1
|
Chen Q. Regulation of Yeast Cytokinesis by Calcium. J Fungi (Basel) 2025; 11:278. [PMID: 40278099 PMCID: PMC12028594 DOI: 10.3390/jof11040278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/26/2025] Open
Abstract
The role of calcium, an essential secondary messenger, in cell division remains an outstanding question in cell biology despite several significant findings over the past few decades. Among them is the landmark discovery of intracellular calcium waves during cytokinesis, the last stage of cell division, in fish cells. Nevertheless, subsequent studies have been largely unable to determine the underlying molecular mechanism of these cytokinetic transients. At the center of this stalemate stands two challenging questions, how these calcium transients rise and what they do during cytokinesis. Yeast, despite its proven prowess as a model organism to study cell cycle, has not drawn much interest in addressing these questions. However, the recent discovery of cytokinetic calcium spikes in the fission yeast Schizosaccharomyces pombe has provided novel insights into how calcium regulates cytokinesis. In this review, I will primarily focus on our current understanding of the molecular mechanism of cytokinetic calcium transients in yeast cells. First, I will briefly recount the discovery of cytokinetic calcium transients in animal cells. This will be followed by an introduction to the intracellular calcium homeostasis. Next, I will discuss yeast cytokinetic calcium spikes, the ion channel Pkd2 that promotes these spikes, and the potential molecular targets of these spikes. I will also compare the calcium regulation of cytokinesis between yeast and animal cells. I will conclude by presenting a few critical questions in our continued quest to understand how calcium regulates cytokinesis.
Collapse
Affiliation(s)
- Qian Chen
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| |
Collapse
|
2
|
Ye Y, Osmani AH, Liu ZR, Kern A, Wu JQ. Fission yeast GPI inositol deacylase Bst1 regulates ER-Golgi transport and functions in late stages of cytokinesis. Mol Biol Cell 2025; 36:ar27. [PMID: 39813093 PMCID: PMC11974966 DOI: 10.1091/mbc.e24-08-0375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
The Munc13/UNC-13 family protein Ync13 is essential for septum integrity and cytokinesis in fission yeast. To further explore the mechanism of Ync13 functions, spontaneous suppressors of ync13 mutants, which can suppress the colony-formation defects and lysis phenotype of ync13 mutant cells, are isolated and characterized. One of the suppressor mutants, bst1-s27, shows defects in the cytokinetic contractile ring constriction, septation, and daughter cell separation, similar to bst1Δ mutant. Bst1, a predicted GPI inositol deacylase, was an uncharacterized protein in fission yeast. It localizes to ER and puncta structures in the cytoplasm. The Bst1 puncta overlaps frequently with Anp1, which is a marker of endoplasmic reticulum (ER)-Golgi transport, but rarely with trans-Golgi marker Sec72. The nuclear ER signal of Anp1 increases in bst1Δ mutant, whereas Sec72 localization shows no obvious changes. In addition, more cytoplasmic puncta structures of COPII subunits, Sec13 and Sec24, are observed in bst1Δ mutant, and acid phosphatase secretion is compromised without Bst1. Consistently, the division site targeting of the β-glucanase Eng1 and α-glucanase Agn1 is reduced in bst1Δ and bst1Δ ync13Δ mutant. Taken together, our results suggest that Bst1 regulates ER-Golgi transport and is involved in cytokinesis through regulating the secretion of glucanases.
Collapse
Affiliation(s)
- Yanfang Ye
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Aysha H. Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Zhen-Ru Liu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
| | - Addie Kern
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
3
|
Yoshihara S, Nakata T, Kashiwazaki J, Aoyama K, Mabuchi I. In Vitro Formation of Actin Ring in the Fission Yeast Cell Extracts. Cytoskeleton (Hoboken) 2025. [PMID: 39835694 DOI: 10.1002/cm.21997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/18/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Cytokinesis in animal and fungal cells requires the contraction of actomyosin-based contractile rings formed in the division cortex of the cell during late mitosis. However, the detailed mechanism remains incompletely understood. Here, we aim to develop a novel cell-free system by encapsulating cell extracts obtained from fission yeast cells within lipid vesicles, which subsequently leads to the formation of a contractile ring-like structure inside the vesicles. Using this system, we found that an actin ring structure formed in vesicles of a size similar to that of fission yeast cells, with the frequency of ring appearance increasing in the presence of PI(4,5)P2 (PIP2). In contrast, larger vesicles tended to form actin bundles, which were sometimes associated with ring structures or network-like structures. The effects of various inhibitors affecting cytoskeleton formation were investigated, revealing that actin polymerization was essential for the formation of these actin structures. Additionally, the involvement of ATP, the Schizosaccharomyces pombe PLK "Plo1," and the small GTPase Rho was suggested to play a crucial role in this process. Examination of mitotic extracts revealed the formation of actin dot structures in phosphatidylethanolamine vesicles. However, most of these structures disappeared in the presence of PIP2, leading to the formation of actin Rings instead. Using extracts from cells expressing α-actinin Ain1 or myosin-II light chain Rlc1, both fused with fluorescent proteins, we found that these proteins colocalized with actin bundles. In summary, we have developed a new semi-in vitro system to investigate mechanisms such as cell division and cytoskeleton formation.
Collapse
Affiliation(s)
- Shogo Yoshihara
- Department of Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- The Center for Brain Integration Research (CBIR), TMDU, Tokyo, Japan
- Department of Life Science, Faculty of Science, Gakushuin University, Mejiro, Tokyo, Japan
| | - Takao Nakata
- Department of Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- The Center for Brain Integration Research (CBIR), TMDU, Tokyo, Japan
| | - Jun Kashiwazaki
- Department of Life Science, Faculty of Science, Gakushuin University, Mejiro, Tokyo, Japan
- Radioisotope Division, Research Facility Center for Science and Technology, Kobe University, Kobe, Hyogo, Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, Japan
| | - Kazuhiro Aoyama
- NanoPort Japan, Application Laboratory, Thermo Fisher Scientific, Tokyo, Japan
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Issei Mabuchi
- Department of Life Science, Faculty of Science, Gakushuin University, Mejiro, Tokyo, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Institute of Human Culture Studies, Otsuma Women's University, Tokyo, Japan
| |
Collapse
|
4
|
Willet AH, Park JS, Snider CE, Huang JJ, Chen JS, Gould KL. Fission yeast Duc1 links to ER-PM contact sites and influences PM lipid composition and cytokinetic ring anchoring. J Cell Sci 2024; 137:jcs262347. [PMID: 39239853 PMCID: PMC11449445 DOI: 10.1242/jcs.262347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Cytokinesis is the final stage of the cell cycle that results in the physical separation of daughter cells. To accomplish cytokinesis, many organisms build an actin- and myosin-based cytokinetic ring (CR) that is anchored to the plasma membrane (PM). Defects in CR-PM anchoring can arise when the PM lipid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] is depleted. In Schizosaccharomyces pombe, reduced PM PI(4,5)P2 results in a CR that cannot maintain a medial position and slides toward one cell end, resulting in two differently sized daughter cells. S. pombe PM PI(4,5)P2 is synthesized by the phosphatidylinositol 4-phosphate 5-kinase (PI5-kinase) Its3, but what regulates this enzyme to maintain appropriate PM PI(4,5)P2 levels in S. pombe is not known. To identify Its3 regulators, we used proximity-based biotinylation, and the uncharacterized protein Duc1 was specifically detected. We discovered that Duc1 decorates the PM except at the cell division site and that its unique localization pattern is dictated by binding to the endoplasmic reticulum (ER)-PM contact site proteins Scs2 and Scs22. Our evidence suggests that Duc1 also binds PI(4,5)P2 and helps enrich Its3 at the lateral PM, thereby promoting PM PI(4,5)P2 synthesis and robust CR-PM anchoring.
Collapse
Affiliation(s)
- Alaina H. Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Joshua S. Park
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Chloe E. Snider
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Jingdian Jamie Huang
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| |
Collapse
|
5
|
Chowdhury P, Sinha D, Poddar A, Chetluru M, Chen Q. The Mechanosensitive Pkd2 Channel Modulates the Recruitment of Myosin II and Actin to the Cytokinetic Contractile Ring. J Fungi (Basel) 2024; 10:455. [PMID: 39057340 PMCID: PMC11277609 DOI: 10.3390/jof10070455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Cytokinesis, the last step in cell division, separates daughter cells through mechanical force. This is often through the force produced by an actomyosin contractile ring. In fission yeast cells, the ring helps recruit a mechanosensitive ion channel, Pkd2, to the cleavage furrow, whose activation by membrane tension promotes calcium influx and daughter cell separation. However, it is unclear how the activities of Pkd2 may affect the actomyosin ring. Here, through both microscopic and genetic analyses of a hypomorphic pkd2 mutant, we examined the potential role of this essential gene in assembling the contractile ring. The pkd2-81KD mutation significantly increased the counts of the type II myosin heavy chain Myo2 (+18%), its regulatory light chain Rlc1 (+37%) and actin (+100%) molecules in the ring, compared to the wild type. Consistent with a regulatory role of Pkd2 in the ring assembly, we identified a strong negative genetic interaction between pkd2-81KD and the temperature-sensitive mutant myo2-E1. The pkd2-81KD myo2-E1 cells often failed to assemble a complete contractile ring. We conclude that Pkd2 modulates the recruitment of type II myosin and actin to the contractile ring, suggesting a novel calcium-dependent mechanism regulating the actin cytoskeletal structures during cytokinesis.
Collapse
Affiliation(s)
| | | | | | | | - Qian Chen
- Department of Biological Sciences, The University of Toledo, 2801 Bancroft St, Toledo, OH 43606, USA; (P.C.); (D.S.); (M.C.)
| |
Collapse
|
6
|
Uysal Özdemir Ö, Krapp A, Mangeat B, Spaltenstein M, Simanis V. A role for the carbon source of the cell and protein kinase A in regulating the S. pombe septation initiation network. J Cell Sci 2024; 137:jcs261488. [PMID: 38197775 PMCID: PMC10906493 DOI: 10.1242/jcs.261488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2024] Open
Abstract
The septation initiation network (SIN) is a conserved signal transduction network, which is important for cytokinesis in Schizosaccharomyces pombe. The SIN component Etd1p is required for association of some SIN proteins with the spindle pole body (SPB) during anaphase and for contractile ring formation. We show that tethering of Cdc7p or Sid1p to the SIN scaffold Cdc11p at the SPB, rescues etd1-Δ. Analysis of a suppressor of the mutant etd1-M9 revealed that SIN signalling is influenced by the carbon source of the cell. Growth on a non-fermentable carbon source glycerol reduces the requirement for SIN signalling but does not bypass it. The decreased need for SIN signalling is mediated largely by reduction of protein kinase A activity, and it is phenocopied by deletion of pka1 on glucose medium. We conclude that protein kinase A is an important regulator of the SIN, and that SIN signalling is regulated by the carbon source of the cell.
Collapse
Affiliation(s)
- Özge Uysal Özdemir
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, CH - 1015 Lausanne, Switzerland
| | - Andrea Krapp
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, CH - 1015 Lausanne, Switzerland
| | - Bastien Mangeat
- EPFL SV PTECH PTEG, SV 1535 (Bâtiment SV), Station 19, CH-1015 Lausanne, Switzerland
| | - Marc Spaltenstein
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, CH - 1015 Lausanne, Switzerland
| | - Viesturs Simanis
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, CH - 1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Prieto-Ruiz F, Gómez-Gil E, Vicente-Soler J, Franco A, Soto T, Madrid M, Cansado J. Divergence of cytokinesis and dimorphism control by myosin II regulatory light chain in fission yeasts. iScience 2023; 26:107611. [PMID: 37664581 PMCID: PMC10470405 DOI: 10.1016/j.isci.2023.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
Non-muscle myosin II activation by regulatory light chain (Rlc1Sp) phosphorylation at Ser35 is crucial for cytokinesis during respiration in the fission yeast Schizosaccharomyces pombe. We show that in the early divergent and dimorphic fission yeast S. japonicus non-phosphorylated Rlc1Sj regulates the activity of Myo2Sj and Myp2Sj heavy chains during cytokinesis. Intriguingly, Rlc1Sj-Myo2Sj nodes delay yeast to hyphae onset but are essential for mycelial development. Structure-function analysis revealed that phosphorylation-induced folding of Rlc1Sp α1 helix into an open conformation allows precise regulation of Myo2Sp during cytokinesis. Consistently, inclusion of bulky tryptophan residues in the adjacent α5 helix triggered Rlc1Sp shift and supported cytokinesis in absence of Ser35 phosphorylation. Remarkably, unphosphorylated Rlc1Sj lacking the α1 helix was competent to regulate S. pombe cytokinesis during respiration. Hence, early diversification resulted in two efficient phosphorylation-independent and -dependent modes of Rlc1 regulation of myosin II activity in fission yeasts, the latter being conserved through evolution.
Collapse
Affiliation(s)
- Francisco Prieto-Ruiz
- Yeast Physiology Group, Department of Genetics and Microbiology, Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, 30071 Murcia, Spain
| | - Elisa Gómez-Gil
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jero Vicente-Soler
- Yeast Physiology Group, Department of Genetics and Microbiology, Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, 30071 Murcia, Spain
| | - Alejandro Franco
- Yeast Physiology Group, Department of Genetics and Microbiology, Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, 30071 Murcia, Spain
| | - Teresa Soto
- Yeast Physiology Group, Department of Genetics and Microbiology, Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, 30071 Murcia, Spain
| | - Marisa Madrid
- Yeast Physiology Group, Department of Genetics and Microbiology, Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, 30071 Murcia, Spain
| | - José Cansado
- Yeast Physiology Group, Department of Genetics and Microbiology, Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, 30071 Murcia, Spain
| |
Collapse
|
8
|
Rezig IM, Yaduma WG, Gould GW, McInerny CJ. The role of anillin/Mid1p during medial division and cytokinesis: from fission yeast to cancer cells. Cell Cycle 2023; 22:633-644. [PMID: 36426865 PMCID: PMC9980708 DOI: 10.1080/15384101.2022.2147655] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cytokinesis is the final stage of cell division cycle when cellular constituents are separated to produce two daughter cells. This process is driven by the formation and constriction of a contractile ring. Progression of these events is controlled by mechanisms and proteins that are evolutionary conserved in eukaryotes from fungi to humans. Genetic and molecular studies in different model organisms identified essential cytokinesis genes, with several conserved proteins, including the anillin/Mid1p proteins, constituting the core cytokinetic machinery. The fission yeast Schizosaccharomyces pombe represents a well-established model organism to study eukaryotic cell cycle regulation. Cytokinesis in fission yeast and mammalian cells depends on the placement, assembly, maturation, and constriction of a medially located actin-myosin contractile ring (ACR). Here, we review aspects of the ACR assembly and cytokinesis process in fission yeast and consider the regulation of such events in mammalian cells. First, we briefly describe the role of anillin during mammalian ACR assembly and cytokinesis. Second, we describe different aspects of the anillin-like protein Mid1p regulation during the S. pombe cell cycle, including its structure, function, and phospho-regulation. Third, we briefly discuss Mid1pindependent ACR assembly in S. pombe. Fourth, we highlight emerging studies demonstrating the roles of anillin in human tumourigenesis introducing anillin as a potential drug target for cancer treatment. Collectively, we provide an overview of the current understanding of medial division and cytokinesis in S. pombe and suggest the implications of these observations in other eukaryotic organisms, including humans.
Collapse
Affiliation(s)
- Imane M. Rezig
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, UK
| | - Wandiahyel G. Yaduma
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, UK,Department of Chemistry, School of Sciences, Adamawa State College of Education Hong, Nigeria
| | - Gwyn W. Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Christopher J. McInerny
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, UK,CONTACT Christopher J. McInerny School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Davidson Building, University of Glasgow, GlasgowG12 8QQ, UK
| |
Collapse
|
9
|
Prieto-Ruiz F, Gómez-Gil E, Martín-García R, Pérez-Díaz AJ, Vicente-Soler J, Franco A, Soto T, Pérez P, Madrid M, Cansado J. Myosin II regulatory light chain phosphorylation and formin availability modulate cytokinesis upon changes in carbohydrate metabolism. eLife 2023; 12:83285. [PMID: 36825780 PMCID: PMC10005788 DOI: 10.7554/elife.83285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/23/2023] [Indexed: 02/25/2023] Open
Abstract
Cytokinesis, the separation of daughter cells at the end of mitosis, relies in animal cells on a contractile actomyosin ring (CAR) composed of actin and class II myosins, whose activity is strongly influenced by regulatory light chain (RLC) phosphorylation. However, in simple eukaryotes such as the fission yeast Schizosaccharomyces pombe, RLC phosphorylation appears dispensable for regulating CAR dynamics. We found that redundant phosphorylation at Ser35 of the S. pombe RLC homolog Rlc1 by the p21-activated kinases Pak1 and Pak2, modulates myosin II Myo2 activity and becomes essential for cytokinesis and cell growth during respiration. Previously, we showed that the stress-activated protein kinase pathway (SAPK) MAPK Sty1 controls fission yeast CAR integrity by downregulating formin For3 levels (Gómez-Gil et al., 2020). Here, we report that the reduced availability of formin For3-nucleated actin filaments for the CAR is the main reason for the required control of myosin II contractile activity by RLC phosphorylation during respiration-induced oxidative stress. Thus, the restoration of For3 levels by antioxidants overrides the control of myosin II function regulated by RLC phosphorylation, allowing cytokinesis and cell proliferation during respiration. Therefore, fine-tuned interplay between myosin II function through Rlc1 phosphorylation and environmentally controlled actin filament availability is critical for a successful cytokinesis in response to a switch to a respiratory carbohydrate metabolism.
Collapse
Affiliation(s)
- Francisco Prieto-Ruiz
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de MurciaMurciaSpain
| | - Elisa Gómez-Gil
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de MurciaMurciaSpain
- The Francis Crick InstituteLondonUnited Kingdom
| | - Rebeca Martín-García
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, Universidad de SalamancaSalamancaSpain
| | - Armando Jesús Pérez-Díaz
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de MurciaMurciaSpain
| | - Jero Vicente-Soler
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de MurciaMurciaSpain
| | - Alejandro Franco
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de MurciaMurciaSpain
| | - Teresa Soto
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de MurciaMurciaSpain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, Universidad de SalamancaSalamancaSpain
| | - Marisa Madrid
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de MurciaMurciaSpain
| | - José Cansado
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de MurciaMurciaSpain
| |
Collapse
|
10
|
Zhang D, See T. Coordinated cortical ER remodeling facilitates actomyosin ring assembly. Curr Biol 2022; 32:2694-2703.e4. [DOI: 10.1016/j.cub.2022.04.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/24/2022] [Accepted: 04/27/2022] [Indexed: 11/15/2022]
|
11
|
Opalko HE, Miller KE, Kim HS, Vargas-Garcia CA, Singh A, Keogh MC, Moseley JB. Arf6 anchors Cdr2 nodes at the cell cortex to control cell size at division. J Cell Biol 2022; 221:e202109152. [PMID: 34958661 PMCID: PMC8931934 DOI: 10.1083/jcb.202109152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
Fission yeast cells prevent mitotic entry until a threshold cell surface area is reached. The protein kinase Cdr2 contributes to this size control system by forming multiprotein nodes that inhibit Wee1 at the medial cell cortex. Cdr2 node anchoring at the cell cortex is not fully understood. Through a genomic screen, we identified the conserved GTPase Arf6 as a component of Cdr2 signaling. Cells lacking Arf6 failed to divide at a threshold surface area and instead shifted to volume-based divisions at increased overall size. Arf6 stably localized to Cdr2 nodes in its GTP-bound but not GDP-bound state, and its guanine nucleotide exchange factor (GEF), Syt22, was required for both Arf6 node localization and proper size at division. In arf6Δ mutants, Cdr2 nodes detached from the membrane and exhibited increased dynamics. These defects were enhanced when arf6Δ was combined with other node mutants. Our work identifies a regulated anchor for Cdr2 nodes that is required for cells to sense surface area.
Collapse
Affiliation(s)
- Hannah E. Opalko
- Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Kristi E. Miller
- Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Hyun-Soo Kim
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY
| | - Cesar Augusto Vargas-Garcia
- Grupo de Investigación en Sistemas Agropecuarios Sostenibles, Corporación Colombiana de Investigación Agropecuaria – AGROSAVIA, Bogotá, Colombia
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE
| | | | - James B. Moseley
- Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover, NH
| |
Collapse
|
12
|
Yukawa M, Teratani Y, Toda T. Escape from mitotic catastrophe by actin-dependent nuclear displacement in fission yeast. iScience 2021; 24:102031. [PMID: 33506191 PMCID: PMC7814194 DOI: 10.1016/j.isci.2020.102031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 11/23/2022] Open
Abstract
Eukaryotic cells position the nucleus within the proper intracellular space, thereby safeguarding a variety of cellular processes. In fission yeast, the interphase nucleus is placed in the cell middle in a microtubule-dependent manner. By contrast, how the mitotic nucleus is positioned remains elusive. Here we show that several cell-cycle mutants that arrest in mitosis all displace the nucleus toward one end of the cell. Intriguingly, the actin cytoskeleton is responsible for nuclear movement. Time-lapse live imaging indicates that mitosis-specific F-actin cables possibly push the nucleus through direct interaction with the nuclear envelope, and subsequently actomyosin ring constriction further shifts the nucleus away from the center. This nuclear movement is beneficial, because if the nuclei were retained in the center, unseparated chromosomes would be intersected by the contractile actin ring and the septum, imposing the lethal cut phenotype. Thus, fission yeast escapes from mitotic catastrophe by means of actin-dependent nuclear movement. Actin-dependent mitotic nuclear positioning in fission yeast Actin cables and ring closure drive nuclear displacement upon mitotic arrest Nuclear displacement evades cut-mediated cell death Survivors resume cell division as diploids
Collapse
Affiliation(s)
- Masashi Yukawa
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima 739-8530, Japan.,Laboratory of Molecular and Chemical Cell Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Yasuhiro Teratani
- Laboratory of Molecular and Chemical Cell Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Takashi Toda
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima 739-8530, Japan.,Laboratory of Molecular and Chemical Cell Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| |
Collapse
|
13
|
Temperature sensitive point mutations in fission yeast tropomyosin have long range effects on the stability and function of the actin-tropomyosin copolymer. Biochem Biophys Res Commun 2017; 506:339-346. [PMID: 29080743 PMCID: PMC6269162 DOI: 10.1016/j.bbrc.2017.10.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/20/2017] [Indexed: 11/25/2022]
Abstract
The actin cytoskeleton is modulated by regulatory actin-binding proteins which fine-tune the dynamic properties of the actin polymer to regulate function. One such actin-binding protein is tropomyosin (Tpm), a highly-conserved alpha-helical dimer which stabilises actin and regulates interactions with other proteins. Temperature sensitive mutants of Tpm are invaluable tools in the study of actin filament dependent processes, critical to the viability of a cell. Here we investigated the molecular basis of the temperature sensitivity of fission yeast Tpm mutants which fail to undergo cytokinesis at the restrictive temperatures. Comparison of Contractile Actomyosin Ring (CAR) constriction as well as cell shape and size revealed the cdc8.110 or cdc8.27 mutant alleles displayed significant differences in their temperature sensitivity and impact upon actin dependent functions during the cell cycle. In vitro analysis revealed the mutant proteins displayed a different reduction in thermostability, and unexpectedly yield two discrete unfolding domains when acetylated on their amino-termini. Our findings demonstrate how subtle changes in structure (point mutations or acetylation) alter the stability not simply of discrete regions of this conserved cytoskeletal protein but of the whole molecule. This differentially impacts the stability and cellular organisation of this essential cytoskeletal protein. Cloning, expression and characterisation of fission yeast temperature sensitive tropomyosin mutants. Detailed in vitro analysis on the impact of temperature upon these mutants. Comparison with in vivo impact of mutations upon actin ring function within the fission yeast. Demonstrates that subtle changes in structure alter the long range stability of Tropomyosin containing polymers.
Collapse
|
14
|
Bao Y, Liu X, Zhang W, Cao J, Li W, Li C, Lin Z. Identification of a regulation network in response to cadmium toxicity using blood clam Tegillarca granosa as model. Sci Rep 2016; 6:35704. [PMID: 27760991 PMCID: PMC5071765 DOI: 10.1038/srep35704] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/04/2016] [Indexed: 12/19/2022] Open
Abstract
Clam, a filter-feeding lamellibranch mollusk, is capable to accumulate high levels of trace metals and has therefore become a model for investigation the mechanism of heavy metal toxification. In this study, the effects of cadmium were characterized in the gills of Tegillarca granosa during a 96-hour exposure course using integrated metabolomic and proteomic approaches. Neurotoxicity and disturbances in energy metabolism were implicated according to the metabolic responses after Cd exposure, and eventually affected the osmotic function of gill tissue. Proteomic analysis showed that oxidative stress, calcium-binding and sulfur-compound metabolism proteins were key factors responding to Cd challenge. A knowledge-based network regulation model was constructed with both metabolic and proteomic data. The model suggests that Cd stimulation mainly inhibits a core regulation network that is associated with histone function, ribosome processing and tight junctions, with the hub proteins actin, gamma 1 and Calmodulin 1. Moreover, myosin complex inhibition causes abnormal tight junctions and is linked to the irregular synthesis of amino acids. For the first time, this study provides insight into the proteomic and metabolomic changes caused by Cd in the blood clam T. granosa and suggests a potential toxicological pathway for Cd.
Collapse
Affiliation(s)
- Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315100, P.R. China
| | - Xiao Liu
- Department of Systems biology, GFK, Shanghai Biotech Inc., Shanghai, 201112, P.R. China
| | - Weiwei Zhang
- School of Marine Scienes, Ningbo University, Ningbo, Zhejiang, 315010, P.R. China
| | - Jianping Cao
- Ningbo Yinzhou Measurement and Test Center for Quality and Technique Supervising, Ningbo, Zhejiang, 315100, P.R. China
| | - Wei Li
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315100, P.R. China
| | - Chenghua Li
- School of Marine Scienes, Ningbo University, Ningbo, Zhejiang, 315010, P.R. China
| | - Zhihua Lin
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315100, P.R. China
| |
Collapse
|
15
|
Molecular organization of cytokinesis nodes and contractile rings by super-resolution fluorescence microscopy of live fission yeast. Proc Natl Acad Sci U S A 2016; 113:E5876-E5885. [PMID: 27647921 PMCID: PMC5056082 DOI: 10.1073/pnas.1608252113] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cytokinesis in animals, fungi, and amoebas depends on the constriction of a contractile ring built from a common set of conserved proteins. Many fundamental questions remain about how these proteins organize to generate the necessary tension for cytokinesis. Using quantitative high-speed fluorescence photoactivation localization microscopy (FPALM), we probed this question in live fission yeast cells at unprecedented resolution. We show that nodes, protein assembly precursors to the contractile ring, are discrete structural units with stoichiometric ratios and distinct distributions of constituent proteins. Anillin Mid1p, Fes/CIP4 homology-Bin/amphiphysin/Rvs (F-BAR) Cdc15p, IQ motif containing GTPase-activating protein (IQGAP) Rng2p, and formin Cdc12p form the base of the node that anchors the ends of myosin II tails to the plasma membrane, with myosin II heads extending into the cytoplasm. This general node organization persists in the contractile ring where nodes move bidirectionally during constriction. We observed the dynamics of the actin network during cytokinesis, starting with the extension of short actin strands from nodes, which sometimes connected neighboring nodes. Later in cytokinesis, a broad network of thick bundles coalesced into a tight ring around the equator of the cell. The actin ring was ∼125 nm wide and ∼125 nm thick. These observations establish the organization of the proteins in the functional units of a cytokinetic contractile ring.
Collapse
|
16
|
Hagan IM, Grallert A, Simanis V. Analysis of the Schizosaccharomyces pombe Cell Cycle. Cold Spring Harb Protoc 2016; 2016:2016/9/pdb.top082800. [PMID: 27587785 DOI: 10.1101/pdb.top082800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Schizosaccharomyces pombe cells are rod shaped, and they grow by tip elongation. Growth ceases during mitosis and cell division; therefore, the length of a septated cell is a direct measure of the timing of mitotic commitment, and the length of a wild-type cell is an indicator of its position in the cell cycle. A large number of documented stage-specific changes can be used as landmarks to characterize cell cycle progression under specific experimental conditions. Conditional mutations can permanently or transiently block the cell cycle at almost any stage. Large, synchronously dividing cell populations, essential for the biochemical analysis of cell cycle events, can be generated by induction synchrony (arrest-release of a cell cycle mutant) or selection synchrony (centrifugal elutriation or lactose-gradient centrifugation). Schizosaccharomyces pombe cell cycle studies routinely combine particular markers, mutants, and synchronization procedures to manipulate the cycle. We describe these techniques and list key landmarks in the fission yeast mitotic cell division cycle.
Collapse
Affiliation(s)
- Iain M Hagan
- CRUK Cell Division Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, United Kingdom
| | - Agnes Grallert
- CRUK Cell Division Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, United Kingdom
| | - Viesturs Simanis
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, CH-1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Nuñez I, Rodriguez Pino M, Wiley DJ, Das ME, Chen C, Goshima T, Kume K, Hirata D, Toda T, Verde F. Spatial control of translation repression and polarized growth by conserved NDR kinase Orb6 and RNA-binding protein Sts5. eLife 2016; 5. [PMID: 27474797 PMCID: PMC5011436 DOI: 10.7554/elife.14216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/28/2016] [Indexed: 12/18/2022] Open
Abstract
RNA-binding proteins contribute to the formation of ribonucleoprotein (RNP) granules by phase transition, but regulatory mechanisms are not fully understood. Conserved fission yeast NDR (Nuclear Dbf2-Related) kinase Orb6 governs cell morphogenesis in part by spatially controlling Cdc42 GTPase. Here we describe a novel, independent function for Orb6 kinase in negatively regulating the recruitment of RNA-binding protein Sts5 into RNPs to promote polarized cell growth. We find that Orb6 kinase inhibits Sts5 recruitment into granules, its association with processing (P) bodies, and degradation of Sts5-bound mRNAs by promoting Sts5 interaction with 14-3-3 protein Rad24. Many Sts5-bound mRNAs encode essential factors for polarized cell growth, and Orb6 kinase spatially and temporally controls the extent of Sts5 granule formation. Disruption of this control system affects cell morphology and alters the pattern of polarized cell growth, revealing a role for Orb6 kinase in the spatial control of translational repression that enables normal cell morphogenesis.
Collapse
Affiliation(s)
- Illyce Nuñez
- Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
| | - Marbelys Rodriguez Pino
- Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
| | - David J Wiley
- Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
| | - Maitreyi E Das
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, United States
| | - Chuan Chen
- Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
| | - Tetsuya Goshima
- National Research Institute of Brewing, Higashi-Hiroshima, Japan
| | - Kazunori Kume
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Dai Hirata
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Toda
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan.,The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, United Kingdom
| | - Fulvia Verde
- Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States.,Marine Biological Laboratory, Woods Hole, United States
| |
Collapse
|
18
|
Yasuda T, Takaine M, Numata O, Nakano K. Anillin-related protein Mid1 regulates timely formation of the contractile ring in the fission yeastSchizosaccharomyces japonicus. Genes Cells 2016; 21:594-607. [DOI: 10.1111/gtc.12368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 03/03/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Tsuyoshi Yasuda
- Department of Biological Sciences; Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| | - Masak Takaine
- Department of Biological Sciences; Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| | - Osamu Numata
- Department of Biological Sciences; Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| | - Kentaro Nakano
- Department of Biological Sciences; Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| |
Collapse
|
19
|
Rincon SA, Paoletti A. Molecular control of fission yeast cytokinesis. Semin Cell Dev Biol 2016; 53:28-38. [PMID: 26806637 DOI: 10.1016/j.semcdb.2016.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/06/2016] [Indexed: 12/29/2022]
Abstract
Cytokinesis gives rise to two independent daughter cells at the end of the cell division cycle. The fission yeast Schizosaccharomyces pombe has emerged as one of the most powerful systems to understand how cytokinesis is controlled molecularly. Like in most eukaryotes, fission yeast cytokinesis depends on an acto-myosin based contractile ring that assembles at the division site under the control of spatial cues that integrate information on cell geometry and the position of the mitotic apparatus. Cytokinetic events are also tightly coordinated with nuclear division by the cell cycle machinery. These spatial and temporal regulations ensure an equal cleavage of the cytoplasm and an accurate segregation of the genetic material in daughter cells. Although this model system has specificities, the basic mechanisms of contractile ring assembly and function deciphered in fission yeast are highly valuable to understand how cytokinesis is controlled in other organisms that rely on a contractile ring for cell division.
Collapse
Affiliation(s)
- Sergio A Rincon
- Institut Curie, Centre de Recherche, PSL Research University, F-75248 Paris, France; CNRS UMR144, F-75248 Paris, France
| | - Anne Paoletti
- Institut Curie, Centre de Recherche, PSL Research University, F-75248 Paris, France; CNRS UMR144, F-75248 Paris, France.
| |
Collapse
|
20
|
Thiyagarajan S, Munteanu EL, Arasada R, Pollard TD, O'Shaughnessy B. The fission yeast cytokinetic contractile ring regulates septum shape and closure. J Cell Sci 2015; 128:3672-81. [PMID: 26240178 DOI: 10.1242/jcs.166926] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 07/27/2015] [Indexed: 11/20/2022] Open
Abstract
During cytokinesis, fission yeast and other fungi and bacteria grow a septum that divides the cell in two. In fission yeast closure of the circular septum hole by the β-glucan synthases (Bgs) and other glucan synthases in the plasma membrane is tightly coupled to constriction of an actomyosin contractile ring attached to the membrane. It is unknown how septum growth is coordinated over scales of several microns to maintain septum circularity. Here, we documented the shapes of ingrowing septum edges by measuring the roughness of the edges, a measure of the deviation from circularity. The roughness was small, with spatial correlations indicative of spatially coordinated growth. We hypothesized that Bgs-mediated septum growth is mechanosensitive and coupled to contractile ring tension. A mathematical model showed that ring tension then generates almost circular septum edges by adjusting growth rates in a curvature-dependent fashion. The model reproduced experimental roughness statistics and showed that septum synthesis sets the mean closure rate. Our results suggest that the fission yeast cytokinetic ring tension does not set the constriction rate but regulates septum closure by suppressing roughness produced by inherently stochastic molecular growth processes.
Collapse
Affiliation(s)
| | - Emilia Laura Munteanu
- Department of Microbiology & Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Rajesh Arasada
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Thomas D Pollard
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA Department of Cell Biology, Yale University, New Haven, CT 06520, USA
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
21
|
Laplante C, Berro J, Karatekin E, Hernandez-Leyva A, Lee R, Pollard TD. Three myosins contribute uniquely to the assembly and constriction of the fission yeast cytokinetic contractile ring. Curr Biol 2015; 25:1955-65. [PMID: 26144970 DOI: 10.1016/j.cub.2015.06.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 05/16/2015] [Accepted: 06/05/2015] [Indexed: 11/30/2022]
Abstract
Cytokinesis in fission yeast cells depends on conventional myosin-II (Myo2) to assemble and constrict a contractile ring of actin filaments. Less is known about the functions of an unconventional myosin-II (Myp2) and a myosin-V (Myo51) that are also present in the contractile ring. Myo2 appears in cytokinetic nodes around the equator 10 min before spindle pole body separation (cell-cycle time, -10 min) independent of actin filaments, followed by Myo51 at time zero and Myp2 at time +20 min, both located between nodes and dependent on actin filaments. We investigated the contributions of these three myosins to cytokinesis using a severely disabled mutation of the essential myosin-II heavy-chain gene (myo2-E1) and deletion mutations of the other myosin heavy-chain genes. Cells with only Myo2 assemble contractile rings normally. Cells with either Myp2 or Myo51 alone can assemble nodes and actin filaments into contractile rings but complete assembly later than normal. Both Myp2 and Myo2 contribute to constriction of fully assembled rings at rates 55% that of normal in cells relying on Myp2 alone and 25% that of normal in cells with Myo2 alone. Myo51 alone cannot constrict rings but increases the constriction rate by Myo2 in Δmyp2 cells or Myp2 in myo2-E1 cells. Three myosins function in a hierarchal, complementary manner to accomplish cytokinesis, with Myo2 and Myo51 taking the lead during contractile ring assembly and Myp2 making the greatest contribution to constriction.
Collapse
Affiliation(s)
- Caroline Laplante
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Nanobiology Institute, Yale University, West Haven, CT 06516, USA
| | - Erdem Karatekin
- Nanobiology Institute, Yale University, West Haven, CT 06516, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA; Institut des Sciences Biologiques, Centre National de la Recherche Scientifique (CNRS), Délégation Paris Michel-Ange, 3 rue Michel-Ange, 75794 Paris Cedex 16, France
| | - Ariel Hernandez-Leyva
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Rachel Lee
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Thomas D Pollard
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Cell Biology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
22
|
Feng Z, Okada S, Cai G, Zhou B, Bi E. Myosin‑II heavy chain and formin mediate the targeting of myosin essential light chain to the division site before and during cytokinesis. Mol Biol Cell 2015; 26:1211-24. [PMID: 25631819 PMCID: PMC4454170 DOI: 10.1091/mbc.e14-09-1363] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
MLC1 is a haploinsufficient gene encoding the essential light chain for Myo1, the sole myosin‑II heavy chain in the budding yeast Saccharomyces cerevisiae. Mlc1 defines an essential hub that coordinates actomyosin ring function, membrane trafficking, and septum formation during cytokinesis by binding to IQGAP, myosin‑II, and myosin‑V. However, the mechanism of how Mlc1 is targeted to the division site during the cell cycle remains unsolved. By constructing a GFP‑tagged MLC1 under its own promoter control and using quantitative live‑cell imaging coupled with yeast mutants, we found that septin ring and actin filaments mediate the targeting of Mlc1 to the division site before and during cytokinesis, respectively. Both mechanisms contribute to and are collectively required for the accumulation of Mlc1 at the division site during cytokinesis. We also found that Myo1 plays a major role in the septin‑dependent Mlc1 localization before cytokinesis, whereas the formin Bni1 plays a major role in the actin filament-dependent Mlc1 localization during cytokinesis. Such a two‑tiered mechanism for Mlc1 localization is presumably required for the ordered assembly and robustness of cytokinesis machinery and is likely conserved across species.
Collapse
Affiliation(s)
- Zhonghui Feng
- School of Life Sciences, Tsinghua University, Beijing 100084, China Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Satoshi Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Guoping Cai
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bing Zhou
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
23
|
Bestul AJ, Christensen JR, Grzegorzewska AP, Burke TA, Sees JA, Carroll RT, Sirotkin V, Keenan RJ, Kovar DR. Fission yeast profilin is tailored to facilitate actin assembly by the cytokinesis formin Cdc12. Mol Biol Cell 2014; 26:283-93. [PMID: 25392301 PMCID: PMC4294675 DOI: 10.1091/mbc.e13-05-0281] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The evolutionarily conserved small actin-monomer binding protein profilin is believed to be a housekeeping factor that maintains a general pool of unassembled actin. However, despite similar primary sequences, structural folds, and affinities for G-actin and poly-L-proline, budding yeast profilin ScPFY fails to complement fission yeast profilin SpPRF temperature-sensitive mutant cdc3-124 cells. To identify profilin's essential properties, we built a combinatorial library of ScPFY variants containing either WT or SpPRF residues at multiple positions and carried out a genetic selection to isolate variants that support life in fission yeast. We subsequently engineered ScPFY(9-Mut), a variant containing nine substitutions in the actin-binding region, which complements cdc3-124 cells. ScPFY(9-Mut), but not WT ScPFY, suppresses severe cytokinesis defects in cdc3-124 cells. Furthermore, the major activity rescued by ScPFY(9-Mut) is the ability to enhance cytokinesis formin Cdc12-mediated actin assembly in vitro, which allows cells to assemble functional contractile rings. Therefore an essential role of profilin is to specifically facilitate formin-mediated actin assembly for cytokinesis in fission yeast.
Collapse
Affiliation(s)
- Andrew J Bestul
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Jenna R Christensen
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | | | - Thomas A Burke
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Jennifer A Sees
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Robert T Carroll
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Vladimir Sirotkin
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637 Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
24
|
Zhou Z, Munteanu EL, He J, Ursell T, Bathe M, Huang KC, Chang F. The contractile ring coordinates curvature-dependent septum assembly during fission yeast cytokinesis. Mol Biol Cell 2014; 26:78-90. [PMID: 25355954 PMCID: PMC4279231 DOI: 10.1091/mbc.e14-10-1441] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cytokinesis in fission yeast is accomplished by inward growth of the cell wall septum guided by the contractile ring. The ring promotes local septum growth in a curvature-dependent manner, allowing even a misshapen septum to grow into a more regular shape. This suggests that the ring regulates cell wall assembly through a mechanosensitive mechanism. The functions of the actin-myosin–based contractile ring in cytokinesis remain to be elucidated. Recent findings show that in the fission yeast Schizosaccharomyces pombe, cleavage furrow ingression is driven by polymerization of cell wall fibers outside the plasma membrane, not by the contractile ring. Here we show that one function of the ring is to spatially coordinate septum cell wall assembly. We develop an improved method for live-cell imaging of the division apparatus by orienting the rod-shaped cells vertically using microfabricated wells. We observe that the septum hole and ring are circular and centered in wild-type cells and that in the absence of a functional ring, the septum continues to ingress but in a disorganized and asymmetric manner. By manipulating the cleavage furrow into different shapes, we show that the ring promotes local septum growth in a curvature-dependent manner, allowing even a misshapen septum to grow into a more regular shape. This curvature-dependent growth suggests a model in which contractile forces of the ring shape the septum cell wall by stimulating the cell wall machinery in a mechanosensitive manner. Mechanical regulation of the cell wall assembly may have general relevance to the morphogenesis of walled cells.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Emilia Laura Munteanu
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Jun He
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Tristan Ursell
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305 Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Fred Chang
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| |
Collapse
|
25
|
Tao EY, Calvert M, Balasubramanian MK. Rewiring Mid1p-independent medial division in fission yeast. Curr Biol 2014; 24:2181-2188. [PMID: 25176634 DOI: 10.1016/j.cub.2014.07.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/27/2014] [Accepted: 07/25/2014] [Indexed: 10/24/2022]
Abstract
Correct positioning of the cell division machinery is key to genome stability. Schizosaccharomyces pombe is an attractive organism to study cytokinesis as it, like higher eukaryotes, divides using a contractile actomyosin ring. In S. pombe, many actomyosin ring components assemble at the medial cortex into node-like structures before coalescing into a ring [1, 2]. Assembly of cytokinetic nodes requires Mid1p, which recruits IQGAP-related Rng2p to the division site, after which other node components accumulate at the division site in a characteristic sequence [3-6]. How cytokinetic nodes assemble, whether the order of assembly of ring components is important, and whether Mid1p solely participates in ring positioning are poorly understood. Here, we show that synthetic targeting of IQGAP-related Rng2p, formin-Cdc12p, and myosin II (Myo2p) restores medial division in mid1 mutants, suggesting that ring proteins need not assemble at the division site in an invariant order. Unlike in wild-type cells, actomyosin rings in cells rewired to divide medially in the absence of Mid1p assemble late in anaphase. Furthermore, the rewiring process affects the ability of the actomyosin ring to track the nucleus upon perturbation of nuclear position. Our work reveals the power of synthetic rewiring studies in deciphering roles performed by multifunctional proteins.
Collapse
Affiliation(s)
- Evelyn Yaqiong Tao
- Department of Biological Sciences, The National University of Singapore, 1 Research Link, Singapore 117604, Republic of Singapore
| | - Meredith Calvert
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Republic of Singapore
| | - Mohan K Balasubramanian
- Department of Biological Sciences, The National University of Singapore, 1 Research Link, Singapore 117604, Republic of Singapore; Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Republic of Singapore; Mechanobiology Institute, The National University of Singapore, 1 Research Link, Singapore 117604, Republic of Singapore; Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
26
|
Encinar del Dedo J, Idrissi FZ, Arnáiz-Pita Y, James M, Dueñas-Santero E, Orellana-Muñoz S, del Rey F, Sirotkin V, Geli MI, Vázquez de Aldana CR. Eng2 is a component of a dynamic protein complex required for endocytic uptake in fission yeast. Traffic 2014; 15:1122-42. [PMID: 25040903 DOI: 10.1111/tra.12198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 11/29/2022]
Abstract
Eng2 is a glucanase required for spore release, although it is also expressed during vegetative growth, suggesting that it might play other cellular functions. Its homology to the Saccharomyces cerevisiae Acf2 protein, previously shown to promote actin polymerization at endocytic sites in vitro, prompted us to investigate its role in endocytosis. Interestingly, depletion of Eng2 caused profound defects in endocytic uptake, which were not due to the absence of its glucanase activity. Analysis of the dynamics of endocytic proteins by fluorescence microscopy in the eng2Δ strain unveiled a previously undescribed phenotype, in which assembly of the Arp2/3 complex appeared uncoupled from the internalization of the endocytic coat and resulted in a fission defect. Strikingly also, we found that Eng2-GFP dynamics did not match the pattern of other endocytic proteins. Eng2-GFP localized to bright cytosolic spots that moved around the cellular poles and occasionally contacted assembling endocytic patches just before recruitment of Wsp1, the Schizosaccharomyces pombe WASP. Interestingly, Csh3-YFP, a WASP-interacting protein, interacted with Eng2 by co-immunoprecipitation and was recruited to Eng2 in bright cytosolic spots. Altogether, our work defines a novel endocytic functional module, which probably couples the endocytic coat to the actin module.
Collapse
Affiliation(s)
- Javier Encinar del Dedo
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, c/ Zacarías González 2, 37007, Salamanca, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Goss JW, Kim S, Bledsoe H, Pollard TD. Characterization of the roles of Blt1p in fission yeast cytokinesis. Mol Biol Cell 2014; 25:1946-57. [PMID: 24790095 PMCID: PMC4072569 DOI: 10.1091/mbc.e13-06-0300] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Spatial and temporal regulation of cytokinesis is essential for cell division, yet the mechanisms that control the formation and constriction of the contractile ring are incompletely understood. In the fission yeast Schizosaccharomyces pombe proteins that contribute to the cytokinetic contractile ring accumulate during interphase in nodes-precursor structures around the equatorial cortex. During mitosis, additional proteins join these nodes, which condense to form the contractile ring. The cytokinesis protein Blt1p is unique in being present continuously in nodes from early interphase through to the contractile ring until cell separation. Blt1p was shown to stabilize interphase nodes, but its functions later in mitosis were unclear. We use analytical ultracentrifugation to show that purified Blt1p is a tetramer. We find that Blt1p interacts physically with Sid2p and Mob1p, a protein kinase complex of the septation initiation network, and confirm known interactions with F-BAR protein Cdc15p. Contractile rings assemble normally in blt1∆ cells, but the initiation of ring constriction and completion of cell division are delayed. We find three defects that likely contribute to this delay. Without Blt1p, contractile rings recruited and retained less Sid2p/Mob1p and Clp1p phosphatase, and β-glucan synthase Bgs1p accumulated slowly at the cleavage site.
Collapse
Affiliation(s)
- John W Goss
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103Department of Biological Sciences, Wellesley College, Wellesley, MA 02481-8203
| | - Sunhee Kim
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103
| | - Hannah Bledsoe
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481-8203
| | - Thomas D Pollard
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103Department of Cell Biology, Yale University, New Haven, CT 06520-8103
| |
Collapse
|
28
|
Takaine M, Numata O, Nakano K. Fission yeast IQGAP maintains F-actin-independent localization of myosin-II in the contractile ring. Genes Cells 2013; 19:161-76. [DOI: 10.1111/gtc.12120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 11/02/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Masak Takaine
- Department of Biological Sciences; Graduate School of Life and Environmental Sciences; University of Tsukuba; 1-1-1 Tennohdai Tsukuba Ibaraki 305-8577 Japan
| | - Osamu Numata
- Department of Biological Sciences; Graduate School of Life and Environmental Sciences; University of Tsukuba; 1-1-1 Tennohdai Tsukuba Ibaraki 305-8577 Japan
| | - Kentaro Nakano
- Department of Biological Sciences; Graduate School of Life and Environmental Sciences; University of Tsukuba; 1-1-1 Tennohdai Tsukuba Ibaraki 305-8577 Japan
| |
Collapse
|
29
|
Cadou A, Couturier A, Le Goff C, Xie L, Paulson JR, Le Goff X. The Kin1 kinase and the calcineurin phosphatase cooperate to link actin ring assembly and septum synthesis in fission yeast. Biol Cell 2013; 105:129-48. [PMID: 23294323 DOI: 10.1111/boc.201200042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 01/03/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND INFORMATION The Kin1 protein kinase of fission yeast, which regulates cell surface cohesiveness during interphase cell growth, is also present at the cell division site during mitosis; however, its function in cell division has remained elusive. RESULTS In FK506-mediated calcineurin deficient cells, mitosis is extended and ring formation is transiently compromised but septation remains normal. Here, we show that Kin1 inhibition in these cells leads to polyseptation and defects in membrane closure. Actomyosin ring disassembly is prevented and ultimately the daughter cells fail to separate. We show that the Pmk1 MAP kinase pathway and the type V myosin Myo4 act downstream of the cytokinetic function of Kin1. Kin1 inhibition also promotes polyseptation in myo3Δ, a type II myosin heavy-chain mutant defective in ring assembly. In contrast, Kin1 inactivation rescues septation in a myosin light-chain cdc4-8 thermosensitive mutant. A structure/function analysis of the Kin1 protein sequence identified a novel motif outside the kinase domain that is important for its polarised localisation and its catalytic activity. This motif is remarkably conserved in all fungal Kin1 homologues but is absent in related kinases of metazoans. CONCLUSIONS We conclude that calcineurin and Kin1 activities must be tightly coordinated to link actomyosin ring assembly with septum synthesis and membrane closure and to ensure separation of the daughter cells.
Collapse
Affiliation(s)
- Angela Cadou
- CNRS UMR6290 Institut de Génétique et Développement de Rennes, France
| | | | | | | | | | | |
Collapse
|
30
|
Bohnert KA, Gould KL. Cytokinesis-based constraints on polarized cell growth in fission yeast. PLoS Genet 2012; 8:e1003004. [PMID: 23093943 PMCID: PMC3475658 DOI: 10.1371/journal.pgen.1003004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 08/15/2012] [Indexed: 11/18/2022] Open
Abstract
The rod-shaped fission yeast Schizosaccharomyces pombe, which undergoes cycles of monopolar-to-bipolar tip growth, is an attractive organism for studying cell-cycle regulation of polarity establishment. While previous research has described factors mediating this process from interphase cell tips, we found that division site signaling also impacts the re-establishment of bipolar cell growth in the ensuing cell cycle. Complete loss or targeted disruption of the non-essential cytokinesis protein Fic1 at the division site, but not at interphase cell tips, resulted in many cells failing to grow at new ends created by cell division. This appeared due to faulty disassembly and abnormal persistence of the cell division machinery at new ends of fic1Δ cells. Moreover, additional mutants defective in the final stages of cytokinesis exhibited analogous growth polarity defects, supporting that robust completion of cell division contributes to new end-growth competency. To test this model, we genetically manipulated S. pombe cells to undergo new end take-off immediately after cell division. Intriguingly, such cells elongated constitutively at new ends unless cytokinesis was perturbed. Thus, cell division imposes constraints that partially override positive controls on growth. We posit that such constraints facilitate invasive fungal growth, as cytokinesis mutants displaying bipolar growth defects formed numerous pseudohyphae. Collectively, these data highlight a role for previous cell cycles in defining a cell's capacity to polarize at specific sites, and they additionally provide insight into how a unicellular yeast can transition into a quasi-multicellular state.
Collapse
Affiliation(s)
- K. Adam Bohnert
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Kathleen L. Gould
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
31
|
Grewal C, Hickmott J, Rentas S, Karagiannis J. A conserved histone deacetylase with a role in the regulation of cytokinesis in Schizosaccharomyces pombe. Cell Div 2012; 7:13. [PMID: 22559741 PMCID: PMC3485120 DOI: 10.1186/1747-1028-7-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/20/2012] [Indexed: 11/12/2022] Open
Abstract
Background In Schizosaccharomyces pombe the SET domain protein, Set3p - together with its interacting partners, Snt1p, and Hif2p - form a complex that aids in preventing cell division failure upon mild cytokinetic stress. Intriguingly, the human orthologs of these proteins (MLL5, NCOR2, and TBL1X) are also important for the faithful completion of cytokinesis in tissue culture cells. Since MLL5, NCOR2, and TBL1X form a complex with the histone deacetylase, HDAC3, we sought to determine if an orthologous counterpart played a regulatory role in fission yeast cytokinesis. Results In this report we identify the hos2 gene as the fission yeast HDAC3 ortholog. We show that Hos2p physically interacts with Set3p, Snt1p, and Hif2p, and that hos2∆ mutants are indeed compromised in their ability to reliably complete cell division in the presence of mild cytokinetic stresses. Furthermore, we demonstrate that over-expression of hos2 causes severe morphological and cytokinetic defects. Lastly, through recombinase mediated cassette exchange, we show that expression of human HDAC3 complements the cytokinetic defects exhibited by hos2∆ cells. Conclusions These data support a model in which Hos2p functions as an essential component of the Set3p-Snt1p-Hif2p complex with respect to the regulation of cytokinesis. The ability of human HDAC3 to complement the cytokinesis defects associated with the deletion of the hos2 gene suggests that further analysis of this system could provide insight into the role of HDAC3 in both the regulation of cell division, as well as other biological processes influenced by HDAC3 deacetylation.
Collapse
Affiliation(s)
- Charnpal Grewal
- Department of Biology, University of Western Ontario, London, Ontario N6A-5B7, Canada.
| | | | | | | |
Collapse
|
32
|
Hsp90 interaction with Cdc2 and Plo1 kinases contributes to actomyosin ring condensation in fission yeast. Curr Genet 2012; 58:191-203. [DOI: 10.1007/s00294-012-0376-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 04/02/2012] [Accepted: 04/13/2012] [Indexed: 12/13/2022]
|
33
|
Calvert MEK, Wright GD, Leong FY, Chiam KH, Chen Y, Jedd G, Balasubramanian MK. Myosin concentration underlies cell size-dependent scalability of actomyosin ring constriction. ACTA ACUST UNITED AC 2012; 195:799-813. [PMID: 22123864 PMCID: PMC3257563 DOI: 10.1083/jcb.201101055] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The rate of actomyosin ring constriction in cells of different sizes correlates with myosin motor concentration in Neurospora crassa cells, leading to increased division rates in larger cells during cytokinesis. In eukaryotes, cytokinesis is accomplished by an actomyosin-based contractile ring. Although in Caenorhabditis elegans embryos larger cells divide at a faster rate than smaller cells, it remains unknown whether a similar mode of scalability operates in other cells. We investigated cytokinesis in the filamentous fungus Neurospora crassa, which exhibits a wide range of hyphal circumferences. We found that N. crassa cells divide using an actomyosin ring and larger rings constricted faster than smaller rings. However, unlike in C. elegans, the total amount of myosin remained constant throughout constriction, and there was a size-dependent increase in the starting concentration of myosin in the ring. We predict that the increased number of ring-associated myosin motors in larger rings leads to the increased constriction rate. Accordingly, reduction or inhibition of ring-associated myosin slows down the rate of constriction. Because the mechanical characteristics of contractile rings are conserved, we predict that these findings will be relevant to actomyosin ring constriction in other cell types.
Collapse
Affiliation(s)
- Meredith E K Calvert
- Temasek Life Sciences Laboratory, The National University of Singapore, Singapore 117604.
| | | | | | | | | | | | | |
Collapse
|
34
|
Yan H, Balasubramanian MK. A Meiotic Actin Ring (MeiAR) Essential for Proper Sporulation in Fission Yeast. J Cell Sci 2012. [DOI: 10.1242/jcs.jcs091561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Sporulation is a unique form of cytokinesis that occurs following meiosis II in many yeasts, during which four daughter cells (spores) are generated within a single mother cell. Here we characterize the role of F-actin in the process of sporulation in the fission yeast Schizosaccharomyces pombe. As shown previously, we find that F-actin assembles into 4 ring structures per ascus, referred to as the MeiAR (meiotic actin ring). The actin nucleators Arp2/3 and formin-For3 assemble into ring structures that overlap with Meu14, a protein known to assemble into the so-called leading edge, a ring structure that is known to guide forespore membrane assembly. Interestingly, F-actin makes rings that occupy a larger region behind the leading edge ring. Time-lapse microscopy showed that the MeiAR assembles near the spindle pole bodies and undergoes an expansion in diameter during the early stages of meiosis II, followed by closure in later stages of meiosis II. MeiAR closure completes the process of forespore membrane assembly. Loss of MeiAR leads to excessive assembly of forespore membranes with a deformed appearance. The rate of closure of the MeiAR is dictated by the function of the Septation Initiation Network (SIN). We conclude that the MeiAR ensures proper targeting of the membrane biogenesis machinery to the leading edge, thereby ensuring the formation of spherically shaped spores.
Collapse
|
35
|
Laporte D, Coffman VC, Lee IJ, Wu JQ. Assembly and architecture of precursor nodes during fission yeast cytokinesis. ACTA ACUST UNITED AC 2011; 192:1005-21. [PMID: 21422229 PMCID: PMC3063137 DOI: 10.1083/jcb.201008171] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mapping of fission yeast precursor node interaction modules and assembly reveals important steps in contractile ring assembly. The contractile ring is essential for cytokinesis in most fungal and animal cells. In fission yeast, cytokinesis nodes are precursors of the contractile ring and mark the future cleavage site. However, their assembly and architecture have not been well described. We found that nodes are assembled stoichiometrically in a hierarchical order with two modules linked by the positional marker anillin Mid1. Mid1 first recruits Cdc4 and IQGAP Rng2 to form module I. Rng2 subsequently recruits the myosin-II subunits Myo2 and Rlc1. Mid1 then independently recruits the F-BAR protein Cdc15 to form module II. Mid1, Rng2, Cdc4, and Cdc15 are stable node components that accumulate close to the plasma membrane. Both modules recruit the formin Cdc12 to nucleate actin filaments. Myo2 heads point into the cell interior, where they efficiently capture actin filaments to condense nodes into the contractile ring. Collectively, our work characterizing the assembly and architecture of precursor nodes defines important steps and molecular players for contractile ring assembly.
Collapse
Affiliation(s)
- Damien Laporte
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
36
|
Abstract
It is now quarter of a century since the actin cytoskeleton was first described in the fission yeast, Schizosaccharomyces pombe. Since then, a substantial body of research has been undertaken on this tractable model organism, extending our knowledge of the organisation and function of the actomyosin cytoskeleton in fission yeast and eukaryotes in general. Yeast represents one of the simplest eukaryotic model systems that has been characterised to date, and its genome encodes genes for homologues of the majority of actin regulators and actin-binding proteins found in metazoan cells. The ease with which diverse methodologies can be used, together with the small number of myosins, makes fission yeast an attractive model system for actomyosin research and provides the opportunity to fully understand the biochemical and functional characteristics of all myosins within a single cell type. In this Commentary, we examine the differences between the five S. pombe myosins, and focus on how these reflect the diversity of their functions. We go on to examine the role that the actin cytoskeleton plays in regulating the myosin motor activity and function, and finally explore how research in this simple unicellular organism is providing insights into the substantial impacts these motors can have on development and viability in multicellular higher-order eukaryotes.
Collapse
Affiliation(s)
- Daniel A East
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | | |
Collapse
|
37
|
Almonacid M, Celton-Morizur S, Jakubowski JL, Dingli F, Loew D, Mayeux A, Chen JS, Gould KL, Clifford DM, Paoletti A. Temporal control of contractile ring assembly by Plo1 regulation of myosin II recruitment by Mid1/anillin. Curr Biol 2011; 21:473-9. [PMID: 21376600 PMCID: PMC3088474 DOI: 10.1016/j.cub.2011.02.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 12/23/2010] [Accepted: 02/01/2011] [Indexed: 11/26/2022]
Abstract
In eukaryotes, cytokinesis generally involves an actomyosin ring, the contraction of which promotes daughter cell segregation. Assembly of the contractile ring is tightly controlled in space and time. In the fission yeast, contractile ring components are first organized by the anillin-like protein Mid1 into medial cortical nodes. These nodes then coalesce laterally into a functional contractile ring. Although Mid1 is present at the medial cortex throughout G2, recruitment of contractile ring components to nodes starts only at mitotic onset, indicating that this event is cell-cycle regulated. Polo kinases are key temporal coordinators of mitosis and cytokinesis, and the Polo-like kinase Plo1 is known to activate Mid1 nuclear export at mitotic onset, coupling division plane specification to nuclear position. Here we provide evidence that Plo1 also triggers the recruitment of contractile ring components into medial cortical nodes. Plo1 binds at least two independent sites on Mid1, including a consensus site phosphorylated by Cdc2. Plo1 phosphorylates several residues within the first 100 amino acids of Mid1, which directly interact with the IQGAP Rng2, and influences the timing of myosin II recruitment. Plo1 thereby facilitates contractile ring assembly at mitotic onset.
Collapse
Affiliation(s)
- Maria Almonacid
- Institut Curie, Centre de Recherche F-75248 Paris, France
- CNRS UMR144, F-75248 Paris, France
| | | | - Jennifer L. Jakubowski
- Grand Valley State University, Department of Cell and Molecular Biology, Allendale, MI, 49401, USA
| | - Florent Dingli
- Institut Curie, Centre de Recherche F-75248 Paris, France
- Laboratory of Mass Spectrometry, F-75248 Paris, France
| | - Damarys Loew
- Institut Curie, Centre de Recherche F-75248 Paris, France
- Laboratory of Mass Spectrometry, F-75248 Paris, France
| | - Adeline Mayeux
- Institut Curie, Centre de Recherche F-75248 Paris, France
- CNRS UMR144, F-75248 Paris, France
| | - Jun-Song Chen
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kathleen L. Gould
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Dawn M. Clifford
- Grand Valley State University, Department of Cell and Molecular Biology, Allendale, MI, 49401, USA
| | - Anne Paoletti
- Institut Curie, Centre de Recherche F-75248 Paris, France
- CNRS UMR144, F-75248 Paris, France
| |
Collapse
|
38
|
Ray S, Kume K, Gupta S, Ge W, Balasubramanian M, Hirata D, McCollum D. The mitosis-to-interphase transition is coordinated by cross talk between the SIN and MOR pathways in Schizosaccharomyces pombe. ACTA ACUST UNITED AC 2010; 190:793-805. [PMID: 20805322 PMCID: PMC2935563 DOI: 10.1083/jcb.201002055] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The SIN pathway blocks inappropriate actin rearrangements during cytokinesis by preventing activation of the MOR pathway component Orb6. The mechanisms that regulate cytoskeletal remodeling during the transition between mitosis and interphase are poorly understood. In fission yeast the MOR pathway promotes actin polarization to cell tips in interphase, whereas the SIN signaling pathway drives actomyosin ring assembly and cytokinesis. We show that the SIN inhibits MOR signaling in mitosis by interfering with Nak1 kinase-mediated activation of the most downstream MOR component, the NDR family kinase Orb6. Inactivation of the MOR may be a key function of the SIN because attenuation of MOR signaling rescued the cytokinetic defects of SIN mutants and allowed weak SIN signaling to trigger ectopic cytokinesis. Furthermore, failure to inhibit the MOR is toxic when the cell division apparatus is compromised. Together, our results reveal a mutually antagonistic relationship between the SIN and MOR pathways, which is important for completion of cytokinesis and coordination of cytoskeletal remodeling at the mitosis-to-interphase transition.
Collapse
Affiliation(s)
- Samriddha Ray
- Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Sladewski TE, Previs MJ, Lord M. Regulation of fission yeast myosin-II function and contractile ring dynamics by regulatory light-chain and heavy-chain phosphorylation. Mol Biol Cell 2009; 20:3941-52. [PMID: 19570908 DOI: 10.1091/mbc.e09-04-0346] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We investigated the role of regulatory light-chain (Rlc1p) and heavy-chain phosphorylation in controlling fission yeast myosin-II (Myo2p) motor activity and function during cytokinesis. Phosphorylation of Rlc1p leads to a fourfold increase in Myo2p's in vitro motility rate, which ensures effective contractile ring constriction and function. Surprisingly, unlike with smooth muscle and nonmuscle myosin-II, RLC phosphorylation does not influence the actin-activated ATPase activity of Myo2p. A truncated form of Rlc1p lacking its extended N-terminal regulatory region (including phosphorylation sites) supported maximal Myo2p in vitro motility rates and normal contractile ring function. Thus, the unphosphorylated N-terminal extension of Rlc1p can uncouple the ATPase and motility activities of Myo2p. We confirmed the identity of one out of two putative heavy-chain phosphorylation sites previously reported to control Myo2p function and cytokinesis. Although in vitro studies indicated that phosphorylation at Ser-1444 is not needed for Myo2p motor activity, phosphorylation at this site promotes the initiation of contractile ring constriction.
Collapse
Affiliation(s)
- Thomas E Sladewski
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | | | | |
Collapse
|
40
|
Kim JM, Zeng CJT, Nayak T, Shao R, Huang AC, Oakley BR, Liu B. Timely septation requires SNAD-dependent spindle pole body localization of the septation initiation network components in the filamentous fungus Aspergillus nidulans. Mol Biol Cell 2009; 20:2874-84. [PMID: 19386763 DOI: 10.1091/mbc.e08-12-1177] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the filamentous fungus Aspergillus nidulans, cytokinesis/septation is triggered by the septation initiation network (SIN), which first appears at the spindle pole body (SPB) during mitosis. The coiled-coil protein SNAD is associated with the SPB and is required for timely septation and conidiation. We have determined that SNAD acted as a scaffold protein that is required for the localization of the SIN proteins of SIDB and MOBA to the SPB. Another scaffold protein SEPK, whose localization at the SPB was dependent on SNAD, was also required for SIDB and MOBA localization to the SPB. In the absence of either SEPK or SNAD, SIDB/MOBA successfully localized to the septation site, indicating that their earlier localization at SPB was not essential for their later appearance at the division site. Unlike their functional counterparts in fission yeast, SEPK and SNAD were not required for vegetative growth but only for timely septation. Furthermore, down-regulation of negative regulators of the SIN suppressed the septation and conidiation phenotypes due to the loss of SNAD. Therefore, we conclude that SPB localization of SIN components is not essential for septation per se, but critical for septation to take place in a timely manner in A. nidulans.
Collapse
Affiliation(s)
- Jung-Mi Kim
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Hachet O, Simanis V. Mid1p/anillin and the septation initiation network orchestrate contractile ring assembly for cytokinesis. Genes Dev 2009; 22:3205-16. [PMID: 19056897 DOI: 10.1101/gad.1697208] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In both animal cells and fungi, cytokinesis proceeds via a contractile actomyosin ring (CAR). Many CAR components and regulators are evolutionarily conserved. In Schizosaccharomyces pombe, the spatial cue for cytokinesis is provided by Mid1p/Anillin, whereas temporal coordination is ensured by the septation initiation network (SIN). However, neither Mid1p nor the SIN is considered to be essential for CAR assembly per se. Here, using 4D imaging, we reveal an unanticipated, novel role for the SIN in CAR assembly. We demonstrate that CAR assembly involves three, genetically separable steps: establishment of a cortical network of CAR proteins, its lateral condensation, and finally, the formation of a homogeneous CAR. We show that SIN mutants fail to form a homogeneous CAR; we identify hypophosphorylation and recruitment of the conserved PCH-family protein Cdc15p to the CAR as critical steps requiring SIN function. Furthermore, we show that in the absence of Mid1p, CAR assembly proceeds via an actomyosin filament, rather than a cortical network of CAR proteins. This mode of assembly is totally dependent on SIN signaling, thereby demonstrating a direct role for the SIN in CAR formation. Taken together, these data establish that Mid1p and the SIN are the key regulators that orchestrate CAR assembly.
Collapse
Affiliation(s)
- Olivier Hachet
- Cell Cycle Control Laboratory, Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1066 Epalinges s/Lausanne, Switzerland
| | | |
Collapse
|
42
|
Satoh R, Morita T, Takada H, Kita A, Ishiwata S, Doi A, Hagihara K, Taga A, Matsumura Y, Tohda H, Sugiura R. Role of the RNA-binding protein Nrd1 and Pmk1 mitogen-activated protein kinase in the regulation of myosin mRNA stability in fission yeast. Mol Biol Cell 2009; 20:2473-85. [PMID: 19279143 DOI: 10.1091/mbc.e08-09-0893] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Myosin II is an essential component of the actomyosin contractile ring and plays a crucial role in cytokinesis by generating the forces necessary for contraction of the actomyosin ring. Cdc4 is an essential myosin II light chain in fission yeast and is required for cytokinesis. In various eukaryotes, the phosphorylation of myosin is well documented as a primary means of activating myosin II, but little is known about the regulatory mechanisms of Cdc4. Here, we isolated Nrd1, an RNA-binding protein with RNA-recognition motifs, as a multicopy suppressor of cdc4 mutants. Notably, we demonstrated that Nrd1 binds and stabilizes Cdc4 mRNA, thereby suppressing the cytokinesis defects of the cdc4 mutants. Importantly, Pmk1 mitogen-activated protein kinase (MAPK) directly phosphorylates Nrd1, thereby negatively regulating the binding activity of Nrd1 to Cdc4 mRNA. Consistently, the inactivation of Pmk1 MAPK signaling, as well as Nrd1 overexpression, stabilized the Cdc4 mRNA level, thereby suppressing the cytokinesis defects associated with the cdc4 mutants. In addition, we demonstrated the cell cycle-dependent regulation of Pmk1/Nrd1 signaling. Together, our results indicate that Nrd1 plays a role in the regulation of Cdc4 mRNA stability; moreover, our study is the first to demonstrate the posttranscriptional regulation of myosin expression by MAPK signaling.
Collapse
Affiliation(s)
- Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, and Laboratory of Pharmaceutical Analytical Chemistry, School of Pharmaceutical Sciences, Kinki University, Higashi-Osaka 577-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Progress towards understanding the mechanism of cytokinesis in fission yeast. Biochem Soc Trans 2008; 36:425-30. [PMID: 18481973 DOI: 10.1042/bst0360425] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We use fission yeast to study the molecular mechanism of cytokinesis. We benefit from a long history in genetic analysis of the cell cycle in fission yeast, which provided the most complete inventory of cytokinesis proteins. We used fluorescence microscopy of proteins tagged with fluorescent proteins to establish the temporal and spatial pathway for the assembly and constriction of the contractile ring. We combined biochemical analysis of purified proteins (myosin-II, profilin, formin Cdc12p and cofilin), observations of fluorescent fusion proteins in live cells and mathematical modelling to formulate and test a simple hypothesis for the assembly of the contractile ring. This model involves the formation of 65 nodes containing myosin-II and formin Cdc12p around the equator of the cell. As a cell enters anaphase, actin filaments grow from formin Cdc12p in these nodes. Myosin captures actin filaments from adjacent nodes and pulls intermittently to condense the nodes into a contractile ring.
Collapse
|
44
|
Yan H, Ge W, Chew TG, Chow JY, McCollum D, Neiman AM, Balasubramanian MK. The meiosis-specific Sid2p-related protein Slk1p regulates forespore membrane assembly in fission yeast. Mol Biol Cell 2008; 19:3676-90. [PMID: 18562696 DOI: 10.1091/mbc.e07-10-1060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cytokinesis in all organisms involves the creation of membranous barriers that demarcate individual daughter cells. In fission yeast, a signaling module termed the septation initiation network (SIN) plays an essential role in the assembly of new membranes and cell wall during cytokinesis. In this study, we have characterized Slk1p, a protein-kinase related to the SIN component Sid2p. Slk1p is expressed specifically during meiosis and localizes to the spindle pole bodies (SPBs) during meiosis I and II in a SIN-dependent manner. Slk1p also localizes to the forespore membrane during sporulation. Cells lacking Slk1p display defects associated with sporulation, leading frequently to the formation of asci with smaller and/or fewer spores. The ability of slk1 Delta cells to sporulate, albeit inefficiently, is fully abolished upon compromise of function of Sid2p, suggesting that Slk1p and Sid2p play overlapping roles in sporulation. Interestingly, increased expression of the syntaxin Psy1p rescues the sporulation defect of sid2-250 slk1 Delta. Thus, it is likely that Slk1p and Sid2p play a role in forespore membrane assembly by facilitating recruitment of components of the secretory apparatus, such as Psy1p, to allow membrane expansion. These studies thereby provide a novel link between the SIN and vesicle trafficking during cytokinesis.
Collapse
Affiliation(s)
- Hongyan Yan
- Cell Division Laboratory, Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
45
|
Ge W, Balasubramanian MK. Pxl1p, a paxillin-related protein, stabilizes the actomyosin ring during cytokinesis in fission yeast. Mol Biol Cell 2008; 19:1680-92. [PMID: 18272786 DOI: 10.1091/mbc.e07-07-0715] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Paxillins are a family of conserved LIM domain-containing proteins that play important roles in the function and integrity of the actin cytoskeleton. Although paxillins have been extensively characterized by cell biological and biochemical approaches, genetic studies are relatively scarce. Here, we identify and characterize a paxillin-related protein Pxl1p in the fission yeast Schizosaccharomyces pombe. Pxl1p is a component of the fission yeast actomyosin ring, a structure that is essential for cytokinesis. Cells deleted for pxl1 display a novel phenotype characterized by a splitting of the actomyosin ring in late anaphase, leading to the formation of two rings of which only one undergoes constriction. In addition, the rate of actomyosin ring constriction is slower in the absence of Pxl1p. pxl1Delta mutants display strong genetic interactions with mutants defective in IQGAP-related protein Rng2p and mutants defective in components of the fission yeast type II myosin machinery. Collectively, these results suggest that Pxl1p might cooperate with type II myosin and Rng2p-IQGAP to regulate actomyosin ring constriction as well as to maintain its integrity during constriction.
Collapse
Affiliation(s)
- Wanzhong Ge
- Cell Division Laboratory, Temasek Life Sciences Laboratory and the Department of Biological Sciences, National University of Singapore, Singapore
| | | |
Collapse
|
46
|
Pinar M, Coll PM, Rincón SA, Pérez P. Schizosaccharomyces pombe Pxl1 is a paxillin homologue that modulates Rho1 activity and participates in cytokinesis. Mol Biol Cell 2008; 19:1727-38. [PMID: 18256290 DOI: 10.1091/mbc.e07-07-0718] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Schizosaccharomyces pombe Rho GTPases regulate actin cytoskeleton organization and cell integrity. We studied the fission yeast gene SPBC4F6.12 based on its ability to suppress the thermosensitivity of cdc42-1625 mutant strain. This gene, named pxl1(+), encodes a protein with three LIM domains that is similar to paxillin. Pxl1 does not interact with Cdc42 but it interacts with Rho1, and it negatively regulates this GTPase. Fission yeast Pxl1 forms a contractile ring in the cell division region and deletion of pxl1(+) causes a delay in cell-cell separation, suggesting that it has a function in cytokinesis. Pxl1 N-terminal region is required and sufficient for its localization to the medial ring, whereas the LIM domains are necessary for its function. Pxl1 localization requires actin polymerization and the actomyosin ring, but it is independent of the septation initiation network (SIN) function. Moreover, Pxl1 colocalizes and interacts with Myo2, and Cdc15, suggesting that it is part of the actomyosin ring. Here, we show that in cells lacking Pxl1, the myosin ring is not correctly assembled and that actomyosin ring contraction is delayed. Together, these data suggest that Pxl1 modulates Rho1 GTPase signaling and plays a role in the formation and contraction of the actomyosin ring during cytokinesis.
Collapse
Affiliation(s)
- Mario Pinar
- Instituto de Microbiología Bioquímica, Consejo Superior de Investigaciones Científicas/Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
47
|
Vjestica A, Tang XZ, Oliferenko S. The actomyosin ring recruits early secretory compartments to the division site in fission yeast. Mol Biol Cell 2008; 19:1125-38. [PMID: 18184749 DOI: 10.1091/mbc.e07-07-0663] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The ultimate goal of cytokinesis is to establish a membrane barrier between daughter cells. The fission yeast Schizosaccharomyces pombe utilizes an actomyosin-based division ring that is thought to provide physical force for the plasma membrane invagination. Ring constriction occurs concomitantly with the assembly of a division septum that is eventually cleaved. Membrane trafficking events such as targeting of secretory vesicles to the division site require a functional actomyosin ring suggesting that it serves as a spatial landmark. However, the extent of polarization of the secretion apparatus to the division site is presently unknown. We performed a survey of dynamics of several fluorophore-tagged proteins that served as markers for various compartments of the secretory pathway. These included markers for the endoplasmic reticulum, the COPII sites, and the early and late Golgi. The secretion machinery exhibited a marked polarization to the division site. Specifically, we observed an enrichment of the transitional endoplasmic reticulum (tER) accompanied by Golgi cisternae biogenesis. These processes required actomyosin ring assembly and the function of the EFC-domain protein Cdc15p. Cdc15p overexpression was sufficient to induce tER polarization in interphase. Thus, fission yeast polarizes its entire secretory machinery to the cell division site by utilizing molecular cues provided by the actomyosin ring.
Collapse
|
48
|
Padte NN, Martin SG, Howard M, Chang F. The cell-end factor pom1p inhibits mid1p in specification of the cell division plane in fission yeast. Curr Biol 2006; 16:2480-7. [PMID: 17140794 DOI: 10.1016/j.cub.2006.11.024] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 11/06/2006] [Accepted: 11/09/2006] [Indexed: 10/23/2022]
Abstract
Intrinsic spatial cues ensure the proper placement of the cell division plane. In the fission yeast Schizosaccharomyces pombe, the position of the nucleus helps to direct the medial positioning of contractile-ring assembly and subsequent cell division . An important factor in this process is mid1p (anillin-like protein), which is a peripheral-membrane protein that forms a broad cortical band of dots overlying the nucleus in interphase and recruits myosin in early mitosis . How mid1p localizes to this cortical band and tracks the nucleus is not clear, especially because its localization is independent of the cytoskeleton . Here, we used a combination of experimental and computational approaches to test mid1p localization mechanisms. We provide evidence that pom1p, a DYRK-family protein kinase that forms a concentration gradient emanating from the nongrowing cell end, inhibits mid1p. In pom1 mutants, mid1p is distributed over half of the cell, covering the nongrowing cell end. This abnormal distribution is established in a dynamic manner in interphase and leads to the formation of misplaced or multiple contractile rings. Our computational and experimental results support a model in which both positive cues from the medial nucleus and negative cues from the cell tips specify the position of the division plane.
Collapse
Affiliation(s)
- Neal N Padte
- Microbiology Department, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | |
Collapse
|
49
|
La Carbona S, Le Goff X. Spatial regulation of cytokinesis by the Kin1 and Pom1 kinases in fission yeast. Curr Genet 2006; 50:377-91. [PMID: 16988828 DOI: 10.1007/s00294-006-0099-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 08/28/2006] [Accepted: 08/29/2006] [Indexed: 10/24/2022]
Abstract
Cytokinesis requires a tight spatio-temporal coordination with mitosis to ensure proper segregation of the genetic information during cell division. In fission yeast, an actomyosin contractile ring is assembled in mitosis and dictates the site of cytokinesis. Here we investigated the functions of Kin1 and Pom1, two conserved fission yeast kinases, in cell division. We found that kin1Delta is synthetically lethal with pom1Delta because double mutant cells fail to spatially organize the actomyosin ring during mitosis, leading to aberrant septum synthesis and accumulation of post-mitotic nuclei in the same cell compartment. Assembly of an Rlc1-GFP ring in the cell center at mitosis is also compromised. Similar cytokinetic defects are observed in a tea1Delta kin1Delta mutant. Furthermore, aberrant septation and nuclear accumulation are observed in a pom1Delta strain in which the Kin1 level is either down or up-regulated. Thus, a tight control of Kin1 level is critical for ensuring accurate cell division in a pom1Delta background. Since none of the kinases can substitute for each other, Kin1 and Pom1 have distinct complementary functions. We show that Kin1 is required for F-actin polarization in interphase and after completion of mitosis and this function may be essential for cytokinesis in a pom1Delta background.
Collapse
Affiliation(s)
- Stéphanie La Carbona
- CNRS UMR 6061 Génétique et Développement, Université de Rennes 1, IFR140 Génétique Fonctionnelle, Agronomie et Santé, Faculté de Médecine, 2 avenue du Pr Léon Bernard, CS 34317, 35043, Rennes Cedex, France.
| | | |
Collapse
|
50
|
Magidson V, Chang F, Khodjakov A. Regulation of cytokinesis by spindle-pole bodies. Nat Cell Biol 2006; 8:891-3. [PMID: 16845379 DOI: 10.1038/ncb1449] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 05/08/2006] [Indexed: 11/09/2022]
Abstract
In the fission yeast Schizosaccharomyces pombe, cytokinesis is thought to be controlled by the daughter spindle-pole body (SPB) through a regulatory pathway named the septation initiation network (SIN). Here, we demonstrate that laser ablation of both, but not a single SPB, results in failure of cytokinesis. Ablation of only the daughter SPB often leads to activation of the SIN on the mother SPB and successful cytokinesis. Thus, either SPB can drive cytokinesis.
Collapse
|