1
|
Kusumawardani B, Nurul Amin M, Rahayu YC, Sari DS, Altariq MI, Putri AH, Kanya A, Prahasanti C, Aljunaid MA. Human gingival mesenchymal stem cells-lyosecretome attenuates adverse effect of hydrogen peroxide-induced oxidative stress on osteoblast cells. J Taibah Univ Med Sci 2024; 19:687-695. [PMID: 38831997 PMCID: PMC11145533 DOI: 10.1016/j.jtumed.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/19/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024] Open
Abstract
Objective To determine total protein content, antioxidant activity, and protective ability of lyophilized human gingival mesenchymal stem cells (hGMSCs)-secretome in hydrogen peroxide (H2O2) induced oxidative stress model. Methods Human GMSCs were cultured to obtain a conditioned medium (secretome), then lyophilized to produce lyosecretome. Total protein was determined by bicinchoninic acid assay (BCA) and SDS-PAGE to improve protein measurements. Antioxidant concentration was measured by ABTS assay, while the protective ability of lyosecretome against oxidative stress was determined by the metabolic activity of osteoblast cells. The study group was divided into a control group (culture medium) and a lyosecretome treatment group (0.0; 0.157, 0.313, 0.625, 1.25, 2.5, 5, and 10 mg/mL + H2O2). Results Lyosecretome had a protein concentration of 2086.00 ± 0.20 μg/ml, with a molecular weight of 174, 74, 61, 55, and 26 kDa, which are thought to facilitate cell migration, as well as bind cytokines and growth factors. Lyosecretome also provided the highest antioxidant activity of 93.51% at a concentration of 4.8 mg/ml, with an IC50 value of 2.08 mg/ml. The highest cell metabolic activity (79.53 ± 2.41%) was shown in the 1.25 mg/ml lyosecretome treatment group. All concentrations of hGMSC-lyosecretome attenuate the adverse effect of H2O2-induced oxidative stress. Conclusion Lyosecretome obtained from hGMSCs can maintain metabolic activity in osteoblast cells as protection against H2O2 oxidative stress.
Collapse
Affiliation(s)
- Banun Kusumawardani
- Department of Biomedical Sciences, Faculty of Dentistry, University of Jember, Indonesia
| | - Muhammad Nurul Amin
- Department of Biomedical Sciences, Faculty of Dentistry, University of Jember, Indonesia
| | - Yani C. Rahayu
- Department of Oral Biology, Faculty of Dentistry, University of Jember, Indonesia
| | - Desi S. Sari
- Department of Periodontics, Faculty of Dentistry, University of Jember, Indonesia
| | - Morin I. Altariq
- Undergraduate Program of Dental Medicine, Faculty of Dentistry, University of Jember, Indonesia
| | - Arini H. Putri
- Undergraduate Program of Dental Medicine, Faculty of Dentistry, University of Jember, Indonesia
| | - Amara Kanya
- Undergraduate Program of Dental Medicine, Faculty of Dentistry, University of Jember, Indonesia
| | - Chiquita Prahasanti
- Department of Periodontics, Faculty of Dental Medicine, Airlangga University, Indonesia
| | - Mohammed A. Aljunaid
- Doctoral Program of Dental Medicine, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia
- Department of Dental Medicine, Faculty of Medicine, Taiz University, Taiz, Yemen
| |
Collapse
|
2
|
Insights into the Regulation of Ciliary Disassembly. Cells 2021; 10:cells10112977. [PMID: 34831200 PMCID: PMC8616418 DOI: 10.3390/cells10112977] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
The primary cilium, an antenna-like structure that protrudes out from the cell surface, is present in most cell types. It is a microtubule-based organelle that serves as a mega-signaling center and is important for sensing biochemical and mechanical signals to carry out various cellular processes such as proliferation, migration, differentiation, and many others. At any given time, cilia length is determined by a dynamic balance of cilia assembly and disassembly processes. Abnormally short or long cilia can cause a plethora of human diseases commonly referred to as ciliopathies, including, but not limited to, skeletal malformations, obesity, autosomal dominant polycystic kidney disease, retinal degeneration, and bardet-biedl syndrome. While the process of cilia assembly is studied extensively, the process of cilia disassembly and its biological role(s) are less well understood. This review discusses current knowledge on ciliary disassembly and how different cellular processes and molecular signals converge to carry out this process. This information will help us understand how the process of ciliary disassembly is regulated, identify the key steps that need further investigation, and possibly design therapeutic targets for a subset of ciliopathies that are causally linked to defective ciliary disassembly.
Collapse
|
3
|
Mirvis M, Siemers KA, Nelson WJ, Stearns TP. Primary cilium loss in mammalian cells occurs predominantly by whole-cilium shedding. PLoS Biol 2019; 17:e3000381. [PMID: 31314751 PMCID: PMC6699714 DOI: 10.1371/journal.pbio.3000381] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 08/19/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022] Open
Abstract
The primary cilium is a central signaling hub in cell proliferation and differentiation and is built and disassembled every cell cycle in many animal cells. Disassembly is critically important, as misregulation or delay of cilia loss leads to cell cycle defects. The physical means by which cilia are lost are poorly understood but are thought to involve resorption of ciliary components into the cell body. To investigate cilium loss in mammalian cells, we used live-cell imaging to comprehensively characterize individual events. The predominant mode of cilium loss was rapid deciliation, in which the membrane and axoneme of the cilium was shed from the cell. Gradual resorption was also observed, as well as events in which a period of gradual resorption was followed by rapid deciliation. Deciliation resulted in intact shed cilia that could be recovered from culture medium and contained both membrane and axoneme proteins. We modulated levels of katanin and intracellular calcium, two putative regulators of deciliation, and found that excess katanin promotes cilia loss by deciliation, independently of calcium. Together, these results suggest that mammalian ciliary loss involves a tunable decision between deciliation and resorption.
Collapse
Affiliation(s)
- Mary Mirvis
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Kathleen A. Siemers
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - W. James Nelson
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Tim P. Stearns
- Department of Biology, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, California, United States of America
| |
Collapse
|
4
|
Calcium-Dependent Signalling Processes in Chlamydomonas. CHLAMYDOMONAS: MOLECULAR GENETICS AND PHYSIOLOGY 2017. [DOI: 10.1007/978-3-319-66365-4_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Hilton LK, Meili F, Buckoll PD, Rodriguez-Pike JC, Choutka CP, Kirschner JA, Warner F, Lethan M, Garces FA, Qi J, Quarmby LM. A Forward Genetic Screen and Whole Genome Sequencing Identify Deflagellation Defective Mutants in Chlamydomonas, Including Assignment of ADF1 as a TRP Channel. G3 (BETHESDA, MD.) 2016; 6:3409-3418. [PMID: 27520959 PMCID: PMC5068960 DOI: 10.1534/g3.116.034264] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/09/2016] [Indexed: 01/21/2023]
Abstract
With rare exception, ciliated cells entering mitosis lose their cilia, thereby freeing basal bodies to serve as centrosomes in the formation of high-fidelity mitotic spindles. Cilia can be lost by shedding or disassembly, but either way, it appears that the final release may be via a coordinated severing of the nine axonemal outer doublet microtubules linking the basal body to the ciliary transition zone. Little is known about the mechanism or regulation of this important process. The stress-induced deflagellation response of Chlamydomonas provides a basis to identifying key players in axonemal severing. In an earlier screen we uncovered multiple alleles for each of three deflagellation genes, ADF1, FA1, and FA2 Products of the two FA genes localize to the site of axonemal severing and encode a scaffolding protein and a member of the NIMA-related family of ciliary-cell cycle kinases. The identity of the ADF1 gene remained elusive. Here, we report a new screen using a mutagenesis that yields point mutations in Chlamydomonas, an enhanced screening methodology, and whole genome sequencing. We isolated numerous new alleles of the three known genes, and one or two alleles each of at least four new genes. We identify ADF1 as a TRP ion channel, which we suggest may reside at the flagellar transition zone.
Collapse
Affiliation(s)
- Laura K Hilton
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Fabian Meili
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Paul D Buckoll
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Julie C Rodriguez-Pike
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Courtney P Choutka
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Jaime A Kirschner
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Freda Warner
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Mette Lethan
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Fabian A Garces
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Jingnan Qi
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Lynne M Quarmby
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
6
|
Diener DR, Lupetti P, Rosenbaum JL. Proteomic analysis of isolated ciliary transition zones reveals the presence of ESCRT proteins. Curr Biol 2015; 25:379-384. [PMID: 25578910 DOI: 10.1016/j.cub.2014.11.066] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/13/2014] [Accepted: 11/20/2014] [Indexed: 10/24/2022]
Abstract
The transition zone (TZ) is a specialized region of the cilium characterized by Y-shaped connectors between the microtubules of the ciliary axoneme and the ciliary membrane [1]. Located near the base of the cilium, the TZ is in the prime location to act as a gate for proteins into and out of the ciliary compartment, a role supported by experimental evidence [2-6]. The importance of the TZ has been underscored by studies showing that mutations affecting proteins located in the TZ result in cilia-related diseases, or ciliopathies, presenting symptoms including renal cysts, retinal degeneration, and situs inversus [7-9]. Some TZ proteins have been identified and shown to interact with each other through coprecipitation studies in vertebrate cells [4, 10, 11] and genetics studies in C. elegans [3]. As a distinct approach to identify TZ proteins, we have taken advantage of the biology of Chlamydomonas to isolate TZs. Proteomic analysis identified 115 proteins, ten of which were known TZ proteins related to ciliopathies, indicating that the preparation was highly enriched for TZs. Interestingly, six proteins of the endosomal sorting complexes required for transport (ESCRT) were also associated with the TZs. Identification of these and other proteins in the TZ will provide new insights into functions of the TZ, as well as candidate ciliopathy genes.
Collapse
Affiliation(s)
- Dennis R Diener
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| | - Pietro Lupetti
- Department of Life Sciences, University of Siena, Siena 53100, Italy
| | - Joel L Rosenbaum
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
7
|
Dutcher SK. The awesome power of dikaryons for studying flagella and basal bodies in Chlamydomonas reinhardtii. Cytoskeleton (Hoboken) 2013; 71:79-94. [PMID: 24272949 DOI: 10.1002/cm.21157] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/19/2013] [Indexed: 11/08/2022]
Abstract
Cilia/flagella and basal bodies/centrioles play key roles in human health and homeostasis. Among the organisms used to study these microtubule-based organelles, the green alga Chlamydomonas reinhardtii has several advantages. One is the existence of a temporary phase of the life cycle, termed the dikaryon. These cells are formed during mating when the cells fuse and the behavior of flagella from two genetically distinguishable parents can be observed. During this stage, the cytoplasms mix allowing for a defect in the flagella of one parent to be rescued by proteins from the other parent. This offers the unique advantage of adding back wild-type gene product or labeled protein at endogenous levels that can used to monitor various flagellar and basal body phenotypes. Mutants that show rescue and ones that fail to show rescue are both informative about the nature of the flagella and basal body defects. When rescue occurs, it can be used to determine the mutant gene product and to follow the temporal and spatial patterns of flagellar assembly. This review describes many examples of insights into basal body and flagellar proteins' function and assembly that have been discovered using dikaryons and discusses the potential for further analyses.
Collapse
Affiliation(s)
- Susan K Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
8
|
Ludington WB, Shi LZ, Zhu Q, Berns MW, Marshall WF. Organelle size equalization by a constitutive process. Curr Biol 2012; 22:2173-9. [PMID: 23084989 DOI: 10.1016/j.cub.2012.09.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/20/2012] [Accepted: 09/24/2012] [Indexed: 11/16/2022]
Abstract
How cells control organelle size is an elusive problem. Two predominant models for size control can be distinguished: (1) induced control, where organelle genesis, maintenance, and disassembly are three separate programs that are activated in response to size change, and (2) constitutive control, where stable size results from the balance between continuous organelle assembly and disassembly. The problem has been studied in Chlamydomonas reinhardtii because the flagella are easy to measure, their size changes only in the length dimension, and the genetics are comparable to yeast. Length dynamics in Chlamydomonas flagella are quite robust: they maintain a length of about 12 μm and recover from amputation in about 90 min with a growth rate that decreases smoothly to zero as the length approaches 12 μm. Despite a wealth of experimental studies, existing data are consistent with both induced and constitutive control models for flagella. Here we developed novel microfluidic trapping and laser microsurgery techniques in Chlamydomonas to distinguish between length control models by measuring the two flagella on a single cell as they equilibrate after amputation of a single flagellum. The results suggest that cells equalize flagellar length by constitutive control.
Collapse
Affiliation(s)
- William B Ludington
- Department of Biochemistry, University of California, San Francisco, CA 94122, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
Chlamydomonas, an organism that offers a variety of flagella-deficient mutants, has been very important for studies of cilia and flagella. Motility assessment of mutant flagella at various levels helps us understand the function of specific axonemal proteins and structures for flagellar function. Measurements of gross cell movements are useful to assess the overall flagellar activity, analyses of demembranated and reactivated cells ("cell models") enable us to study the regulatory mechanism, and measurements of microtubule sliding velocity in vitro provide important information about dynein-microtubule interactions. This chapter describes fundamental techniques for these measurements.
Collapse
|
10
|
Chang J, Baloh RH, Milbrandt J. The NIMA-family kinase Nek3 regulates microtubule acetylation in neurons. J Cell Sci 2009; 122:2274-82. [PMID: 19509051 DOI: 10.1242/jcs.048975] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
NIMA-related kinases (Neks) belong to a large family of Ser/Thr kinases that have critical roles in coordinating microtubule dynamics during ciliogenesis and mitotic progression. The Nek kinases are also expressed in neurons, whose axonal projections are, similarly to cilia, microtubule-abundant structures that extend from the cell body. We therefore investigated whether Nek kinases have additional, non-mitotic roles in neurons. We found that Nek3 influences neuronal morphogenesis and polarity through effects on microtubules. Nek3 is expressed in the cytoplasm and axons of neurons and is phosphorylated at Thr475 located in the C-terminal PEST domain, which regulates its catalytic activity. Although exogenous expression of wild-type or phosphomimic (T475D) Nek3 in cultured neurons has no discernible impact, expression of a phospho-defective mutant (T475A) or PEST-truncated Nek3 leads to distorted neuronal morphology with disturbed polarity and deacetylation of microtubules via HDAC6 in its kinase-dependent manner. Thus, the phosphorylation at Thr475 serves as a regulatory switch that alters Nek3 function. The deacetylation of microtubules in neurons by unphosphorylated Nek3 raises the possibility that it could have a role in disorders where axonal degeneration is an important component.
Collapse
Affiliation(s)
- Jufang Chang
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
11
|
Abstract
Tubulin, the most abundant axonemal protein, is extensively modified by several highly conserved post-translational mechanisms including acetylation, detyrosination, glutamylation, and glycylation. We discuss the pathways that contribute to the assembly and maintenance of axonemal microtubules, with emphasis on the potential functions of post-translational modifications that affect tubulin. The recent identification of a number of tubulin modifying enzymes and mutational studies of modification sites on tubulin have allowed for significant functional insights. Polymeric modifications of tubulin (glutamylation and glycylation) have emerged as important determinants of the 9 + 2 axoneme assembly and motility.
Collapse
Affiliation(s)
- Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
12
|
Mahjoub MR, Qasim Rasi M, Quarmby LM. A NIMA-related kinase, Fa2p, localizes to a novel site in the proximal cilia of Chlamydomonas and mouse kidney cells. Mol Biol Cell 2004; 15:5172-86. [PMID: 15371535 PMCID: PMC524795 DOI: 10.1091/mbc.e04-07-0571] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Polycystic kidney disease and related syndromes involve dysregulation of cell proliferation in conjunction with ciliary defects. The relationship between cilia and cell cycle is enigmatic, but it may involve regulation by the NIMA-family of kinases (Neks). We previously showed that the Nek Fa2p is important for ciliary function and cell cycle in Chlamydomonas. We now show that Fa2p localizes to an important regulatory site at the proximal end of cilia in both Chlamydomonas and a mouse kidney cell line. Fa2p also is associated with the proximal end of centrioles. Its localization is dynamic during the cell cycle, following a similar pattern in both cell types. The cell cycle function of Fa2p is kinase independent, whereas its ciliary function is kinase dependent. Mice with mutations in Nek1 or Nek8 have cystic kidneys; therefore, our discovery that a member of this phylogenetic group of Nek proteins is localized to the same sites in Chlamydomonas and kidney epithelial cells suggests that Neks play conserved roles in the coordination of cilia and cell cycle progression.
Collapse
Affiliation(s)
- Moe R Mahjoub
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | | | | |
Collapse
|
13
|
Pan J, Wang Q, Snell WJ. An aurora kinase is essential for flagellar disassembly in Chlamydomonas. Dev Cell 2004; 6:445-51. [PMID: 15030766 DOI: 10.1016/s1534-5807(04)00064-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 02/06/2004] [Accepted: 02/09/2004] [Indexed: 11/26/2022]
Abstract
Cilia and flagella play key roles in development and sensory transduction, and several human disorders, including polycystic kidney disease, are associated with the failure to assemble cilia. Here, we show that the aurora protein kinase CALK in the biflagellated alga Chlamydomonas has a central role in two pathways for eliminating flagella. Cells rendered deficient in CALK were defective in regulated flagellar excision and regulated flagellar disassembly. Exposure of cells to altered ionic conditions, the absence of a centriole/basal body for nucleating flagellar assembly, cessation of delivery of flagellar components to their tip assembly site, and formation of zygotes all led to activation of the regulated disassembly pathway as indicated by phosphorylation of CALK and the absence of flagella. We propose that cells have a sensory pathway that detects conditions that are inappropriate for possession of a flagellum, and that CALK is a key effector of flagellar disassembly in that pathway.
Collapse
Affiliation(s)
- Junmin Pan
- Department of Cell Biology, University of Texas Southwestern Medical School, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | |
Collapse
|
14
|
Abstract
Deciliation, also known as deflagellation, flagellar autotomy, flagellar excision, or flagellar shedding, refers to the process whereby eukaryotic cells shed their cilia or flagella, often in response to stress. Used for many decades as a tool for scientists interested in the structure, function, and genesis of cilia, deciliation itself is a process worthy of scientific investigation. Deciliation has numerous direct medical implications, but more profoundly, intriguing relationships between deciliation, ciliogenesis, and the cell cycle indicate that understanding the mechanism of deciliation will contribute to a deeper understanding of broad aspects of cell biology. This review provides a critical examination of diverse data bearing on this problem. It also highlights current deficiencies in our understanding of the mechanism of deciliation.
Collapse
Affiliation(s)
- Lynne M Quarmby
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
15
|
Tam LW, Dentler WL, Lefebvre PA. Defective flagellar assembly and length regulation in LF3 null mutants in Chlamydomonas. J Cell Biol 2003; 163:597-607. [PMID: 14610061 PMCID: PMC2173655 DOI: 10.1083/jcb.200307143] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Accepted: 09/09/2003] [Indexed: 11/30/2022] Open
Abstract
Four long-flagella (LF) genes are important for flagellar length control in Chlamydomonas reinhardtii. Here, we characterize two new null lf3 mutants whose phenotypes are different from previously identified lf3 mutants. These null mutants have unequal-length flagella that assemble more slowly than wild-type flagella, though their flagella can also reach abnormally long lengths. Prominent bulges are found at the distal ends of short, long, and regenerating flagella of these mutants. Analysis of the flagella by electron and immunofluorescence microscopy and by Western blots revealed that the bulges contain intraflagellar transport complexes, a defect reported previously (for review see Cole, D.G., 2003. Traffic. 4:435-442) in a subset of mutants defective in intraflagellar transport. We have cloned the wild-type LF3 gene and characterized a hypomorphic mutant allele of LF3. LF3p is a novel protein located predominantly in the cell body. It cosediments with the product of the LF1 gene in sucrose density gradients, indicating that these proteins may form a functional complex to regulate flagellar length and assembly.
Collapse
Affiliation(s)
- Lai-Wa Tam
- Department of Plant Biology, University of Minnesota, St. Paul, MN 55108, USA
| | | | | |
Collapse
|
16
|
Kathir P, LaVoie M, Brazelton WJ, Haas NA, Lefebvre PA, Silflow CD. Molecular map of the Chlamydomonas reinhardtii nuclear genome. EUKARYOTIC CELL 2003; 2:362-79. [PMID: 12684385 PMCID: PMC154841 DOI: 10.1128/ec.2.2.362-379.2003] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2002] [Accepted: 12/10/2002] [Indexed: 11/20/2022]
Abstract
We have prepared a molecular map of the Chlamydomonas reinhardtii genome anchored to the genetic map. The map consists of 264 markers, including sequence-tagged sites (STS), scored by use of PCR and agarose gel electrophoresis, and restriction fragment length polymorphism markers, scored by use of Southern blot hybridization. All molecular markers tested map to one of the 17 known linkage groups of C. reinhardtii. The map covers approximately 1,000 centimorgans (cM). Any position on the C. reinhardtii genetic map is, on average, within 2 cM of a mapped molecular marker. This molecular map, in combination with the ongoing mapping of bacterial artificial chromosome (BAC) clones and the forthcoming sequence of the C. reinhardtii nuclear genome, should greatly facilitate isolation of genes of interest by using positional cloning methods. In addition, the presence of easily assayed STS markers on each arm of each linkage group should be very useful in mapping new mutations in preparation for positional cloning.
Collapse
Affiliation(s)
- Pushpa Kathir
- Department of Genetics, University of Minnesota, St. Paul, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
17
|
Ruiz-Binder NE, Geimer S, Melkonian M. In vivo localization of centrin in the green alga Chlamydomonas reinhardtii. CELL MOTILITY AND THE CYTOSKELETON 2002; 52:43-55. [PMID: 11977082 DOI: 10.1002/cm.10030] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The green alga Chlamydomonas reinhardtii has been used as a model system to study flagellar assembly, centriole assembly, and cell cycle events. These processes are dynamic. Therefore, protein targeting and protein-protein interactions should be evaluated in vivo. To be able to study dynamic processes in C. reinhardtii in vivo, we have explored the use of the green fluorescent protein (GFP). A construct containing a fusion of centrin and GFP was incorporated into the genome as a single copy. The selected clone shows expression in 25-50% of the cells. Centrin-GFP was targeted in vivo to the nuclear basal body connectors and the distal connecting fibers. At the electron microscopic level, it was also localized to the flagellar transitional regions. EM data of transformants indicate that there are some abnormalities in the centrin-containing structures. The transitional region consists of only the transverse septum or has lesions in the H-piece. The distal connecting fibers are thinner and their characteristic crossbands seem to be incomplete. Deflagellation is not affected since more than 95% of the cells deflagellate. Also basal body segregation is not affected since cells with an abnormal flagellar number were not detected. Functional studies of the centrin-GFP fusion show the characteristic calcium-induced mobility shift in SDS-PAGE. Immunofluorescence revealed that during cell division, centrin-GFP remains associated with the basal bodies. In vivo localization of the fusion protein during cell division shows that in metaphase centrin-GFP appears as two opposing spots located close to the spindle poles. The distance between the spots increases as the cells progress through anaphase and then decreases during telophase. GFP is a useful tool to study dynamic processes in the cytoskeleton of C. reinhardtii.
Collapse
|
18
|
Ferris PJ, Armbrust EV, Goodenough UW. Genetic structure of the mating-type locus of Chlamydomonas reinhardtii. Genetics 2002; 160:181-200. [PMID: 11805055 PMCID: PMC1461944 DOI: 10.1093/genetics/160.1.181] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Portions of the cloned mating-type (MT) loci (mt(+) and mt(-)) of Chlamydomonas reinhardtii, defined as the approximately 1-Mb domains of linkage group VI that are under recombinational suppression, were subjected to Northern analysis to elucidate their coding capacity. The four central rearranged segments of the loci were found to contain both housekeeping genes (expressed during several life-cycle stages) and mating-related genes, while the sequences unique to mt(+) or mt(-) carried genes expressed only in the gametic or zygotic phases of the life cycle. One of these genes, Mtd1, is a candidate participant in gametic cell fusion; two others, Mta1 and Ezy2, are candidate participants in the uniparental inheritance of chloroplast DNA. The identified housekeeping genes include Pdk, encoding pyruvate dehydrogenase kinase, and GdcH, encoding glycine decarboxylase complex subunit H. Unusual genetic configurations include three genes whose sequences overlap, one gene that has inserted into the coding region of another, several genes that have been inactivated by rearrangements in the region, and genes that have undergone tandem duplication. This report extends our original conclusion that the MT locus has incurred high levels of mutational change.
Collapse
Affiliation(s)
- Patrick J Ferris
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
| | | | | |
Collapse
|
19
|
Abstract
Centrioles are among the most beautiful and mysterious of all cell organelles. Although the ultrastructure of centrioles has been studied in great detail ever since the advent of electron microscopy, these studies raised as many questions as they answered, and for a long time both the function and mode of duplication of centrioles remained controversial. It is now clear that centrioles play an important role in cell division, although cells have backup mechanisms for dividing if centrioles are missing. The recent identification of proteins comprising the different ultrastructural features of centrioles has proven that these are not just figments of the imagination but distinct components of a large and complex protein machine. Finally, genetic and biochemical studies have begun to identify the signals that regulate centriole duplication and coordinate the centriole cycle with the cell cycle.
Collapse
Affiliation(s)
- W F Marshall
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA.
| |
Collapse
|
20
|
Harris EH. CHLAMYDOMONAS AS A MODEL ORGANISM. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:363-406. [PMID: 11337403 DOI: 10.1146/annurev.arplant.52.1.363] [Citation(s) in RCA: 431] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The unicellular green alga Chlamydomonas offers a simple life cycle, easy isolation of mutants, and a growing array of tools and techniques for molecular genetic studies. Among the principal areas of current investigation using this model system are flagellar structure and function, genetics of basal bodies (centrioles), chloroplast biogenesis, photosynthesis, light perception, cell-cell recognition, and cell cycle control. A genome project has begun with compilation of expressed sequence tag data and gene expression studies and will lead to a complete genome sequence. Resources available to the research community include wild-type and mutant strains, plasmid constructs for transformation studies, and a comprehensive on-line database.
Collapse
Affiliation(s)
- Elizabeth H Harris
- Developmental, Cell and Molecular Biology Group, Biology Department, Duke University, Durham, North Carolina 27708-1000; e-mail:
| |
Collapse
|