1
|
Liu J, Chen Z, Xiao Y, Asano T, Li S, Peng L, Chen E, Zhang J, Li W, Zhang Y, Tong X, Kadono-Okuda K, Zhao P, He N, Arunkumar KP, Gopinathan KP, Xia Q, Willis JH, Goldsmith MR, Mita K. Lepidopteran wing scales contain abundant cross-linked film-forming histidine-rich cuticular proteins. Commun Biol 2021; 4:491. [PMID: 33888855 PMCID: PMC8062583 DOI: 10.1038/s42003-021-01996-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/18/2021] [Indexed: 02/02/2023] Open
Abstract
Scales are symbolic characteristic of Lepidoptera; however, nothing is known about the contribution of cuticular proteins (CPs) to the complex patterning of lepidopteran scales. This is because scales are resistant to solubilization, thus hindering molecular studies. Here we succeeded in dissolving developing wing scales from Bombyx mori, allowing analysis of their protein composition. We identified a distinctive class of histidine rich (His-rich) CPs (6%-45%) from developing lepidopteran scales by LC-MS/MS. Functional studies using RNAi revealed CPs with different histidine content play distinct and critical roles in constructing the microstructure of the scale surface. Moreover, we successfully synthesized films in vitro by crosslinking a 45% His-rich CP (BmorCPR152) with laccase2 using N-acetyl- dopamine or N-β-alanyl-dopamine as the substrate. This molecular study of scales provides fundamental information about how such a fine microstructure is constructed and insights into the potential application of CPs as new biomaterials.
Collapse
Affiliation(s)
- Jianqiu Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Zhiwei Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yingdan Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Tsunaki Asano
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Shenglong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Li Peng
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Enxiang Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Jiwei Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Wanshun Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Xiaoling Tong
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Keiko Kadono-Okuda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Kallare P Arunkumar
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
- Central Muga Eri Research and Training Institute, (CMER&TI), Central Silk Board, Jorhat, India
| | | | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Judith H Willis
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Marian R Goldsmith
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.
- Biological Science Research Center, Southwest University, Chongqing, China.
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA.
| | - Kazuei Mita
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.
- Biological Science Research Center, Southwest University, Chongqing, China.
| |
Collapse
|
2
|
Goodenough U, Roth R, Kariyawasam T, He A, Lee JH. Epiplasts: Membrane Skeletons and Epiplastin Proteins in Euglenids, Glaucophytes, Cryptophytes, Ciliates, Dinoflagellates, and Apicomplexans. mBio 2018; 9:e02020-18. [PMID: 30377285 PMCID: PMC6212826 DOI: 10.1128/mbio.02020-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 01/03/2023] Open
Abstract
Animals and amoebae assemble actin/spectrin-based plasma membrane skeletons, forming what is often called the cell cortex, whereas euglenids and alveolates (ciliates, dinoflagellates, and apicomplexans) have been shown to assemble a thin, viscoelastic, actin/spectrin-free membrane skeleton, here called the epiplast. Epiplasts include a class of proteins, here called the epiplastins, with a head/medial/tail domain organization, whose medial domains have been characterized in previous studies by their low-complexity amino acid composition. We have identified two additional features of the medial domains: a strong enrichment of acid/base amino acid dyads and a predicted β-strand/random coil secondary structure. These features have served to identify members in two additional unicellular eukaryotic radiations-the glaucophytes and cryptophytes-as well as additional members in the alveolates and euglenids. We have analyzed the amino acid composition and domain structure of 219 epiplastin sequences and have used quick-freeze deep-etch electron microscopy to visualize the epiplasts of glaucophytes and cryptophytes. We define epiplastins as proteins encoded in organisms that assemble epiplasts, but epiplastin-like proteins, of unknown function, are also encoded in Insecta, Basidiomycetes, and Caulobacter genomes. We discuss the diverse cellular traits that are supported by epiplasts and propose evolutionary scenarios that are consonant with their distribution in extant eukaryotes.IMPORTANCE Membrane skeletons associate with the inner surface of the plasma membrane to provide support for the fragile lipid bilayer and an elastic framework for the cell itself. Several radiations, including animals, organize such skeletons using actin/spectrin proteins, but four major radiations of eukaryotic unicellular organisms, including disease-causing parasites such as Plasmodium, have been known to construct an alternative and essential skeleton (the epiplast) using a class of proteins that we term epiplastins. We have identified epiplastins in two additional radiations and present images of their epiplasts using electron microscopy. We analyze the sequences and secondary structure of 219 epiplastins and present an in-depth overview and analysis of their known and posited roles in cellular organization and parasite infection. An understanding of epiplast assembly may suggest therapeutic approaches to combat infectious agents such as Plasmodium as well as approaches to the engineering of useful viscoelastic biofilms.
Collapse
Affiliation(s)
- Ursula Goodenough
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Robyn Roth
- Center for Cellular Imaging, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Thamali Kariyawasam
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amelia He
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Barbosa ADS, Barbosa HS, Souza SMDO, Dib LV, Uchôa CMA, Bastos OMP, Amendoeira MRR. Balantioides coli: morphological and ultrastructural characteristics of pig and non-human primate isolates. Acta Parasitol 2018; 63:287-298. [PMID: 29654686 DOI: 10.1515/ap-2018-0033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 01/26/2018] [Indexed: 11/15/2022]
Abstract
Balantioides coli is a ciliated protozoon that inhabits the intestine of pigs, non-human primates and humans. Light microscopy studies have described over 50 species of the genus Balantioides but their validity is in doubt. Due to the limited information about this genus, this study is aimed to identify morphological characteristics of Balantioides coli isolated using fluorescence microscopy and both scanning (SEM) and transmission electron microscopy (TEM). Trophozoites isolated from the feces of pig and macaque were washed and subjected to centrifugation. These cells were fixed with paraformaldehyde for immunofluorescence. Other aliquots of these trophozoites were fixed with glutaraldehyde, post fixed with osmium tetroxide and processed for SEM and TEM. Immunofluorescence studies revealed microtubules with a longitudinal distribution to the main axis of the parasite and in the constitution of cilia. SEM demonstrated a high concentration of cilia covering the oral apparatus and a poor presence of such structures in cytopyge. TEM revealed in the plasma membrane, several associated structures were observed to delineate the cellular cortex and mucocysts. The cytoskeleton of the oral region was observed in detail and had an organization pattern consisting of microtubules, which formed files and nematodesmal networks. Organelles such as hydrogenosomes like and peroxisomes were observed close to the cortex. Macronuclei were observed, but structures that were consistent with micronuclei were not identified. Ultrastructural morphological analysis of isolates confirms its similarity to Balantioides coli. In this study were identified structures that had not yet been described, such as hydrogenosomes like and cytoskeletal structures.
Collapse
Affiliation(s)
- Alynne da Silva Barbosa
- Laboratório de Toxoplasmose e outras Protozooses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Brasil, CEP: 21045900
- Universidade Federal Fluminense, Instituto Biomédico, Departamento de Microbiologia e Parasitologia. Rua Professor Hernani de Mello, São Domingos, Niterói, Rio de Janeiro, Brasil, CEP: 24210130
| | - Helene Santos Barbosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-361, Brazil, CEP: 21045900
| | - Sandra Maria de Oliveira Souza
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-361, Brazil, CEP: 21045900
| | - Laís Verdan Dib
- Universidade Federal Fluminense, Instituto Biomédico, Departamento de Microbiologia e Parasitologia. Rua Professor Hernani de Mello, São Domingos, Niterói, Rio de Janeiro, Brasil, CEP: 24210130
| | - Claudia Maria Antunes Uchôa
- Universidade Federal Fluminense, Instituto Biomédico, Departamento de Microbiologia e Parasitologia. Rua Professor Hernani de Mello, São Domingos, Niterói, Rio de Janeiro, Brasil, CEP: 24210130
| | - Otilio Machado Pereira Bastos
- Universidade Federal Fluminense, Instituto Biomédico, Departamento de Microbiologia e Parasitologia. Rua Professor Hernani de Mello, São Domingos, Niterói, Rio de Janeiro, Brasil, CEP: 24210130
| | - Maria Regina Reis Amendoeira
- Laboratório de Toxoplasmose e outras Protozooses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Brasil, CEP: 21045900
| |
Collapse
|
4
|
Preisner H, Habicht J, Garg SG, Gould SB. Intermediate filament protein evolution and protists. Cytoskeleton (Hoboken) 2018; 75:231-243. [PMID: 29573204 DOI: 10.1002/cm.21443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 01/20/2023]
Abstract
Metazoans evolved from a single protist lineage. While all eukaryotes share a conserved actin and tubulin-based cytoskeleton, it is commonly perceived that intermediate filaments (IFs), including lamin, vimentin or keratin among many others, are restricted to metazoans. Actin and tubulin proteins are conserved enough to be detectable across all eukaryotic genomes using standard phylogenetic methods, but IF proteins, in contrast, are notoriously difficult to identify by such means. Since the 1950s, dozens of cytoskeletal proteins in protists have been identified that seemingly do not belong to any of the IF families described for metazoans, yet, from a structural and functional perspective fit criteria that define metazoan IF proteins. Here, we briefly review IF protein discovery in metazoans and the implications this had for the definition of this protein family. We argue that the many cytoskeletal and filament-forming proteins of protists should be incorporated into a more comprehensive picture of IF evolution by aligning it with the recent identification of lamins across the phylogenetic diversity of eukaryotic supergroups. This then brings forth the question of how the diversity of IF proteins has unfolded. The evolution of IF proteins likely represents an example of convergent evolution, which, in combination with the speed with which these cytoskeletal proteins are evolving, generated their current diversity. IF proteins did not first emerge in metazoa, but in protists. Only the emergence of cytosolic IF proteins that appear to stem from a nuclear lamin is unique to animals and coincided with the emergence of true animal multicellularity.
Collapse
Affiliation(s)
- Harald Preisner
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jörn Habicht
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
5
|
Preisner H, Karin EL, Poschmann G, Stühler K, Pupko T, Gould SB. The Cytoskeleton of Parabasalian Parasites Comprises Proteins that Share Properties Common to Intermediate Filament Proteins. Protist 2016; 167:526-543. [PMID: 27744090 DOI: 10.1016/j.protis.2016.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 08/25/2016] [Accepted: 09/02/2016] [Indexed: 01/15/2023]
Abstract
Certain protist lineages bear cytoskeletal structures that are germane to them and define their individual group. Trichomonadida are excavate parasites united by a unique cytoskeletal framework, which includes tubulin-based structures such as the pelta and axostyle, but also other filaments such as the striated costa whose protein composition remains unknown. We determined the proteome of the detergent-resistant cytoskeleton of Tetratrichomonas gallinarum. 203 proteins with homology to Trichomonas vaginalis were identified, which contain significantly more long coiled-coil regions than control protein sets. Five candidates were shown to associate with previously described cytoskeletal structures including the costa and the expression of a single T. vaginalis protein in T. gallinarum induced the formation of accumulated, striated filaments. Our data suggests that filament-forming proteins of protists other than actin and tubulin share common structural properties with metazoan intermediate filament proteins, while not being homologous. These filament-forming proteins might have evolved many times independently in eukaryotes, or simultaneously in a common ancestor but with different evolutionary trajectories downstream in different phyla. The broad variety of filament-forming proteins uncovered, and with no homologs outside of the Trichomonadida, once more highlights the diverse nature of eukaryotic proteins with the ability to form unique cytoskeletal filaments.
Collapse
Affiliation(s)
- Harald Preisner
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Eli Levy Karin
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Gereon Poschmann
- Molecular Proteomics Laboratory (MPL), BMFZ, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory (MPL), BMFZ, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
6
|
Polyphyly of nuclear lamin genes indicates an early eukaryotic origin of the metazoan-type intermediate filament proteins. Sci Rep 2015; 5:10652. [PMID: 26024016 PMCID: PMC4448529 DOI: 10.1038/srep10652] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 04/20/2015] [Indexed: 12/24/2022] Open
Abstract
The nuclear lamina is a protein meshwork associated with the inner side of the nuclear envelope contributing structural, signalling and regulatory functions. Here, I report on the evolution of an important component of the lamina, the lamin intermediate filament proteins, across the eukaryotic tree of life. The lamins show a variety of protein domain and sequence motif architectures beyond the classical α-helical rod, nuclear localisation signal, immunoglobulin domain and CaaX motif organisation, suggesting extension and adaptation of functions in many species. I identified lamin genes not only in metazoa and Amoebozoa as previously described, but also in other opisthokonts including Ichthyosporea and choanoflagellates, in oomycetes, a sub-family of Stramenopiles, and in Rhizaria, implying that they must have been present very early in eukaryotic evolution if not even the last common ancestor of all extant eukaryotes. These data considerably extend the current perception of lamin evolution and have important implications with regard to the evolution of the nuclear envelope.
Collapse
|
7
|
Chen X, Zhao X, Liu X, Warren A, Zhao F, Miao M. Phylogenomics of non-model ciliates based on transcriptomic analyses. Protein Cell 2015; 6:373-385. [PMID: 25833385 PMCID: PMC4417680 DOI: 10.1007/s13238-015-0147-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 01/21/2015] [Indexed: 01/19/2023] Open
Abstract
Ciliates are one of the oldest living eukaryotic unicellular organisms, widely distributed in the waters around the world. As a typical marine oligotrich ciliate, Strombidium sulcatum plays an important role in marine food webs and energy flow. Here we report the first deep sequencing and analyses of RNA-Seq data from Strombidium sulcatum. We generated 42,640 unigenes with an N50 of 1,451 bp after de novo assembly and removing rRNA, mitochondrial and bacteria contaminants. We employed SPOCS to detect orthologs from S. sulcatum and 17 other ciliates, and then carried out the phylogenomic reconstruction using 127 single copy orthologs. In phylogenomic analyses, concatenated trees have similar topological structures with concordance tree on the class level. Together with phylogenetic networks analysis, it aroused more doubts about the placement of Protocruzia, Mesodinium and Myrionecta. While epiplasmic proteins are known to be related to morphological characteristics, we found the potential relationship between gene expression of epiplasmic proteins and morphological characteristics. This work supports the use of high throughput approaches for phylogenomic analysis as well as correlation analysis between expression level of target genes and morphological characteristics.
Collapse
Affiliation(s)
- Xiao Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Xiaolu Zhao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Xiaohui Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101 China
| | - Miao Miao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
8
|
Aubusson-Fleury A, Bricheux G, Damaj R, Lemullois M, Coffe G, Donnadieu F, Koll F, Viguès B, Bouchard P. Epiplasmins and Epiplasm in Paramecium: The Building of a Submembraneous Cytoskeleton. Protist 2013; 164:451-69. [DOI: 10.1016/j.protis.2013.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 12/27/2022]
|
9
|
Zhang H, Guo F, Zhou H, Zhu G. Transcriptome analysis reveals unique metabolic features in the Cryptosporidium parvum Oocysts associated with environmental survival and stresses. BMC Genomics 2012; 13:647. [PMID: 23171372 PMCID: PMC3542205 DOI: 10.1186/1471-2164-13-647] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/24/2012] [Indexed: 01/08/2023] Open
Abstract
Background Cryptosporidium parvum is a globally distributed zoonotic parasite and an important opportunistic pathogen in immunocompromised patients. Little is known on the metabolic dynamics of the parasite, and study is hampered by the lack of molecular and genetic tools. Here we report the development of the first Agilent microarray for C. parvum (CpArray15K) that covers all predicted ORFs in the parasite genome. Global transcriptome analysis using CpArray15K coupled with real-time qRT-PCR uncovered a number of unique metabolic features in oocysts, the infectious and environmental stage of the parasite. Results Oocyst stage parasites were found to be highly active in protein synthesis, based on the high transcript levels of genes associated with ribosome biogenesis, transcription and translation. The proteasome and ubiquitin associated components were also highly active, implying that oocysts might employ protein degradation pathways to recycle amino acids in order to overcome the inability to synthesize amino acids de novo. Energy metabolism in oocysts was featured by the highest level of expression of lactate dehydrogenase (LDH) gene. We also studied parasite responses to UV-irradiation, and observed complex and dynamic regulations of gene expression. Notable changes included increased transcript levels of genes involved in DNA repair and intracellular trafficking. Among the stress-related genes, TCP-1 family members and some thioredoxin-associated genes appear to play more important roles in the recovery of UV-induced damages in the oocysts. Our observations also suggest that UV irradiation of oocysts results in increased activities in cytoskeletal rearrangement and intracellular membrane trafficking. Conclusions CpArray15K is the first microarray chip developed for C. parvum, which provides the Cryptosporidium research community a needed tool to study the parasite transcriptome and functional genomics. CpArray15K has been successfully used in profiling the gene expressions in the parasite oocysts as well as their responses to UV-irradiation. These observations shed light on how the parasite oocysts might adapt and respond to the hostile external environment and associated stress such as UV irradiation.
Collapse
Affiliation(s)
- Haili Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
10
|
Kloetzel JA, Brann TW. Structure and protein composition of a basal-body scaffold ("cage") in the hypotrich ciliate Euplotes. J Eukaryot Microbiol 2012; 59:587-600. [PMID: 23134115 DOI: 10.1111/j.1550-7408.2012.00639.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cilia on the ventral surface of the hypotrich ciliate Euplotes are clustered into polykinetids or compound ciliary organelles, such as cirri or oral membranelles, used in locomotion and prey capture. A single polykinetid may contain more than 150 individual cilia; these emerge from basal bodies held in a closely spaced array within a scaffold or framework structure that has been referred to as a basal-body "cage". Cage structures were isolated free of cilia and basal bodies; the predominant component of such cages was found on polyacrylamide gels to be a 45-kDa polypeptide. Antisera were raised against this protein band and used for immunolocalizations at the light and electron microscope levels. Indirect immunofluorescence revealed the 45-kDa polypeptide to be localized exclusively to the bases of the ventral polykinetids. Immunogold staining of thin sections of intact cells further localized this reactivity to filaments of a double-layered dense lattice that appears to link adjoining basal bodies into ordered arrays within each polykinetid. Scanning electron microscopy of isolated cages reveals the lower or "basal" cage layer to be a fine lacey meshwork supporting the basal bodies at their proximal ends; adjoining basal bodies are held at their characteristic spacing by filaments of an upper or "medial" cage layer. The isolated cage thus resembles a miniature test-tube rack, able to accommodate varying arrangements of basal-body rows, depending on the particular type of polykinetid. Because of its clear and specific localization to the basal-body cages in Euplotes, we have termed this novel 45-kDa protein "cagein".
Collapse
Affiliation(s)
- John A Kloetzel
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA.
| | | |
Collapse
|
11
|
Cornman RS, Willis JH. Annotation and analysis of low-complexity protein families of Anopheles gambiae that are associated with cuticle. INSECT MOLECULAR BIOLOGY 2009; 18:607-22. [PMID: 19754739 PMCID: PMC3701952 DOI: 10.1111/j.1365-2583.2009.00902.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have characterized four new families of homologous genes of the mosquito, Anopheles gambiae, all of which include members shown by previous work to be cuticular in nature. The CPLCG, CPLCW, CPLCP, and CPLCA families (where CPLC is 'cuticular protein of low complexity') encode proteins with a high proportion of low-complexity sequence. We have also annotated the An. gambiae Tweedle genes, a family of cuticular protein genes first described in Drosophila, and additional ungrouped An. gambiae cuticular proteins identified by proteomics. Our annotations reveal multiple gene-family expansions that are specific to Diptera or Culicidae. The CPLCG and CPLCW families occur within a large and dynamic tandem array on chromosome 3R that includes sets of concertedly evolving genes. Most gene families exhibit two or more different expression profiles during development.
Collapse
Affiliation(s)
- R S Cornman
- Department of Cellular Biology, University of Georgia, Athens, GA, USA.
| | | |
Collapse
|
12
|
Lemgruber L, Kloetzel JA, Souza WD, Vommaro RC. Toxoplasma gondii: further studies on the subpellicular network. Mem Inst Oswaldo Cruz 2009; 104:706-9. [DOI: 10.1590/s0074-02762009000500007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 07/02/2009] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | - Wanderley de Souza
- Universidade Federal do Rio de Janeiro, Brasil; Instituto Nacional de Metrologia, Normalização e Qualidade Industrial, Brasil
| | | |
Collapse
|
13
|
Gould SB, Tham WH, Cowman AF, McFadden GI, Waller RF. Alveolins, a new family of cortical proteins that define the protist infrakingdom Alveolata. Mol Biol Evol 2008; 25:1219-30. [PMID: 18359944 DOI: 10.1093/molbev/msn070] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alveolates are a recently recognized group of unicellular eukaryotes that unites disparate protists including apicomplexan parasites (which cause malaria and toxoplasmosis), dinoflagellate algae (which cause red tides and are symbionts in many corals), and ciliates (which are microscopic predators and common rumen symbionts). Gene sequence trees provide robust support for the alveolate alliance, but beyond the common presence of membranous sacs (alveoli) subtending the plasma membrane, the group has no unifying morphological feature. We describe a family of proteins, alveolins, associated with these membranous sacs in apicomplexa, dinoflagellates, and ciliates. Alveolins contain numerous simple peptide repeats and are encoded by multigene families. We generated antibodies against a peptide motif common to all alveolins and identified a range of apparently abundant proteins in apicomplexa, dinoflagellates, and ciliates. Immunolocalization reveals that alveolins are associated exclusively with the cortical regions of apicomplexa, dinoflagellates, and ciliates where the alveolar sacs occur. Alveolins are the first molecular nexus between the unifying structures that defines this eukaryotic group. They provide an excellent opportunity to explore the exceptional compartment that was apparently the key to a remarkable diversification of unique protists that occupy a wide array of lifestyle niches.
Collapse
Affiliation(s)
- Sven B Gould
- School of Botany, University of Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
14
|
Bouts DMD, Melo ACDA, Andrade ALH, Silva-Neto MAC, Paiva-Silva GDO, Sorgine MHF, da Cunha Gomes LS, Coelho HS, Furtado AP, Aguiar ECM, de Medeiros LN, Kurtenbach E, Rozental S, Cunha-E-Silva NL, de Souza W, Masuda H. Biochemical properties of the major proteins from Rhodnius prolixus eggshell. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:1207-1221. [PMID: 17916507 DOI: 10.1016/j.ibmb.2007.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 07/17/2007] [Indexed: 05/25/2023]
Abstract
Two proteins from the eggshell of Rhodnius prolixus were isolated, characterized and named Rp30 and Rp45 according to their molecular masses. Purified proteins were used to obtain specific antiserum which was later used for immunolocalization. The antiserum against Rp30 and Rp45 detected their presence inside the follicle cells, their secretion and their association with oocyte microvilli. Both proteins are expressed during the final stage of vitellogenesis, preserved during embryogenesis and discarded together with the eggshell. The amino terminals were sequenced and both proteins were further cloned using degenerated primers. The amino acid sequences appear to have a tripartite arrangement with a highly conserved central domain which presents a repetitive motif of valine-proline-valine (VPV) at intervals of 15 amino acid residues. Their amino acid sequence showed no similarity to any known eggshell protein. The expression of these proteins was also investigated; the results demonstrated that this occurred strictly in choriogenic follicles. Antifungal activity against Aspergillus niger was found to be associated with Rp45 but not with Rp30. A. niger exposed to Rp45 protein induced growth inhibition and several morphological changes such as large vacuoles, swollen mitochondria, multi-lamellar structures and a disorganized cell wall as demonstrated by electron microscopy analysis.
Collapse
Affiliation(s)
- Denise M D Bouts
- Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro/RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pomel S, Diogon M, Bouchard P, Pradel L, Ravet V, Coffe G, Viguès B. The Membrane Skeleton in Paramecium: Molecular Characterization of a Novel Epiplasmin Family and Preliminary GFP Expression Results. Protist 2006; 157:61-75. [PMID: 16427359 DOI: 10.1016/j.protis.2005.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 10/23/2005] [Accepted: 10/23/2005] [Indexed: 11/30/2022]
Abstract
Previous attempts to identify the membrane skeleton of Paramecium cells have revealed a protein pattern that is both complex and specific. The most prominent structural elements, epiplasmic scales, are centered around ciliary units and are closely apposed to the cytoplasmic side of the inner alveolar membrane. We sought to characterize epiplasmic scale proteins (epiplasmins) at the molecular level. PCR approaches enabled the cloning and sequencing of two closely related genes by amplifications of sequences from a macronuclear genomic library. Using these two genes (EPI-1 and EPI-2), we have contributed to the annotation of the Paramecium tetraurelia macronuclear genome and identified 39 additional (paralogous) sequences. Two orthologous sequences were found in the Tetrahymena thermophila genome. Structural analysis of the 43 sequences indicates that the hallmark of this new multigenic family is a 79 aa domain flanked by two Q-, P- and V-rich stretches of sequence that are much more variable in amino-acid composition. Such features clearly distinguish members of the multigenic family from epiplasmic proteins previously sequenced in other ciliates. The expression of Green Fluorescent Protein (GFP)-tagged epiplasmin showed significant labeling of epiplasmic scales as well as oral structures. We expect that the GFP construct described herein will prove to be a useful tool for comparative subcellular localization of different putative epiplasmins in Paramecium.
Collapse
Affiliation(s)
- Sébastien Pomel
- Laboratoire de Biologie des Protistes, UMR CNRS 6023, Université Blaise Pascal, 63177 Aubière cedex, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Kempner ES, Miller JH. The molecular biology of Euglena gracilis. XV. Recovery from centrifugation-induced stratification. ACTA ACUST UNITED AC 2004; 56:219-24. [PMID: 14584024 DOI: 10.1002/cm.10145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The contents of Euglena gracilis cells can be separated in vivo by ultracentrifugation. Within the unbroken cell, each set of components forms a distinct layer according to their respective densities. The degree of segregation increases with both the g-force and the time of centrifugation, up to a maximum at 100,000 x g for 1 h, when six distinct strata can be observed. When returned to normal growth conditions, essentially all the cells return to the normal state and growth pattern. Greater g-forces or longer exposures do not alter the observable strata, but the ability of the cells to recover is diminished. Smaller g-forces result in less separation of cellular contents and all cells recover, even after 18 h of exposure. Euglena cells stratified at 100,000 x g for 1 h were returned to normal growth conditions; recovery was followed microscopically and by the rate of utilization of oxygen as well as that of the single carbon source. The cells recovered their normal state within 1 to 2 h, which is only a tenth of the normal doubling time. The mechanism for this recovery involves a natural process of change in cell shape caused by contraction and relaxation of the pellicle, a cell surface structure.
Collapse
Affiliation(s)
- E S Kempner
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
17
|
Williams NE. The Epiplasm Gene EPC1 Influences Cell Shape and Cortical Pattern in Tetrahymena thermophila1. J Eukaryot Microbiol 2004; 51:201-6. [PMID: 15134256 DOI: 10.1111/j.1550-7408.2004.tb00546.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The cortical protein Epc1p is the most abundant protein in the membrane skeleton, or epiplasm, of Tetrahymena thermophila. A partial sequence of the EPC1 gene was obtained and used to obtain a knockout construct that was successful in transforming Tetrahymena thermophila cells. The results support the conclusion that Epc1p influences cell shape and the fidelity of cortical development. It was further observed that this protein is transferred from plus to minus cells during conjugation, and that the imported protein is assembled into the epiplasm of the recipient cell in a discreet series of steps.
Collapse
Affiliation(s)
- Norman E Williams
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242, USA.
| |
Collapse
|
18
|
Kloetzel JA, Baroin-Tourancheau A, Miceli C, Barchetta S, Farmar J, Banerjee D, Fleury-Aubusson A. Cytoskeletal proteins with N-terminal signal peptides: plateins in the ciliate Euplotes define a new family of articulins. J Cell Sci 2003; 116:1291-303. [PMID: 12615971 DOI: 10.1242/jcs.00333] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protistan cells employ a wide variety of strategies to reinforce and give pattern to their outermost cortical layers. Whereas some use common cytoskeletal elements such as microtubules, others are based on novel cytoskeletal proteins that are as-yet-unknown in higher eukaryotes. The hypotrich ciliate Euplotes possesses a continuous monolayer of scales or plates, located within flattened membranous sacs ('alveoli') just below the plasma membrane, and this provides rigidity and form to the cell. Using immunological techniques, the major proteins comprising these 'alveolar plates' have been identified and termed alpha-, beta-, and gamma-plateins. The present report describes work leading to the molecular characterization of three plateins, alpha 1 and alpha 2 (predicted M(r)s of 61 and 56 kDa) and a beta/gamma form (M(r)=73 kDa). All three proteins have features that are hallmarks of articulins, a class of cytoskeletal proteins that has been identified in the cortex of a wide variety of protistan cells, including certain flagellates, ciliates, dinoflagellates and PLASMODIUM: Chief among these common features are a prominent primary domain of tandem 12-amino acid repeats, rich in valine and proline, and a secondary domain of fewer, shorter repeating units. However, variations in amino acid use within both primary and secondary repetitive domains, and a much more acidic character (predicted pIs of 4.7-4.9), indicate that the plateins represent the first proteins in a new subclass or family of articulins. This conclusion is supported by another novel feature of the plateins, the presence of a canonical hydrophobic signal peptide at the N-terminus of each derived platein sequence. This correlates well with the final cellular location of the plateins, which are assembled into plates within the membrane-limited alveolar sacs. To our knowledge, this is the first report in any eukaryote of cytoskeletal proteins with such start-transfer sequences. Confocal immunofluorescence microscopy, using antibodies to the plateins as probes, reveals that new alveolar plates (enlarging in cortical zones undergoing morphogenesis) label more faintly than mature parental plates. During plate assembly (or polymerization), the plateins thus appear to exist in a more soluble form.
Collapse
Affiliation(s)
- John A Kloetzel
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
An important unsolved problem lies in the mechanisms that determine overall size, shape, and the localization of subcellular structures in eukaryotic cells. The membrane skeleton must play a central role in these processes in many cell types, and the ciliate membrane skeleton, or epiplasm, offers favorable opportunities for exploring the molecular determinants of cortical organization. Among the ciliates, Tetrahymena is well suited for the application of a wide range of molecular and cellular approaches. Progress has been made in the identification and sequencing of genes and proteins that encode epiplasmic and cortical proteins. The amino acid sequences of these proteins suggest that they define new classes of cytoskeletal proteins, distinct from the articulin and epiplasmin proteins. We will also discuss recent in vivo and in vitro studies of the regulation of assembly of these cortical proteins. This will include information regarding the down-regulation of epiplasmic proteins during cleavage, their topographic regulation in the cell cycle, and the results of in vitro assembly and binding studies of the epiplasmic C protein.
Collapse
Affiliation(s)
- Jerry E Honts
- Department of Biology, Drake University, Des Moines, IA 50311, USA.
| | | |
Collapse
|
20
|
Kloetzel JA, Baroin-Tourancheau A, Miceli C, Barchetta S, Farmar J, Banerjee D, Fleury-Aubusson A. Plateins: a novel family of signal peptide-containing articulins in euplotid ciliates. J Eukaryot Microbiol 2003; 50:19-33. [PMID: 12674476 DOI: 10.1111/j.1550-7408.2003.tb00102.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In euplotid ciliates, the cortex is reinforced by alveolar plates--proteinaceous scales located within the membranous alveolar sacs, forming a monolayer just below the plasma membrane. This system appears to play a cytoskeletal role analogous to that provided by the fibrous epiplasm found beneath the cortical alveoli in other ciliates. In Euplotes aediculatus, the major alveolar plate proteins (termed alpha-, beta-, and gamma-plateins) have been identified. Using anti-platein antibodies, an expression library of Euplotes genes was screened, and a platein gene identified, cloned, and completely sequenced. Comparison of its derived amino acid sequence with microsequences obtained directly from purified plateins identified this gene as encoding one of the closely related beta- or gamma-plateins. The derived protein, of 644 amino acids (74.9 kDa), is very acidic (pI = 4.88). Microsequences from authentic alpha-platein were then used to design oligonucleotide primers, which yielded, via a PCR-based approach, the sequences of two alpha-platein genes from E. aediculatus. Even more acidic proteins, the derived alpha1- and alpha2-plateins contain 536 and 501 residues, respectively. Analyses of their amino acid sequences revealed the plateins to be members of the articulin superfamily of cytoskeletal proteins, first described in Euglena and now identified in the ciliate Pseudomicrothorax and in Plasmodium. The hallmark articulin repetitive motifs (based on degenerate valine- and proline-rich 12-mers) are present in all three plateins. In beta/gamma-platein this primary motif domain (27 repeats) is central in the molecule, whereas the primary repeats in the alpha-plateins lie near their C-termini. A cluster of proline-rich pentameric secondary repeats is found in the C-terminus of beta/gamma-platein, but near the N-terminus of alpha-plateins. All three plateins contain canonical N-terminal signal sequences, unique among known cytoskeletal proteins. The presence of start-transfer sequences correlates well with the final intra-alveolar location of these proteins. This feature, and significant differences from known articulins in amino acid usage and arrangement within the repeat domains, lead us to propose that the plateins comprise a new family of articulin-related proteins. Efforts to follow microscopically the assembly of plateins into new alveolar plates during pre-fission morphogenesis are underway.
Collapse
Affiliation(s)
- John A Kloetzel
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The cortex of ciliates. dinoflagellates, and euglenoids comprises a unique structure called the epiplasm, implicated in pattern-forming processes of the cell cortex and in maintaining cell shape. Articulins, a novel class of cytoskeletal proteins, are major constituents of the epiplasm in the flagellate Euglena gracilis and the ciliate Pseudomicrothorax dubius. The hallmark of articulins is a core domain of repetitive motifs of alternating valine and proline residues, the VPV-motif. The VPV-motif repeats are 12 residues long. Positively and negatively charged residues segregate in register with valine and proline positions. The VPV-motif is unique to articulins. The terminal domains flanking the core are generally hydrophobic and contain a series of hexa- or heptapeptide repeats rich in glycine and hydrophobic residues. Using molecular and immunological tools we show that articulins are also present in the dinoflagellate Amphidinium carterae and the ciliates Paramecium tetraurelia and Paramecium caudatum, Tetrahymena pyriformis, and Euplotes aediculatus. Our analysis further shows that epiplasmins, a group of epiplasmic proteins first characterized in Paramecium, are also present in all these species. Moreover, we present evidence that epiplasmins and articulins represent two distinct classes of cytoskeletal proteins.
Collapse
Affiliation(s)
- Irm Huttenlauch
- Max Planck Institute for Biophysical Chemistry, Department of Biochemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | | |
Collapse
|
22
|
Hofemeister H, Kuhn C, Franke WW, Weber K, Stick R. Conservation of the gene structure and membrane-targeting signals of germ cell-specific lamin LIII in amphibians and fish. Eur J Cell Biol 2002; 81:51-60. [PMID: 11893082 DOI: 10.1078/0171-9335-00229] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Targeting of nuclear lamins to the inner nuclear membrane requires CaaX motif-dependent posttranslational isoprenylation and carboxyl methylation. We previously have shown that two variants of lamin LIII (i.e., LIII and LIIIb) in amphibian oocytes are generated by alternative splicing and differ greatly in their membrane association. An extra cysteine residue (as a potential palmitoylation site) and a basic cluster in conjunction with the CaaX motif function as secondary targeting signals responsible for stable membrane association of lamin LIIIb. cDNA sequencing and genomic analysis of the zebrafish Danio rerio lamin LIII uncovers a remarkable conservation of the genomic organization and of the two secondary membrane-targeting signals in amphibians and fish. The expression pattern of lamin LIII genes is also conserved between amphibians and fish. Danio lamin LIII is expressed in diplotene oocytes. It is absent from male germ cells but is expressed in Sertoli cells of the testis. In addition, we provide sequence information of the entire coding sequence of zebrafish lamin A, which allows comparison of all major lamins from representatives of the four classes of vertebrates.
Collapse
|
23
|
Bouchard P, Chomilier J, Ravet V, Mornon JP, Viguès B. Molecular characterization of the major membrane skeletal protein in the ciliate Tetrahymena pyriformis suggests n-plication of an early evolutionary intermediate filament protein subdomain. J Cell Sci 2001; 114:101-110. [PMID: 11112694 DOI: 10.1242/jcs.114.1.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epiplasmin C is the major protein component of the membrane skeleton in the ciliate Tetrahymena pyriformis. Cloning and analysis of the gene encoding epiplasmin C showed this protein to be a previously unrecognized protein. In particular, epiplasmin C was shown to lack the canonical features of already known epiplasmic proteins in ciliates and flagellates. By means of hydrophobic cluster analysis (HCA), it has been shown that epiplasmin C is constituted of a repeat of 25 domains of 40 residues each. These domains are related and can be grouped in two families called types I and types II. Connections between types I and types II present rules that can be evidenced in the sequence itself, thus enforcing the validity of the splitting of the domains. Using these repeated domains as queries, significant structural similarities were demonstrated with an extra six heptads shared by nuclear lamins and invertebrate cytoplasmic intermediate filament proteins and deleted in the cytoplasmic intermediate filament protein lineage at the protostome-deuterostome branching in the eukaryotic phylogenetic tree.
Collapse
Affiliation(s)
- P Bouchard
- Laboratoire de Biologie des Protistes CNRS UMR 6023, Université Blaise Pascal 63177 Aubière cedex, France
| | | | | | | | | |
Collapse
|
24
|
Hofemeister H, Weber K, Stick R. Association of prenylated proteins with the plasma membrane and the inner nuclear membrane is mediated by the same membrane-targeting motifs. Mol Biol Cell 2000; 11:3233-46. [PMID: 10982413 PMCID: PMC14988 DOI: 10.1091/mbc.11.9.3233] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Targeting of nuclear lamins to the inner nuclear envelope membrane requires a nuclear localization signal and CaaX motif-dependent posttranslational modifications, including isoprenylation and carboxyl methylation. These modifications, although necessary for membrane targeting, are not sufficient to mediate stable association with membranes. We show that two variants of lamin B3 (i.e., B3a and B3b) exist in Xenopus oocytes. They are encoded by two alternatively spliced, developmentally regulated mRNAs. The two lamin variants differ greatly in their membrane association in meiotically matured eggs. The presence of an extra cysteine residue (as a potential palmitoylation site) and a basic cluster in conjunction with the CaaX motif function as secondary targeting signals responsible for the stable membrane association of lamin B3b in Xenopus eggs. Moreover, transfection experiments with Green Fluorescent Protein lamin tail chimeras and with a Green Fluorescent Protein N-Ras chimera show that these secondary motifs are sufficient to target proteins to the inner nuclear membrane and/or the plasma membrane. Implications for the intracellular trafficking of doubly lipidated proteins are discussed.
Collapse
Affiliation(s)
- H Hofemeister
- Max Planck Institute for Biophysical Chemistry, Department of Biochemistry, D-37018 Göttingen, Germany
| | | | | |
Collapse
|
25
|
Ralle T, Gremmels D, Stick R. Translational control of nuclear lamin B1 mRNA during oogenesis and early development of Xenopus. Mech Dev 1999; 84:89-101. [PMID: 10473123 DOI: 10.1016/s0925-4773(99)00078-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytoplasmic polyadenylation of specific mRNAs is commonly correlated with their translational activation during development. A canonical nuclear polyadenylation element AAUAAA (NPE) and cytoplasmic polyadenylation element(s) (CPE) are necessary and sufficient for polyadenylation during egg maturation. We have characterized cis-acting sequences of Xenopus nuclear lamin B1 mRNA that mediate translational regulation. By injection of synthetic RNAs into oocytes we show that the two CPE-like elements found in the 3'-untranslated region of B1 mRNA act as translational repressors in oocytes. The same CPEs in conjunction with the NPE confer transient polyadenylation and translational activation during egg maturation. Poly(A) length determination of the endogenous lamin B1 mRNA reveals a gradual increase of poly(A) tail length in early development up to mid-blastula, and a shortening of poly(A) tails during gastrulation and neurulation. The same kinetic and extent of polyadenylation and poly(A) tail shortening is observed with synthetic RNAs injected into fertilized eggs. Polyadenylation and translational activation of these RNAs is independent of the two CPEs and a NPE during early development. While translational regulation of lamin B1 mRNA functions in parts via established mechanisms, the pattern of polyadenylation and deadenylation during early development points to a novel mode of translational regulation.
Collapse
Affiliation(s)
- T Ralle
- Institut für Biochemie und Molekulare Zellbiologie, Abteilung für Entwicklungsbiochemie, Universität Göttingen, Germany
| | | | | |
Collapse
|