1
|
Qi T, Qin H, Yu F, Zhou Z, Chen Y, Liu P, Zeng H, Weng J. XLOC_015548 Mitigates Skeletal Muscle Atrophy via the Gadd45g/MEK/ERK Pathway and Redox Regulation. FRONT BIOSCI-LANDMRK 2025; 30:36233. [PMID: 40302339 DOI: 10.31083/fbl36233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Skeletal muscle atrophy is a common musculoskeletal disorder that significantly reduces patient quality of life. Long non-coding RNA (lncRNA) XLOC_015548 has been identified as a pivotal regulator of C2C12 myoblast proliferation and differentiation. However, its role in mitigating denervation-induced muscle atrophy and the underlying mechanisms remain unclear. METHODS We employed lentiviral-mediated stable expression of XLOC_015548 in C2C12 myoblasts and skeletal muscle-specific XLOC_015548-edited mouse models to investigate the function of this lncRNA. Muscle atrophy models were established in vitro by glucocorticoid-induced atrophy with dexamethasone (DEX) and in vivo by sciatic nerve transection-induced denervation. The MEK inhibitor U0126 was used to assess the role of the growth arrest and DNA damage-inducible 45 gamma/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (Gadd45g/MEK/ERK) signaling pathway. RESULTS Overexpression of XLOC_015548 significantly activated the MEK/ERK signaling pathway (p < 0.05) by downregulating Gadd45g expression (p < 0.05) and promoting its cytoplasmic localization, thereby enhancing cell proliferation and myotube formation. Furthermore, XLOC_015548 reduced the level of reactive oxygen species (ROS) (p < 0.01), stabilized the mitochondrial membrane potential, and alleviated DEX-induced oxidative stress. These protective effects were partially reversed by U0126, confirming the involvement of the MEK/ERK pathway. Skeletal muscle-specific overexpression of XLOC_015548 in vivo significantly reduced denervation-induced muscle atrophy (q < 0.05) and increased the muscle fiber cross-sectional area. CONCLUSION XLOC_015548 plays a critical role in promoting myogenic differentiation and protecting against muscle atrophy by regulating Gadd45g expression, activating the MEK/ERK signaling pathway, and reducing oxidative stress. These findings underscore the therapeutic potential of XLOC_015548 in skeletal muscle atrophy, and provide a foundation for lncRNA-based treatment strategies.
Collapse
Affiliation(s)
- Tiantian Qi
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, 518036 Shenzhen, Guangdong, China
| | - Haotian Qin
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, 518036 Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, 518036 Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, 518036 Shenzhen, Guangdong, China
| | - Fei Yu
- Department of Spine Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, 518035 Shenzhen, Guangdong, China
| | - Zimeng Zhou
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, 518036 Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, 518036 Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, 518036 Shenzhen, Guangdong, China
| | - Yingqi Chen
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, 518036 Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, 518036 Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, 518036 Shenzhen, Guangdong, China
| | - Peng Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, 518036 Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, 518036 Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, 518036 Shenzhen, Guangdong, China
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, 518036 Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, 518036 Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, 518036 Shenzhen, Guangdong, China
- Department of Orthopedic Trauma, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, 518035 Shenzhen, Guangdong, China
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, 518036 Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, 518036 Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, 518036 Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Kuznetsova EA, Fedorov NS, Zakyrjanova GF, Malomouzh AI, Petrov AM. 25-Hydroxycholesterol as a negative regulator of diaphragm muscle contractions via estrogen receptor and Ca 2+ -dependent pathway. Histochem Cell Biol 2025; 163:42. [PMID: 40178695 DOI: 10.1007/s00418-025-02370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 04/05/2025]
Abstract
Cholesterol is involved in the regulation of various signaling processes, and oxysterols are essential lipid messengers. The cholesterol derivative 25-hydroxycholesterol (25-HC) is overproduced by muscle macrophages in sarcopenia, myasthenia, and neurodegenerative diseases. Herein, we examined the effects of 25-HC on Ca2+ signaling and contractions of the mouse diaphragm, the main respiratory muscle. We found that 25-HC increased resting levels of cytosolic Ca2+ in muscle fibers. This effect was dependent on estrogen receptor α (ERα) and was mediated by Ca2+-efflux from intracellular stores via dantrolene-insensitive and TMB-8-sensitive channels, presumably inositol trisphosphate receptors (IP3Rs). In addition, 25-HC suppressed diaphragm contractile responses to direct stimulation of the muscle fibers. The negative effect of 25-HC on contraction force was inhibited by blockers of ERα and Ca2+ mobilization. Thus, 25-HC may suppress diaphragm muscle contractility due to activation of an ERα/IP3R/Ca2+in axis in muscle fibers. At the same time, 25-HC did not significantly modify the contractions elicited by phrenic nerve stimulation and respiratory activity in vivo. We discuss that the previously found enhancement of neuromuscular transmission mediated by 25-HC in the diaphragm can compensate for the reduction in the muscle contractions in the case of phrenic nerve activation.
Collapse
Affiliation(s)
- Eva A Kuznetsova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Nikita S Fedorov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Guzel F Zakyrjanova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, 119234, Russia
| | - Artem I Malomouzh
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
- Kazan National Research Technical University, 10, K. Marx St, Kazan, 420111, Russia
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia.
- Department of Normal Physiology, Institute of Neuroscience, Kazan State Medical University, 49 Butlerova Street, Kazan, 420012, Russia.
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia.
| |
Collapse
|
3
|
Dong M, Maturana AD. Effects of aging on calcium channels in skeletal muscle. Front Mol Biosci 2025; 12:1558456. [PMID: 40177518 PMCID: PMC11961898 DOI: 10.3389/fmolb.2025.1558456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
In skeletal muscle, calcium is not only essential to stimulate and sustain their contractions but also for muscle embryogenesis, regeneration, energy production in mitochondria, and fusion. Different ion channels contribute to achieving the various functions of calcium in skeletal muscles. Muscle contraction is initiated by releasing calcium from the sarcoplasmic reticulum through the ryanodine receptor channels gated mechanically by four dihydropyridine receptors of T-tubules. The calcium influx through store-operated calcium channels sustains the contraction and stimulates muscle regeneration. Mitochondrial calcium uniporter allows the calcium entry into mitochondria to stimulate oxidative phosphorylation. Aging alters the expression and activity of these different calcium channels, resulting in a reduction of skeletal muscle force generation and regeneration capacity. Regular physical training and bioactive molecules from nutrients can prevent the effects of aging on calcium channels. This review focuses on the current knowledge of the effects of aging on skeletal muscles' calcium channels.
Collapse
Affiliation(s)
| | - Andrés Daniel Maturana
- Department of Applied Biosciences, Graduate School of Bioagricultural Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
4
|
Zaripova KA, Belova SP, Kostrominova TY, Shenkman BS, Nemirovskaya TL. Role of PI3 Kinases in Cell Signaling and Soleus Muscle Atrophy During Three Days of Unloading. Int J Mol Sci 2025; 26:414. [PMID: 39796270 PMCID: PMC11720661 DOI: 10.3390/ijms26010414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
During skeletal muscle unloading, phosphoinositide 3-kinase (PI3K), and especially PI3K gamma (PI3Kγ), can be activated by changes in membrane potential. Activated IP3 can increase the ability of Ca2+ to enter the nucleus through IP3 receptors. This may contribute to the activation of transcription factors that initiate muscle atrophy processes. LY294002 inhibitor was used to study the role of PI3K in the ATP-dependent regulation of skeletal muscle signaling during three days of unloading. Inhibition of PI3K during soleus muscle unloading slows down the atrophic processes and prevents the accumulation of ATP and the expression of the E3 ubiquitin ligase MuRF1 and ubiquitin. It also prevents the increase in the expression of IP3 receptors and regulates the activity of Ca2+-dependent signaling pathways by reducing the mRNA expression of the Ca2+-dependent marker calcineurin (CaN) and decreasing the phosphorylation of CaMKII. It also affects the regulation of markers of anabolic signaling in unloaded muscles: IRS1 and 4E-BP. PI3K is an important mediator of skeletal muscle atrophy during unloading. Developing strategies for the localized skeletal muscle release of PI3K inhibitors might be one of the future treatments for inactivity and disease-induced muscle atrophy.
Collapse
Affiliation(s)
- Ksenia A. Zaripova
- Myology Laboratory, Institute of Biomedical Problems (IBP), RAS, 123007 Moscow, Russia; (K.A.Z.); (S.P.B.)
| | - Svetlana P. Belova
- Myology Laboratory, Institute of Biomedical Problems (IBP), RAS, 123007 Moscow, Russia; (K.A.Z.); (S.P.B.)
| | - Tatiana Y. Kostrominova
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine-Northwest, Gary, IN 46202, USA;
| | - Boris S. Shenkman
- Myology Laboratory, Institute of Biomedical Problems (IBP), RAS, 123007 Moscow, Russia; (K.A.Z.); (S.P.B.)
| | - Tatiana L. Nemirovskaya
- Myology Laboratory, Institute of Biomedical Problems (IBP), RAS, 123007 Moscow, Russia; (K.A.Z.); (S.P.B.)
| |
Collapse
|
5
|
Lilliu E, Koenig S, Koenig X, Frieden M. Store-Operated Calcium Entry in Skeletal Muscle: What Makes It Different? Cells 2021; 10:2356. [PMID: 34572005 PMCID: PMC8468011 DOI: 10.3390/cells10092356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 01/26/2023] Open
Abstract
Current knowledge on store-operated Ca2+ entry (SOCE) regarding its localization, kinetics, and regulation is mostly derived from studies performed in non-excitable cells. After a long time of relative disinterest in skeletal muscle SOCE, this mechanism is now recognized as an essential contributor to muscle physiology, as highlighted by the muscle pathologies that are associated with mutations in the SOCE molecules STIM1 and Orai1. This review mainly focuses on the peculiar aspects of skeletal muscle SOCE that differentiate it from its counterpart found in non-excitable cells. This includes questions about SOCE localization and the movement of respective proteins in the highly organized skeletal muscle fibers, as well as the diversity of expressed STIM isoforms and their differential expression between muscle fiber types. The emerging evidence of a phasic SOCE, which is activated during EC coupling, and its physiological implication is described as well. The specific issues related to the use of SOCE modulators in skeletal muscles are discussed. This review highlights the complexity of SOCE activation and its regulation in skeletal muscle, with an emphasis on the most recent findings and the aim to reach a current picture of this mesmerizing phenomenon.
Collapse
Affiliation(s)
- Elena Lilliu
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Stéphane Koenig
- Department of Cell Physiology and Metabolism, University of Geneva, 1201 Geneva, Switzerland;
| | - Xaver Koenig
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Maud Frieden
- Department of Cell Physiology and Metabolism, University of Geneva, 1201 Geneva, Switzerland;
| |
Collapse
|
6
|
Webb SE, Kelu JJ, Miller AL. Role of Two-Pore Channels in Embryonic Development and Cellular Differentiation. Cold Spring Harb Perspect Biol 2020; 12:a035170. [PMID: 31358517 PMCID: PMC6942120 DOI: 10.1101/cshperspect.a035170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Since the identification of nicotinic acid adenine dinucleotide phosphate (NAADP) and its putative target, the two-pore channel (TPC), the NAADP/TPC/Ca2+ signaling pathway has been reported to play a role in a diverse range of functions in a variety of different cell types. TPCs have also been associated with a number of diseases, which arise when their activity is perturbed. In addition, TPCs have been shown to play key roles in various embryological processes and during the differentiation of a variety of cell types. Here, we review the role of NAADP/TPC/Ca2+ signaling during early embryonic development and cellular differentiation. We pay particular attention to the role of TPC2 in the development and maturation of early neuromuscular activity in zebrafish, and during the differentiation of isolated osteoclasts, endothelial cells, and keratinocytes. Our aim is to emphasize the conserved features of TPC-mediated Ca2+ signaling in a number of selected examples.
Collapse
Affiliation(s)
- Sarah E Webb
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Hong Kong, PRC
| | - Jeffrey J Kelu
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Hong Kong, PRC
| | - Andrew L Miller
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Hong Kong, PRC
| |
Collapse
|
7
|
Huang J, Wang K, Shiflett LA, Brotto L, Bonewald LF, Wacker MJ, Dallas SL, Brotto M. Fibroblast growth factor 9 (FGF9) inhibits myogenic differentiation of C2C12 and human muscle cells. Cell Cycle 2019; 18:3562-3580. [PMID: 31735119 PMCID: PMC6927711 DOI: 10.1080/15384101.2019.1691796] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Osteoporosis and sarcopenia (osteosarcopenia (OS)) are twin-aging diseases. The biochemical crosstalk between muscle and bone seems to play a role in OS. We have previously shown that osteocytes produce soluble factors with beneficial effects on muscle and vice versa. Recently, enhanced FGF9 production was observed in the OmGFP66 osteogenic cell line. To test its role in myogenic differentiation, C2C12 myoblasts were treated with recombinant FGF9. FGF9 as low as 10 ng/mL inhibited myogenic differentiation, suggesting that FGF9 might be a potential inhibitory factor produced from bone cells with effects on muscle cells. FGF9 (10–50 ng/mL) significantly decreased mRNA expression of MyoG and Mhc while increasing the expression of Myostatin. Consistent with the phenotype, RT-qPCR array revealed that FGF9 (10 ng/mL) increased the expression of Icam1 while decreased the expression of Wnt1 and Wnt6 decreased, respectively. FGF9 decreased caffeine-induced Ca2+ release from the sarcoplasmic reticulum (SR) of C2C12 myotubes and reduced the expression of genes (i.e. Cacna1s, RyR2, Naftc3) directly associated with intracellular Ca2+ homeostasis. Myogenic differentiation in human skeletal muscle cells was similarly inhibited by FGF9 but required higher doses of 200 ng/mL FGF9. FGF9 was also shown to stimulate C2C12 myoblast proliferation. FGF2 and the FGF9 subfamily members FGF16 and FGF20 also inhibited C2C12 myoblast differentiation and enhanced proliferation. Intriguingly, the differentiation inhibition was independent of proliferation enhancement. These findings suggest that FGF9 may modulate myogenesis via a complex signaling mechanism.
Collapse
Affiliation(s)
- Jian Huang
- Bone-Muscle Research Center, College of Nursing & Health Innovation, the University of Texas at Arlington, Arlington, TX, USA
| | - Kun Wang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Lora A Shiflett
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Leticia Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, the University of Texas at Arlington, Arlington, TX, USA
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN USA
| | - Michael J Wacker
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, the University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
8
|
Díaz-Vegas AR, Cordova A, Valladares D, Llanos P, Hidalgo C, Gherardi G, De Stefani D, Mammucari C, Rizzuto R, Contreras-Ferrat A, Jaimovich E. Mitochondrial Calcium Increase Induced by RyR1 and IP3R Channel Activation After Membrane Depolarization Regulates Skeletal Muscle Metabolism. Front Physiol 2018; 9:791. [PMID: 29988564 PMCID: PMC6026899 DOI: 10.3389/fphys.2018.00791] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/06/2018] [Indexed: 11/13/2022] Open
Abstract
Aim: We hypothesize that both type-1 ryanodine receptor (RyR1) and IP3-receptor (IP3R) calcium channels are necessary for the mitochondrial Ca2+ increase caused by membrane depolarization induced by potassium (or by electrical stimulation) of single skeletal muscle fibers; this calcium increase would couple muscle fiber excitation to an increase in metabolic output from mitochondria (excitation-metabolism coupling). Methods: Mitochondria matrix and cytoplasmic Ca2+ levels were evaluated in fibers isolated from flexor digitorium brevis muscle using plasmids for the expression of a mitochondrial Ca2+ sensor (CEPIA3mt) or a cytoplasmic Ca2+ sensor (RCaMP). The role of intracellular Ca2+ channels was evaluated using both specific pharmacological inhibitors (xestospongin B for IP3R and Dantrolene for RyR1) and a genetic approach (shIP3R1-RFP). O2 consumption was detected using Seahorse Extracellular Flux Analyzer. Results: In isolated muscle fibers cell membrane depolarization increased both cytoplasmic and mitochondrial Ca2+ levels. Mitochondrial Ca2+ uptake required functional inositol IP3R and RyR1 channels. Inhibition of either channel decreased basal O2 consumption rate but only RyR1 inhibition decreased ATP-linked O2 consumption. Cell membrane depolarization-induced Ca2+ signals in sub-sarcolemmal mitochondria were accompanied by a reduction in mitochondrial membrane potential; Ca2+ signals propagated toward intermyofibrillar mitochondria, which displayed increased membrane potential. These results are compatible with slow, Ca2+-dependent propagation of mitochondrial membrane potential from the surface toward the center of the fiber. Conclusion: Ca2+-dependent changes in mitochondrial membrane potential have different kinetics in the surface vs. the center of the fiber; these differences are likely to play a critical role in the control of mitochondrial metabolism, both at rest and after membrane depolarization as part of an “excitation-metabolism” coupling process in skeletal muscle fibers.
Collapse
Affiliation(s)
- Alexis R Díaz-Vegas
- Muscle Physiology Laboratory, Center of Studies in Exercise, Metabolism and Cancer, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Alex Cordova
- Biomedical Neuroscience Institute, Center of Studies in Exercise, Metabolism and Cancer, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Denisse Valladares
- Muscle Physiology Laboratory, Center of Studies in Exercise, Metabolism and Cancer, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Exercise and Movement Science Laboratory, Universidad Finis Terrae, Santiago, Chile
| | - Paola Llanos
- Muscle Physiology Laboratory, Center of Studies in Exercise, Metabolism and Cancer, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Institute for Research in Dental Science, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Center of Studies in Exercise, Metabolism and Cancer, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Gaia Gherardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ariel Contreras-Ferrat
- Muscle Physiology Laboratory, Center of Studies in Exercise, Metabolism and Cancer, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Enrique Jaimovich
- Muscle Physiology Laboratory, Center of Studies in Exercise, Metabolism and Cancer, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Huang J, Romero-Suarez S, Lara N, Mo C, Kaja S, Brotto L, Dallas SL, Johnson ML, Jähn K, Bonewald LF, Brotto M. Crosstalk between MLO-Y4 osteocytes and C2C12 muscle cells is mediated by the Wnt/β-catenin pathway. JBMR Plus 2017; 1:86-100. [PMID: 29104955 DOI: 10.1002/jbm4.10015] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We examined the effects of osteocyte secreted factors on myogenesis and muscle function. MLO-Y4 osteocyte-like cell conditioned media (CM) (10%) increased ex vivo soleus muscle contractile force by ~25%. MLO-Y4 and primary osteocyte CM (1-10%) stimulated myogenic differentiation of C2C12 myoblasts, but 10% osteoblast CMs did not enhance C2C12 cell differentiation. Since WNT3a and WNT1 are secreted by osteocytes, and the expression level of Wnt3a is increased in MLO-Y4 cells by fluid flow shear stress, both were compared, showing WNT3a more potent than WNT1 in inducing myogenesis. Treatment of C2C12 myoblasts with WNT3a at concentrations as low as 0.5ng/mL mirrored the effects of both primary osteocyte and MLO-Y4 CM by inducing nuclear translocation of β-catenin with myogenic differentiation, suggesting that Wnts might be potential factors secreted by osteocytes that signal to muscle cells. Knocking down Wnt3a in MLO-Y4 osteocytes inhibited the effect of CM on C2C12 myogenic differentiation. Sclerostin (100ng/mL) inhibited both the effects of MLO-Y4 CM and WNT3a on C2C12 cell differentiation. RT-PCR array results supported the activation of the Wnt/β-catenin pathway by MLO-Y4 CM and WNT3a. These results were confirmed by qPCR showing up-regulation of myogenic markers and two Wnt/β-catenin downstream genes, Numb and Flh1. We postulated that MLO-Y4 CM/WNT3a could modulate intracellular calcium homeostasis as the trigger mechanism for the enhanced myogenesis and contractile force. MLO-Y4 CM and WNT3a increased caffeine-induced Ca2+ release from the sarcoplasmic reticulum (SR) of C2C12 myotubes and the expression of genes directly associated with intracellular Ca2+ signaling and homeostasis. Together, these data show that in vitro and ex vivo, osteocytes can stimulate myogenesis and enhance muscle contractile function and suggest that Wnts could be mediators of bone to muscle signaling, likely via modulation of intracellular Ca2+ signaling and the Wnt/β-Catenin pathway.
Collapse
Affiliation(s)
- Jian Huang
- Muscle Biology Research Group-MUBIG, School sof Nursing & Health Studies, University of Missouri- Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Sandra Romero-Suarez
- Muscle Biology Research Group-MUBIG, School sof Nursing & Health Studies, University of Missouri- Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Nuria Lara
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, 64108, USA
| | - Chenglin Mo
- Muscle Biology Research Group-MUBIG, School sof Nursing & Health Studies, University of Missouri- Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Simon Kaja
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO, 64108, USA
| | - Leticia Brotto
- Muscle Biology Research Group-MUBIG, School sof Nursing & Health Studies, University of Missouri- Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, 64108, USA
| | - Mark L Johnson
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, 64108, USA
| | - Katharina Jähn
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, 64108, USA
| | - Lynda F Bonewald
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, 64108, USA
| | - Marco Brotto
- Muscle Biology Research Group-MUBIG, School sof Nursing & Health Studies, University of Missouri- Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| |
Collapse
|
10
|
Abstract
Cell-cell and cell-matrix communications play important roles in both cell proliferation and differentiation. Gap junction proteins mediate signaling communication by exchanging small molecules and dramatically stimulating intracellular signaling pathways to determine cell fate. Vertebrates have 2 gap junction families: pannexins (Panxs) and connexins (Cxs). Unlike Cxs, the functions of Panxs are not fully understood. In skeletal formation, Panx3 and Cx43 are the most abundantly expressed gap junction proteins from each family. Panx3 is induced in the transient stage from the proliferation and differentiation of chondrocytes and osteoprogenitor cells. Panx3 regulates both chondrocyte and osteoblast differentiation via the activation of intracellular Ca2+ signaling pathways through multiple channel activities: hemichannels, endoplasmic reticulum (ER) Ca2+ channels, and gap junctions. Moreover, Panx3 also inhibits osteoprogenitor cell proliferation and promotes cell cycle exit through the inactivation of Wnt/β-catenin signaling and the activation of p21. Panx3-knockout (KO) mice have more severe skeletal abnormalities than those of Cx43-KO mice. A phenotypic analysis of Panx3-KO mice indicates that Panx3 regulates the terminal differentiation of chondrocytes by promoting vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP) 13. Based on the generation of Panx3-/-; Cx43-/- mice, Panx3 is upstream of Cx43 in osteogenesis. Panx3 promotes Cx43 expression by regulating Wnt/β-catenin signaling and osterix expression. Further, although Panx3 can function in 3 ways, Cx43 cannot function through the ER Ca2+ channel, only via the hemichannels and gap junction routes. In this review, we discuss the current knowledge regarding the roles of Panx3 in skeletal formation and address the potential for new therapies in the treatment of diseases and pathologies associated with Panx3, such as osteoarthritis (OA).
Collapse
Affiliation(s)
- M Ishikawa
- 1 Division of Operative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan.,2 Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Y Yamada
- 2 Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Arias-Calderón M, Almarza G, Díaz-Vegas A, Contreras-Ferrat A, Valladares D, Casas M, Toledo H, Jaimovich E, Buvinic S. Characterization of a multiprotein complex involved in excitation-transcription coupling of skeletal muscle. Skelet Muscle 2016; 6:15. [PMID: 27069569 PMCID: PMC4827232 DOI: 10.1186/s13395-016-0087-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/19/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Electrical activity regulates the expression of skeletal muscle genes by a process known as "excitation-transcription" (E-T) coupling. We have demonstrated that release of adenosine 5'-triphosphate (ATP) during depolarization activates membrane P2X/P2Y receptors, being the fundamental mediators between electrical stimulation, slow intracellular calcium transients, and gene expression. We propose that this signaling pathway would require the proper coordination between the voltage sensor (dihydropyridine receptor, DHPR), pannexin 1 channels (Panx1, ATP release conduit), nucleotide receptors, and other signaling molecules. The goal of this study was to assess protein-protein interactions within the E-T machinery and to look for novel constituents in order to characterize the signaling complex. METHODS Newborn derived myotubes, adult fibers, or triad fractions from rat or mouse skeletal muscles were used. Co-immunoprecipitation, 2D blue native SDS/PAGE, confocal microscopy z-axis reconstruction, and proximity ligation assays were combined to assess the physical proximity of the putative complex interactors. An L6 cell line overexpressing Panx1 (L6-Panx1) was developed to study the influence of some of the complex interactors in modulation of gene expression. RESULTS Panx1, DHPR, P2Y2 receptor (P2Y2R), and dystrophin co-immunoprecipitated in the different preparations assessed. 2D blue native SDS/PAGE showed that DHPR, Panx1, P2Y2R and caveolin-3 (Cav3) belong to the same multiprotein complex. We observed co-localization and protein-protein proximity between DHPR, Panx1, P2Y2R, and Cav3 in adult fibers and in the L6-Panx1 cell line. We found a very restricted location of Panx1 and Cav3 in a putative T-tubule zone near the sarcolemma, while DHPR was highly expressed all along the transverse (T)-tubule. By Panx1 overexpression, extracellular ATP levels were increased both at rest and after electrical stimulation. Basal mRNA levels of the early gene cfos and the oxidative metabolism markers citrate synthase and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) were significantly increased by Panx1 overexpression. Interleukin 6 expression evoked by 20-Hz electrical stimulation (270 pulses, 0.3 ms each) was also significantly upregulated in L6-Panx1 cells. CONCLUSIONS We propose the existence of a relevant multiprotein complex that coordinates events involved in E-T coupling. Unveiling the molecular actors involved in the regulation of gene expression will contribute to the understanding and treatment of skeletal muscle disorders due to wrong-expressed proteins, as well as to improve skeletal muscle performance.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Animals, Newborn
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Caveolin 3/genetics
- Caveolin 3/metabolism
- Cell Line
- Connexins/genetics
- Connexins/metabolism
- Dystrophin/genetics
- Dystrophin/metabolism
- Electric Stimulation
- Gene Expression Regulation
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Multiprotein Complexes
- Muscle Contraction
- Muscle Fibers, Skeletal/metabolism
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Protein Binding
- Rats, Wistar
- Receptors, Purinergic P2Y2/genetics
- Receptors, Purinergic P2Y2/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- Manuel Arias-Calderón
- />Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, 8380453 Chile
- />Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Sergio Livingstone Pohlhammer 943, 8380492 Santiago, Chile
| | - Gonzalo Almarza
- />Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, 8380453 Chile
| | - Alexis Díaz-Vegas
- />Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, 8380453 Chile
| | - Ariel Contreras-Ferrat
- />Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, 8380453 Chile
| | - Denisse Valladares
- />Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, 8380453 Chile
| | - Mariana Casas
- />Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, 8380453 Chile
| | - Héctor Toledo
- />Programa de Biología Molecular y Celular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, 8380453 Chile
| | - Enrique Jaimovich
- />Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, 8380453 Chile
- />Programa de Biología Molecular y Celular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, 8380453 Chile
| | - Sonja Buvinic
- />Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Sergio Livingstone Pohlhammer 943, 8380492 Santiago, Chile
| |
Collapse
|
12
|
Farini A, Sitzia C, Cassinelli L, Colleoni F, Parolini D, Giovanella U, Maciotta S, Colombo A, Meregalli M, Torrente Y. Inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ signaling mediates delayed myogenesis in Duchenne muscular dystrophy fetal muscle. Development 2016; 143:658-69. [DOI: 10.1242/dev.126193] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disorder characterized by muscle wasting and premature death. The defective gene is dystrophin, a structural protein, absence of which causes membrane fragility and myofiber necrosis. Several lines of evidence showed that in adult DMD patients dystrophin is involved in signaling pathways that regulate calcium homeostasis and differentiation programs. However, secondary aspects of the disease, such as inflammation and fibrosis development, might represent a bias in the analysis. Because fetal muscle is not influenced by gravity and does not suffer from mechanical load and/or inflammation, we investigated 12-week-old fetal DMD skeletal muscles, highlighting for the first time early alterations in signaling pathways mediated by the absence of dystrophin itself. We found that PLC/IP3/IP3R/Ryr1/Ca2+ signaling is widely active in fetal DMD skeletal muscles and, through the calcium-dependent PKCα protein, exerts a fundamental regulatory role in delaying myogenesis and in myofiber commitment. These data provide new insights into the origin of DMD pathology during muscle development.
Collapse
Affiliation(s)
- Andrea Farini
- Laboratorio di Cellule Staminali, Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Centro Dino Ferrari, Via Francesco Sforza 35, Milan 20122, Centro Dino Ferrari, Italy
| | - Clementina Sitzia
- Laboratorio di Cellule Staminali, Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Centro Dino Ferrari, Via Francesco Sforza 35, Milan 20122, Centro Dino Ferrari, Italy
| | - Letizia Cassinelli
- Laboratorio di Cellule Staminali, Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Centro Dino Ferrari, Via Francesco Sforza 35, Milan 20122, Centro Dino Ferrari, Italy
| | - Federica Colleoni
- Laboratorio di Cellule Staminali, Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Centro Dino Ferrari, Via Francesco Sforza 35, Milan 20122, Centro Dino Ferrari, Italy
| | - Daniele Parolini
- Laboratorio di Cellule Staminali, Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Centro Dino Ferrari, Via Francesco Sforza 35, Milan 20122, Centro Dino Ferrari, Italy
| | - Umberto Giovanella
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio delle Macromolecole (CNR-ISMAC), via Bassini 15, Milano 20133, Italy
| | - Simona Maciotta
- Laboratorio di Cellule Staminali, Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Centro Dino Ferrari, Via Francesco Sforza 35, Milan 20122, Centro Dino Ferrari, Italy
| | - Augusto Colombo
- Servizio ‘Legge 194’ Dipartimento BDN-Fondazione IRCCS, Policlinico Mangiagalli-Regina Elena, Via Francesco Sforza 35, Milan 20122, Italy
| | - Mirella Meregalli
- Laboratorio di Cellule Staminali, Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Centro Dino Ferrari, Via Francesco Sforza 35, Milan 20122, Centro Dino Ferrari, Italy
| | - Yvan Torrente
- Laboratorio di Cellule Staminali, Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Centro Dino Ferrari, Via Francesco Sforza 35, Milan 20122, Centro Dino Ferrari, Italy
| |
Collapse
|
13
|
Filipova D, Walter AM, Gaspar JA, Brunn A, Linde NF, Ardestani MA, Deckert M, Hescheler J, Pfitzer G, Sachinidis A, Papadopoulos S. Gene profiling of embryonic skeletal muscle lacking type I ryanodine receptor Ca(2+) release channel. Sci Rep 2016; 6:20050. [PMID: 26831464 PMCID: PMC4735524 DOI: 10.1038/srep20050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/22/2015] [Indexed: 12/20/2022] Open
Abstract
In mature skeletal muscle, the intracellular Ca2+ concentration rises dramatically upon membrane depolarization, constituting the link between excitation and contraction. This process requires Ca2+ release from the sarcoplasmic reticulum via the type 1 ryanodine receptor (RYR1). However, RYR1’s potential roles in muscle development remain obscure. We used an established RyR1- null mouse model, dyspedic, to investigate the effects of the absence of a functional RYR1 and, consequently, the lack of RyR1-mediated Ca2+ signaling, during embryogenesis. Homozygous dyspedic mice die after birth and display small limbs and abnormal skeletal muscle organization. Skeletal muscles from front and hind limbs of dyspedic fetuses (day E18.5) were subjected to microarray analyses, revealing 318 differentially expressed genes. We observed altered expression of multiple transcription factors and members of key signaling pathways. Differential regulation was also observed for genes encoding contractile as well as muscle-specific structural proteins. Additional qRT-PCR analysis revealed altered mRNA levels of the canonical muscle regulatory factors Six1, Six4, Pax7, MyoD, MyoG and MRF4 in mutant muscle, which is in line with the severe developmental retardation seen in dyspedic muscle histology analyses. Taken together, these findings suggest an important non-contractile role of RyR1 or RYR1-mediated Ca2+ signaling during muscle organ development.
Collapse
Affiliation(s)
- Dilyana Filipova
- Center of Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty of the University of Cologne, Robert-Koch-Str. 39, Cologne 50931, Germany
| | - Anna M Walter
- Center of Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty of the University of Cologne, Robert-Koch-Str. 39, Cologne 50931, Germany
| | - John A Gaspar
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, Medical Faculty of the University of Cologne, Robert-Koch-Str. 39, Cologne 50931, Germany
| | - Anna Brunn
- Department of Neuropathology, University Hospital of Cologne, Cologne, Germany
| | - Nina F Linde
- Center of Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty of the University of Cologne, Robert-Koch-Str. 39, Cologne 50931, Germany
| | - Mostafa A Ardestani
- Center of Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty of the University of Cologne, Robert-Koch-Str. 39, Cologne 50931, Germany
| | - Martina Deckert
- Department of Neuropathology, University Hospital of Cologne, Cologne, Germany
| | - Jürgen Hescheler
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, Medical Faculty of the University of Cologne, Robert-Koch-Str. 39, Cologne 50931, Germany
| | - Gabriele Pfitzer
- Center of Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty of the University of Cologne, Robert-Koch-Str. 39, Cologne 50931, Germany
| | - Agapios Sachinidis
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, Medical Faculty of the University of Cologne, Robert-Koch-Str. 39, Cologne 50931, Germany
| | - Symeon Papadopoulos
- Center of Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty of the University of Cologne, Robert-Koch-Str. 39, Cologne 50931, Germany
| |
Collapse
|
14
|
Wang L, Alzayady KJ, Yule DI. Proteolytic fragmentation of inositol 1,4,5-trisphosphate receptors: a novel mechanism regulating channel activity? J Physiol 2015; 594:2867-76. [PMID: 26486785 DOI: 10.1113/jp271140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/30/2015] [Indexed: 12/15/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3 Rs) are a family of ubiquitously expressed intracellular Ca(2+) release channels. Regulation of channel activity by Ca(2+) , nucleotides, phosphorylation, protein binding partners and other cellular factors is thought to play a major role in defining the specific spatiotemporal characteristics of intracellular Ca(2+) signals. These properties are, in turn, believed pivotal for the selective and specific physiological activation of Ca(2+) -dependent effectors. IP3 Rs are also substrates for the intracellular cysteine proteases, calpain and caspase. Cleavage of the IP3 R has been proposed to play a role in apoptotic cell death by uncoupling regions important for IP3 binding from the channel domain, leaving an unregulated leaky Ca(2+) pore. Contrary to this hypothesis, we demonstrate following proteolysis that N- and C-termini of IP3 R1 remain associated, presumably through non-covalent interactions. Further, we show that complementary fragments of IP3 R1 assemble into tetrameric structures and retain their ability to be regulated robustly by IP3 . While peptide continuity is clearly not necessary for IP3 -gating of the channel, we propose that cleavage of the IP3 R peptide chain may alter other important regulatory events to modulate channel activity. In this scenario, stimulation of the cleaved IP3 R may support distinct spatiotemporal Ca(2+) signals and activation of specific effectors. Notably, in many adaptive physiological events, the non-apoptotic activities of caspase and calpain are demonstrated to be important, but the substrates of the proteases are poorly defined. We speculate that proteolytic fragmentation may represent a novel form of IP3 R regulation, which plays a role in varied adaptive physiological processes.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Kamil J Alzayady
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| |
Collapse
|
15
|
Phosphoinositides in Ca(2+) signaling and excitation-contraction coupling in skeletal muscle: an old player and newcomers. J Muscle Res Cell Motil 2015; 36:491-9. [PMID: 26377756 DOI: 10.1007/s10974-015-9422-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
Abstract
Since the postulate, 30 years ago, that phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P 2) as the precursor of inositol 1,4,5-trisphosphate (Ins(1,4,5)P 3) would be critical for skeletal muscle excitation-contraction (EC) coupling, the issue of whether phosphoinositides (PtdInsPs) may have something to do with Ca(2+) signaling in muscle raised limited interest, if any. In recent years however, the PtdInsP world has expanded considerably with new functions for PtdIns(4,5)P 2 but also with functions for the other members of the PtdInsP family. In this context, the discovery that genetic deficiency in a PtdInsP phosphatase has dramatic consequences on Ca(2+) homeostasis in skeletal muscle came unanticipated and opened up new perspectives in regards to how PtdInsPs modulate muscle Ca(2+) signaling under normal and disease conditions. This review intends to make an update of the established, the questioned, and the unknown regarding the role of PtdInsPs in skeletal muscle Ca(2+) homeostasis and EC coupling, with very specific emphasis given to Ca(2+) signals in differentiated skeletal muscle fibers.
Collapse
|
16
|
Van B, Nishi M, Komazaki S, Ichimura A, Kakizawa S, Nakanaga K, Aoki J, Park KH, Ma J, Ueyama T, Ogata T, Maruyama N, Takeshima H. Mitsugumin 56 (hedgehog acyltransferase-like) is a sarcoplasmic reticulum-resident protein essential for postnatal muscle maturation. FEBS Lett 2015; 589:1095-104. [DOI: 10.1016/j.febslet.2015.03.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 02/02/2023]
|
17
|
Li Q, Zhu X, Ishikura S, Zhang D, Gao J, Sun Y, Contreras-Ferrat A, Foley KP, Lavandero S, Yao Z, Bilan PJ, Klip A, Niu W. Ca²⁺ signals promote GLUT4 exocytosis and reduce its endocytosis in muscle cells. Am J Physiol Endocrinol Metab 2014; 307:E209-24. [PMID: 24895284 DOI: 10.1152/ajpendo.00045.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elevating cytosolic Ca(2+) stimulates glucose uptake in skeletal muscle, but how Ca(2+) affects intracellular traffic of GLUT4 is unknown. In tissue, changes in Ca(2+) leading to contraction preclude analysis of the impact of individual, Ca(2+)-derived signals. In L6 muscle cells stably expressing GLUT4myc, the Ca(2+) ionophore ionomycin raised cytosolic Ca(2+) and caused a gain in cell surface GLUT4myc. Extra- and intracellular Ca(2+) chelators (EGTA, BAPTA-AM) reversed this response. Ionomycin activated calcium calmodulin kinase II (CaMKII), AMPK, and PKCs, but not Akt. Silencing CaMKIIδ or AMPKα1/α2 partly reduced the ionomycin-induced gain in surface GLUT4myc, as did peptidic or small molecule inhibitors of CaMKII (CN21) and AMPK (Compound C). Compared with the conventional isoenzyme PKC inhibitor Gö6976, the conventional plus novel PKC inhibitor Gö6983 lowered the ionomycin-induced gain in cell surface GLUT4myc. Ionomycin stimulated GLUT4myc exocytosis and inhibited its endocytosis in live cells. siRNA-mediated knockdown of CaMKIIδ or AMPKα1/α2 partly reversed ionomycin-induced GLUT4myc exocytosis but did not prevent its reduced endocytosis. Compared with Gö6976, Gö6983 markedly reversed the slowing of GLUT4myc endocytosis triggered by ionomycin. In summary, rapid Ca(2+) influx into muscle cells accelerates GLUT4myc exocytosis while slowing GLUT4myc endocytosis. CaMKIIδ and AMPK stimulate GLUT4myc exocytosis, whereas novel PKCs reduce endocytosis. These results identify how Ca(2+)-activated signals selectively regulate GLUT4 exocytosis and endocytosis in muscle cells.
Collapse
Affiliation(s)
- Q Li
- Department of Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - X Zhu
- Department of Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - S Ishikura
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - D Zhang
- Department of Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - J Gao
- Clinical Laboratory, First Teaching Hospital of Tianjin University of TCM, Tianjin, China; and
| | - Y Sun
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - A Contreras-Ferrat
- Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, Facultad de Ciencias Quimicas y Farmaceuticas/Facultad Medicina; Universidad de Chile; Santiago, Chile
| | - K P Foley
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - S Lavandero
- Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, Facultad de Ciencias Quimicas y Farmaceuticas/Facultad Medicina; Universidad de Chile; Santiago, Chile
| | - Z Yao
- Department of Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - P J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - A Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - W Niu
- Department of Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China;
| |
Collapse
|
18
|
Tian C, Shao CH, Padanilam C, Ezell E, Singh J, Kutty S, Bidasee KR. CCDI: a new ligand that modulates mammalian type 1 ryanodine receptor (RyR1). Br J Pharmacol 2014; 171:4097-111. [PMID: 24819467 DOI: 10.1111/bph.12764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/21/2014] [Accepted: 04/29/2014] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Ryanodine receptors (RyRs) are Ca(2+)-release channels on the sarco(endo)plasmic reticulum that modulate a wide array of physiological functions. Three RyR isoforms are present in cells: RyR1, RyR2 and RyR3. To date, there are no reports on ligands that modulate RyR in an isoform-selective manner. Such ligands are not only valuable research tools, but could serve as intermediates for development of therapeutics. EXPERIMENTAL APPROACH Pyrrole-2-carboxylic acid and 1,3-dicyclohexylcarbodiimide were allowed to react in carbon tetrachloride for 24 h at low temperatures and pressures. The chemical structures of the two products isolated were elucidated using NMR spectrometry, mass spectrometry and elemental analyses. [(3) H]-ryanodine binding, lipid bilayer and time-lapsed confocal imaging were used to determine their effects on RyR isoforms. KEY RESULTS The major product, 2-cyclohexyl-3-cyclohexylimino-2, 3, dihydro-pyrrolo[1,2-c]imidazol-1-one (CCDI) dose-dependently potentiated Ca(2+)-dependent binding of [(3)H]-ryanodine to RyR1, with no significant effects on [(3)H]-ryanodine binding to RyR2 or RyR3. CCDI also reversibly increased the open probability (P(o)) of RyR1 with minimal effects on RyR2 and RyR3. CCDI induced Ca(2+) transients in C2C12 skeletal myotubes, but not in rat ventricular myocytes. This effect was blocked by pretreating cells with ryanodine. The minor product 2-cyclohexyl-pyrrolo[1,2-c]imidazole-1,3-dione had no effect on either [(3)H]-ryanodine binding or P(o) of RyR1, RyR2 and RyR3. CONCLUSIONS AND IMPLICATIONS A new ligand that preferentially modulates RyR1 was identified. In addition to being an important research tool, the pharmacophore of this small molecule could serve as a template for the synthesis of other isoform-selective modulators of RyRs.
Collapse
Affiliation(s)
- Chengju Tian
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Bustamante M, Fernández-Verdejo R, Jaimovich E, Buvinic S. Electrical stimulation induces IL-6 in skeletal muscle through extracellular ATP by activating Ca(2+) signals and an IL-6 autocrine loop. Am J Physiol Endocrinol Metab 2014; 306:E869-82. [PMID: 24518675 PMCID: PMC3989743 DOI: 10.1152/ajpendo.00450.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interleukin-6 (IL-6) is an important myokine that is highly expressed in skeletal muscle cells upon exercise. We assessed IL-6 expression in response to electrical stimulation (ES) or extracellular ATP as a known mediator of the excitation-transcription mechanism in skeletal muscle. We examined whether the canonical signaling cascade downstream of IL-6 (IL-6/JAK2/STAT3) also responds to muscle cell excitation, concluding that IL-6 influences its own expression through a positive loop. Either ES or exogenous ATP (100 μM) increased both IL-6 expression and p-STAT3 levels in rat myotubes, a process inhibited by 100 μM suramin and 2 U/ml apyrase. ATP also evoked IL-6 expression in both isolated skeletal fibers and extracts derived from whole FDB muscles. ATP increased IL-6 release up to 10-fold. STAT3 activation evoked by ATP was abolished by the JAK2 inhibitor HBC. Blockade of secreted IL-6 with a neutralizing antibody or preincubation with the STAT3 inhibitor VIII reduced STAT3 activation evoked by extracellular ATP by 70%. Inhibitor VIII also reduced by 70% IL-6 expression evoked by ATP, suggesting a positive IL-6 loop. In addition, ATP increased up to 60% the protein levels of SOCS3, a negative regulator of the IL-6 signaling pathway. On the other hand, intracellular calcium chelation or blockade of IP3-dependent calcium signals abolished STAT3 phosphorylation evoked by either extracellular ATP or ES. These results suggest that expression of IL-6 in stimulated skeletal muscle cells is mediated by extracellular ATP and nucleotide receptors, involving IP3-dependent calcium signals as an early step that triggers a positive IL-6 autocrine loop.
Collapse
Affiliation(s)
- Mario Bustamante
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; and
| | | | | | | |
Collapse
|
20
|
Blaauw B, Del Piccolo P, Rodriguez L, Hernandez Gonzalez VH, Agatea L, Solagna F, Mammano F, Pozzan T, Schiaffino S. No evidence for inositol 1,4,5-trisphosphate-dependent Ca2+ release in isolated fibers of adult mouse skeletal muscle. ACTA ACUST UNITED AC 2012; 140:235-41. [PMID: 22802359 PMCID: PMC3409103 DOI: 10.1085/jgp.201110747] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The presence and role of functional inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) in adult skeletal muscle are controversial. The current consensus is that, in adult striated muscle, the relative amount of IP3Rs is too low and the kinetics of Ca2+ release from IP3R is too slow compared with ryanodine receptors to contribute to the Ca2+ transient during excitation–contraction coupling. However, it has been suggested that IP3-dependent Ca2+ release may be involved in signaling cascades leading to regulation of muscle gene expression. We have reinvestigated IP3-dependent Ca2+ release in isolated flexor digitorum brevis (FDB) muscle fibers from adult mice. Although Ca2+ transients were readily induced in cultured C2C12 muscle cells by (a) UTP stimulation, (b) direct injection of IP3, or (c) photolysis of membrane-permeant caged IP3, no statistically significant change in calcium signal was detected in adult FDB fibers. We conclude that the IP3–IP3R system does not appear to affect global calcium levels in adult mouse skeletal muscle.
Collapse
Affiliation(s)
- Bert Blaauw
- Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yi M, Weaver D, Eisner V, Várnai P, Hunyady L, Ma J, Csordás G, Hajnóczky G. Switch from ER-mitochondrial to SR-mitochondrial calcium coupling during muscle differentiation. Cell Calcium 2012; 52:355-65. [PMID: 22784666 DOI: 10.1016/j.ceca.2012.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/25/2012] [Accepted: 05/28/2012] [Indexed: 11/26/2022]
Abstract
Emerging evidence indicates that mitochondria are locally coupled to endoplasmic reticulum (ER) Ca2+ release in myoblasts and to sarcoplasmic reticulum (SR) Ca2+ release in differentiated muscle fibers in order to regulate cytoplasmic calcium dynamics and match metabolism with cell activity. However, the mechanism of the developmental transition from ER to SR coupling remains unclear. We have studied mitochondrial sensing of IP3 receptor (IP3R)- and ryanodine receptor (RyR)-mediated Ca2+ signals in H9c2 myoblasts and differentiating myotubes, as well as the attendant changes in mitochondrial morphology. Mitochondria in myoblasts were largely elongated, luminally connected and relatively few in number, whereas the myotubes were densely packed with globular mitochondria that displayed limited luminal continuity. Vasopressin, an IP3-linked agonist, evoked a large cytoplasmic Ca2+ ([Ca2+]c) increase in myoblasts, whereas it elicited a smaller response in myotubes. Conversely, RyR-mediated Ca2+ release induced by caffeine, was not observed in myoblasts, but triggered a large [Ca2+]c signal in myotubes. Both the IP3R and the RyR-mediated [Ca2+]c rise was closely associated with a mitochondrial matrix Ca2+ ([Ca2+]m) signal. Every myotube that showed a [Ca2+]c spike also displayed a [Ca2+]m response. Addition of IP3 to permeabilized myoblasts and caffeine to permeabilized myotubes also resulted in a rapid [Ca2+]m rise, indicating that Ca2+ was delivered via local coupling of the ER/SR and mitochondria. Thus, as RyRs are expressed during muscle differentiation, the local connection between RyR and mitochondrial Ca2+ uptake sites also appears. When RyR1 was exogenously introduced to myoblasts by overexpression, the [Ca2+]m signal appeared together with the [Ca2+]c signal, however the mitochondrial morphology remained unchanged. Thus, RyR expression alone is sufficient to induce the steps essential for their alignment with mitochondrial Ca2+ uptake sites, whereas the mitochondrial proliferation and reshaping utilize either downstream or alternative pathways.
Collapse
Affiliation(s)
- Muqing Yi
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Webb SE, Cheung CCY, Chan CM, Love DR, Miller AL. Application of complementary luminescent and fluorescent imaging techniques to visualize nuclear and cytoplasmic Ca²⁺ signalling during the in vivo differentiation of slow muscle cells in zebrafish embryos under normal and dystrophic conditions. Clin Exp Pharmacol Physiol 2012; 39:78-86. [PMID: 21824171 DOI: 10.1111/j.1440-1681.2011.05582.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Evidence is accumulating for a role for Ca²⁺ signalling in the differentiation and development of embryonic skeletal muscle. 2. Imaging of intact, normally developing transgenic zebrafish that express the protein component of the Ca²⁺-sensitive complex aequorin, specifically in skeletal muscle, show that two distinct periods of spontaneous synchronised Ca²⁺ transients occur in the trunk: one at approximately 17.5-19.5 h post-fertilization (h.p.f.; termed signalling period SP1) and the other after approximately 23 h.p.f. (termed SP2). These periods of intense Ca²⁺ signalling activity are separated by a quiet period. 3. Higher-resolution confocal imaging of embryos loaded with the fluorescent Ca²⁺ reporter calcium green-1 dextran shows that the Ca²⁺ signals are generated almost exclusively in the slow muscle cells, the first muscle cells to differentiate, with distinct nuclear and cytoplasmic components. 4. Here, we show that coincidental with the SP1 Ca²⁺ signals, dystrophin becomes localized to the vertical myoseptae of the myotome. Introduction of a dmd morpholino (dmd-MO) resulted in no dystrophin being expressed in the vertical myoseptae, as well as a disruption of myotome morphology and sarcomere organization. In addition, the Ca²⁺ signalling signatures of dmd-MO-injected embryos or homozygous sapje mutant embryos were abnormal such that the frequency, amplitude and timing of the Ca²⁺ signals were altered compared with controls. 5. Our new data suggest that, in addition to a structural role, dystrophin may function in the regulation of [Ca²⁺](i) during the early stages of slow muscle cell differentiation when the Ca²⁺ signals generated in these cells coincide with the first spontaneous contractions of the trunk.
Collapse
Affiliation(s)
- Sarah E Webb
- Division of Life Science and Key State Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
23
|
Analysis of spontaneous and nerve-evoked calcium transients in intact extraocular muscles in vitro. Exp Eye Res 2012; 100:73-85. [PMID: 22579493 DOI: 10.1016/j.exer.2012.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/29/2012] [Accepted: 04/18/2012] [Indexed: 12/22/2022]
Abstract
Extraocular muscles (EOMs) have unique calcium handling properties, yet little is known about the dynamics of calcium events underlying ultrafast and tonic contractions in myofibers of intact EOMs. Superior oblique EOMs of juvenile chickens were dissected with their nerve attached, maintained in oxygenated Krebs buffer, and loaded with fluo-4. Spontaneous and nerve stimulation-evoked calcium transients were recorded and, following calcium imaging, some EOMs were double-labeled with rhodamine-conjugated alpha-bungarotoxin (rhBTX) to identify EOM myofiber types. EOMs showed two main types of spontaneous calcium transients, one slow type (calcium waves with 1/2(max) duration of 2-12 s, velocity of 25-50 μm/s) and two fast "flash-like" types (Type 1, 30-90 ms; Type 2, 90-150 ms 1/2(max) duration). Single pulse nerve stimulation evoked fast calcium transients identical to the fast (Type 1) calcium transients. Calcium waves were accompanied by a local myofiber contraction that followed the calcium transient wavefront. The magnitude of calcium-wave induced myofiber contraction far exceeded those of movement induced by nerve stimulation and associated fast calcium transients. Tetrodotoxin eliminated nerve-evoked transients, but not spontaneous transients. Alpha-bungarotoxin eliminated both spontaneous and nerve-evoked fast calcium transients, but not calcium waves, and caffeine increased wave activity. Calcium waves were observed in myofibers lacking spontaneous or evoked fast transients, suggestive of multiply-innervated myofibers, and this was confirmed by double-labeling with rhBTX. We propose that the abundant spontaneous calcium transients and calcium waves with localized contractions that do not depend on innervation may contribute to intrinsic generation of tonic functions of EOMs.
Collapse
|
24
|
Measurement of calcium release due to inositol trisphosphate receptors in skeletal muscle. Methods Mol Biol 2012; 798:383-93. [PMID: 22130849 DOI: 10.1007/978-1-61779-343-1_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Calcium transients elicited by IP(3) receptors upon electrical stimulation of skeletal muscle cells (slow calcium signals) are often hard to visualize due to their relatively small amplitude compared to the large transient originated from ryanodine receptors associated to excitation-contraction coupling. The study of slow calcium transients, however, is relevant due to their function in regulation of muscle gene expression and in the process of excitation-transcription coupling. Discussed here are the procedures used to record slow calcium signals from both cultured mouse myotubes and from cultured adult skeletal muscle fibers.
Collapse
|
25
|
Chen X, Zhang X, Jia C, Xu J, Gao H, Zhang G, Du X, Zhang H. Membrane depolarization increases membrane PtdIns(4,5)P2 levels through mechanisms involving PKC βII and PI4 kinase. J Biol Chem 2011; 286:39760-7. [PMID: 21953466 DOI: 10.1074/jbc.m111.289090] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In a previous study, we showed that membrane depolarization induced elevation of membrane phosphatidylinositol 4,5-bisphosphates (PtdIns(4,5)P(2), also known as PIP(2)) and subsequently increased the KCNQ2/Q3 currents expressed in Xenopus oocytes through increased PI4 kinase activity. In this study, the underlying mechanism for this depolarization-induced enhancement of PIP(2) synthesis was further investigated. Our results indicate that activation of protein kinase C (PKC) isozyme βII was responsible for the enhanced PIP(2) synthesis. We found that phorbol-12-myristate, 13-acetate (PMA), an activator of PKC, mimicked the effects of the membrane depolarization by increasing KCNQ2/Q3 activity, elevating membrane PIP(2) levels and increasing activity of PI4 kinase β. Furthermore, membrane depolarization enhanced PKC activity. The effects of both depolarization and PMA were blocked by a PKC inhibitor or PI4 kinase β RNA interference. Further results demonstrate that the depolarization selectively activated the PKC βII isoform and enhanced its interaction with PI4 kinase β. These results reveal that the depolarization-induced elevation of membrane PIP(2) is through activation of PKC and the subsequent increased activity of PI4 kinase β.
Collapse
Affiliation(s)
- Xingjuan Chen
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Trisk 32 regulates IP(3) receptors in rat skeletal myoblasts. Pflugers Arch 2011; 462:599-610. [PMID: 21811790 DOI: 10.1007/s00424-011-1001-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 01/25/2023]
Abstract
To date, four isoforms of triadins have been identified in rat skeletal muscle. While the function of the 95-kDa isoform in excitation-contraction coupling has been studied in detail, the role of the 32-kDa isoform (Trisk 32) remains elusive. Here, Trisk 32 overexpression was carried out by stable transfection in L6.G8 myoblasts. Co-localization of Trisk 32 and IP(3) receptors (IP(3)R) was demonstrated by immunocytochemistry, and their association was shown by co-immunoprecipitation. Functional effects of Trisk 32 on IP(3)-mediated Ca(2+) release were assessed by measuring changes in [Ca(2+)](i) following the stimulation by bradykinin or vasopressin. The amplitude of the Ca(2+) transients evoked by 20 μM bradykinin was significantly higher in Trisk 32-overexpressing (p < 0.01; 426 ± 84 nM, n = 27) as compared to control cells (76 ± 12 nM, n = 23). The difference remained significant (p < 0.02; 217 ± 41 nM, n = 21, and 97 ± 29 nM, n = 31, respectively) in the absence of extracellular Ca(2+). Similar observations were made when 0.1 μM vasopressin was used to initiate Ca(2+) release. Possible involvement of the ryanodine receptors (RyR) in these processes was excluded, after functional and biochemical experiments. Furthermore, Trisk 32 overexpression had no effect on store-operated Ca(2+) entry, despite a decrease in the expression of STIM1. These results suggest that neither the increased activity of RyR, nor the amplification of SOCE, is responsible for the differences observed in bradykinin- or vasopressin-evoked Ca(2+) transients; rather, they were due to the enhanced activity of IP(3)R. Thus, Trisk 32 not only co-localizes with, but directly contributes to, the regulation of Ca(2+) release via IP(3)R.
Collapse
|
27
|
Meissner JD, Freund R, Krone D, Umeda PK, Chang KC, Gros G, Scheibe RJ. Extracellular signal-regulated kinase 1/2-mediated phosphorylation of p300 enhances myosin heavy chain I/beta gene expression via acetylation of nuclear factor of activated T cells c1. Nucleic Acids Res 2011; 39:5907-25. [PMID: 21498542 PMCID: PMC3152325 DOI: 10.1093/nar/gkr162] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/28/2011] [Accepted: 03/04/2011] [Indexed: 12/25/2022] Open
Abstract
The nuclear factor of activated T-cells (NFAT) c1 has been shown to be essential for Ca(2+)-dependent upregulation of myosin heavy chain (MyHC) I/β expression during skeletal muscle fiber type transformation. Here, we report activation of extracellular signal-regulated kinase (ERK) 1/2 in Ca(2+)-ionophore-treated C2C12 myotubes and electrostimulated soleus muscle. Activated ERK1/2 enhanced NFATc1-dependent upregulation of a -2.4 kb MyHCI/β promoter construct without affecting subcellular localization of endogenous NFATc1. Instead, ERK1/2-augmented phosphorylation of transcriptional coactivator p300, promoted its recruitment to NFATc1 and increased NFATc1-DNA binding to a NFAT site of the MyHCI/β promoter. In line, inhibition of ERK1/2 signaling abolished the effects of p300. Comparison between wild-type p300 and an acetyltransferase-deficient mutant (p300DY) indicated increased NFATc1-DNA binding as a consequence of p300-mediated acetylation of NFATc1. Activation of the MyHCI/β promoter by p300 depends on two conserved acetylation sites in NFATc1, which affect DNA binding and transcriptional stimulation. NFATc1 acetylation occurred in Ca(2+)-ionophore treated C2C12 myotubes or electrostimulated soleus. Finally, endogenous MyHCI/β gene expression in C2C12 myotubes was strongly inhibited by p300DY and a mutant deficient in ERK phosphorylation sites. In conclusion, ERK1/2-mediated phosphorylation of p300 is crucial for enhancing NFATc1 transactivation function by acetylation, which is essential for Ca(2+)-induced MyHCI/β expression.
Collapse
Affiliation(s)
- Joachim D. Meissner
- Department of Vegetative Physiology, Institute of Biochemistry, Hannover Medical School, D-30625 Hannover, Germany, Department of Medicine, University of Alabama, Birmingham, AL 35294, USA and School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nr Loughborough, LE12 5RD, UK
| | - Robert Freund
- Department of Vegetative Physiology, Institute of Biochemistry, Hannover Medical School, D-30625 Hannover, Germany, Department of Medicine, University of Alabama, Birmingham, AL 35294, USA and School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nr Loughborough, LE12 5RD, UK
| | - Dorothee Krone
- Department of Vegetative Physiology, Institute of Biochemistry, Hannover Medical School, D-30625 Hannover, Germany, Department of Medicine, University of Alabama, Birmingham, AL 35294, USA and School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nr Loughborough, LE12 5RD, UK
| | - Patrick K. Umeda
- Department of Vegetative Physiology, Institute of Biochemistry, Hannover Medical School, D-30625 Hannover, Germany, Department of Medicine, University of Alabama, Birmingham, AL 35294, USA and School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nr Loughborough, LE12 5RD, UK
| | - Kin-Chow Chang
- Department of Vegetative Physiology, Institute of Biochemistry, Hannover Medical School, D-30625 Hannover, Germany, Department of Medicine, University of Alabama, Birmingham, AL 35294, USA and School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nr Loughborough, LE12 5RD, UK
| | - Gerolf Gros
- Department of Vegetative Physiology, Institute of Biochemistry, Hannover Medical School, D-30625 Hannover, Germany, Department of Medicine, University of Alabama, Birmingham, AL 35294, USA and School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nr Loughborough, LE12 5RD, UK
| | - Renate J. Scheibe
- Department of Vegetative Physiology, Institute of Biochemistry, Hannover Medical School, D-30625 Hannover, Germany, Department of Medicine, University of Alabama, Birmingham, AL 35294, USA and School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nr Loughborough, LE12 5RD, UK
| |
Collapse
|
28
|
Ishikawa M, Iwamoto T, Nakamura T, Doyle A, Fukumoto S, Yamada Y. Pannexin 3 functions as an ER Ca(2+) channel, hemichannel, and gap junction to promote osteoblast differentiation. ACTA ACUST UNITED AC 2011; 193:1257-74. [PMID: 21690309 PMCID: PMC3216329 DOI: 10.1083/jcb.201101050] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pannexin 3 functions as an essential protein for Ca2+ and ATP transport and cell–cell communication during osteoblast differentiation The pannexin proteins represent a new gap junction family. However, the cellular functions of pannexins remain largely unknown. Here, we demonstrate that pannexin 3 (Panx3) promotes differentiation of osteoblasts and ex vivo growth of metatarsals. Panx3 expression was induced during osteogenic differentiation of C2C12 cells and primary calvarial cells, and suppression of this endogenous expression inhibited differentiation. Panx3 functioned as a unique Ca2+ channel in the endoplasmic reticulum (ER), which was activated by purinergic receptor/phosphoinositide 3-kinase (PI3K)/Akt signaling, followed by activation of calmodulin signaling for differentiation. Panx3 also formed hemichannels that allowed release of ATP into the extracellular space and activation of purinergic receptors with the subsequent activation of PI3K–Akt signaling. Panx3 also formed gap junctions and propagated Ca2+ waves between cells. Blocking the Panx3 Ca2+ channel and gap junction activities inhibited osteoblast differentiation. Thus, Panx3 appears to be a new regulator that promotes osteoblast differentiation by functioning as an ER Ca2+ channel and a hemichannel, and by forming gap junctions.
Collapse
Affiliation(s)
- Masaki Ishikawa
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
29
|
Kiviluoto S, Decuypere JP, De Smedt H, Missiaen L, Parys JB, Bultynck G. STIM1 as a key regulator for Ca2+ homeostasis in skeletal-muscle development and function. Skelet Muscle 2011; 1:16. [PMID: 21798093 PMCID: PMC3156639 DOI: 10.1186/2044-5040-1-16] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 04/04/2011] [Indexed: 12/17/2022] Open
Abstract
Stromal interaction molecules (STIM) were identified as the endoplasmic-reticulum (ER) Ca2+ sensor controlling store-operated Ca2+ entry (SOCE) and Ca2+-release-activated Ca2+ (CRAC) channels in non-excitable cells. STIM proteins target Orai1-3, tetrameric Ca2+-permeable channels in the plasma membrane. Structure-function analysis revealed the molecular determinants and the key steps in the activation process of Orai by STIM. Recently, STIM1 was found to be expressed at high levels in skeletal muscle controlling muscle function and properties. Novel STIM targets besides Orai channels are emerging.Here, we will focus on the role of STIM1 in skeletal-muscle structure, development and function. The molecular mechanism underpinning skeletal-muscle physiology points toward an essential role for STIM1-controlled SOCE to drive Ca2+/calcineurin/nuclear factor of activated T cells (NFAT)-dependent morphogenetic remodeling programs and to support adequate sarcoplasmic-reticulum (SR) Ca2+-store filling. Also in our hands, STIM1 is transiently up-regulated during the initial phase of in vitro myogenesis of C2C12 cells. The molecular targets of STIM1 in these cells likely involve Orai channels and canonical transient receptor potential (TRPC) channels TRPC1 and TRPC3. The fast kinetics of SOCE activation in skeletal muscle seem to depend on the triad-junction formation, favoring a pre-localization and/or pre-formation of STIM1-protein complexes with the plasma-membrane Ca2+-influx channels. Moreover, Orai1-mediated Ca2+ influx seems to be essential for controlling the resting Ca2+ concentration and for proper SR Ca2+ filling. Hence, Ca2+ influx through STIM1-dependent activation of SOCE from the T-tubule system may recycle extracellular Ca2+ losses during muscle stimulation, thereby maintaining proper filling of the SR Ca2+ stores and muscle function. Importantly, mouse models for dystrophic pathologies, like Duchenne muscular dystrophy, point towards an enhanced Ca2+ influx through Orai1 and/or TRPC channels, leading to Ca2+-dependent apoptosis and muscle degeneration. In addition, human myopathies have been associated with dysfunctional SOCE. Immunodeficient patients harboring loss-of-function Orai1 mutations develop myopathies, while patients suffering from Duchenne muscular dystrophy display alterations in their Ca2+-handling proteins, including STIM proteins. In any case, the molecular determinants responsible for SOCE in human skeletal muscle and for dysregulated SOCE in patients of muscular dystrophy require further examination.
Collapse
Affiliation(s)
- Santeri Kiviluoto
- Laboratory of Molecular and Cellular Signaling, Department Molecular Cell Biology, K,U, Leuven, Campus Gasthuisberg O/N-1 bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
30
|
Sobol KV, Belostotskaya GB, Nesterov VP. Slow calcium waves in cultivated postnatal rat skeletal myocytes. Biophysics (Nagoya-shi) 2010. [DOI: 10.1134/s0006350910060151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
31
|
Casas M, Figueroa R, Jorquera G, Escobar M, Molgó J, Jaimovich E. IP(3)-dependent, post-tetanic calcium transients induced by electrostimulation of adult skeletal muscle fibers. ACTA ACUST UNITED AC 2010; 136:455-67. [PMID: 20837675 PMCID: PMC2947059 DOI: 10.1085/jgp.200910397] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tetanic electrical stimulation induces two separate calcium signals in rat skeletal myotubes, a fast one, dependent on Cav 1.1 or dihydropyridine receptors (DHPRs) and ryanodine receptors and related to contraction, and a slow signal, dependent on DHPR and inositol trisphosphate receptors (IP3Rs) and related to transcriptional events. We searched for slow calcium signals in adult muscle fibers using isolated adult flexor digitorum brevis fibers from 5–7-wk-old mice, loaded with fluo-3. When stimulated with trains of 0.3-ms pulses at various frequencies, cells responded with a fast calcium signal associated with muscle contraction, followed by a slower signal similar to one previously described in cultured myotubes. Nifedipine inhibited the slow signal more effectively than the fast one, suggesting a role for DHPR in its onset. The IP3R inhibitors Xestospongin B or C (5 µM) also inhibited it. The amplitude of post-tetanic calcium transients depends on both tetanus frequency and duration, having a maximum at 10–20 Hz. At this stimulation frequency, an increase of the slow isoform of troponin I mRNA was detected, while the fast isoform of this gene was inhibited. All three IP3R isoforms were present in adult muscle. IP3R-1 was differentially expressed in different types of muscle fibers, being higher in a subset of fast-type fibers. Interestingly, isolated fibers from the slow soleus muscle did not reveal the slow calcium signal induced by electrical stimulus. These results support the idea that IP3R-dependent slow calcium signals may be characteristic of distinct types of muscle fibers and may participate in the activation of specific transcriptional programs of slow and fast phenotype.
Collapse
Affiliation(s)
- Mariana Casas
- Centro de Estudios Moleculares de la Célula, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
32
|
Cárdenas C, Juretić N, Bevilacqua JA, García IE, Figueroa R, Hartley R, Taratuto AL, Gejman R, Riveros N, Molgó J, Jaimovich E. Abnormal distribution of inositol 1,4,5‐trisphosphate receptors in human muscle can be related to altered calcium signals and gene expression in Duchenne dystrophy‐derived cells. FASEB J 2010; 24:3210-21. [DOI: 10.1096/fj.09-152017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- César Cárdenas
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Department of PhysiologyUniversity of Pennsylvania Philadelphia Pennsylvania USA
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Nevenka Juretić
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Jorge A. Bevilacqua
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Programa de Anatomía y Biología del DesarrolloInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Departamento de Neurología y NeurocirugíaHospital Clínico Universidad de Chile Independencia Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Isaac E. García
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Reinaldo Figueroa
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Ricardo Hartley
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Ana L. Taratuto
- Departamento de NeuropatologíaInstituto de Investigaciones NeurológicasFLENI Buenos Aires Argentina
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Roger Gejman
- Departamento de Anatomía PatológicaFacultad de MedicinaPontificia Universidad Católica de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Nora Riveros
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Jordi Molgó
- Department of PhysiologyUniversity of Pennsylvania Philadelphia Pennsylvania USA
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Enrique Jaimovich
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| |
Collapse
|
33
|
Mondin L, Balghi H, Constantin B, Cognard C, Sebille S. Negative modulation of inositol 1,4,5-trisphosphate type 1 receptor expression prevents dystrophin-deficient muscle cells death. Am J Physiol Cell Physiol 2009; 297:C1133-45. [DOI: 10.1152/ajpcell.00048.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evidence for a modulatory effect of cyclosporin A (CsA) on calcium signaling and cell survival in dystrophin-deficient cells is presented. Our previous works strongly supported the hypothesis of an overactivation of Ca2+ release via inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) in dystrophin-deficient cells, both during membrane depolarization and at rest, through spontaneous Ca2+ release events. Forced expression of mini-dystrophin in these cells contributed, during stimulation and in resting condition, to the recovery of a controlled calcium homeostasis. In the present work, we demonstrate that CsA exposure displayed a dual-modulator effect on calcium signaling in dystrophin-deficient cells. Short-time incubation induced a decrease of IP3-dependent calcium release, leading to patterns of release similar to those observed in myotubes expressing mini-dystrophin, whereas long-time incubation reduced the expression of the type I of IP3 receptors (IP3R-1) RNA levels. Moreover, both IP3R-1 knockdown and blockade through 2-aminoethoxydiphenyle borate or CsA induced improved survival of dystrophin-deficient myotubes, demonstrating the cell death dependence on the IP3-dependent calcium signaling as well as the protective effect of CsA. Inhibition of the IP3 pathway could be a very interesting approach for reducing the natural cell death of dystrophin-deficient cells in development.
Collapse
Affiliation(s)
- Ludivine Mondin
- Institut de Physiologie et Biologie Cellulaires, Centre National de la Recherche Scientifique UMR 6187, Université de Poitiers, Poitiers, France
| | - Haouaria Balghi
- Institut de Physiologie et Biologie Cellulaires, Centre National de la Recherche Scientifique UMR 6187, Université de Poitiers, Poitiers, France
| | - Bruno Constantin
- Institut de Physiologie et Biologie Cellulaires, Centre National de la Recherche Scientifique UMR 6187, Université de Poitiers, Poitiers, France
| | - Christian Cognard
- Institut de Physiologie et Biologie Cellulaires, Centre National de la Recherche Scientifique UMR 6187, Université de Poitiers, Poitiers, France
| | - Stéphane Sebille
- Institut de Physiologie et Biologie Cellulaires, Centre National de la Recherche Scientifique UMR 6187, Université de Poitiers, Poitiers, France
| |
Collapse
|
34
|
Sobol’ KV, Nesterov VP. Wave changes of [Ca2+]i in rat skeletal myocytes in hyperpotassium solution. J EVOL BIOCHEM PHYS+ 2009. [DOI: 10.1134/s0022093009040136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Jorquera G, Juretić N, Jaimovich E, Riveros N. Membrane depolarization induces calcium-dependent upregulation of Hsp70 and Hmox-1 in skeletal muscle cells. Am J Physiol Cell Physiol 2009; 297:C581-90. [PMID: 19570893 DOI: 10.1152/ajpcell.00167.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Heat shock proteins (HSPs) are a conserved family of cytoprotective polypeptides, synthesized by cells in response to stress. Hsp70 and heme oxygenase 1 (Hmox-1) are induced by a variety of cellular stressors in skeletal muscle, playing a role in long-term adaptations and muscle fibers regeneration. Though HSPs expression after exercise has been intensely investigated, the molecular mechanisms concerning Hsp70 and Hmox-1 induction are poorly understood. The aim of this work was to investigate the involvement of calcium in Hsp70 and Hmox-1 expression upon depolarization of skeletal muscle cells. We observed that depolarization of myotubes increased both mRNA levels and protein expression for Hsp70 and Hmox-1. Stimulation in the presence of intracellular calcium chelator BAPTA-AM resulted in a complete inhibition of Hsp70-induced expression. It is known that inositol-1,4,5-trisphophate (IP(3))-mediated slow Ca(2+) transients, evoked by membrane depolarization, are involved in the regulation of gene expression. Here we demonstrated that inhibition of IP(3)-dependent calcium signals decreased both Hsp70 mRNA induction and Hsp70 and Hmox-1 protein expression. Inhibitors of calcium-dependent protein kinase C also abolished Hsp70 mRNA induction. Our results provide evidence that membrane depolarization increases Hsp70 and Hmox-1 expression in cultured skeletal muscle cells, which the effect is critically dependent on Ca(2+) released from IP(3)-sensitive intracellular stores and that it involves PKC as an upstream effector in Hsp70 mRNA-induced expression.
Collapse
Affiliation(s)
- Gonzalo Jorquera
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 7, Chile
| | | | | | | |
Collapse
|
36
|
Lack of CFTR in skeletal muscle predisposes to muscle wasting and diaphragm muscle pump failure in cystic fibrosis mice. PLoS Genet 2009; 5:e1000586. [PMID: 19649303 PMCID: PMC2709446 DOI: 10.1371/journal.pgen.1000586] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 07/03/2009] [Indexed: 11/19/2022] Open
Abstract
Cystic fibrosis (CF) patients often have reduced mass and strength of skeletal muscles, including the diaphragm, the primary muscle of respiration. Here we show that lack of the CF transmembrane conductance regulator (CFTR) plays an intrinsic role in skeletal muscle atrophy and dysfunction. In normal murine and human skeletal muscle, CFTR is expressed and co-localized with sarcoplasmic reticulum-associated proteins. CFTR-deficient myotubes exhibit augmented levels of intracellular calcium after KCl-induced depolarization, and exposure to an inflammatory milieu induces excessive NF-kB translocation and cytokine/chemokine gene upregulation. To determine the effects of an inflammatory environment in vivo, sustained pulmonary infection with Pseudomonas aeruginosa was produced, and under these conditions diaphragmatic force-generating capacity is selectively reduced in Cftr(-/-) mice. This is associated with exaggerated pro-inflammatory cytokine expression as well as upregulation of the E3 ubiquitin ligases (MuRF1 and atrogin-1) involved in muscle atrophy. We conclude that an intrinsic alteration of function is linked to the absence of CFTR from skeletal muscle, leading to dysregulated calcium homeostasis, augmented inflammatory/atrophic gene expression signatures, and increased diaphragmatic weakness during pulmonary infection. These findings reveal a previously unrecognized role for CFTR in skeletal muscle function that may have major implications for the pathogenesis of cachexia and respiratory muscle pump failure in CF patients.
Collapse
|
37
|
Salanova M, Schiffl G, Blottner D. Atypical fast SERCA1a protein expression in slow myofibers and differential S-nitrosylation prevented by exercise during long term bed rest. Histochem Cell Biol 2009; 132:383-94. [DOI: 10.1007/s00418-009-0624-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2009] [Indexed: 10/20/2022]
|
38
|
Barbado M, Fablet K, Ronjat M, De Waard M. Gene regulation by voltage-dependent calcium channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1096-104. [PMID: 19250948 DOI: 10.1016/j.bbamcr.2009.02.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 02/13/2009] [Accepted: 02/16/2009] [Indexed: 12/11/2022]
Abstract
Ca2+ is the most widely used second messenger in cell biology and fulfills a plethora of essential cell functions. One of the most exciting findings of the last decades was the involvement of Ca2+ in the regulation of long-term cell adaptation through its ability to control gene expression. This finding provided a link between cell excitation and gene expression. In this review, we chose to focus on the role of voltage-dependent calcium channels in mediating gene expression in response to membrane depolarization. We illustrate the different pathways by which these channels are involved in excitation-transcription coupling, including the most recent Ca2+ ion-independent strategies that highlight the transcription factor role of calcium channels.
Collapse
Affiliation(s)
- Maud Barbado
- Grenoble Institute of Neuroscience, Inserm U 836-Team 3 Calcium Channels, Functions and Pathologies, Bâtiment Edmond Safra, Université Joseph Fourier, Site santé de la Tronche, BP 170, 38042 Grenoble cedex 9, France
| | | | | | | |
Collapse
|
39
|
Effect of hindlimb unloading on resting intracellular calcium in intrafusal fibers and ramp-and-hold stretches evoked responsiveness of soleus muscle spindles in conscious rats. Neurosci Lett 2008; 442:169-73. [DOI: 10.1016/j.neulet.2008.04.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 04/09/2008] [Accepted: 04/12/2008] [Indexed: 11/16/2022]
|
40
|
Sodium-dependent action potentials induced by brevetoxin-3 trigger both IP3 increase and intracellular Ca2+ release in rat skeletal myotubes. Cell Calcium 2008; 44:289-97. [DOI: 10.1016/j.ceca.2007.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 12/13/2007] [Accepted: 12/14/2007] [Indexed: 01/27/2023]
|
41
|
Chamero P, Manjarres IM, García-Verdugo JM, Villalobos C, Alonso MT, García-Sancho J. Nuclear calcium signaling by inositol trisphosphate in GH3 pituitary cells. Cell Calcium 2007; 43:205-14. [PMID: 17583789 DOI: 10.1016/j.ceca.2007.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Revised: 05/01/2007] [Accepted: 05/08/2007] [Indexed: 11/28/2022]
Abstract
It has been proposed that nuclear and cytosolic Ca(2+) ([Ca(2+)](N) and [Ca(2+)](C)) may be regulated independently. We address here the issue of whether inositol trisphosphate (IP(3)) can, bypassing changes of [Ca(2+)](C), produce direct release of Ca(2+) into the nucleoplasm. We have used targeted aequorins to selectively measure and compare the changes in [Ca(2+)](C) and [Ca(2+)](N) induced by IP(3) in GH(3) pituitary cells. Heparin, an IP(3) inhibitor that does not permeate the nuclear pores, abolished the [Ca(2+)](C) peaks but inhibited only partly the [Ca(2+)](N) peaks. The permeant inhibitor 2-aminoethoxy-diphenyl-borate (2-APB) blocked both responses. Removal of ATP also inhibited more strongly the [Ca(2+)](C) than [Ca(2+)](N) peak. The [Ca(2+)](N) and [Ca(2+)](C) responses differed also in their sensitivity to IP(3), the nuclear response showing higher affinity. Among IP(3) receptors, type 2 (IP(3)R2) has a higher affinity for IP(3) and is not inactivated by ATP removal. We find that IP(3)R2 immunoreactivity is present inside the nucleus whereas the other IP(3)R subtypes are detected only in the cytoplasm. The nuclear envelope (NE) of GH(3) cells showed deep invaginations into the nucleoplasm, with cytosol and cytoplasmic organella inside. These results indicate that GH(3) pituitary cells possess mechanisms able to produce selective increases of [Ca(2+)](N).
Collapse
Affiliation(s)
- Pablo Chamero
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Departamento de Fisiología y Bioquímica, Facultad de Medicina, E-47005 Valladolid, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Juretić N, Urzúa U, Munroe DJ, Jaimovich E, Riveros N. Differential gene expression in skeletal muscle cells after membrane depolarization. J Cell Physiol 2007; 210:819-30. [PMID: 17146758 DOI: 10.1002/jcp.20902] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Skeletal muscle is a highly plastic tissue with a remarkable capacity to adapt itself to challenges imposed by contractile activity. Adaptive response, that include hypertrophy and activation of oxidative mechanisms have been associated with transient changes in transcriptional activity of specific genes. To define the set of genes regulated by a depolarizing stimulus, we used 22 K mouse oligonucleotide microarrays. Total RNA from C2C12 myotubes was obtained at 2, 4, 18, and 24 h after high K+ stimulation. cDNA from control and depolarized samples was labeled with cyanine 3 or 5 dyes prior to microarray hybridization. Loess normalization followed by statistical analysis resulted in 423 differentially expressed genes using an unadjusted P-value < or = 0.01 as cut off. Depolarization affects transcriptional activity of a limited number of genes, mainly associated with metabolism, cell communication and response to stress. A number of genes related to Ca2+ signaling pathways are induced at 4 h, reinforcing the potential role of Ca2+ in early steps of signal transduction that leads to gene expression. Significant changes in the expression of molecules involved in muscle cell structure were observed; K+-depolarization increased Tnni1 and Acta1 mRNA levels in both differentiated C2C12 and rat skeletal muscle cells in primary culture. Of these two, depolarization induced slow Ca2+ transients appear to have a role only in the regulation of Tnni1 transcriptional activity. We suggest that depolarization induced expression of a small set of genes may underlie Ca2+ dependent plasticity of skeletal muscle cells.
Collapse
Affiliation(s)
- Nevenka Juretić
- Centro de Estudios Moleculares de la Célula, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
43
|
Carrasco MA, Hidalgo C. Calcium microdomains and gene expression in neurons and skeletal muscle cells. Cell Calcium 2006; 40:575-83. [PMID: 17034850 DOI: 10.1016/j.ceca.2006.08.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 08/23/2006] [Indexed: 01/14/2023]
Abstract
Neurons generate particular calcium microdomains in response to different stimuli. Calcium microdomains have a central role in a variety of neuronal functions. In particular, calcium microdomains participate in long-lasting synaptic plasticity--a neuronal response presumably correlated with cognitive brain functions that requires expression of new gene products. Stimulation of skeletal muscle generates - with few milliseconds delay - calcium microdomains that have a central role in the ensuing muscle contraction. In addition, recent evidence indicates that sustained stimulation of skeletal muscle cells in culture generates calcium microdomains, which stimulate gene expression but not muscle contraction. The mechanisms whereby calcium microdomains activate signaling cascades that lead to the transcription of genes known to participate in specific cellular responses are the central topic of this review. Thus, we will discuss here the signaling pathways and molecular mechanisms, which via activation of particular calcium-dependent transcription factors regulate the expression of specific genes or set of genes in neurons or skeletal muscle cells.
Collapse
Affiliation(s)
- M Angélica Carrasco
- Centro FONDAP de Estudios Moleculares de la Célula, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | |
Collapse
|
44
|
Espinosa A, Leiva A, Peña M, Müller M, Debandi A, Hidalgo C, Carrasco MA, Jaimovich E. Myotube depolarization generates reactive oxygen species through NAD(P)H oxidase; ROS-elicited Ca2+ stimulates ERK, CREB, early genes. J Cell Physiol 2006; 209:379-88. [PMID: 16897752 DOI: 10.1002/jcp.20745] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Controlled generation of reactive oxygen species (ROS) may contribute to physiological intracellular signaling events. We determined ROS generation in primary cultures of rat skeletal muscle after field stimulation (400 1-ms pulses at a frequency of 45 Hz) or after depolarization with 65 mM K+ for 1 min. Both protocols induced a long lasting increase in dichlorofluorescein fluorescence used as ROS indicator. Addition of diphenyleneiodonium (DPI), an inhibitor of NAD(P)H oxidase, PEG-catalase, a ROS scavenger, or nifedipine, an inhibitor of the skeletal muscle voltage sensor, significantly reduced this increase. Myotubes contained both the p47phox and gp91phox phagocytic NAD(P)H oxidase subunits, as revealed by immunodetection. To study the effects of ROS, myotubes were exposed to hydrogen peroxide (H2O2) at concentrations (100-200 microM) that did not alter cell viability; H2O2 induced a transient intracellular Ca2+ rise, measured as fluo-3 fluorescence. Minutes after Ca2+ signal initiation, an increase in ERK1/2 and CREB phosphorylation and of mRNA for the early genes c-fos and c-jun was detected. Inhibition of ryanodine receptor (RyR) decreased all effects induced by H2O2 and NAD(P)H oxidase inhibitors DPI and apocynin decreased ryanodine-sensitive calcium signals. Activity-dependent ROS generation is likely to be involved in regulation of calcium-controlled intracellular signaling pathways in muscle cells.
Collapse
Affiliation(s)
- Alejandra Espinosa
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Alonso MT, Villalobos C, Chamero P, Alvarez J, García-Sancho J. Calcium microdomains in mitochondria and nucleus. Cell Calcium 2006; 40:513-25. [PMID: 17067669 DOI: 10.1016/j.ceca.2006.08.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 08/23/2006] [Indexed: 10/24/2022]
Abstract
Endomembranes modify the progression of the cytosolic Ca(2+) wave and contribute to generate Ca(2+) microdomains, both in the cytosol and inside the own organella. The concentration of Ca(2+) in the cytosol ([Ca(2+)](C)), the mitochondria ([Ca(2+)](M)) and the nucleus ([Ca(2+)](N)) are similar at rest, but may become very different during cell activation. Mitochondria avidly take up Ca(2+) from the high [Ca(2+)](C) microdomains generated during cell activation near Ca(2+) channels of the plasma membrane and/or the endomembranes and prevent propagation of the high Ca(2+) signal to the bulk cytosol. This shaping of [Ca(2+)](C) signaling is essential for independent regulation of compartmentalized cell functions. On the other hand, a high [Ca(2+)](M) signal is generated selectively in the mitochondria close to the active areas, which tunes up respiration to the increased local needs. The progression of the [Ca(2+)](C) signal to the nucleus may be dampened by mitochondria, the nuclear envelope or higher buffering power inside the nucleoplasm. On the other hand, selective [Ca(2+)](N) signals could be generated by direct release of stored Ca(2+) into the nucleoplasm. Ca(2+) release could even be restricted to subnuclear domains. Putative Ca(2+) stores include the nuclear envelope, their invaginations inside the nucleoplasm (nucleoplasmic reticulum) and nuclear microvesicles. Inositol trisphosphate, cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate have all been reported to produce release of Ca(2+) into the nucleoplasm, but contribution of these mechanisms under physiological conditions is still uncertain.
Collapse
Affiliation(s)
- María Teresa Alonso
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), c/Sanz y Forés s/n, Valladolid, Spain
| | | | | | | | | |
Collapse
|
46
|
Zayas R, Groshong JS, Gomez CM. Inositol-1,4,5-triphosphate receptors mediate activity-induced synaptic Ca2+ signals in muscle fibers and Ca2+ overload in slow-channel syndrome. Cell Calcium 2006; 41:343-52. [PMID: 16973214 DOI: 10.1016/j.ceca.2006.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2006] [Revised: 06/03/2006] [Accepted: 07/15/2006] [Indexed: 11/21/2022]
Abstract
Strict control of calcium entry through excitatory synaptic receptors is important for shaping synaptic responses, gene expression, and cell survival. Disruption of this control may lead to pathological accumulation of Ca2+. The slow-channel congenital myasthenic syndrome (SCS), due to mutations in muscle acetylcholine receptor (AChR), perturbs the kinetics of synaptic currents, leading to post-synaptic Ca2+ accumulation. To understand the regulation of calcium signaling at the neuromuscular junction (NMJ) and the etiology of Ca2+ overload in SCS we studied the role of sarcoplasmic Ca2+ stores in SCS. Using fura-2 loaded dissociated fibers activated with acetylcholine puffs, we confirmed that Ca2+ accumulates around wild type NMJ and discovered that Ca2+ accumulates significantly faster around the NMJ of SCS transgenic dissociated muscle fibers. Additionally, we determined that this process is dependant on the activation, altered kinetics, and movement of Ca2+ ions through the AChR, although, surprisingly, depletion of intracellular stores also prevents the accumulation of this cation around the NMJ. Finally, we concluded that the sarcoplasmic reticulum is the main source of Ca2+ and that inositol-1,4,5-triphosphate receptors (IP3R), and to a lesser degree L-type voltage gated Ca2+ channels, are responsible for the efflux of this cation from intracellular stores. These results suggest that a signaling system mediated by the activation of AChR, Ca2+, and IP3R is responsible for localized Ca2+ signals observed in muscle fibers and the Ca2+ overload observed in SCS.
Collapse
Affiliation(s)
- Roberto Zayas
- Department of Neuroscience and Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
47
|
Constantin B, Sebille S, Cognard C. New insights in the regulation of calcium transfers by muscle dystrophin-based cytoskeleton: implications in DMD. J Muscle Res Cell Motil 2006; 27:375-86. [PMID: 16897576 DOI: 10.1007/s10974-006-9085-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 06/28/2006] [Indexed: 01/18/2023]
Abstract
Calcium mishandling in Duchenne muscular dystrophy (DMD) suggested that dystrophin, a membrane-associated cytoskeleton protein, may regulate calcium-signalling cascades such as calcium entries. Calcium overload in human DMD myotubes is dependent on their contractile activity suggesting the involvement of channels being activated during contraction and/or calcium release. Forced expression of mini-dystrophin in dystrophin-deficient myotubes, reactivates appropriate sarcolemmal expression of dystrophin-associated proteins and restores normal calcium handling in the cytosol. Furthermore, the recombinant mini-dystrophin reduced the store-operated calcium influx across the sarcolemma, and the mitochondrial calcium uptake during this influx. A slow component of calcium release dependent on IP3R, as well as the production of IP3, were also reduced to normal levels by expression of mini-dystrophin. Our studies provide a new model for the convergent regulation of transmembrane calcium influx and IP3-dependent calcium release by the dystrophin-based cytoskeleton (DBC). We also suggest molecular association of such channels with DBC which may provide the scaffold for assembling a multiprotein-signalling complex that modulates the channel activity. This suggests that the loss of this molecular association could participate in the alteration of calcium homeostasis observed in DMD muscle cells.
Collapse
Affiliation(s)
- Bruno Constantin
- Institut de Physiologie et Biologie Cellulaires, CNRS, UMR-6187, University of Poitiers, 86022, Poitiers, France.
| | | | | |
Collapse
|
48
|
Balghi H, Sebille S, Mondin L, Cantereau A, Constantin B, Raymond G, Cognard C. Mini-dystrophin expression down-regulates IP3-mediated calcium release events in resting dystrophin-deficient muscle cells. ACTA ACUST UNITED AC 2006; 128:219-30. [PMID: 16847098 PMCID: PMC2151532 DOI: 10.1085/jgp.200609559] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We present here evidence for the enhancement, at rest, of an inositol 1,4,5-trisphosphate (IP3)–mediated calcium signaling pathway in myotubes from dystrophin-deficient cell lines (SolC1(−)) as compared to a cell line from the same origin but transfected with mini-dystrophin (SolD(+)). With confocal microscopy, the number of sites discharging calcium (release site density [RSD]) was quantified and found more elevated in SolC1(−) than in SolD(+) myotubes. Variations of membrane potential had no significant effect on this difference, and higher resting [Ca2+]i in SolC1(−) (Marchand, E., B. Constantin, H. Balghi, M.C. Claudepierre, A. Cantereau, C. Magaud, A. Mouzou, G. Raymond, S. Braun, and C. Cognard. 2004. Exp. Cell Res. 297:363–379) cannot explain alone higher RSD. The exposure with SR Ca2+ channel inhibitors (ryanodine and 2-APB) and phospholipase C inhibitor (U73122) significantly reduced RSD in both cell types but with a stronger effect in dystrophin-deficient SolC1(−) myotubes. Immunocytochemistry allowed us to localize ryanodine receptors (RyRs) as well as IP3 receptors (IP3Rs), IP3R-1 and IP3R-2 isoforms, indicating the presence of both RyRs-dependent and IP3-dependent release systems in both cells. We previously reported evidence for the enhancement, through a Gi protein, of the IP3-mediated calcium signaling pathway in SolC1(−) as compared to SolD(+) myotubes during a high K+ stimulation (Balghi, H., S. Sebille, B. Constantin, S. Patri, V. Thoreau, L. Mondin, E. Mok, A. Kitzis, G. Raymond, and C. Cognard. 2006. J. Gen. Physiol. 127:171–182). Here we show that, at rest, these regulation mechanisms are also involved in the modulation of calcium release activities. The enhancement of resting release activity may participate in the calcium overload observed in dystrophin-deficient myotubes, and our findings support the hypothesis of the regulatory role of mini-dystrophin on intracellular signaling.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Channels/analysis
- Calcium Channels/physiology
- Calcium Signaling/physiology
- Cell Line
- Chelating Agents/pharmacology
- Cytoplasm/metabolism
- Down-Regulation
- Dystrophin/deficiency
- Dystrophin/genetics
- Dystrophin/physiology
- Egtazic Acid/analogs & derivatives
- Egtazic Acid/pharmacology
- Estrenes/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Mice
- Mice, Inbred C3H
- Mice, Knockout
- Microscopy, Confocal
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Nuclear Envelope/metabolism
- Phosphodiesterase Inhibitors/pharmacology
- Potassium/pharmacology
- Pyrrolidinones/pharmacology
- Receptors, Cytoplasmic and Nuclear/analysis
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/physiology
- Ryanodine/pharmacology
- Ryanodine Receptor Calcium Release Channel/metabolism
Collapse
Affiliation(s)
- Haouaria Balghi
- Institut de Physiologie et Biologie Cellulaires, CNRS UMR 6187, Université de Poitiers, 86022 Poitiers, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Balghi H, Sebille S, Constantin B, Patri S, Thoreau V, Mondin L, Mok E, Kitzis A, Raymond G, Cognard C. Mini-dystrophin expression down-regulates overactivation of G protein-mediated IP3 signaling pathway in dystrophin-deficient muscle cells. ACTA ACUST UNITED AC 2006; 127:171-82. [PMID: 16446505 PMCID: PMC2151485 DOI: 10.1085/jgp.200509456] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present here evidence for the enhancement of an inositol 1,4,5-trisphosphate (IP3) mediated calcium signaling pathway in myotubes from dystrophin-deficient cell lines (SolC1(−)) as compared to a cell line from the same origin but transfected with mini-dystrophin (SolD(+)). With confocal microscopy, we demonstrated that calcium rise, induced by the perifusion of a solution containing a high potassium concentration, was higher in SolC1(−) than in SolD(+) myotubes. The analysis of amplitude and kinetics of the calcium increase in SolC1(−) and in SolD(+) myotubes during the exposure with SR Ca2+ channel inhibitors (ryanodine and 2-APB) suggested the presence of two mechanisms of SR calcium release: (1) a fast SR calcium release that depended on ryanodine receptors and (2) a slow SR calcium release mediated by IP3 receptors. Detection analyses of mRNAs (reverse transcriptase [RT]-PCR) and proteins (Western blot and immunolocalization) demonstrated the presence of the three known isoforms of IP3 receptors in both SolC1(−) and SolD(+) myotubes. Furthermore, analysis of the kinetics of the rise in calcium revealed that the slow IP3-dependent release may be increased in the SolC1(−) as compared to the SolD(+), suggesting an inhibitory effect of mini-dystrophin in this signaling pathway. Upon incubation with pertussis toxin (PTX), an inhibitory effect similar to that of the IP3R inhibitor (2-APB) was observed on K+-evoked calcium release. This result suggests the involvement of a Gi protein upstream of the IP3 pathway in these stimulation conditions. A hypothetical model is depicted in which both Gi protein and IP3 production could be involved in K+-evoked calcium release as well as a possible interaction with mini-dystrophin. Our findings demonstrate the existence of a potential relationship between mini-dystrophin and SR calcium release as well as a regulatory role of mini-dystrophin on intracellular signaling.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Calcium/metabolism
- Calcium Channels/analysis
- Calcium Channels/chemistry
- Calcium Channels/drug effects
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Calcium Channels/physiology
- Calcium Signaling
- Cell Line
- Down-Regulation
- Dystrophin/analysis
- Dystrophin/deficiency
- Dystrophin/genetics
- Dystrophin/physiology
- GTP-Binding Protein alpha Subunits, Gi-Go/physiology
- GTP-Binding Proteins/physiology
- Gene Expression
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Mice
- Mice, Inbred C3H
- Microscopy, Confocal
- Muscle Fibers, Skeletal/metabolism
- Pertussis Toxin/pharmacology
- Potassium/pharmacology
- RNA, Messenger/analysis
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Ryanodine Receptor Calcium Release Channel/physiology
Collapse
Affiliation(s)
- Haouaria Balghi
- Institut de Physiologie et Biologie Cellulaires, CNRS UMR 6187, Université de Poitiers, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
May C, Weigl L, Karel A, Hohenegger M. Extracellular ATP activates ERK1/ERK2 via a metabotropic P2Y1 receptor in a Ca2+ independent manner in differentiated human skeletal muscle cells. Biochem Pharmacol 2006; 71:1497-509. [PMID: 16533496 DOI: 10.1016/j.bcp.2006.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 02/01/2006] [Accepted: 02/02/2006] [Indexed: 11/30/2022]
Abstract
ATP is released at the neuromuscular junction to regulate development and proliferation. The sequential expression of P2X and P2Y receptors has been correlated to these effects in many species and cell lines. We have therefore investigated ATP mediated signalling in differentiated primary human skeletal muscle cells. ATP was capable to trigger Ca2+ transients in these cells via P2Y receptors which were not attributable to Ca2+ influx via P2X receptors. Instead, ATP propagated the formation of inositol phosphate (IP) with an EC50 of 21.3 microM. The Ca2+ transient provoked by ATP was abrogated roughly 75% by the phospholipase C (PLC) inhibitor, U73122. Interestingly, the ryanodine sensitive Ca2+ pool was not involved in ATP triggered Ca2+ release. On mRNA level and by a pharmacological approach we confirmed the presence of the P2Y1, P2Y2, P2Y4 and P2Y6 receptors. Substantially, ATP activated IP formation via a P2Y1 receptor. In addition, ATP elicited extracellular signal regulated kinase (ERK)1/2 phosphorylation in a time and concentration dependent manner, again mainly via P2Y1 receptors. The ATP mediated ERK1/2 phosphorylation was strictly dependent on phospholipase C and PI3 kinase activity. Importantly, ATP mediated ERK1/2 phosphorylation was Ca2+ independent. This observation was corroborated by the finding that conventional protein kinase C inhibitors did not suppress ATP triggered ERK1/2 phosphorylation. Taken together, these observations highlight the importance of ATP as a co-neurotransmitter at the neuromuscular junction via dual signalling, i.e. IP3 receptor mediated Ca2+ transients and Ca2+ insensitive phosphorylation of ERK1/2.
Collapse
Affiliation(s)
- Christopher May
- Institute of Pharmacology, Medical University Vienna, Austria
| | | | | | | |
Collapse
|