1
|
Wang SSY. Advancing biomarker development for diagnostics and therapeutics using solid tumour cancer stem cell models. TUMORI JOURNAL 2024; 110:10-24. [PMID: 36964664 DOI: 10.1177/03008916231158411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The cancer stem cell model hopes to explain solid tumour carcinogenesis, tumour progression and treatment failure in cancers. However, the cancer stem cell model has led to minimal clinical translation to cancer stem cell biomarkers and targeted therapies in solid tumours. Many reasons underlie the challenges, one being the imperfect understanding of the cancer stem cell model. This review hopes to spur further research into clinically translatable cancer stem cell biomarkers through first defining cancer stem cells and their associated models. With a better understanding of these models there would be a development of more accurate biomarkers. Making the clinical translation of biomarkers into diagnostic tools and therapeutic agents more feasible.
Collapse
|
2
|
Tatar C, Avci CB, Acikgoz E, Oktem G. Doxorubicin-induced senescence promotes resistance to cell death by modulating genes associated with apoptotic and necrotic pathways in prostate cancer DU145 CD133 +/CD44 + cells. Biochem Biophys Res Commun 2023; 680:194-210. [PMID: 37748252 DOI: 10.1016/j.bbrc.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Cancer stem cells (CSCs) are the most important cause of cancer treatment failure. Traditional cancer treatments, such as chemotherapy and radiotherapy, damage healthy cells alongside malignant cells, leading to severe adverse effects. Therefore, inducing cellular senescence without triggering apoptosis, which further damages healthy cells, may be an alternative strategy. However, there is insufficient knowledge regarding senescence induction in CSCs that show resistance to treatment and stemness properties. The present study aims to elucidate the effects of senescence induction on proliferation, cell cycle, and apoptosis in prostate CSCs and non-CSCs. Prostate CSCs were isolated from DU145 cancer cells using the FACS method. Subsequently, senescence induction was performed in RWPE-1, DU145, prostate CSCs, and non-CSCs by using different concentrations of Doxorubicin (DOX). Cellular senescence was detected using the senescence markers SA-β-gal, Ki67, and senescence-associated heterochromatin foci (SAHF). The effects of senescence on cell cycle and apoptosis were evaluated using the Muse Cell Analyzer, and genes in signaling pathways associated with the apoptotic/necrotic pathway were analyzed by real-time PCR. Prostate CSCs were isolated with 95.6 ± 1.4% purity according to CD133+/CD44+ characteristics, and spheroid formation belonging to stem cells was observed. After DOX-induced senescence, we observed morphological changes, SA-β-gal positivity, SAHF, and the lack of Ki67 in senescent cells. Furthermore; we detected G2/M cell cycle arrest and downregulation of various apoptosis-related genes in senescent prostate CSCs. Our results showed that DOX is a potent inducer of senescence for prostate CSCs, inhibits proliferation by arresting the cell cycle, and senescent prostate CSCs develop resistance to apoptosis.
Collapse
Affiliation(s)
- Cansu Tatar
- Department of Stem Cell, Institute of Health Science, Ege University, 35100, Izmir, Turkey.
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey.
| | - Eda Acikgoz
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, 65080, Turkey.
| | - Gulperi Oktem
- Department of Stem Cell, Institute of Health Science, Ege University, 35100, Izmir, Turkey; Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey.
| |
Collapse
|
3
|
Koukourakis IM, Platoni K, Kouloulias V, Arelaki S, Zygogianni A. Prostate Cancer Stem Cells: Biology and Treatment Implications. Int J Mol Sci 2023; 24:14890. [PMID: 37834336 PMCID: PMC10573523 DOI: 10.3390/ijms241914890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Stem cells differentiate into mature organ/tissue-specific cells at a steady pace under normal conditions, but their growth can be accelerated during the process of tissue healing or in the context of certain diseases. It is postulated that the proliferation and growth of carcinomas are sustained by the presence of a vital cellular compartment resembling stem cells residing in normal tissues: 'stem-like cancer cells' or cancer stem cells (CSCs). Mutations in prostate stem cells can lead to the formation of prostate cancer. Prostate CSCs (PCSCs) have been identified and partially characterized. These express surface markers include CD44, CD133, integrin α2β1, and pluripotency factors like OCT4, NANOG, and SOX2. Several signaling pathways are also over-activated, including Notch, PTEN/Akt/PI3K, RAS-RAF-MEK-ERK and HH. Moreover, PCSCs appear to induce resistance to radiotherapy and chemotherapy, while their presence has been linked to aggressive cancer behavior and higher relapse rates. The development of treatment policies to target PCSCs in tumors is appealing as radiotherapy and chemotherapy, through cancer cell killing, trigger tumor repopulation via activated stem cells. Thus, blocking this reactive stem cell mobilization may facilitate a positive outcome through cytotoxic treatment.
Collapse
Affiliation(s)
- Ioannis M. Koukourakis
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece; (I.M.K.); (A.Z.)
| | - Kalliopi Platoni
- Medical Physics Unit, 2nd Department of Radiology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 12462 Athens, Greece
| | - Vassilis Kouloulias
- Radiation Oncology Unit, 2nd Department of Radiology, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 12462 Athens, Greece;
| | - Stella Arelaki
- Translational Functional Cancer Genomics, National Center for Tumor Diseases, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Anna Zygogianni
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece; (I.M.K.); (A.Z.)
| |
Collapse
|
4
|
Dahal S, Chaudhary P, Kim JA. Induction of promyelocytic leukemia zinc finger protein by miR-200c-3p restores sensitivity to anti-androgen therapy in androgen-refractory prostate cancer and inhibits the cancer progression via down-regulation of integrin α3β4. Cell Oncol (Dordr) 2023; 46:1113-1126. [PMID: 36995683 DOI: 10.1007/s13402-023-00803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
PURPOSE Androgen-refractory prostate cancer (ARPC) is one of the aggressive human cancers with metastatic capacity and resistance to androgen deprivation therapy (ADT). The present study investigated the genes responsible for ARPC progression and ADT resistance, and their regulatory mechanisms. METHODS Transcriptome analysis, co-immunoprecipitation, confocal microscopy, and FACS analysis were performed to determine differentially-expressed genes, integrin α3β4 heterodimer, and cancer stem cell (CSC) population. miRNA array, 3'-UTR reporter assay, ChIP assay, qPCR, and immunoblotting were used to determine differentially-expressed microRNAs, their binding to integrin transcripts, and gene expressions. A xenograft tumor model was used to assess tumor growth and metastasis. RESULTS Metastatic ARPC cell lines (PC-3 and DU145) exhibiting significant downregulation of ZBTB16 and AR showed significantly upregulated ITGA3 and ITGB4. Silencing either one of the integrin α3β4 heterodimer significantly suppressed ARPC survival and CSC population. miRNA array and 3'-UTR reporter assay revealed that miR-200c-3p, the most strongly downregulated miRNA in ARPCs, directly bound to 3'-UTR of ITGA3 and ITGB4 to inhibit the gene expression. Concurrently, miR-200c-3p also increased PLZF expression, which, in turn, inhibited integrin α3β4 expression. Combination treatment with miR-200c-3p mimic and AR inhibitor enzalutamide showed synergistic inhibitory effects on ARPC cell survival in vitro and tumour growth and metastasis of ARPC xenografts in vivo, and the combination effect was greater than the mimic alone. CONCLUSION This study demonstrated that miR-200c-3p treatment of ARPC is a promising therapeutic approach to restore the sensitivity to anti-androgen therapy and inhibit tumor growth and metastasis.
Collapse
Affiliation(s)
- Sadan Dahal
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Prakash Chaudhary
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
5
|
Yehya A, Youssef J, Hachem S, Ismael J, Abou-Kheir W. Tissue-specific cancer stem/progenitor cells: Therapeutic implications. World J Stem Cells 2023; 15:323-341. [PMID: 37342220 PMCID: PMC10277968 DOI: 10.4252/wjsc.v15.i5.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 05/26/2023] Open
Abstract
Surgical resection, chemotherapy, and radiation are the standard therapeutic modalities for treating cancer. These approaches are intended to target the more mature and rapidly dividing cancer cells. However, they spare the relatively quiescent and intrinsically resistant cancer stem cells (CSCs) subpopulation residing within the tumor tissue. Thus, a temporary eradication is achieved and the tumor bulk tends to revert supported by CSCs' resistant features. Based on their unique expression profile, the identification, isolation, and selective targeting of CSCs hold great promise for challenging treatment failure and reducing the risk of cancer recurrence. Yet, targeting CSCs is limited mainly by the irrelevance of the utilized cancer models. A new era of targeted and personalized anti-cancer therapies has been developed with cancer patient-derived organoids (PDOs) as a tool for establishing pre-clinical tumor models. Herein, we discuss the updated and presently available tissue-specific CSC markers in five highly occurring solid tumors. Additionally, we highlight the advantage and relevance of the three-dimensional PDOs culture model as a platform for modeling cancer, evaluating the efficacy of CSC-based therapeutics, and predicting drug response in cancer patients.
Collapse
Affiliation(s)
- Amani Yehya
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Joe Youssef
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Sana Hachem
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Jana Ismael
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon.
| |
Collapse
|
6
|
Kumar R, Sena LA, Denmeade SR, Kachhap S. The testosterone paradox of advanced prostate cancer: mechanistic insights and clinical implications. Nat Rev Urol 2023; 20:265-278. [PMID: 36543976 PMCID: PMC10164147 DOI: 10.1038/s41585-022-00686-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
The discovery of the benefits of castration for prostate cancer treatment in 1941 led to androgen deprivation therapy, which remains a mainstay of the treatment of men with advanced prostate cancer. However, as early as this original publication, the inevitable development of castration-resistant prostate cancer was recognized. Resistance first manifests as a sustained rise in the androgen-responsive gene, PSA, consistent with reactivation of the androgen receptor axis. Evaluation of clinical specimens demonstrates that castration-resistant prostate cancer cells remain addicted to androgen signalling and adapt to chronic low-testosterone states. Paradoxically, results of several studies have suggested that treatment with supraphysiological levels of testosterone can retard prostate cancer growth. Insights from these studies have been used to investigate administration of supraphysiological testosterone to patients with prostate cancer for clinical benefits, a strategy that is termed bipolar androgen therapy (BAT). BAT involves rapid cycling from supraphysiological back to near-castration testosterone levels over a 4-week cycle. Understanding how BAT works at the molecular and cellular levels might help to rationalize combining BAT with other agents to achieve increased efficacy and tumour responses.
Collapse
Affiliation(s)
- Rajendra Kumar
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Laura A Sena
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Samuel R Denmeade
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Sushant Kachhap
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
7
|
Ionescu CA, Aschie M, Matei E, Cozaru GC, Deacu M, Mitroi AF, Baltatescu GI, Nicolau AA, Mazilu L, Tuta LA, Iorga IC, Stanigut A, Enciu M. Characterization of the Tumor Microenvironment and the Biological Processes with a Role in Prostatic Tumorigenesis. Biomedicines 2022; 10:1672. [PMID: 35884977 PMCID: PMC9313300 DOI: 10.3390/biomedicines10071672] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/25/2022] [Accepted: 07/06/2022] [Indexed: 12/25/2022] Open
Abstract
Prostate intratumoral heterogeneity, driven by epithelial−mesenchymal plasticity, contributes to the limited treatment response, and it is therefore necessary to use the biomarkers to improve patient prognostic survival. We aimed to characterize the tumor microenvironment (T lymphocyte infiltration, intratumoral CD34, and KI-67 expressions) by immunohistochemistry methods and to study the biological mechanisms (cell cycle, cell proliferation by adhesion glycoproteins, cell apoptosis) involved in the evolution of the prostate tumor process by flow-cytometry techniques. Our results showed that proliferative activity (S-phase) revealed statistically significant lower values of prostate adenocarcinoma (PCa) and benign prostatic hyperplasia (BPH) reported at non-malignant adjacent cell samples (PCa 4.32 ± 4.91; BPH 2.35 ± 1.37 vs. C 10.23 ± 0.43, p < 0.01). Furthermore, 68% of BPH cases and 88% of patients with PCa had aneuploidy. Statistically increased values of cell proliferation (CD34+ CD61+) were observed in prostate adenocarcinoma and hyperplasia cases reported to non-malignant adjacent cell samples (PCa 28.79 ± 10.14; BPH 40.65 ± 11.88 vs. C 16.15 ± 2.58, p < 0.05). The CD42b+ cell population with a role in cell adhesion, and metastasis had a significantly increased value in PCa cases (38.39 ± 11.23) reported to controls (C 26.24 ± 0.62, p < 0.01). The intratumoral expression of CD34 showed a significantly increased pattern of PCa tissue samples reported to controls (PCa 26.12 ± 6.84 vs. C 1.50 ± 0.70, p < 0.01). Flow cytometric analysis of the cell cycle, apoptosis, and adhesion glycoproteins with a critical role in tumoral cell proliferation, T cell infiltrations, Ki-67, and CD 34 expressions by IHC methods are recommended as techniques for the efficient means of measurement for adenocarcinoma and hyperplasia prostate tissue samples and should be explored in the future.
Collapse
Affiliation(s)
- Cristina-Anita Ionescu
- Chemical Carcinogenesis and Molecular Biology Laboratory, Institute of Oncology “Prof. Dr. Alexandru Trestioreanu”, 022328 Bucharest, Romania;
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (M.A.); (M.D.); (L.M.); (L.A.T.); (I.C.I.); (A.S.); (M.E.)
| | - Mariana Aschie
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (M.A.); (M.D.); (L.M.); (L.A.T.); (I.C.I.); (A.S.); (M.E.)
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, 145 Tomis Blvd., 900591 Constanta, Romania; (G.C.C.); (A.F.M.); (G.I.B.); (A.-A.N.)
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Elena Matei
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, 145 Tomis Blvd., 900591 Constanta, Romania; (G.C.C.); (A.F.M.); (G.I.B.); (A.-A.N.)
| | - Georgeta Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, 145 Tomis Blvd., 900591 Constanta, Romania; (G.C.C.); (A.F.M.); (G.I.B.); (A.-A.N.)
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Mariana Deacu
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (M.A.); (M.D.); (L.M.); (L.A.T.); (I.C.I.); (A.S.); (M.E.)
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Anca Florentina Mitroi
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, 145 Tomis Blvd., 900591 Constanta, Romania; (G.C.C.); (A.F.M.); (G.I.B.); (A.-A.N.)
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Gabriela Isabela Baltatescu
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, 145 Tomis Blvd., 900591 Constanta, Romania; (G.C.C.); (A.F.M.); (G.I.B.); (A.-A.N.)
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Antonela-Anca Nicolau
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, 145 Tomis Blvd., 900591 Constanta, Romania; (G.C.C.); (A.F.M.); (G.I.B.); (A.-A.N.)
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Laura Mazilu
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (M.A.); (M.D.); (L.M.); (L.A.T.); (I.C.I.); (A.S.); (M.E.)
- Oncology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Liliana Ana Tuta
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (M.A.); (M.D.); (L.M.); (L.A.T.); (I.C.I.); (A.S.); (M.E.)
- Nephrology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Ionut Ciprian Iorga
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (M.A.); (M.D.); (L.M.); (L.A.T.); (I.C.I.); (A.S.); (M.E.)
- Urology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Alina Stanigut
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (M.A.); (M.D.); (L.M.); (L.A.T.); (I.C.I.); (A.S.); (M.E.)
- Nephrology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Manuela Enciu
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (M.A.); (M.D.); (L.M.); (L.A.T.); (I.C.I.); (A.S.); (M.E.)
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| |
Collapse
|
8
|
Archer LK, Frame FM, Walker HF, Droop AP, McDonald GLK, Kucko S, Berney DM, Mann VM, Simms MS, Maitland NJ. ETS transcription factor ELF3 (ESE-1) is a cell cycle regulator in benign and malignant prostate. FEBS Open Bio 2022; 12:1365-1387. [PMID: 35472129 PMCID: PMC9249341 DOI: 10.1002/2211-5463.13417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/23/2022] [Accepted: 04/25/2022] [Indexed: 11/07/2022] Open
Abstract
This study aimed to elucidate the role of ELF3, an ETS family member in normal prostate growth and prostate cancer. Silencing ELF3 in both benign prostate (BPH-1) and prostate cancer (PC3) cell lines resulted in decreased colony forming ability, inhibition of cell migration and reduced cell viability due to cell cycle arrest, establishing ELF3 as a cell cycle regulator. Increased ELF3 expression in more advanced prostate tumours was shown by immunostaining of tissue microarrays and from analysis of gene expression and genetic alteration studies. This study indicates that ELF3 functions as part of normal prostate epithelial growth but also as a potential oncogene in advanced prostate cancers.
Collapse
Affiliation(s)
- Leanne K. Archer
- Cancer Research UnitDepartment of BiologyUniversity of YorkHeslingtonUK
| | - Fiona M. Frame
- Cancer Research UnitDepartment of BiologyUniversity of YorkHeslingtonUK
| | - Hannah F. Walker
- Cancer Research UnitDepartment of BiologyUniversity of YorkHeslingtonUK
| | | | | | - Samuel Kucko
- Cancer Research UnitDepartment of BiologyUniversity of YorkHeslingtonUK
| | - Daniel M. Berney
- Department of Molecular OncologyBarts Cancer InstituteQueen Mary University of LondonUK
| | - Vincent M. Mann
- Cancer Research UnitDepartment of BiologyUniversity of YorkHeslingtonUK
| | | | | |
Collapse
|
9
|
Ali A, Du Feu A, Oliveira P, Choudhury A, Bristow RG, Baena E. Prostate zones and cancer: lost in transition? Nat Rev Urol 2022; 19:101-115. [PMID: 34667303 DOI: 10.1038/s41585-021-00524-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 12/16/2022]
Abstract
Localized prostate cancer shows great clinical, genetic and environmental heterogeneity; however, prostate cancer treatment is currently guided solely by clinical staging, serum PSA levels and histology. Increasingly, the roles of differential genomics, multifocality and spatial distribution in tumorigenesis are being considered to further personalize treatment. The human prostate is divided into three zones based on its histological features: the peripheral zone (PZ), the transition zone (TZ) and the central zone (CZ). Each zone has variable prostate cancer incidence, prognosis and outcomes, with TZ prostate tumours having better clinical outcomes than PZ and CZ tumours. Molecular and cell biological studies can improve understanding of the unique molecular, genomic and zonal cell type features that underlie the differences in tumour progression and aggression between the zones. The unique biology of each zonal tumour type could help to guide individualized treatment and patient risk stratification.
Collapse
Affiliation(s)
- Amin Ali
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Alexander Du Feu
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Pedro Oliveira
- The Christie NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Ananya Choudhury
- The Christie NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK.,The University of Manchester, Manchester Cancer Research Centre, Manchester, UK.,Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Robert G Bristow
- The Christie NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK.,The University of Manchester, Manchester Cancer Research Centre, Manchester, UK.,Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Esther Baena
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK. .,Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK.
| |
Collapse
|
10
|
Grossmann S, Hooks Y, Wilson L, Moore L, O'Neill L, Martincorena I, Voet T, Stratton MR, Heer R, Campbell PJ. Development, maturation, and maintenance of human prostate inferred from somatic mutations. Cell Stem Cell 2021; 28:1262-1274.e5. [PMID: 33657416 PMCID: PMC8260206 DOI: 10.1016/j.stem.2021.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/19/2020] [Accepted: 02/02/2021] [Indexed: 01/23/2023]
Abstract
Clonal dynamics and mutation burden in healthy human prostate epithelium are relevant to prostate cancer. We sequenced whole genomes from 409 microdissections of normal prostate epithelium across 8 donors, using phylogenetic reconstruction with spatial mapping in a 59-year-old man's prostate to reconstruct tissue dynamics across the lifespan. Somatic mutations accumulate steadily at ∼16 mutations/year/clone, with higher rates in peripheral than peri-urethral regions. The 24-30 independent glandular subunits are established as rudimentary ductal structures during fetal development by 5-10 embryonic cells each. Puberty induces formation of further side and terminal branches by local stem cells disseminated throughout the rudimentary ducts during development. During adult tissue maintenance, clonal expansions have limited geographic scope and minimal migration. Driver mutations are rare in aging prostate epithelium, but the one driver we did observe generated a sizable intraepithelial clonal expansion. Leveraging unbiased clock-like mutations, we define prostate stem cell dynamics through fetal development, puberty, and aging.
Collapse
Affiliation(s)
- Sebastian Grossmann
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Yvette Hooks
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Laura Wilson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Luiza Moore
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Laura O'Neill
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Iñigo Martincorena
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Thierry Voet
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK; Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Michael R Stratton
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Rakesh Heer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
| | - Peter J Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK; Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
11
|
Pinel L, Cyr DG. Self-renewal and differentiation of rat Epididymal basal cells using a novel in vitro organoid model. Biol Reprod 2021; 105:987-1001. [PMID: 34104939 DOI: 10.1093/biolre/ioab113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/29/2020] [Accepted: 05/29/2021] [Indexed: 12/14/2022] Open
Abstract
The epididymis is composed of a pseudostratified epithelium comprised of various cell types. Studies have shown that rat basal cells share common properties with adult stem cells and begin to differentiate in vitro in response to fibroblast growth factor and 5α-dihydrotestosterone. The characterization of rat basal cells is therefore necessary to fully understand the role of these cells. The objectives of this study were to assess the ability of single basal cells to develop organoids and to assess their ability to self-renew and differentiate in vitro. We isolated basal cells from the rat epididymis and established 3-dimensional cell cultures from the basal and non-basal cell fractions. Organoids were formed by single adult epididymal basal cells. Organoids were dissociated into single basal cells which were able to reform new organoids, and were maintained over 10 generations. Long-term culture of organoids revealed that these cells could differentiated into cells expressing the principal cell markers aquaporin 9 and cystic fibrosis transmembrane conductance regulator. Electron microscopy demonstrated that organoids were comprised of several polarized cell types displaying microvilli and the ability to form tight junctions. Additionally, organoids could be formed by basal cells from either the proximal or distal region of the epididymis, and are able to secrete clusterin, a protein implicated in the maturation of spermatozoa. These data indicate that rat basal cells can be used to derive epididymal organoids, and further supports that notion that these may represent a stem cell population in the epididymis.
Collapse
Affiliation(s)
- Laurie Pinel
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, University of Quebec, 531 boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, University of Quebec, 531 boul. des Prairies, Laval, QC, H7V 1B7, Canada
| |
Collapse
|
12
|
Kwon OJ, Zhang L, Jia D, Zhou Z, Li Z, Haffner M, Lee JK, True L, Morrissey C, Xin L. De novo induction of lineage plasticity from human prostate luminal epithelial cells by activated AKT1 and c-Myc. Oncogene 2020; 39:7142-7151. [PMID: 33009488 PMCID: PMC7704645 DOI: 10.1038/s41388-020-01487-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 01/16/2023]
Abstract
Neuroendocrine prostate cancer (NEPC) is an aggressive variant of prostate cancer that either develops de novo or arises from prostate adenocarcinoma as a result of treatment resistance. Although the prostate basal cells have been shown to directly generate tumor cells with neuroendocrine features when transduced with oncogenic signaling, the identity of the cell-of-origin for de novo NEPC remains unclear. We show that the TACSTD2high human prostate luminal epithelia cells highly express SOX2 and are relatively enriched in the transition zone prostate. Both TACSTD2high and TACSTD2low luminal cells transduced by activated AKT and c-Myc can form organoids containing versatile clinically relevant tumor cell lineages with regard to the expression of AR and the neuroendocrine cell markers Synaptophysin and Chromogranin A. Tumor organoid cells derived from the TACSTD2high luminal cells are more predisposed to neuroendocrine differentiation along passaging and are relatively more castration-resistant. Knocking down TACSTD2 and SOX2 both attenuate neuroendocrine differentiation of tumor organoid cells. This study demonstrates de novo neuroendocrine differentiation of the human prostate luminal epithelial cells induced by caAKT and c-Myc and reveals an impact of cellular status on initiation of lineage plasticity.
Collapse
Affiliation(s)
- Oh-Joon Kwon
- Department of Urology, University of Washington, Seattle, WA, 98109, USA
| | - Li Zhang
- Department of Urology, University of Washington, Seattle, WA, 98109, USA
| | - Deyong Jia
- Department of Urology, University of Washington, Seattle, WA, 98109, USA
| | - Zhicheng Zhou
- Department of Urology, University of Washington, Seattle, WA, 98109, USA
| | - Zhouyihan Li
- Department of Chemistry and Biochemistry, University of Washington, Seattle, WA, 98109, USA
| | - Michael Haffner
- Human Biology Division, Fred Hutch Cancer Research Center, Seattle, WA, 98109, USA
| | - John K Lee
- Human Biology Division, Fred Hutch Cancer Research Center, Seattle, WA, 98109, USA
| | - Lawrence True
- Department of Pathology, University of Washington, Seattle, WA, 98109, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, 98109, USA
| | - Li Xin
- Department of Urology, University of Washington, Seattle, WA, 98109, USA. .,Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
13
|
STAT3 inhibition with galiellalactone effectively targets the prostate cancer stem-like cell population. Sci Rep 2020; 10:13958. [PMID: 32811873 PMCID: PMC7434889 DOI: 10.1038/s41598-020-70948-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer stem cells (CSCs) are a small subpopulation of quiescent cells with the potential to differentiate into tumor cells. CSCs are involved in tumor initiation and progression and contribute to treatment failure through their intrinsic resistance to chemo- or radiotherapy, thus representing a substantial concern for cancer treatment. Prostate CSCs’ activity has been shown to be regulated by the transcription factor Signal Transducer and Activator of Transcription 3 (STAT3). Here we investigated the effect of galiellalactone (GL), a direct STAT3 inhibitor, on CSCs derived from prostate cancer patients, on docetaxel-resistant spheres with stem cell characteristics, on CSCs obtained from the DU145 cell line in vitro and on DU145 tumors in vivo. We found that GL significantly reduced the viability of docetaxel-resistant and patient-derived spheres. Moreover, CSCs isolated from DU145 cells were sensitive to low concentrations of GL, and the treatment with GL suppressed their viability and their ability to form colonies and spheres. STAT3 inhibition down regulated transcriptional targets of STAT3 in these cells, indicating STAT3 activity in CSCs. Our results indicate that GL can target the prostate stem cell niche in patient-derived cells, in docetaxel-resistant spheres and in an in vitro model. We conclude that GL represents a promising therapeutic approach for prostate cancer patients, as it reduces the viability of prostate cancer-therapy-resistant cells in both CSCs and non-CSC populations.
Collapse
|
14
|
Kwon OJ, Choi JM, Zhang L, Jia D, Li Z, Zhang Y, Jung SY, Creighton CJ, Xin L. The Sca-1 + and Sca-1 - mouse prostatic luminal cell lineages are independently sustained. Stem Cells 2020; 38:1479-1491. [PMID: 32627901 DOI: 10.1002/stem.3253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/05/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
The phenotypic and functional heterogeneity of the mouse prostate epithelial cell lineages remains incompletely characterized. We show that the Sca-1+ luminal cells at the mouse proximal prostate express Sox2. These cells are replicative quiescent, castration resistant, and do not possess secretory function. We use the Probasin-CreERT2 and Sox2-CreERT2 models in concert with a fluorescent reporter line to label the Sca-1- and Sca-1+ luminal cells, respectively. By a lineage tracing approach, we show that the two luminal cell populations are independently sustained. Sox2 is dispensable for the maintenance of the Sca-1+ luminal cells but is essential for their facultative bipotent differentiation capacity. The Sca-1+ luminal cells share molecular features with the human TACSTD2+ luminal cells. This study corroborates the heterogeneity of the mouse prostate luminal cell lineage and shows that the adult mouse prostate luminal cell lineage is maintained by distinct cellular entities rather than a single progenitor population.
Collapse
Affiliation(s)
- Oh-Joon Kwon
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Jong Min Choi
- Department of Chemistry and Biochemistry, Baylor College of Medicine, Houston, Texas, USA
| | - Li Zhang
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Deyong Jia
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Zhouyihan Li
- Department of Chemistry and Biochemistry, University of Washington, Seattle, Washington, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Sung Yun Jung
- Department of Chemistry and Biochemistry, Baylor College of Medicine, Houston, Texas, USA
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Li Xin
- Department of Urology, University of Washington, Seattle, Washington, USA.,Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
15
|
Giacomini A, Grillo E, Rezzola S, Ribatti D, Rusnati M, Ronca R, Presta M. The FGF/FGFR system in the physiopathology of the prostate gland. Physiol Rev 2020; 101:569-610. [PMID: 32730114 DOI: 10.1152/physrev.00005.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factors (FGFs) are a family of proteins possessing paracrine, autocrine, or endocrine functions in a variety of biological processes, including embryonic development, angiogenesis, tissue homeostasis, wound repair, and cancer. Canonical FGFs bind and activate tyrosine kinase FGF receptors (FGFRs), triggering intracellular signaling cascades that mediate their biological activity. Experimental evidence indicates that FGFs play a complex role in the physiopathology of the prostate gland that ranges from essential functions during embryonic development to modulation of neoplastic transformation. The use of ligand- and receptor-deleted mouse models has highlighted the requirement for FGF signaling in the normal development of the prostate gland. In adult prostate, the maintenance of a functional FGF/FGFR signaling axis is critical for organ homeostasis and function, as its disruption leads to prostate hyperplasia and may contribute to cancer progression and metastatic dissemination. Dissection of the molecular landscape modulated by the FGF family will facilitate ongoing translational efforts directed toward prostate cancer therapy.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Domenico Ribatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| |
Collapse
|
16
|
Packer JR, Hirst AM, Droop AP, Adamson R, Simms MS, Mann VM, Frame FM, O'Connell D, Maitland NJ. Notch signalling is a potential resistance mechanism of progenitor cells within patient-derived prostate cultures following ROS-inducing treatments. FEBS Lett 2020; 594:209-226. [PMID: 31468514 PMCID: PMC7003772 DOI: 10.1002/1873-3468.13589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022]
Abstract
Low Temperature Plasma (LTP) generates reactive oxygen and nitrogen species, causing cell death, similarly to radiation. Radiation resistance results in tumour recurrence, however mechanisms of LTP resistance are unknown. LTP was applied to patient-derived prostate epithelial cells and gene expression assessed. A typical global oxidative response (AP-1 and Nrf2 signalling) was induced, whereas Notch signalling was activated exclusively in progenitor cells. Notch inhibition induced expression of prostatic acid phosphatase (PAP), a marker of prostate epithelial cell differentiation, whilst reducing colony forming ability and preventing tumour formation. Therefore, if LTP is to be progressed as a novel treatment for prostate cancer, combination treatments should be considered in the context of cellular heterogeneity and existence of cell type-specific resistance mechanisms.
Collapse
Affiliation(s)
- John R. Packer
- Cancer Research UnitDepartment of BiologyUniversity of YorkUK
| | - Adam M. Hirst
- Cancer Research UnitDepartment of BiologyUniversity of YorkUK
- Department of PhysicsYork Plasma InstituteUniversity of YorkUK
| | | | - Rachel Adamson
- Cancer Research UnitDepartment of BiologyUniversity of YorkUK
| | - Matthew S. Simms
- Department of UrologyCastle Hill Hospital (Hull and East Yorkshire Hospitals NHS Trust)CottinghamUK
| | - Vincent M. Mann
- Cancer Research UnitDepartment of BiologyUniversity of YorkUK
| | - Fiona M. Frame
- Cancer Research UnitDepartment of BiologyUniversity of YorkUK
| | | | | |
Collapse
|
17
|
Dondossola E, Paindelli C. In vitro three-dimensional modeling for prostate cancer. BIOMATERIALS FOR 3D TUMOR MODELING 2020:251-286. [DOI: 10.1016/b978-0-12-818128-7.00012-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Testa U, Castelli G, Pelosi E. Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E82. [PMID: 31366128 PMCID: PMC6789661 DOI: 10.3390/medicines6030082] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Prostate cancer is the most frequent nonskin cancer and second most common cause of cancer-related deaths in man. Prostate cancer is a clinically heterogeneous disease with many patients exhibiting an aggressive disease with progression, metastasis, and other patients showing an indolent disease with low tendency to progression. Three stages of development of human prostate tumors have been identified: intraepithelial neoplasia, adenocarcinoma androgen-dependent, and adenocarcinoma androgen-independent or castration-resistant. Advances in molecular technologies have provided a very rapid progress in our understanding of the genomic events responsible for the initial development and progression of prostate cancer. These studies have shown that prostate cancer genome displays a relatively low mutation rate compared with other cancers and few chromosomal loss or gains. The ensemble of these molecular studies has led to suggest the existence of two main molecular groups of prostate cancers: one characterized by the presence of ERG rearrangements (~50% of prostate cancers harbor recurrent gene fusions involving ETS transcription factors, fusing the 5' untranslated region of the androgen-regulated gene TMPRSS2 to nearly the coding sequence of the ETS family transcription factor ERG) and features of chemoplexy (complex gene rearrangements developing from a coordinated and simultaneous molecular event), and a second one characterized by the absence of ERG rearrangements and by the frequent mutations in the E3 ubiquitin ligase adapter SPOP and/or deletion of CDH1, a chromatin remodeling factor, and interchromosomal rearrangements and SPOP mutations are early events during prostate cancer development. During disease progression, genomic and epigenomic abnormalities accrued and converged on prostate cancer pathways, leading to a highly heterogeneous transcriptomic landscape, characterized by a hyperactive androgen receptor signaling axis.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
19
|
Abstract
Stem/progenitor cells play central roles in processes of organogenesis and tissue maintenance, whereas cancer stem cells (CSCs) are thought to drive tumor malignancy. Here, we review recent progress in the identification and analysis of normal prostate stem/progenitor cells as well as putative CSCs in both genetically engineered mouse models as well as in human tissue. We also discuss studies that have investigated the cell type of origin for prostate cancer. In addition, we provide a critical assessment of methodologies used in stem cell analyses and outline directions for future research.
Collapse
Affiliation(s)
- Jia J Li
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Urology, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Michael M Shen
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Urology, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, New York 10032
| |
Collapse
|
20
|
Salem O, Hansen CG. The Hippo Pathway in Prostate Cancer. Cells 2019; 8:E370. [PMID: 31018586 PMCID: PMC6523349 DOI: 10.3390/cells8040370] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023] Open
Abstract
Despite recent efforts, prostate cancer (PCa) remains one of the most common cancers in men. Currently, there is no effective treatment for castration-resistant prostate cancer (CRPC). There is, therefore, an urgent need to identify new therapeutic targets. The Hippo pathway and its downstream effectors-the transcriptional co-activators, Yes-associated protein (YAP) and its paralog, transcriptional co-activator with PDZ-binding motif (TAZ)-are foremost regulators of stem cells and cancer biology. Defective Hippo pathway signaling and YAP/TAZ hyperactivation are common across various cancers. Here, we draw on insights learned from other types of cancers and review the latest advances linking the Hippo pathway and YAP/TAZ to PCa onset and progression. We examine the regulatory interaction between Hippo-YAP/TAZ and the androgen receptor (AR), as main regulators of PCa development, and how uncontrolled expression of YAP/TAZ drives castration resistance by inducing cellular stemness. Finally, we survey the potential therapeutic targeting of the Hippo pathway and YAP/TAZ to overcome PCa.
Collapse
Affiliation(s)
- Omar Salem
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| | - Carsten G Hansen
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| |
Collapse
|
21
|
Wei X, Zhang L, Zhou Z, Kwon OJ, Zhang Y, Nguyen H, Dumpit R, True L, Nelson P, Dong B, Xue W, Birchmeier W, Taketo MM, Xu F, Creighton CJ, Ittmann MM, Xin L. Spatially Restricted Stromal Wnt Signaling Restrains Prostate Epithelial Progenitor Growth through Direct and Indirect Mechanisms. Cell Stem Cell 2019; 24:753-768.e6. [PMID: 30982770 DOI: 10.1016/j.stem.2019.03.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/11/2018] [Accepted: 03/10/2019] [Indexed: 12/31/2022]
Abstract
Cell-autonomous Wnt signaling has well-characterized functions in controlling stem cell activity, including in the prostate. While niche cells secrete Wnt ligands, the effects of Wnt signaling in niche cells per se are less understood. Here, we show that stromal cells in the proximal prostatic duct near the urethra, a mouse prostate stem cell niche, not only produce multiple Wnt ligands but also exhibit strong Wnt/β-catenin activity. The non-canonical Wnt ligand Wnt5a, secreted by proximal stromal cells, directly inhibits proliefration of prostate epithelial stem or progenitor cells whereas stromal cell-autonomous canonical Wnt/β-catenin signaling indirectly suppresses prostate stem or progenitor activity via the transforming growth factor β (TGFβ) pathway. Collectively, these pathways restrain the proliferative potential of epithelial cells in the proximal prostatic ducts. Human prostate likewise exhibits spatially restricted distribution of stromal Wnt/β-catenin activity, suggesting a conserved mechanism for tissue patterning. Thus, this study shows how distinct stromal signaling mechanisms within the prostate cooperate to regulate tissue homeostasis.
Collapse
Affiliation(s)
- Xing Wei
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA; Department of Urology, University of Washington, Seattle, WA 98109, USA
| | - Li Zhang
- Department of Urology, University of Washington, Seattle, WA 98109, USA
| | - Zhicheng Zhou
- Department of Urology, University of Washington, Seattle, WA 98109, USA
| | - Oh-Joon Kwon
- Department of Urology, University of Washington, Seattle, WA 98109, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hoang Nguyen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center of Stem Cell and Regenerative Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruth Dumpit
- Human Biology Division, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA
| | - Lawrence True
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
| | - Peter Nelson
- Human Biology Division, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA
| | - Baijun Dong
- Department of Urology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Xue
- Department of Urology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Walter Birchmeier
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Makoto M Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Feng Xu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael M Ittmann
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX 77030, USA
| | - Li Xin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Urology, University of Washington, Seattle, WA 98109, USA; Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
22
|
The putative tumour suppressor protein Latexin is secreted by prostate luminal cells and is downregulated in malignancy. Sci Rep 2019; 9:5120. [PMID: 30914656 PMCID: PMC6435711 DOI: 10.1038/s41598-019-41379-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/28/2019] [Indexed: 11/09/2022] Open
Abstract
Loss of latexin (LXN) expression negatively correlates with the prognosis of several human cancers. Despite association with numerous processes including haematopoietic stem cell (HSC) fate, inflammation and tumour suppression, a clearly defined biological role for LXN is still lacking. Therefore, we sought to understand LXN expression and function in the normal and malignant prostate to assess its potential as a therapeutic target. Our data demonstrate that LXN is highly expressed in normal prostate luminal cells but downregulated in high Gleason grade cancers. LXN protein is both cytosolic and secreted by prostate cells and expression is directly and potently upregulated by all-trans retinoic acid (atRA). Whilst overexpression of LXN in prostate epithelial basal cells did not affect cell fate, LXN overexpression in the luminal cancer line LNCaP reduced plating efficiency. Transcriptome analysis revealed that LXN overexpression had no direct effects on gene expression but had significant indirect effects on important genes involved in both retinoid metabolism and IFN-associated inflammatory responses. These data highlight a potential role for LXN in retinoid signaling and inflammatory pathways. Investigating the effects of LXN on immune cell function in the tumour microenvironment (TME) may reveal how observed intratumoural loss of LXN affects the prognosis of many adenocarcinomas.
Collapse
|
23
|
Abstract
Comprehensive knowledge of the normal prostate epithelial lineage hierarchy is a prerequisite to investigate the identity of the cells of origin for prostate cancer. The basal and luminal cells constitute most of the prostate epithelium and have been the major focuses of the study on the cells of origin for prostate cancer. Much progress has been made during the past few decades, mainly using mouse models, to understand the inter-lineage relationship and intra-lineage heterogeneity in adults as well as the lineage plasticity during conditions of stress. These studies have concluded that the adult mouse prostate basal and luminal cells are largely independently sustained under physiological conditions, but both types of cells possess the capacity for bipotent differentiation under stress or artificial experimental conditions. However, the existence or the identity of the putative progenitors within each lineage warrants further investigation. Whether the human prostate lineage hierarchy is completely the same as that of the mouse remains uncertain. Experiments from independent groups have demonstrated that both types of cells in mice and humans can serve as targets for transformation. But controversies remain whether the disease from distinct cells of origin display different clinical behaviors. Further investigation of the intra-lineage heterogeneity will provide new insights into this issue. Understanding the identity of the cells of origin for prostate cancer will help identify novel prognostic markers for early detection of aggressive prostate cancers, provide insights into the therapeutic vulnerability of these tumors, and inspire novel therapeutic strategies.
Collapse
|
24
|
Ojalill M, Parikainen M, Rappu P, Aalto E, Jokinen J, Virtanen N, Siljamäki E, Heino J. Integrin α2β1 decelerates proliferation, but promotes survival and invasion of prostate cancer cells. Oncotarget 2018; 9:32435-32447. [PMID: 30197754 PMCID: PMC6126696 DOI: 10.18632/oncotarget.25945] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/21/2018] [Indexed: 01/03/2023] Open
Abstract
High expression level of integrin α2β1 is a hallmark of prostate cancer stem cell like cells. The role of this collagen receptor is controversial since it is down regulated in poorly differentiated carcinomas, but concomitantly proposed to promote metastasis. Here, we show that docetaxel resistant DU145 prostate cancer cells express high levels of α2β1 and that α2β1High subpopulation of DU145 cells proliferates slower than the cells representing α2β1Low subpopulation. To further study this initial observation we used Crispr/Cas9 technology to create an α2β1 negative DU145 cell line. Furthermore, we performed rescue experiment by transfecting α2 knockout cells with vector carrying α2 cDNA or with an empty vector for appropriate control. When these two cell lines were compared, α2β1 positive cells proliferated slower, were more resistant to docetaxel and also migrated more effectively on collagen and invaded faster through matrigel or collagen. Integrin α2β1 was demonstrated to be a positive regulator of p38 MAPK phosphorylation and a selective p38 inhibitor (SB203580) promoted proliferation and inhibited invasion. Effects of α2β1 integrin on the global gene expression pattern of DU145 cells in spheroid cultures were studied by RNA sequencing. Integrin α2β1 was shown to regulate several cancer progression related genes, most notably matrix metalloproteinase-1 (MMP-1), a recognized invasion promoting protein. To conclude, the fact that α2β1 decelerates cell proliferation may explain the dominance of α2β1 negative/low cells in primary sites of poorly differentiated carcinomas, while the critical role of α2β1 integrin in invasion stresses the importance of this adhesion receptor in cancer dissemination.
Collapse
Affiliation(s)
| | | | - Pekka Rappu
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Elina Aalto
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Johanna Jokinen
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Noora Virtanen
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Elina Siljamäki
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Jyrki Heino
- Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
25
|
Frank S, Nelson P, Vasioukhin V. Recent advances in prostate cancer research: large-scale genomic analyses reveal novel driver mutations and DNA repair defects. F1000Res 2018; 7. [PMID: 30135717 PMCID: PMC6073096 DOI: 10.12688/f1000research.14499.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is a disease of mutated and misregulated genes. However, primary prostate tumors have relatively few mutations, and only three genes (
ERG,
PTEN, and
SPOP) are recurrently mutated in more than 10% of primary tumors. On the other hand, metastatic castration-resistant tumors have more mutations, but, with the exception of the androgen receptor gene (
AR), no single gene is altered in more than half of tumors. Structural genomic rearrangements are common, including
ERG fusions, copy gains involving the
MYC locus, and copy losses containing
PTEN. Overall, instead of being associated with a single dominant driver event, prostate tumors display various combinations of modifications in oncogenes and tumor suppressors. This review takes a broad look at the recent advances in PCa research, including understanding the genetic alterations that drive the disease and how specific mutations can sensitize tumors to potential therapies. We begin with an overview of the genomic landscape of primary and metastatic PCa, enabled by recent large-scale sequencing efforts. Advances in three-dimensional cell culture techniques and mouse models for PCa are also discussed, and particular emphasis is placed on the benefits of patient-derived xenograft models. We also review research into understanding how ETS fusions (in particular,
TMPRSS2-ERG) and
SPOP mutations contribute to tumor initiation. Next, we examine the recent findings on the prevalence of germline DNA repair mutations in about 12% of patients with metastatic disease and their potential benefit from the use of poly(ADP-ribose) polymerase (PARP) inhibitors and immune modulation. Lastly, we discuss the recent increased prevalence of AR-negative tumors (neuroendocrine and double-negative) and the current state of immunotherapy in PCa. AR remains the primary clinical target for PCa therapies; however, it does not act alone, and better understanding of supporting mutations may help guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sander Frank
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Peter Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Departments of Medicine and Urology, University of Washington, Seattle, WA 98195, USA.,Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
26
|
Glumac PM, LeBeau AM. The role of CD133 in cancer: a concise review. Clin Transl Med 2018; 7:18. [PMID: 29984391 PMCID: PMC6035906 DOI: 10.1186/s40169-018-0198-1] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022] Open
Abstract
Despite the abundant ongoing research efforts, cancer remains one of the most challenging diseases to treat globally. Due to the heterogenous nature of cancer, one of the major clinical challenges in therapeutic development is the cancer’s ability to develop resistance. It has been hypothesized that cancer stem cells are the cause for this resistance, and targeting them will lead to tumor regression. A pentaspan transmembrane glycoprotein, CD133 has been suggested to mark cancer stem cells in various tumor types, however, the accuracy of CD133 as a cancer stem cell biomarker has been highly controversial. There are numerous speculations for this, including differences in cell culture conditions, poor in vivo assays, and the inability of current antibodies to detect CD133 variants and deglycosylated epitopes. This review summarizes the most recent and relevant research regarding the controversies surrounding CD133 as a normal stem cell and cancer stem cell biomarker. Additionally, it aims to establish the overall clinical significance of CD133 in cancer. Recent clinical studies have shown that high expression of CD133 in tumors has been indicated as a prognostic marker of disease progression. As such, a spectrum of immunotherapeutic strategies have been developed to target these CD133pos cells with the goal of translation into the clinic. This review compiles the current therapeutic strategies targeting CD133 and discusses their prognostic potential in various cancer subtypes.
Collapse
Affiliation(s)
- Paige M Glumac
- Department of Pharmacology, University of Minnesota Medical School, Nils Hasselmo Hall 3-104, 312 Church St. SE, Minneapolis, MN, 55455, USA
| | - Aaron M LeBeau
- Department of Pharmacology, University of Minnesota Medical School, Nils Hasselmo Hall 3-104, 312 Church St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
27
|
Freedman JA, Wang Y, Li X, Liu H, Moorman PG, George DJ, Lee NH, Hyslop T, Wei Q, Patierno SR. Single-nucleotide polymorphisms of stemness genes predicted to regulate RNA splicing, microRNA and oncogenic signaling are associated with prostate cancer survival. Carcinogenesis 2018; 39:879-888. [PMID: 29726910 PMCID: PMC6248658 DOI: 10.1093/carcin/bgy062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is a clinically and molecularly heterogeneous disease, with variation in outcomes only partially predicted by grade and stage. Additional tools to distinguish indolent from aggressive disease are needed. Phenotypic characteristics of stemness correlate with poor cancer prognosis. Given this correlation, we identified single-nucleotide polymorphisms (SNPs) of stemness-related genes and examined their associations with PCa survival. SNPs within stemness-related genes were analyzed for association with overall survival of PCa in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Significant SNPs predicted to be functional were selected for linkage disequilibrium analysis and combined and stratified analyses. Identified SNPs were evaluated for association with gene expression. SNPs of CD44 (rs9666607), ABCC1 (rs35605 and rs212091) and GDF15 (rs1058587) were associated with PCa survival and predicted to be functional. A role for rs9666607 of CD44 and rs35605 of ABCC1 in RNA splicing regulation, rs212091 of ABCC1 in miRNA binding site activity and rs1058587 of GDF15 in causing an amino acid change was predicted. These SNPs represent potential novel prognostic markers for overall survival of PCa and support a contribution of the stemness pathway to PCa patient outcome.
Collapse
Affiliation(s)
- Jennifer A Freedman
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Yanru Wang
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Xuechan Li
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Hongliang Liu
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Patricia G Moorman
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA
| | - Daniel J George
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Norman H Lee
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Terry Hyslop
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Qingyi Wei
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Steven R Patierno
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
28
|
Abstract
This chapter focuses on primary cultures of the human malignant prostate. Current abilities to isolate and culture stem cells, transit-amplifying cells, and secretory luminal cells are described. Advantages and limitations of this model system are also discussed.
Collapse
|
29
|
Yin L, Li J, Liao CP, Jason Wu B. Monoamine Oxidase Deficiency Causes Prostate Atrophy and Reduces Prostate Progenitor Cell Activity. Stem Cells 2018; 36:1249-1258. [PMID: 29637670 DOI: 10.1002/stem.2831] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 03/01/2018] [Accepted: 03/26/2018] [Indexed: 12/23/2022]
Abstract
Monoamine oxidases (MAOs) degrade a number of biogenic and dietary amines, including monoamine neurotransmitters, and play an essential role in many biological processes. Neurotransmitters and related neural events have been shown to participate in the development, differentiation, and maintenance of diverse tissues and organs by regulating the specialized cellular function and morphological structures of innervated organs such as the prostate. Here we show that mice lacking both MAO isoforms, MAOA and MAOB, exhibit smaller prostate mass and develop epithelial atrophy in the ventral and dorsolateral prostates. The cellular composition of prostate epithelium showed reduced CK5+ or p63+ basal cells, accompanied by lower Sca-1 expression in p63+ basal cells, but intact differentiated CK8+ luminal cells in MAOA/B-deficient mouse prostates. MAOA/B ablation also decreased epithelial cell proliferation without affecting cell apoptosis in mouse prostates. Using a human prostate epithelial cell line, we found that stable knockdown of MAOA and MAOB impaired the capacity of prostate stem cells to form spheres, coinciding with a reduced CD133+ /CD44+ /CD24- stem cell population and less expression of CK5 and select stem cell markers, including ALDH1A1, TROP2, and CD166. Alternative pharmacological inhibition of MAOs also repressed prostate cell stemness. In addition, we found elevated expression of MAOA and MAOB in epithelial and/or stromal components of human prostate hyperplasia samples compared with normal prostate tissues. Taken together, our findings reveal critical roles for MAOs in the regulation of prostate basal progenitor cells and prostate maintenance. Stem Cells 2018;36:1249-1258.
Collapse
Affiliation(s)
- Lijuan Yin
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jingjing Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Chun-Peng Liao
- Lawrence J. Ellison Institute for Transformative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| |
Collapse
|
30
|
Casal JI, Bartolomé RA. RGD cadherins and α2β1 integrin in cancer metastasis: A dangerous liaison. Biochim Biophys Acta Rev Cancer 2018; 1869:321-332. [PMID: 29673969 DOI: 10.1016/j.bbcan.2018.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 12/24/2022]
Abstract
We propose a new cadherin family classification comprising epithelial cadherins (cadherin 17 [CDH17], cadherin 16, VE-cadherin, cadherin 6 and cadherin 20) containing RGD motifs within their sequences. Expression of some RGD cadherins is associated with aggressive forms of cancer during the late stages of metastasis, and CDH17 and VE-cadherin have emerged as critical actors in cancer metastasis. After binding to α2β1 integrin, these cadherins promote integrin β1 activation, and thereby cell adhesion, invasion and proliferation, in liver and lung metastasis. Activation of α2β1 integrin provokes an affinity increase for type IV collagen, a major component of the basement membrane and a critical partner for cell anchoring in liver and other metastatic organs. Activation of α2β1 integrin by RGD motifs breaks an old paradigm of integrin classification and supports an important role of this integrin in cancer metastasis. Recently, synthetic peptides containing the RGD motif of CDH17 elicited highly specific and selective antibodies that block the ability of CDH17 RGD to activate α2β1 integrin. These monoclonal antibodies inhibit metastatic colonization in orthotopic mouse models of liver and lung metastasis for colorectal cancer and melanoma, respectively. Hopefully, blocking the cadherin RGD ligand capacity will give us control over the integrin activity in solid tumors metastasis, paving the way for development of new agents of cancer treatment.
Collapse
Affiliation(s)
- J Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039 Madrid, Spain.
| | - Rubén A Bartolomé
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039 Madrid, Spain
| |
Collapse
|
31
|
Ishii K, Takahashi S, Sugimura Y, Watanabe M. Role of Stromal Paracrine Signals in Proliferative Diseases of the Aging Human Prostate. J Clin Med 2018; 7:jcm7040068. [PMID: 29614830 PMCID: PMC5920442 DOI: 10.3390/jcm7040068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 12/21/2022] Open
Abstract
Androgens are essential for the development, differentiation, growth, and function of the prostate through epithelial–stromal interactions. However, androgen concentrations in the hypertrophic human prostate decrease significantly with age, suggesting an inverse correlation between androgen levels and proliferative diseases of the aging prostate. In elderly males, age- and/or androgen-related stromal remodeling is spontaneously induced, i.e., increased fibroblast and myofibroblast numbers, but decreased smooth muscle cell numbers in the prostatic stroma. These fibroblasts produce not only growth factors, cytokines, and extracellular matrix proteins, but also microRNAs as stromal paracrine signals that stimulate prostate epithelial cell proliferation. Surgical or chemical castration is the standard systemic therapy for patients with advanced prostate cancer. Androgen deprivation therapy induces temporary remission, but the majority of patients eventually progress to castration-resistant prostate cancer, which is associated with a high mortality rate. Androgen deprivation therapy-induced stromal remodeling may be involved in the development and progression of castration-resistant prostate cancer. In the tumor microenvironment, activated fibroblasts stimulating prostate cancer cell proliferation are called carcinoma-associated fibroblasts. In this review, we summarize the role of stromal paracrine signals in proliferative diseases of the aging human prostate and discuss the potential clinical applications of carcinoma-associated fibroblast-derived exosomal microRNAs as promising biomarkers.
Collapse
Affiliation(s)
- Kenichiro Ishii
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Sanai Takahashi
- Laboratory for Medical Engineering, Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan.
| | - Yoshiki Sugimura
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Masatoshi Watanabe
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
- Laboratory for Medical Engineering, Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan.
| |
Collapse
|
32
|
Davies AH, Beltran H, Zoubeidi A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat Rev Urol 2018; 15:271-286. [PMID: 29460922 DOI: 10.1038/nrurol.2018.22] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The success of next-generation androgen receptor (AR) pathway inhibitors, such as abiraterone acetate and enzalutamide, in treating prostate cancer has been hampered by the emergence of drug resistance. This acquired drug resistance is driven, in part, by the ability of prostate cancer cells to change their phenotype to adopt AR-independent pathways for growth and survival. Around one-quarter of resistant prostate tumours comprise cells that have undergone cellular reprogramming to become AR-independent and to acquire a continuum of neuroendocrine characteristics. These highly aggressive and lethal tumours, termed neuroendocrine prostate cancer (NEPC), exhibit reactivation of developmental programmes that are associated with epithelial-mesenchymal plasticity and acquisition of stem-like cell properties. In the past few years, our understanding of the link between lineage plasticity and an emergent NEPC phenotype has considerably increased. This new knowledge can contribute to novel therapeutic modalities that are likely to improve the treatment and clinical management of aggressive prostate cancer.
Collapse
Affiliation(s)
- Alastair H Davies
- Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC, Canada
| | - Himisha Beltran
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, 413 East 69th Street, New York, NY, USA
| | - Amina Zoubeidi
- Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC, Canada
| |
Collapse
|
33
|
Erb HHH, Guggenberger F, Santer FR, Culig Z. Interleukin-4 induces a CD44 high /CD49b high PC3 subpopulation with tumor-initiating characteristics. J Cell Biochem 2018; 119:4103-4112. [PMID: 29236307 PMCID: PMC5900863 DOI: 10.1002/jcb.26607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/04/2017] [Indexed: 12/22/2022]
Abstract
Pro‐ and anti‐inflammatory cytokines may influence proliferation, migration, invasion, and other cellular events of prostate cancer (PCa) cells. The hyaluronan receptor CD44, which is regulated by Interleukin (IL)‐4, is a prostate basal cell marker. CD44high/CD49bhigh expressing cells have been demonstrated to have tumor‐initiating characteristics. Here, we aimed to analyze the effects of long‐term IL‐4 treatment on CD44/CD49b expression, migration, proliferation, and clonogenic potential of basal‐like PCa cells. To this end PC3 cells were treated over 30 passages with 5 ng/mL IL‐4 (PC3‐IL4) resulting in an increased population of CD44high expressing cells. This was concurrent with a clonal outgrowth of cuboid‐shaped cells, with increased size and light absorbance properties. Flow cytometry revealed that the PC3‐IL4 CD44high expressing subpopulation corresponds to the CD49bhigh population. Isolation of the PC3‐IL4 CD44high/CD49bhigh subpopulation via fluorescence‐associated cell sorting showed increased migrative, proliferative, and clonogenic potential compared to the CD44low/CD49blow subpopulation. In conclusion, IL‐4 increases a PC3 subpopulation with tumor‐initiating characteristics. Thus, IL‐4, similar to other cytokines may be a regulator of tumor‐initiation and hence, may present a suitable therapy target in combination with current treatment options.
Collapse
Affiliation(s)
- Holger H H Erb
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany
| | - Fabian Guggenberger
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Frédéric R Santer
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoran Culig
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Annés University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
34
|
Brocqueville G, Chmelar RS, Bauderlique-Le Roy H, Deruy E, Tian L, Vessella RL, Greenberg NM, Rohrschneider LR, Bourette RP. s-SHIP expression identifies a subset of murine basal prostate cells as neonatal stem cells. Oncotarget 2018; 7:29228-44. [PMID: 27081082 PMCID: PMC5045392 DOI: 10.18632/oncotarget.8709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
Isolation of prostate stem cells (PSCs) is crucial for understanding their biology during normal development and tumorigenesis. In this aim, we used a transgenic mouse model expressing GFP from the stem cell-specific s-SHIP promoter to mark putative stem cells during postnatal prostate development. Here we show that cells identified by GFP expression are present transiently during early prostate development and localize to the basal cell layer of the epithelium. These prostate GFP+ cells are a subpopulation of the Lin- CD24+ Sca-1+ CD49f+ cells and are capable of self-renewal together with enhanced growth potential in sphere-forming assay in vitro, a phenotype consistent with that of a PSC population. Transplantation assays of prostate GFP+ cells demonstrate reconstitution of prostate ducts containing both basal and luminal cells in renal grafts. Altogether, these results demonstrate that s-SHIP promoter expression is a new marker for neonatal basal prostate cells exhibiting stem cell properties that enables PSCs in situ identification and isolation via a single consistent parameter. Transcriptional profiling of these GFP+ neonatal stem cells showed an increased expression of several components of the Wnt signaling pathway. It also identified stem cell regulators with potential applications for further analyses of normal and cancer stem cells.
Collapse
Affiliation(s)
- Guillaume Brocqueville
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, SIRIC ONCOLille, F-59000 Lille, France
| | - Renee S Chmelar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Hélène Bauderlique-Le Roy
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, SIRIC ONCOLille, F-59000 Lille, France
| | - Emeric Deruy
- BioImaging Center Lille, Institut Pasteur de Lille, University of Lille, F-59000 Lille, France
| | - Lu Tian
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, SIRIC ONCOLille, F-59000 Lille, France
| | - Robert L Vessella
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Norman M Greenberg
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Present address: NMG Scientific Consulting, North Potomac, MD 20878, USA
| | - Larry R Rohrschneider
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Roland P Bourette
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, SIRIC ONCOLille, F-59000 Lille, France
| |
Collapse
|
35
|
Buczek ME, Reeder SP, Regad T. Identification and Isolation of Cancer Stem Cells Using NANOG-EGFP Reporter System. Methods Mol Biol 2018; 1692:139-148. [PMID: 28986894 DOI: 10.1007/978-1-4939-7401-6_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cancer stem Cells or Cancer Stem-like Cells are thought to be associated with chemoresistance and recurrence in cancer patients following chemotherapy. Developing a method to study these malignant populations is the key to successful development of drug or immunotherapeutic assays. Here, we present a method of identification, isolation of Prostate Cancer Stem Cells (PCSCs) from the DU145 prostate cancer cell line using the NANOG-GFP expression system.
Collapse
Affiliation(s)
- Magdalena E Buczek
- The John van Geest Cancer Research Centre, Nottingham Trent University, Clifton lane, Nottingham, NG11 8NS, UK
| | - Stephen P Reeder
- The John van Geest Cancer Research Centre, Nottingham Trent University, Clifton lane, Nottingham, NG11 8NS, UK
| | - Tarik Regad
- The John van Geest Cancer Research Centre, Nottingham Trent University, Clifton lane, Nottingham, NG11 8NS, UK.
| |
Collapse
|
36
|
Phospholipase D inhibitors reduce human prostate cancer cell proliferation and colony formation. Br J Cancer 2017; 118:189-199. [PMID: 29136407 PMCID: PMC5785744 DOI: 10.1038/bjc.2017.391] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/17/2017] [Accepted: 10/02/2017] [Indexed: 12/12/2022] Open
Abstract
Background: Phospholipases D1 and D2 (PLD1/2) hydrolyse cell membrane glycerophospholipids to generate phosphatidic acid, a signalling lipid, which regulates cell growth and cancer progression through effects on mTOR and PKB/Akt. PLD expression and/or activity is raised in breast, colorectal, gastric, kidney and thyroid carcinomas but its role in prostate cancer (PCa), the major cancer of men in the western world, is unclear. Methods: PLD1 protein expression in cultured PNT2C2, PNT1A, P4E6, LNCaP, PC3, PC3M, VCaP, 22RV1 cell lines and patient-derived PCa cells was analysed by western blotting. PLD1 protein localisation in normal, benign prostatic hyperplasia (BPH), and castrate-resistant prostate cancer (CRPC) tissue sections and in a PCa tissue microarray (TMA) was examined by immunohistochemistry. PLD activity in PCa tissue was assayed using an Amplex Red method. The effect of PLD inhibitors on PCa cell viability was measured using MTS and colony forming assays. Results: PLD1 protein expression was low in the luminal prostate cell lines (LNCaP, VCaP, 22RV1) compared with basal lines (PC3 and PC3M). PLD1 protein expression was elevated in BPH biopsy tissue relative to normal and PCa samples. In normal and BPH tissue, PLD1 was predominantly detected in basal cells as well in some stromal cells, rather than in luminal cells. In PCa tissue, luminal cells expressed PLD1. In a PCa TMA, the mean peroxidase intensity per DAB-stained Gleason 6 and 7 tissue section was significantly higher than in sections graded Gleason 9. In CRPC tissue, PLD1 was expressed prominently in the stromal compartment, in luminal cells in occasional glands and in an expanding population of cells that co-expressed chromogranin A and neurone-specific enolase. Levels of PLD activity in normal and PCa tissue samples were similar. A specific PLD1 inhibitor markedly reduced the survival of both prostate cell lines and patient-derived PCa cells compared with two dual PLD1/PLD2 inhibitors. Short-term exposure of PCa cells to the same specific PLD1 inhibitor significantly reduced colony formation. Conclusions: A new specific inhibitor of PLD1, which is well tolerated in mice, reduces PCa cell survival and thus has potential as a novel therapeutic agent to reduce prostate cancer progression. Increased PLD1 expression may contribute to the hyperplasia characteristic of BPH and in the progression of castrate-resistant PCa, where an expanding population of neuroendocrine-like cells express PLD1.
Collapse
|
37
|
Tostivint V, Racaud-Sultan C, Roumiguié M, Soulié M, Gamé X, Beauval JB. [Progress in prostate cancer study: 3D cell culture enables the ex vivo reproduction of tumor characteristics]. Presse Med 2017; 46:954-965. [PMID: 28967525 DOI: 10.1016/j.lpm.2017.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/11/2017] [Accepted: 06/16/2017] [Indexed: 12/18/2022] Open
Abstract
Despite new therapeutics options, Prostate Cancer (PCa) remains a public health challenge because of its high incidence and mortality. Limits in PCa research come from the lack of in vitro and in vivo models that mimic the human disease. Currently, 2D in vitro tissue culture models of PCa are widely used but they present numerous limits. They do not reproduce cellular morphology, tissue architecture, inter-patients and intratumor heterogeneity. Furthermore, they lack two key components of PCa tumors, the tumoral microenvironment and the cancer stem cells. In vivo murine models of PCa cannot be representative of all the genetic alterations known in prostate tumors and they hardly reproduce the pathophysiology of human metastatic progression. Consequently, the physiology of these in vitro and in vivo models do not well represent patients tumors. 3D cell cultures overcome many of these limits by sharing morphologic characteristics with in vivo tumors as well as reproducibility of in vitro models. 3D models of PCa include spheroids derived from tumor cell lines, and organoids, derived from patient. In 3D cell cultures, cell fitness is maintained, the physiological cells-cells and cell-matrix interactions are restored and an extracellular matrix surrounds the cells. Organoids, generated from PCa primary tumors or metastases, allow studies on cancer stem cells and their microenvironment. Moreover, organoids retain genetic integrity of PCa tumors. PCa organoid model is an innovative tool that offers great perspectives of therapeutic screening. In the future, organoids generated from patients' biopsies may also lead to personalized medicine.
Collapse
Affiliation(s)
- Victor Tostivint
- Hôpital Rangueil, TSA 50032, 1, avenue du professeur Jean-Poulhès, 31059 Toulouse cedex 9, France.
| | - Claire Racaud-Sultan
- IRSD, université de Toulouse, Inserm, Inra, ENVT, UPS, CS 60039, place du docteur Baylac, 31024 Toulouse cedex 3, France.
| | - Mathieu Roumiguié
- Hôpital Rangueil, TSA 50032, 1, avenue du professeur Jean-Poulhès, 31059 Toulouse cedex 9, France.
| | - Michel Soulié
- Hôpital Rangueil, TSA 50032, 1, avenue du professeur Jean-Poulhès, 31059 Toulouse cedex 9, France.
| | - Xavier Gamé
- Hôpital Rangueil, TSA 50032, 1, avenue du professeur Jean-Poulhès, 31059 Toulouse cedex 9, France.
| | - Jean-Baptiste Beauval
- Hôpital Rangueil, TSA 50032, 1, avenue du professeur Jean-Poulhès, 31059 Toulouse cedex 9, France.
| |
Collapse
|
38
|
Libardi do Amaral C. Epithelial-Mesenchymal Transition in Docetaxel-Resistant Prostate Cancer. EUROPEAN MEDICAL JOURNAL 2017. [DOI: 10.33590/emj/10310149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
Castration-resistant prostate cancer (CRPCa) is an advanced stage of prostate cancer in which a tumour progresses even under androgen deprivation. Treatment alternatives for CRPCa remain very limited and mostly rely on docetaxel-based chemotherapy. Despite being shown to increase patients’ overall survival, docetaxel’s clinical efficacy is impaired by development of chemoresistance. Most patients do not respond to docetaxel treatment and even those initially responsive ultimately develop resistance. Recently, chemoresistance was found to be closely related to epithelial-mesenchymal transition (EMT), a process in which epithelial cells transition into a mesenchymal phenotype. In fact, EMT markers are overexpressed in prostate cancer and are correlated to a higher Gleason score. For this reason, new therapeutic strategies are being studied to inhibit this process in several cancers. However, the clinical usefulness of targeting EMT as a way to overcome docetaxel resistance in CRPCa is still questionable and suffers from some significant limitations. This review briefly summarises the most common mechanisms of EMT-induced chemoresistance and evaluates its use as a new approach to overcome docetaxel resistance in CRPCa.
Collapse
Affiliation(s)
- Camila Libardi do Amaral
- Laboratory of Disorders of Metabolism, School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| |
Collapse
|
39
|
The immunosuppressive cytokine interleukin-4 increases the clonogenic potential of prostate stem-like cells by activation of STAT6 signalling. Oncogenesis 2017; 6:e342. [PMID: 28553931 PMCID: PMC5523058 DOI: 10.1038/oncsis.2017.23] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/24/2017] [Accepted: 03/03/2017] [Indexed: 12/11/2022] Open
Abstract
Interleukin-4 plays a critical role in the regulation of immune responses and has been detected at high levels in the tumour microenvironment of cancer patients, where concentrations correlate with the grade of malignancy. In prostate cancer, interleukin-4 has been associated with activation of the androgen receptor, increased proliferation and activation of survival pathways such as Akt and NF-κB. However, its role in therapy resistance has not yet been determined. Here we investigate the influence of interleukin-4 on primary epithelial cells from prostate cancer patients. Our data demonstrate an increase in the clonogenic potential of these cells when cultured in the presence of interleukin-4. In addition, a Phospho-Kinase Array revealed that in contrast to previously published work, signal transducer and activator of transcription6 (STAT6) is the only signalling molecule activated after interleukin-4 treatment. Using the STAT6-specific inhibitor AS1517499 we could confirm the role of STAT6 in increasing colony-forming frequency. However, clonogenic recovery assays revealed that interleukin-4 does not rescue the effects of either irradiation or docetaxel treatment. We therefore propose that although the interleukin-4/STAT6 axis does not appear to be involved in therapy resistance, it does play a crucial role in the colony-forming abilities of the basal cell population in prostate cancer. IL-4 may therefore contribute to disease relapse by providing a niche that is favourable for the clonogenic growth of prostate cancer stem cells.
Collapse
|
40
|
Inhibition of the PI3K/AKT/mTOR pathway activates autophagy and compensatory Ras/Raf/MEK/ERK signalling in prostate cancer. Oncotarget 2017; 8:56698-56713. [PMID: 28915623 PMCID: PMC5593594 DOI: 10.18632/oncotarget.18082] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 04/24/2017] [Indexed: 12/19/2022] Open
Abstract
The PI3K/AKT/mTOR pathway is frequently activated in advanced prostate cancer, due to loss of the tumour suppressor PTEN, and is an important axis for drug development. We have assessed the molecular and functional consequences of pathway blockade by inhibiting AKT and mTOR kinases either in combination or as individual drug treatments. In established prostate cancer cell lines, a decrease in cell viability and in phospho-biomarker expression was observed. Although apoptosis was not induced, a G1 growth arrest was observed in PTEN null LNCaP cells, but not in BPH1 or PC3 cells. In contrast, when the AKT inhibitor AZD7328 was applied to patient-derived prostate cultures that retained expression of PTEN, activation of a compensatory Ras/MEK/ERK pathway was observed. Moreover, whilst autophagy was induced following treatment with AZD7328, cell viability was less affected in the patient-derived cultures than in cell lines. Surprisingly, treatment with a combination of both AZD7328 and two separate MEK1/2 inhibitors further enhanced phosphorylation of ERK1/2 in primary prostate cultures. However, it also induced irreversible growth arrest and senescence. Ex vivo treatment of a patient-derived xenograft (PDX) of prostate cancer with a combination of AZD7328 and the mTOR inhibitor KU-0063794, significantly reduced tumour frequency upon re-engraftment of tumour cells. The results demonstrate that single agent targeting of the PI3K/AKT/mTOR pathway triggers activation of the Ras/MEK/ERK compensatory pathway in near-patient samples. Therefore, blockade of one pathway is insufficient to treat prostate cancer in man.
Collapse
|
41
|
Qin W, Zheng Y, Qian BZ, Zhao M. Prostate Cancer Stem Cells and Nanotechnology: A Focus on Wnt Signaling. Front Pharmacol 2017; 8:153. [PMID: 28400729 PMCID: PMC5368180 DOI: 10.3389/fphar.2017.00153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/09/2017] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer is the most common cancer among men worldwide. However, current treatments for prostate cancer patients in advanced stage often fail because of relapse. Prostate cancer stem cells (PCSCs) are resistant to most standard therapies, and are considered to be a major mechanism of cancer metastasis and recurrence. In this review, we summarized current understanding of PCSCs and their self-renewal signaling pathways with a specific focus on Wnt signaling. Although multiple Wnt inhibitors have been developed to target PCSCs, their application is still limited by inefficient delivery and toxicity in vivo. Recently, nanotechnology has opened a new avenue for cancer drug delivery, which significantly increases specificity and reduces toxicity. These nanotechnology-based drug delivery methods showed great potential in targeting PCSCs. Here, we summarized current advancement of nanotechnology-based therapeutic strategies for targeting PCSCs and highlighted the challenges and perspectives in designing future therapies to eliminate PCSCs.
Collapse
Affiliation(s)
- Wei Qin
- The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China
| | - Yongjiang Zheng
- The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University Guangzhou, China
| | - Bin-Zhi Qian
- Edinburgh Cancer Research UK Centre and MRC University of Edinburgh Centre for Reproductive Health, University of Edinburgh Edinburgh, UK
| | - Meng Zhao
- The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|
42
|
Adamowicz J, Pakravan K, Bakhshinejad B, Drewa T, Babashah S. Prostate cancer stem cells: from theory to practice. Scand J Urol 2017. [DOI: 10.1080/21681805.2017.1283360] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jan Adamowicz
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Tomasz Drewa
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
43
|
Archer LK, Frame FM, Maitland NJ. Stem cells and the role of ETS transcription factors in the differentiation hierarchy of normal and malignant prostate epithelium. J Steroid Biochem Mol Biol 2017; 166:68-83. [PMID: 27185499 DOI: 10.1016/j.jsbmb.2016.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/25/2016] [Accepted: 05/07/2016] [Indexed: 12/18/2022]
Abstract
Prostate cancer is the most common cancer of men in the UK and accounts for a quarter of all new cases. Although treatment of localised cancer can be successful, there is no cure for patients presenting with invasive prostate cancer and there are less treatment options. They are generally treated with androgen-ablation therapies but eventually the tumours become hormone resistant and patients develop castration-resistant prostate cancer (CRPC) for which there are no further successful or curative treatments. This highlights the need for new treatment strategies. In order to prevent prostate cancer recurrence and treatment resistance, all the cell populations in a heterogeneous prostate tumour must be targeted, including the rare cancer stem cell (CSC) population. The ETS transcription factor family members are now recognised as a common feature in multiple cancers including prostate cancer; with aberrant expression, loss of tumour suppressor function, inactivating mutations and the formation of fusion genes observed. Most notably, the TMPRSS2-ERG gene fusion is present in approximately 50% of prostate cancers and in prostate CSCs. However, the role of other ETS transcription factors in prostate cancer is less well understood. This review will describe the prostate epithelial cell hierarchy and discuss the evidence behind prostate CSCs and their inherent resistance to conventional cancer therapies. The known and proposed roles of the ETS family of transcription factors in prostate epithelial cell differentiation and regulation of the CSC phenotype will be discussed, as well as how they might be targeted for therapy.
Collapse
Affiliation(s)
- Leanne K Archer
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Fiona M Frame
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Norman J Maitland
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, United Kingdom.
| |
Collapse
|
44
|
Ju X, Jiao X, Ertel A, Casimiro MC, Di Sante G, Deng S, Li Z, Di Rocco A, Zhan T, Hawkins A, Stoyanova T, Andò S, Fatatis A, Lisanti MP, Gomella LG, Languino LR, Pestell RG. v-Src Oncogene Induces Trop2 Proteolytic Activation via Cyclin D1. Cancer Res 2016; 76:6723-6734. [PMID: 27634768 DOI: 10.1158/0008-5472.can-15-3327] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 07/18/2016] [Accepted: 08/18/2016] [Indexed: 01/06/2023]
Abstract
Proteomic analysis of castration-resistant prostate cancer demonstrated the enrichment of Src tyrosine kinase activity in approximately 90% of patients. Src is known to induce cyclin D1, and a cyclin D1-regulated gene expression module predicts poor outcome in human prostate cancer. The tumor-associated calcium signal transducer 2 (TACSTD2/Trop2/M1S1) is enriched in the prostate, promoting prostate stem cell self-renewal upon proteolytic activation via a γ-secretase cleavage complex (PS1, PS2) and TACE (ADAM17), which releases the Trop2 intracellular domain (Trop2 ICD). Herein, v-Src transformation of primary murine prostate epithelial cells increased the proportion of prostate cancer stem cells as characterized by gene expression, epitope characteristics, and prostatosphere formation. Cyclin D1 was induced by v-Src, and Src kinase induction of Trop2 ICD nuclear accumulation required cyclin D1. Cyclin D1 induced abundance of the Trop2 proteolytic cleavage activation components (PS2, TACE) and restrained expression of the inhibitory component of the Trop2 proteolytic complex (Numb). Patients with prostate cancer with increased nuclear Trop2 ICD and cyclin D1, and reduced Numb, had reduced recurrence-free survival probability (HR = 4.35). Cyclin D1, therefore, serves as a transducer of v-Src-mediated induction of Trop2 ICD by enhancing abundance of the Trop2 proteolytic activation complex. Cancer Res; 76(22); 6723-34. ©2016 AACR.
Collapse
Affiliation(s)
- Xiaoming Ju
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Xuanmao Jiao
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam Ertel
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mathew C Casimiro
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Gabriele Di Sante
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shengqiong Deng
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Zhiping Li
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Agnese Di Rocco
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Tingting Zhan
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam Hawkins
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Tanya Stoyanova
- Department of Microbiology, Immunology, and Molecular Genetics University of California, Los Angeles, California
| | - Sebastiano Andò
- Faculty of Pharmacy, Nutrition, and Health Science, University of Calabria, Arcavacata, Rende CS, Italy
| | - Alessandro Fatatis
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Pharmacology and Physiology and Laboratory Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Michael P Lisanti
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Stem Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Leonard G Gomella
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lucia R Languino
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Richard G Pestell
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania. .,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Current Stem Cell Biomarkers and Their Functional Mechanisms in Prostate Cancer. Int J Mol Sci 2016; 17:ijms17071163. [PMID: 27447616 PMCID: PMC4964535 DOI: 10.3390/ijms17071163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/07/2016] [Accepted: 07/09/2016] [Indexed: 12/12/2022] Open
Abstract
Currently there is little effective treatment available for castration resistant prostate cancer, which is responsible for the majority of prostate cancer related deaths. Emerging evidence suggested that cancer stem cells might play an important role in resistance to traditional cancer therapies, and the studies of cancer stem cells (including specific isolation and targeting on those cells) might benefit the discovery of novel treatment of prostate cancer, especially castration resistant disease. In this review, we summarized major biomarkers for prostate cancer stem cells, as well as their functional mechanisms and potential application in clinical diagnosis and treatment of patients.
Collapse
|
46
|
Zhang D. Transcriptome profiling links the intrinsic properties of human prostate basal cells to prostate cancer aggressiveness. Mol Cell Oncol 2016; 3:e1168508. [PMID: 27314102 DOI: 10.1080/23723556.2016.1168508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
Abstract
Genome-wide transcriptome analysis of human benign prostatic basal and luminal epithelial populations reveals the unexpected findings that basal cells preferentially express gene categories associated with stem cells, neurogenesis, and rRNA biogenesis. Importantly, the basal cell gene expression profile is enriched in clinically advanced, anaplastic, castration-resistant, and metastatic prostate cancers.
Collapse
Affiliation(s)
- Dingxiao Zhang
- Department of Epigenetics and Molecular Carcinogenesis, the University of Texas MD Anderson Cancer Center, Smithville, TX, USA; Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY
| |
Collapse
|
47
|
Packer JR, Maitland NJ. The molecular and cellular origin of human prostate cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1238-60. [DOI: 10.1016/j.bbamcr.2016.02.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 01/01/2023]
|
48
|
Strand DW, Aaron L, Henry G, Franco OE, Hayward SW. Isolation and analysis of discreet human prostate cellular populations. Differentiation 2016; 91:139-51. [PMID: 26546040 PMCID: PMC4854811 DOI: 10.1016/j.diff.2015.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 10/27/2015] [Indexed: 02/03/2023]
Abstract
The use of lineage tracing in transgenic mouse models has revealed an abundance of subcellular phenotypes responsible for maintaining prostate homeostasis. The ability to use fresh human tissues to examine the hypotheses generated by these mouse experiments has been greatly enhanced by technical advances in tissue processing, flow cytometry and cell culture. We describe in detail the optimization of protocols for each of these areas to facilitate research on solving human prostate diseases through the analysis of human tissue.
Collapse
Affiliation(s)
- Douglas W Strand
- Department of Urology, UT Southwestern University Medical Center, Dallas, TX, USA
| | - LaTayia Aaron
- Department of Cancer Biology, Meharry Medical College, Nashville, TN, USA
| | - Gervaise Henry
- Department of Urology, UT Southwestern University Medical Center, Dallas, TX, USA
| | - Omar E Franco
- Department of Surgery, NorthShore University Health System, Research Institute, Evanston, IL, USA
| | - Simon W Hayward
- Department of Surgery, NorthShore University Health System, Research Institute, Evanston, IL, USA.
| |
Collapse
|
49
|
Hu DP, Hu WY, Xie L, Li Y, Birch L, Prins GS. Actions of Estrogenic Endocrine Disrupting Chemicals on Human Prostate Stem/Progenitor Cells and Prostate Carcinogenesis. ACTA ACUST UNITED AC 2016. [DOI: 10.2174/1874070701610010076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Substantial evidences from epidemiological and animal-based studies indicate that early exposure to endocrine disrupting chemicals (EDCs) during the developmental stage results in a variety of disorders including cancer. Previous studies have demonstrated that early estrogen exposure results in life-long reprogramming of the prostate gland that leads to an increased incidence of prostatic lesions with aging. We have recently documented that bisphenol A (BPA), one of the most studied EDCs with estrogenic activity has similar effects in increasing prostate carcinogenic potential, supporting the connection between EDCs exposure and prostate cancer risk. It is well accepted that stem cells play a crucial role in development and cancer. Accumulating evidence suggest that stem cells are regulated by extrinsic factors and may be the potential target of hormonal carcinogenesis. Estrogenic EDCs which interfere with normal hormonal signaling may perturb prostate stem cell fate by directly reprogramming stem cells or breaking down the stem cell niche. Transformation of stem cells into cancer stem cells may underlie cancer initiation accounting for cancer recurrence, which becomes a critical therapeutic target of cancer management. We therefore propose that estrogenic EDCs may influence the development and progression of prostate cancer through reprogramming and transforming the prostate stem and early stage progenitor cells. In this review, we summarize our current studies and have updated recent advances highlighting estrogenic EDCs on prostate carcinogenesis by possible targeting prostate stem/progenitor cells. Using novel stem cell assays we have demonstrated that human prostate stem/progenitor cells express estrogen receptors (ER) and are directly modulated by estrogenic EDCs. Moreover, employing anin vivohumanized chimeric prostate model, we further demonstrated that estrogenic EDCs initiate and promote prostatic carcinogenesis in an androgen-supported environment. These findings support our hypothesis that prostate stem/progenitor cells may be the direct targets of estrogenic EDCs as a consequence of developmental exposure which carry permanent reprogrammed epigenetic and oncogenic events and subsequently deposit into cancer initiation and progression in adulthood.
Collapse
|
50
|
Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer. Nat Commun 2016; 7:10798. [PMID: 26924072 PMCID: PMC4773505 DOI: 10.1038/ncomms10798] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 01/21/2016] [Indexed: 12/26/2022] Open
Abstract
The prostate gland mainly contains basal and luminal cells constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here we describe a genome-wide transcriptome analysis of human benign prostatic basal and luminal epithelial populations using deep RNA sequencing. Through molecular and biological characterizations, we show that the differential gene-expression profiles account for their distinct functional properties. Strikingly, basal cells preferentially express gene categories associated with stem cells, neurogenesis and ribosomal RNA (rRNA) biogenesis. Consistent with this profile, basal cells functionally exhibit intrinsic stem-like and neurogenic properties with enhanced rRNA transcription activity. Of clinical relevance, the basal cell gene-expression profile is enriched in advanced, anaplastic, castration-resistant and metastatic prostate cancers. Therefore, we link the cell-type-specific gene signatures to aggressive subtypes of prostate cancer and identify gene signatures associated with adverse clinical features. Gene-expression profiles can be used to predict the prognosis of cancer patients. Here, the authors describe gene expression profiles of human prostate epithelial lineages and show that basal cells have intrinsic stem and neurogenic properties, and molecularly resemble aggressive prostate cancer.
Collapse
|