fission yeast RhoGEFs, Rgf1, Rgf2, and Rgf3. It was shown that these proteins have similar molecular structures, and function as GEFs for Rho1. Disruption of either rgf1 or rgf2 did not show a serious effect on the cell. On the other hand, disruption of rgf3 caused severe defects in contractile ring formation, F-actin patch localization, and septation during cytokinesis. Rgf1 and Rgf2 were localized to the cell ends during interphase and the septum. Rgf3 formed a ring at the division site, which was located outside the contractile ring and inside the septum where Rho1 was accumulated. In summary, Rgf1 and Rgf2 show functional redundancy, and roles of these RhoGEFs are likely to be different from that of Rgf3. Rho1 is likely to be activated by Rgf3 at the division site, and involved in contractile ring formation and/or maintenance and septation.
Collapse
Affiliation(s)
- Tadashi Mutoh
- Graduate Program in Biophysics and Biochemistry, School of Science, University of Tokyo, Hongo, Bunkyo-ku, Japan
| | | | | |
Collapse
|
24
|
García P, Tajadura V, García I, Sánchez Y. Rgf1p is a specific Rho1-GEF that coordinates cell polarization with cell wall biogenesis in fission yeast. Mol Biol Cell 2006; 17:1620-31. [PMID: 16421249 PMCID: PMC1415308 DOI: 10.1091/mbc.e05-10-0933] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rho1p regulates cell integrity by controlling the actin cytoskeleton and cell wall synthesis. We have identified a new GEF, designated Rgf1p, which specifically regulates Rho1p during polarized growth. The phenotype of rgf1 null cells was very similar to that seen after depletion of Rho1p, 30% of cells being lysed. In addition, rgf1(+) deletion caused hypersensitivity to the antifungal drug Caspofungin and defects in the establishment of bipolar growth. rho1(+), but none of the other GTPases of the Rho-family, suppressed the rgf1Delta phenotypes. Moreover, deletion of rgf1(+) suppressed the severe growth defect in rga1(+) null mutants (a Rho1-GAP, negative regulator). Rgf1p and Rho1p coimmunoprecipitated and overexpression of rgf1(+) specifically increased the GTP-bound Rho1p; it caused changes in cell morphology, and a large increase in beta(1,3)-glucan synthase activity. These effects were similar to those elicited when the hyperactive rho1-G15V allele was expressed. A genetic relationship was observed between Rgf1p, Bgs4p (beta[1,3]-glucan synthase), and Pck1p (protein kinase C [PKC] homologue); Bgs4p and Pck1p suppressed the hypersensitivity to Caspofungin in rgf1Delta mutants. Rgf1p localized to the growing ends and the septum, where Rho1, Pck1p, and Bgs4p are known to function. Our results suggest that Rgf1p probably activates the Rho functions necessary for coordinating actin deposition with cell wall biosynthesis during bipolar growth, allowing the cells to remodel their wall without risk of rupture.
Collapse
Affiliation(s)
- Patricia García
- Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
25
|
Matis M, Zakelj-Mavric M, Peter-Katalinić J. Global Analysis of the Hortaea werneckii Proteome: Studying Steroid Response in Yeast. J Proteome Res 2005; 4:2043-51. [PMID: 16335949 DOI: 10.1021/pr050195f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The response of the halophilic black yeast Hortaea werneckii to the steroid hormone progesterone has been studied at the protein level using fluorescent two-dimensional differential gel electrophoresis (2D-DIGE) technology in combination with mass spectrometry. Data on protein identification from this study reveal molecular mechanisms of the response to progesterone. In particular, the overexpression of Pck2 and Pac2 in the stimulated cells indicates the interactions of progesterone with the cell growth and reproduction signaling pathways.
Collapse
Affiliation(s)
- Maja Matis
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | |
Collapse
|
26
|
Morrell-Falvey JL, Ren L, Feoktistova A, Haese GD, Gould KL. Cell wall remodeling at the fission yeast cell division site requires the Rho-GEF Rgf3p. J Cell Sci 2005; 118:5563-73. [PMID: 16291723 DOI: 10.1242/jcs.02664] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cytokinesis in Schizosaccharomyces pombe is accompanied by several stages of cell wall remodeling at the division site. Coincident with actomyosin ring constriction, primary and secondary septa are deposited and then the primary septum is degraded to release daughter cells from one another. These steps require the activities of glucan synthases and glucanases, respectively, which must be coordinated with one another to prevent cell lysis. The lad1-1 mutation undergoes cell lysis specifically at cell division owing to the absence of the Rgf3p Rho1-guanine nucleotide exchange factor (GEF) at the division site. Electron microscopic analysis indicates that lysis occurs only as the primary septum begins to be degraded. Overproduction of either Rho1p or the previously uncharacterized Rab-GTPase-activating protein (GAP) involved in secretion, Gyp10p, suppresses lad1-1 lethality. Rgf3p is periodically produced in an Ace2p-dependent manner and localizes to the medial region of the cell early in mitosis, a pattern of expression distinct from the highly related Rho-GEF, Rgf1p. Although rgf1+ is not an essential gene, it is synthetically lethal with rgf2-deleted cells whereas no negative genetic interactions were detected between rgf2-deleted cells and lad1-1. Our data suggest that the three closely related fission yeast Rho-GEF molecules perform two distinct essential functions. Rgf3p appears necessary to stimulate Rho1p-mediated activation of a glucan synthase crucial after septation for proper new cell-end formation.
Collapse
Affiliation(s)
- Jennifer L Morrell-Falvey
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
27
|
Nakano K, Arai R, Mabuchi I. Small GTPase Rho5 is a functional homologue of Rho1, which controls cell shape and septation in fission yeast. FEBS Lett 2005; 579:5181-6. [PMID: 16146630 DOI: 10.1016/j.febslet.2005.08.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 07/14/2005] [Accepted: 08/15/2005] [Indexed: 10/25/2022]
Abstract
The small GTPase Rho1 plays an essential role in controlling the organization of the actin cytoskeleton and synthesis of the cell wall in the fission yeast Schizosaccharomyces pombe. Here we studied the role of Rho5 whose primary structure is very similar to that of Rho1. It was found that elevated expression of Rho5 was able to compensate for the lethality of cells lacking Rho1. Rho5 was localized to the ends of interphase cells and the mid-region of mitotic cells. Overexpression of Rho5 caused depolarization of F-actin patches and abnormal formation of the cell wall, as did Rho1. Although rho5(+) was not essential for maintaining the cell shape, rho1 rho5-double null cells showed more severe defects in cell viability than rho1-null cells. Thus, it is likely that Rho5 has an overlapping function with Rho1 in controlling cell growth and division in S. pombe.
Collapse
Affiliation(s)
- Kentaro Nakano
- Division of Biology, Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | | | | |
Collapse
|
28
|
Leonhard K, Nurse P. Ste20/GCK kinase Nak1/Orb3 polarizes the actin cytoskeleton in fission yeast during the cell cycle. J Cell Sci 2005; 118:1033-44. [PMID: 15731009 DOI: 10.1242/jcs.01690] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polar growth is a crucial process during cell morphogenesis. The microtubule and actin cytoskeletons, and vesicular transport are tightly regulated to direct cellular growth and to generate specific cell forms. We demonstrate here that the Ste20-related protein kinase Nak1/Orb3 is required in fission yeast to polarize the actin cytoskeleton at the tips of the cells and for cell separation, and so is involved in controlling both cell shape and late stages of cytokinesis. The localization of the Nak1/Orb3 kinase to the cell tips, a medial ring and the spindle-pole bodies changes during the cell cycle, and the accumulation of F-actin at the cell tips is dependent on Nak1/Orb3 kinase. The phosphorylation of Nak1/Orb3 is periodic during the cell cycle and could be part of a mechanism that relocalizes a constitutively active kinase from the cell tips to the middle of the cell, thereby coordinating reorganization of the actin cytoskeleton and regulation of cell separation with cell-cycle progression.
Collapse
Affiliation(s)
- Klaus Leonhard
- Cancer Research UK, Cell Cycle Laboratory, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK.
| | | |
Collapse
|
29
|
Tajadura V, García B, García I, García P, Sánchez Y. Schizosaccharomyces pombe Rgf3p is a specific Rho1 GEF that regulates cell wall beta-glucan biosynthesis through the GTPase Rho1p. J Cell Sci 2004; 117:6163-74. [PMID: 15546915 DOI: 10.1242/jcs.01530] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Rho1p regulates cell integrity by controlling the actin cytoskeleton and cell-wall synthesis. Here, we describe the cloning and characterization of rgf3+, a member of the Rho family of guanine nucleotide exchange factors (Rho GEFs). The rgf3+ gene was cloned by complementation of a mutant (ehs2-1) hypersensitive to drugs that interfere with cell-wall biosynthesis. The rgf3+ gene was found to be essential for cell viability and depletion of Rgf3p afforded phenotypes similar to those obtained following depletion of Rho1p. However, the cell death caused by Rgf3p depletion could be rescued by the presence of 1.2 M sorbitol, whereas depletion of Rho1 was lethal under the same conditions. We show that Rgf3p is a specific Rho1-GEF. The hypersensitivity to drugs affecting the cell wall of the ehs2-1 mutant was suppressed by overexpression of rho1+ but not by any of the other GTPases of the Rho family. Rgf3p interacted with the GDP-bound form of Rho1p and promoted the GDP-GTP exchange. In addition, we show that overexpression of Rgf3p produces multiseptated cells and increases beta-1,3-glucan synthase activity and the amount of cell wall beta-1,3-glucan. Rgf3p localized to the septum and the mRNA level was regulated in a cell-cycle-dependent manner peaking during septation. Our results suggest that Rgf3p acts as a positive activator of Rho1p, probably activating the Rho functions that coordinate cell-wall biosynthesis to maintain cell integrity during septation.
Collapse
Affiliation(s)
- Virginia Tajadura
- Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca, and Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | | | |
Collapse
|
30
|
Iwaki N, Karatsu K, Miyamoto M. Role of guanine nucleotide exchange factors for Rho family GTPases in the regulation of cell morphology and actin cytoskeleton in fission yeast. Biochem Biophys Res Commun 2004; 312:414-20. [PMID: 14637153 DOI: 10.1016/j.bbrc.2003.10.140] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rho GTPases regulate fundamental processes including cell morphology and migration in various organisms. Guanine nucleotide exchange factor (GEF) has a crucial role in activating small GTPase by exchange GDP for GTP. In fission yeast Schizosaccharomyces pombe, six members of the Rho small GTPase family were identified and reported to be involved in cell morphology and polarized cell growth. We identified seven genes encoding Rho GEF domain from genome sequence and analyzed. Overexpressions of identified genes in cell lead to change of morphology, suggesting that all of them are involved in the regulation of cell morphology. Although all of null mutants were viable, two of seven null cells had morphology defects and five of seven displayed altered actin cytoskeleton arrangements. Most of the double mutants were viable and biochemical analysis revealed that each of GEFs bound to several small G proteins. These data suggest that identified Rho GEFs are involved in the regulation of cell morphology and share signals via small GTPase Rho family.
Collapse
Affiliation(s)
- Nobuhiko Iwaki
- Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai-cho Nada Kobe 657-8501, Japan
| | | | | |
Collapse
|
31
|
Yang P, Qyang Y, Bartholomeusz G, Zhou X, Marcus S. The novel Rho GTPase-activating protein family protein, Rga8, provides a potential link between Cdc42/p21-activated kinase and Rho signaling pathways in the fission yeast, Schizosaccharomyces pombe. J Biol Chem 2003; 278:48821-30. [PMID: 14506270 DOI: 10.1074/jbc.m306819200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PAK family kinase, Shk1, is an essential regulator of polarized growth in the fission yeast, Schizosaccharomyces pombe. Here we describe the characterization of a novel member of the RhoGAP family, Rga8, identified from a two-hybrid screen for proteins that interact with the Shk1 kinase domain. Although deletion of the rga8 gene in wild type S. pombe cells results in no obvious phenotypic defects under normal growth conditions, it partially suppresses the cold-sensitive growth and morphological defects of S. pombe cells carrying a hypomorphic allele of the shk1 gene. By contrast, overexpression of rga8 is lethal to shk1-defective cells and causes morphological and cytokinesis defects in wild type S. pombe cells. Consistent with a role for Rga8 as a downstream target of Shk1, we show that the Rga8 protein is directly phosphorylated by Shk1 in vitro and phosphorylated in a Shk1-dependent fashion in S. pombe cells. Fluorescence photomicroscopy of the GFP-Rga8 fusion protein indicates that Rga8 is localized to the cell ends during interphase and to the septum-forming region during cytokinesis. In S. pombe cells carrying the orb2-34 allele of shk1, Rga8 exhibits a monopolar pattern of localization, providing evidence that Shk1 contributes to the regulation of Rga8 localization. Although molecular analyses suggest that Rga8 functions as a GAP for the S. pombe Rho1 GTPase, genetic experiments suggest that Rga8 and Rho1 have a positive functional interaction and that gain of Rho1 function, like gain of Rga8 function, is lethal to Shk1-defective cells. Our results suggest that Rga8 is a Shk1 substrate that negatively regulates Shk1-dependent growth control pathway(s) in S. pombe, potentially through interaction with the Rho1 GTPase.
Collapse
Affiliation(s)
- Peirong Yang
- Department of Molecular Genetics and Program in Genes and Development, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
32
|
Wang H, Tang X, Balasubramanian MK. Rho3p regulates cell separation by modulating exocyst function in Schizosaccharomyces pombe. Genetics 2003; 164:1323-31. [PMID: 12930742 PMCID: PMC1462644 DOI: 10.1093/genetics/164.4.1323] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytokinesis is the final stage of the cell division cycle in which the mother cell is physically divided into two daughters. In recent years the fission yeast Schizosaccharomyces pombe has emerged as an attractive model organism for the study of cytokinesis, since it divides using an actomyosin ring whose constriction is coordinated with the centripetal deposition of new membranes and a division septum. The final step of cytokinesis in S. pombe requires the digestion of the primary septum to liberate two daughters. We have previously shown that the multiprotein exocyst complex is essential for this process. Here we report the isolation of rho3(+), encoding a Rho family GTPase, as a high-copy suppressor of an exocyst mutant, sec8-1. Overproduction of Rho3p also suppressed the temperature-sensitive growth phenotype observed in cells lacking Exo70p, another conserved component of the S. pombe exocyst complex. Cells deleted for rho3 arrest at higher growth temperatures with two or more nuclei and uncleaved division septa between pairs of nuclei. rho3Delta cells accumulate approximately 100-nm vesicle-like structures. These phenotypes are all similar to those observed in exocyst component mutants, consistent with a role for Rho3p in modulation of exocyst function. Taken together, our results suggest the possibility that S. pombe Rho3p regulates cell separation by modulation of exocyst function.
Collapse
Affiliation(s)
- Hongyan Wang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | | | | |
Collapse
|
33
|
Santos B, Gutiérrez J, Calonge TM, Pérez P. Novel Rho GTPase involved in cytokinesis and cell wall integrity in the fission yeast Schizosaccharomyces pombe. EUKARYOTIC CELL 2003; 2:521-33. [PMID: 12796297 PMCID: PMC161461 DOI: 10.1128/ec.2.3.521-533.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Rho family of GTPases is present in all eukaryotic cells from yeast to mammals; they are regulators in signaling pathways that control actin organization and morphogenetic processes. In yeast, Rho GTPases are implicated in cell polarity processes and cell wall biosynthesis. It is known that Rho1 and Rho2 are key proteins in the construction of the cell wall, an essential structure that in Schizosaccharomyces pombe is composed of beta-glucan, alpha-glucan, and mannoproteins. Rho1 regulates the synthesis of 1,3-beta-D-glucan by activation of the 1,3-beta-D-glucan synthase, and Rho2 regulates the synthesis of alpha-glucan by the 1,3-alpha-D-glucan synthase Mok1. Here we describe the characterization of another Rho GTPase in fission yeast, Rho4. rho4Delta cells are viable but display cell separation defects at high temperature. In agreement with this observation, Rho4 localizes to the septum. Overexpression of rho4(+) causes lysis and morphological defects. Several lines of evidence indicate that both rho4(+) deletion or rho4(+) overexpression result in a defective cell wall, suggesting an additional role for Rho4 in cell wall integrity. Rho4Delta cells also accumulate secretory vesicles around the septum and are defective in actin polarization. We propose that Rho4 could be involved in the regulation of the septum degradation during cytokinesis.
Collapse
Affiliation(s)
- Beatriz Santos
- Instituto Microbiología-Bioquímica, Departamento de Microbiología-Genética, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, 37007 Salamanca, Spain.
| | | | | | | |
Collapse
|
34
|
Nakano K, Mutoh T, Arai R, Mabuchi I. The small GTPase Rho4 is involved in controlling cell morphology and septation in fission yeast. Genes Cells 2003; 8:357-70. [PMID: 12653963 DOI: 10.1046/j.1365-2443.2003.00639.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Rho family small GTPases have been shown to be involved in various cellular activities, including the organization of actin cytoskeleton in eukaryotic cells. There are six rho genes in the fission yeast Schizosaccharomyces pombe. Cdc42 is known to control the polarity of the cell. Rho1, Rho2 and Rho3 play important roles in controlling cell shape and septation. On the other hand, Rho4 and Rho5 have not yet been characterized. Here we report the function of rho4+ in fission yeast. RESULTS Gene disruption revealed that rho4+ is not essential for cell growth. However, rho4-null cells were abnormally elongated and had multiple septa of irregular shape at 37 degrees C. In these cells, F-actin patches were randomly localized all over the cell periphery, and cytoplasmic microtubules (MTs) were misoriented. On the other hand, the exogenous expression of a constitutively active Rho4-G23V or Rho4-Q74L in wild-type cells induced depolarization of F-actin patches and cytoplasmic MTs. Rho4 was localized to the cell periphery during interphase and septum during mitosis. Both the binding of GTP and isoprenylation of its C-terminus were necessary for the localization. Furthermore, the localization of Rho4 was likely to be controlled by Rho GAP and Rho GDI. CONCLUSION Rho4 may control cell morphogenesis and septation by regulating both the actin cytoskeleton and cytoplasmic MTs.
Collapse
Affiliation(s)
- Kentaro Nakano
- Division of Biology, Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | | | | | | |
Collapse
|
35
|
Calonge TM, Arellano M, Coll PM, Perez P. Rga5p is a specific Rho1p GTPase-activating protein that regulates cell integrity in Schizosaccharomyces pombe. Mol Microbiol 2003; 47:507-18. [PMID: 12519200 DOI: 10.1046/j.1365-2958.2003.03312.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Schizosaccharomyces pombe Rho1p regulates (1,3)beta-d-glucan synthesis and is required for cell integrity maintenance and actin cytoskeleton organization, but nothing is known about the regulation of this protein. At least nine different S. pombe genes code for proteins predicted to act as Rho GTPase-activating proteins (GAPs). The results shown in this paper demonstrate that the protein encoded by the gene named rga5+ is a GAP specific for Rho1p. rga5+ overexpression is lethal and causes morphological alterations similar to those reported for Rho1p inactivation. rga5+ deletion is not lethal and causes a mild general increase in cell wall biosynthesis and morphological alterations when cells are grown at 37 degrees C. Upon mild overexpression, Rga5p localizes to growth areas and possesses both in vivo and in vitro GAP activity specific for Rho1p. Overexpression of rho1+ in rga5Delta cells is lethal, with a morphological phenotype resembling that of the overexpression of the constitutively active allele rho1G15V. In addition (1,3)beta-d-glucan synthase activity, regulated by Rho1p, is increased in rga5Delta cells and decreased in rga5-overexpressing cells. Moreover, the increase in (1,3)beta-d-glucan synthase activity caused by rho1+ overexpression is considerably higher in rga5Delta than in wild-type cells. Genetic interactions suggest that Rga5p is also important for the regulation of the other known Rho1p effectors, Pck1p and Pck2p.
Collapse
Affiliation(s)
- Teresa M Calonge
- Instituto de Microbiologia Bioquimica, Consejo Superior de Investigaciones Cientifical, Departamento de Microbiologia y Genética, Universidad de Salamanca, Edificio Departmental, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
36
|
Nakano K, Imai J, Arai R, Toh-E A, Matsui Y, Mabuchi I. The small GTPase Rho3 and the diaphanous/formin For3 function in polarized cell growth in fission yeast. J Cell Sci 2002; 115:4629-39. [PMID: 12415007 DOI: 10.1242/jcs.00150] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified a novel Rho gene rho3(+) and studied its interaction with diaphanous/formin for3(+) in the fission yeast Schizosaccharomyces pombe. Both rho3 null cells and for3 null cells showed defects in organization of not only actin cytoskeleton but also cytoplasmic microtubules (MTs). rho3 for3 double null cells had defects that were more severe than each single null cell: polarized growth was deficient in the double null cells. Function of For3 needed the highly conserved FH1 and FH2 domains, an N-terminal region containing a Rho-binding domain, and the C-terminal region. For3 bound to active forms of both Rho3 and Cdc42 but not to that of Rho1. For3 was localized as dots to the ends of interphase cells and to the mid-region in dividing cells. This localization was probably dependent on its interaction with Rho proteins. Overexpression of For3 produced huge swollen cells containing depolarized F-actin patches and thick cytoplasmic MT bundles. In addition, overexpression of a constitutively active Rho3Q71L induced a strong defect in cytokinesis. In conclusion, we propose that the Rho3-For3 signaling system functions in the polarized cell growth of fission yeast by controlling both actin cytoskeleton and MTs.
Collapse
Affiliation(s)
- Kentaro Nakano
- Division of Biology, Department of Life Sciences, Graduate Program of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Nakano K, Mutoh T, Mabuchi I. Characterization of GTPase-activating proteins for the function of the Rho-family small GTPases in the fission yeast Schizosaccharomyces pombe. Genes Cells 2001; 6:1031-42. [PMID: 11737264 DOI: 10.1046/j.1365-2443.2001.00485.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The small GTPase Rho1 has been shown to regulate the organization of the actin cytoskeleton and formation of the cell wall in the fission yeast Schizosaccharomyces pombe. Activity of Rho1 must be precisely regulated in vivo, since both increases and decreases in its activity affect cell growth and shape. Thus, it is important to clarify the mechanism by which the activity of Rho1 is regulated in vivo. RESULTS Seven genes encoding putative GAPs, GTPase-activating proteins, for the function of the Rho-family proteins were isolated from S. pombe. After disruption of these genes, rga1+ was found to play important roles in cell growth and morphogenesis. In rga1 null cells, delocalized F-actin patches and extraordinary thickening of the cell wall and the septum were observed. On the other hand, over-expression of Rga1 produced shrunken or dumpy cells. The phenotype of the rga1 null cells or the Rga1-over-expressing cells was similar to that of cells containing abnormally high or low Rho1 activity, respectively. Moreover, direct association of Rga1 with Rho1 was shown. Rga1 was localized to the cell ends and septum where Rho1 is known to function. CONCLUSIONS In S. pombe, Rga1 is involved in the F-actin patch localization, cell morphogenesis, regulation of septation, and cell wall synthesis, probably functioning as a GAP for the function of Rho1.
Collapse
Affiliation(s)
- K Nakano
- Division of Biology, Department of Life Sciences, Graduate Program in Interdisciplinary Sciences, School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | | | | |
Collapse
|
38
|
Feierbach B, Chang F. Roles of the fission yeast formin for3p in cell polarity, actin cable formation and symmetric cell division. Curr Biol 2001; 11:1656-65. [PMID: 11696322 DOI: 10.1016/s0960-9822(01)00525-5] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Both symmetric and asymmetric cell divisions are required for the generation of appropriate cell lineages during development. Wild-type Schizosaccharomyces pombe cells divide in a symmetric fashion to produce two similar rod-shaped daughter cells. Formins are proteins with conserved roles in cell polarity, cytokinesis, and the regulation of actin and microtubule cytoskeletons. RESULTS Here, we identify and characterize a new S. pombe formin, for3p. for3 Delta mutant cells divide in an asymmetric manner; a mother cell divides medially to produce one daughter cell that develops into a monopolar cell and one daughter that develops into a bipolar cell. Both daughter cells recapitulate similar asymmetric lineages themselves. Inheritance of the bipolar pattern correlates with inheritance of the recent birth scar, not with asymmetry in the spindle pole bodies. for3 Delta mutants lack interphase actin cables and have delocalized actin patch and myo52p (type V myosin) distributions. for3 Delta cells have normal microtubule dynamics and cortical interactions but have defects in microtubule organization and increased numbers of microtubule bundles. for3p-GFP is localized at both cell tips in an actin-dependent manner and at the cell division site. CONCLUSIONS for3p is a cell polarity factor required for interphase actin cable formation and microtubule organization. The for3 Delta phenotype suggests that cells are able to grow in a polarized manner even in the absence of functional actin cables and polarized distribution of actin patches. for3p and possibly actin cables are part of a regulatory network that ensures that cell divisions are symmetric.
Collapse
Affiliation(s)
- B Feierbach
- Department of Microbiology, Columbia University College of Physicians and Surgeons, 701 W. 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
39
|
Tanabe O, Hirata D, Usui H, Nishito Y, Miyakawa T, Igarashi K, Takeda M. Fission yeast homologues of the B' subunit of protein phosphatase 2A: multiple roles in mitotic cell division and functional interaction with calcineurin. Genes Cells 2001; 6:455-73. [PMID: 11380623 DOI: 10.1046/j.1365-2443.2001.00429.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase distributed in eukaryotes from yeast to human, and plays pivotal roles in diverse cellular functions such as metabolism, cell cycle progression, gene expression and development. PP2A holoenzyme is a heterodimer of a catalytic subunit C and a regulatory subunit A, or a heterotrimer of C, A and a variable regulatory subunit consisting of three families; B, B', and PR72. Specific functions for each variable subunit are not well understood. RESULTS Two fission yeast genes pbp1+ and pbp2+ homologous to the regulatory subunit B' were isolated. Physical in vivo interaction of the gene products with the catalytic subunit was demonstrated. A double disruption haploid mutant (Deltapbp1Deltapbp2) showed growth defect, cell shape and size abnormality, multiseptation and anucleated cell formation due to abnormality in septum positioning. These phenotypes were suppressed by human B' cDNA, indicating the striking conservation of the B' function from yeast to human. Over-expression of fission yeast B' led to growth defects, a loss of cell shape polarity, septal abnormality and anucleated cell formation. Deltapbp1Deltapbp2 and pbp1 null haploids were hypersensitive to calcineurin inhibitors, cyclosporin A and FK506, with which the mutants underwent arrest at post-anaphase and cell lysis. Double disruption of calcineurin and pbp1+, but not pbp2+, genes led to synthetic lethality. CONCLUSION The fission yeast B' subunit of PP2A plays critical roles in cell shape control and septum formation, and shares essential functions with calcineurin for viability, possibly through their roles in cytokinesis and cell wall integrity.
Collapse
Affiliation(s)
- O Tanabe
- Department of Biochemistry, Hiroshima University School of Medicine, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan.
| | | | | | | | | | | | | |
Collapse
|
40
|
Suda M, Yamada S, Toda T, Miyakawa T, Hirata D. Regulation of Wee1 kinase in response to protein synthesis inhibition. FEBS Lett 2000; 486:305-9. [PMID: 11119724 DOI: 10.1016/s0014-5793(00)02299-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To investigate the mechanism coupling growth (protein synthesis) with cell division, we examined the relationship between the tyrosine kinase Wee1 that inhibits Cdc2-Cdc13 mitosis-inducing kinase by phosphorylating it, and protein synthesis inhibition in fission yeast. The wee1-50 mutant showed supersensitivity to protein synthesis inhibitor, cycloheximide. Wee1 was essential for the G(2) delay upon a partial inhibition of protein synthesis. Indeed, the protein synthesis inhibition caused an increase in the Wee1 protein by the Sty1/Spc1 MAPK-dependent transcriptional and the Sty1/Spc1 MAPK-independent post-transcriptional regulations. Further, the results indicated that the post-transcriptional regulation is important for the G(2) delay.
Collapse
Affiliation(s)
- M Suda
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Japan
| | | | | | | | | |
Collapse
|
41
|
Calonge TM, Nakano K, Arellano M, Arai R, Katayama S, Toda T, Mabuchi I, Perez P. Schizosaccharomyces pombe rho2p GTPase regulates cell wall alpha-glucan biosynthesis through the protein kinase pck2p. Mol Biol Cell 2000; 11:4393-401. [PMID: 11102532 PMCID: PMC15081 DOI: 10.1091/mbc.11.12.4393] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2000] [Revised: 09/22/2000] [Accepted: 10/12/2000] [Indexed: 01/02/2023] Open
Abstract
Schizosaccharomyces pombe rho1(+) and rho2(+) genes are involved in the control of cell morphogenesis, cell integrity, and polarization of the actin cytoskeleton. Although both GTPases interact with each of the two S. pombe protein kinase C homologues, Pck1p and Pck2p, their functions are distinct from each other. It is known that Rho1p regulates (1,3)beta-D-glucan synthesis both directly and through Pck2p. In this paper, we have investigated Rho2p signaling and show that pck2 delta and rho2 delta strains display similar defects with regard to cell wall integrity, indicating that they might be in the same signaling pathway. We also show that Rho2 GTPase regulates the synthesis of alpha-D-glucan, the other main structural polymer of the S. pombe cell wall, primarily through Pck2p. Although overexpression of rho2(+) in wild-type or pck1 delta cells is lethal and causes morphological alterations, actin depolarization, and an increase in alpha-D-glucan biosynthesis, all of these effects are suppressed in a pck2 delta strain. In addition, genetic interactions suggest that Rho2p and Pck2p are important for the regulation of Mok1p, the major (1-3)alpha-D-glucan synthase. Thus, a rho2 delta mutation, like pck2 delta, is synthetically lethal with mok1-664, and the mutant partially fails to localize Mok1p to the growing areas. Moreover, overexpression of mok1(+) in rho2 delta cells causes a lethal phenotype that is completely different from that of mok1(+) overexpression in wild-type cells, and the increase in alpha-glucan is considerably lower. Taken together, all of these results indicate the presence of a signaling pathway regulating alpha-glucan biosynthesis in which the Rho2p GTPase activates Pck2p, and this kinase in turn controls Mok1p.
Collapse
Affiliation(s)
- T M Calonge
- Instituto de Microbiología Bioquímica, Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Edificio Departamental, 37007 Salamanca, Spain
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Martín V, Ribas JC, Carnero E, Durán A, Sánchez Y. bgs2+, a sporulation-specific glucan synthase homologue is required for proper ascospore wall maturation in fission yeast. Mol Microbiol 2000; 38:308-21. [PMID: 11069657 DOI: 10.1046/j.1365-2958.2000.02118.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The formation of the ascospore cell wall of Schizosaccharomyces pombe requires the co-ordinated activity of enzymes involved in the biosynthesis of its components, such as glucans. We have cloned the bgs2+ gene. bgs2+ belongs to the glucan synthase family of S. pombe and is homologous to the Saccharomyces cerevisiae FKS1 and FKS2 genes. Deletion or overexpression of this gene does not lead to any apparent defect during vegetative growth, but homozygous bgs2Delta diploids do show a sporulation defect. Although meiosis takes place normally, ascospores are unable to mature, and their wall differs from that of wild-type ascospores. Moreover, bgs2Delta zygotes were not able to release ascospores spontaneously, and the ascospores were unable to germinate. We show that expression of bgs2+ is restricted to sporulation and that a bgs2-green fluorescent protein (GFP) fusion protein localizes to the ascospore envelope. The glucan synthase activity in sporulating diploids bearing a bgs2 deletion was diminished in comparison with that of the wild-type diploids, a fact that underscores the importance of the bgs2+ gene and glucan synthesis for the proper formation and maturation of the ascospore wall.
Collapse
Affiliation(s)
- V Martín
- Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca, and Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Room 236, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | | | |
Collapse
|
43
|
Abstract
Rod-shaped fission yeast cells grow in a polarized manner, and unlike budding yeast, the correct positioning of the growth sites at cell ends requires interphase microtubules. Here we describe a microtubule guidance mechanism that orients microtubules in the intracellular space along the long axis of the cell, guiding them to their target region at the cell ends. This mechanism involves tip1p, a CLIP170-like protein that localizes to distal tips of cytoplasmic microtubules. In the absence of tip1p, microtubular catastrophe is no longer restricted to cell ends but occurs when microtubules reach any region of the cellular cortex. Thus, tip1p enables microtubules to discriminate different cortical regions and regulates their dynamics accordingly.
Collapse
Affiliation(s)
- D Brunner
- Imperial Cancer Research Fund, London, United Kingdom
| | | |
Collapse
|
44
|
Atienza JM, Suh M, Xenarios I, Landgraf R, Colicelli J. Human ERK1 induces filamentous growth and cell wall remodeling pathways in Saccharomyces cerevisiae. J Biol Chem 2000; 275:20638-46. [PMID: 10787425 DOI: 10.1074/jbc.m910024199] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of an activated extracellular signal-regulated kinase 1 (ERK1) construct in yeast cells was used to examine the conservation of function among mitogen-activated protein (MAP) kinases. Sequence alignment of the human MAP kinase ERK1 with all Saccharomyces cerevisiae kinases reveals a particularly strong kinship with Kss1p (invasive growth promoting MAP kinase), Fus3p (pheromone response MAP/ERK kinase), and Mpk1p (cell wall remodeling MAP kinase). A fusion protein of constitutively active human MAP/ERK kinase 1 (MEK) and human ERK1 was introduced under regulated expression into yeast cells. The fusion protein (MEK/ERK) induced a filamentation response element promoter and led to a growth retardation effect concomitant with a morphological change resulting in elongated cells, bipolar budding, and multicell chains. Induction of filamentous growth was also observed for diploid cells following MEK/ERK expression in liquid culture. Neither haploids nor diploids, however, showed marked penetration of agar medium. These effects could be triggered by either moderate MEK/ERK expression at 37 degrees C or by high level MEK/ERK expression at 30 degrees C. The combination of high level MEK/ERK expression and 37 degrees C resulted in cell death. The deleterious effects of MEK/ERK expression and high temperature were significantly mitigated by 1 m sorbitol, which also enhanced the filamentous phenotype. MEK/ERK was able to constitutively activate a cell wall maintenance reporter gene, suggesting misregulation of this pathway. In contrast, MEK/ERK effectively blocked expression from a pheromone-responsive element promoter and inhibited mating. These results are consistent with MEK/ERK promoting filamentous growth and altering the cell wall through its ability to partially mimic Kss1p and stimulate a pathway normally controlled by Mpk1p, while appearing to inhibit the normal functioning of the structurally related yeast MAP kinase Fus3p.
Collapse
Affiliation(s)
- J M Atienza
- Department of Biological Chemistry and the Molecular Biology Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
45
|
Yang W, Urano J, Tamanoi F. Protein farnesylation is critical for maintaining normal cell morphology and canavanine resistance in Schizosaccharomyces pombe. J Biol Chem 2000; 275:429-38. [PMID: 10617635 DOI: 10.1074/jbc.275.1.429] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein farnesyltransferase (FTase) plays important roles in the growth and differentiation of eukaryotic cells. In this paper, we report the identification of the Schizosaccharomyces pombe gene cpp1(+) encoding the beta-subunit of FTase. The predicted amino acid sequence of the cpp1(+) gene product shares significant similarity with FTase beta-subunits from a variety of organisms. S. pombe FTase purified from E. coli exhibits high enzymatic activity toward the CAAX farnesylation motif substrates (where C represents cysteine, A represents aliphatic amino acid, and X is preferentially methionine, cysteine, serine, alanine, or glutamine) while showing little preference for CAAL geranylgeranylation motif substrates (where L represents leucine or phenylalanine). cpp1(+) is not essential for growth as shown by gene disruption; however, mutant cells exhibit rounded or irregular cell morphology. Expression of a geranylgeranylated mutant form, Ras1-CVIL, which can bypass farnesylation, rescues these morphological defects. We also identify a novel phenotype of cpp1(-) mutants, hypersensitivity to canavanine. This appears to be due to a 3-4-fold increase in the rate of arginine uptake as compared with wild-type cells. Expression of the geranylgeranylated mutant form of a novel farnesylated small GTPase, SpRheb, is able to suppress the elevated arginine uptake rate. These results demonstrate that protein farnesylation is critical for maintaining normal cell morphology through Ras1 and canavanine resistance through SpRheb.
Collapse
Affiliation(s)
- W Yang
- Department of Microbiology, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095-1489, USA
| | | | | |
Collapse
|
46
|
Murray JM, Johnson DI. Isolation and characterization of Nrf1p, a novel negative regulator of the Cdc42p GTPase in Schizosaccharomyces pombe. Genetics 2000; 154:155-65. [PMID: 10628977 PMCID: PMC1460887 DOI: 10.1093/genetics/154.1.155] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Cdc42p GTPase and its regulators, such as the Saccharomyces cerevisiae Cdc24p guanine-nucleotide exchange factor, control signal-transduction pathways in eukaryotic cells leading to actin rearrangements. A cross-species genetic screen was initiated based on the ability of negative regulators of Cdc42p to reverse the Schizosaccharomyces pombe Cdc42p suppression of a S. cerevisiae cdc24(ts) mutant. A total of 32 S. pombe nrf (negative regulator of Cdc forty two) cDNAs were isolated that reversed the suppression. One cDNA, nrf1(+), encoded an approximately 15 kD protein with three potential transmembrane domains and 78% amino-acid identity to a S. cerevisiae gene, designated NRF1. A S. pombe Deltanrf1 mutant was viable but overexpression of nrf1(+) in S. pombe resulted in dose-dependent lethality, with cells exhibiting an ellipsoidal morphology indicative of loss of polarized cell growth along with partially delocalized cortical actin and large vacuoles. nrf1(+) also displayed synthetic overdose phenotypes with cdc42 and pak1 alleles. Green fluorescent protein (GFP)-Cdc42p and GFP-Nrf1p colocalized to intracellular membranes, including vacuolar membranes, and to sites of septum formation during cytokinesis. GFP-Nrf1p vacuolar localization depended on the S. pombe Cdc24p homolog Scd1p. Taken together, these data are consistent with Nrf1p functioning as a negative regulator of Cdc42p within the cell polarity pathway.
Collapse
Affiliation(s)
- J M Murray
- Department of Microbiology and Molecular Genetics and the Markey Center for Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
| | | |
Collapse
|
47
|
Arellano M, Valdivieso MH, Calonge TM, Coll PM, Duran A, Perez P. Schizosaccharomyces pombe protein kinase C homologues, pck1p and pck2p, are targets of rho1p and rho2p and differentially regulate cell integrity. J Cell Sci 1999; 112 ( Pt 20):3569-78. [PMID: 10504305 DOI: 10.1242/jcs.112.20.3569] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Schizosaccharomyces pombe rho1(+) is required for maintenance of cell integrity and polarization of the actin cytoskeleton. However, no other effector besides the (1,3)beta-D-glucan synthase enzyme has been identified in S. pombe. We have further investigated if rho1(+)signalling could be also mediated by the two protein kinase C homologues, pck1p and pck2p. We show in this study that both kinases interact with rho1p and rho2p only when bound to GTP, as most GTPase effectors do. Interestingly, the interaction was mapped in a different part of the proteins than in Saccharomyces cerevisiae Pkc1p. Thus, active rho1p binds to the amino-terminal region of the pcks where two HR1 motifs are located, and binding to the GTPase dramatically stabilizes the kinases. Detailed biochemical analysis suggests that pck2p is more important in the regulation of the enzyme (1–3)beta-D-glucan synthase. Thus, overexpression of pck2(+), but not pck1(+), caused a general increase in cell wall biosynthesis, mainly in beta-glucan, and (1–3)beta-D-glucan synthase activity was considerably augmented. When this activity was separated into soluble and membrane fractions and reconstituted, the increase caused by pck2(+) overexpression was exclusively detected in the membrane component. We also show that both protein kinase C homologues are required for the maintenance of cell integrity. pck1delta and pck2delta strains present a number of defects related to the cell wall, indicating that this structure might be co-ordinately regulated by both kinases. In addition, pck2p, but not pck1p, seems to be involved in keeping cell polarity. Genetic evidence indicates that both pck1(+) and pck2(+) interact with cps1(+) and gls2(+), two genes similar to S. cerevisiae FKS1 and FKS2 that encode membrane subunits of the (1–3)beta-D-glucan synthase. pck1(+)also showed a genetic interaction with ras1(+) and ral1(+) suggesting the existence of a functional link between both signalling pathways.
Collapse
Affiliation(s)
- M Arellano
- Instituto de Microbiología Bioquímica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Edificio Departamental, Spain.
| | | | | | | | | | | |
Collapse
|
48
|
Arellano M, Coll PM, Pérez P. RHO GTPases in the control of cell morphology, cell polarity, and actin localization in fission yeast. Microsc Res Tech 1999; 47:51-60. [PMID: 10506761 DOI: 10.1002/(sici)1097-0029(19991001)47:1<51::aid-jemt5>3.0.co;2-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The fission yeast Schizosaccharomyces pombe undergoes morphogenetic changes during both vegetative and sexual cell cycles that require asymmetric cell growth and actin cytoskeleton reorganisations. Different complex signal transduction pathways participate in S. pombe morphogenesis. The Rho family of GTPases are present in all eukaryotic cells, from yeast to mammals, and their role as key regulators in the signalling pathways that control actin organisation and morphogenetic processes is well known. In this review, we will briefly summarize the role of the Rho GTPases in the establishment and maintenance of cell polarity and growth of S. pombe. As in other fungi, S. pombe morphogenesis is closely related to cell wall biosynthesis, and Rho GTPases are critical modulators of this process. They provide the coordinated regulation of cell wall biosynthetic enzymes and actin organisation required to maintain cell integrity and polarised growth.
Collapse
Affiliation(s)
- M Arellano
- Instituto de Microbiología Bioquímica, CSIC / Universidad de Salamanca. Edificio Departamental, 37007 Salamanca, Spain
| | | | | |
Collapse
|
49
|
Suda M, Fukui M, Sogabe Y, Sato K, Morimatsu A, Arai R, Motegi F, Miyakawa T, Mabuchi I, Hirata D. Overproduction of elongation factor 1alpha, an essential translational component, causes aberrant cell morphology by affecting the control of growth polarity in fission yeast. Genes Cells 1999; 4:517-27. [PMID: 10526238 DOI: 10.1046/j.1365-2443.1999.00279.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Elongation factor 1alpha (EF1alpha), an essential component of the eukaryotic translational machinery, has been shown to possess various biochemical and biological activities, including F-actin-binding and -bundling, microtubule- severing, and the activity of making fibroblasts highly susceptible to transformation. However, our understanding of the biological significance of EF1alpha with respect to these various biochemical or biological activities remains limited. Here we report the identification of EF1alpha-encoding genes as genes whose over-expression causes aberrant cell morphology in fission yeast. RESULTS Overproduction of EF1alpha caused aberrant cell morphology-elliptic, curved or branched-and growth defects in yeast cells at high temperatures. EF1alpha-overproducing cells showed a supersensitivity to the actin inhibitor cytochalasin D and to the tubulin inhibitor thiabendazole. Genetic analyses using cdc mutants suggested that excess EF1alpha disturbed the establishment and the maintenance of growth polarity in the G1 phase by pre- venting the localization of F-actin to the polarized growing site and the organization of microtubules. Results from DNase I column chromatography indicated that EF1alpha was bound to G-actin. Indeed, the fission yeast actin was immunoprecipitated along with EF1alpha. Moreover, the temperature sensitivity caused by the overproduction of EF1alpha was restored by co-overproduction of actin. CONCLUSIONS Fission yeast EF1alpha has the ability to alter the cell morphology of yeast by affecting the control of actin and microtubule cytoskeletons.
Collapse
Affiliation(s)
- M Suda
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Omi K, Sonoda H, Nagata K, Sugita K. Cloning and characterization of psu1(+), a new essential fission yeast gene involved in cell wall synthesis. Biochem Biophys Res Commun 1999; 262:368-74. [PMID: 10462482 DOI: 10.1006/bbrc.1999.1209] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have isolated a new gene, psu1(+), from the fission yeast Schizosaccharomyces pombe. The predicted amino acid sequences shows that this protein has striking homology to the SUN family of the budding yeast, hence designated Psu1 (S. pombe homologue of the SUN family). Disruption of the psu1(+) gene revealed that it is essential for growth, and the null phenotype showed the swelling of cells followed by eventual lysis. We introduced psu1(+) gene in the disruptant strain and repressed it giving resistance to 1, 3-beta-glucanase digestion. Our results suggest that Psu1 plays an essential role in cell wall synthesis in S. pombe.
Collapse
Affiliation(s)
- K Omi
- Shionogi Research Laboratories, Shionogi & Co., Ltd., Sagisu 5-12-4, Osaka, Fukushima-Ku, 553-0002, Japan.
| | | | | | | |
Collapse
|