1
|
Wang D, Wang Y, Peng Y, Peng L. Utilizing multi-omics analysis, a new signature has been identified and validated for predicting prognosis and response to immunotherapy in lung squamous cell carcinoma, which is based on tumor mutation burden. Discov Oncol 2025; 16:539. [PMID: 40240626 PMCID: PMC12003222 DOI: 10.1007/s12672-025-02166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Immunotherapy is used extensively in treating non-small cell lung cancer (NSCLC) patients. Nevertheless, in contrast to lung adenocarcinoma (LUAD), the endeavors to develop effective targeted treatments for lung squamous cell carcinoma (LUSC) have not yielded positive outcomes. Hence, it is crucial to discover biomarkers for immunotherapy and investigate more potent treatments, which is an immediate requirement for individuals with LUSC. The LUSC somatic mutation data were obtained from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. Multivariate analysis was performed to create a signature related to tumor mutation burden (TMB). Next, we utilized the CIBERSORT algorithm to assess the correlation between TMB and immune infiltrates. Additionally, we identified prognostic immune cells of LUSC through Kaplan-Meier analysis. The TCGA and ICGC cohorts covered a combined total of 11 genes that were frequently mutated. SYNE1 and TTN mutation correlated with an increased TMB and suggested a positive clinical outlook. A TMB-related signature (SYNE1 and TTN) was constructed based on this. The outlook for the high-risk group in LUSC was considerably poorer than the low-risk group (p = 0.004). In LUSC, there was a correlation between the TMB-related signature and immune infiltrates, and a positive response to anti-PD-L1 therapy was observed in individuals with low-risk scores. Furthermore, based on Kaplan-Meier analysis, plasma cells were identified as predictive immune cells in LUSC samples. In conclusion, the GSEA examination demonstrated that the TMB-associated signature stimulated immune system-related signaling pathways. To sum up, the TMB-associated signature could be marker to anticipate the immune reaction in individuals with LUSC.
Collapse
Affiliation(s)
- Dongguang Wang
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, China
- The Innovation and Entrepreneurship Education Center for Agricultural Biotechnology of Hunan Province, Loudi, 417000, China
| | - Yan Wang
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, China
- The Innovation and Entrepreneurship Education Center for Agricultural Biotechnology of Hunan Province, Loudi, 417000, China
| | - Yiqun Peng
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, China
- The Innovation and Entrepreneurship Education Center for Agricultural Biotechnology of Hunan Province, Loudi, 417000, China
| | - Liang Peng
- Department of Nephrology, The Second Affiliated Hospital of University of South China, Hengyang, 421001, China.
| |
Collapse
|
2
|
Goelzer M, Howard S, Zavala AG, Conway D, Rubin J, Uzer G. Depletion of SUN1/2 induces heterochromatin accrual in mesenchymal stem cells during adipogenesis. Commun Biol 2025; 8:428. [PMID: 40082539 PMCID: PMC11906923 DOI: 10.1038/s42003-025-07832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/24/2025] [Indexed: 03/16/2025] Open
Abstract
Critical to the mechano-regulation of mesenchymal stem cells (MSC), Linker of the Nucleoskeleton and Cytoskeleton (LINC) complex transduces cytoskeletal forces to the nuclei. The LINC complex contains outer nuclear membrane Nesprin proteins that associate with the cytoskeleton and their inner nuclear membrane couplers, SUN proteins. Here we tested the hypothesis that severing of the LINC complex-mediated cytoskeletal connections may have different effects on chromatin organization and MSC differentiation than those due to ablation of SUN proteins. In cells cultured under adipogenic conditions, interrupting LINC complex function through dominant-negative KASH domain expression (dnKASH) increased adipogesis while heterochromatin H3K27 and H3K9 methylation was unaltered. In contrast, SUN1/2 depletion inhibited adipogenic gene expression and fat droplet formation; as well the anti-adipogenic effect of SUN1/2 depletion was accompanied by increased H3K9me3, which was enriched on Adipoq, silencing this fat locus. We conclude that releasing the nucleus from cytoskeletal constraints via dnKASH accelerates adipogenesis while depletion of SUN1/2 increases heterochromatin accrual on adipogenic genes in a fashion independent of LINC complex function. Therefore, while these two approaches both disable LINC complex functions, their divergent effects on the epigenetic landscape indicate they cannot be used interchangeably to study mechanical regulation of cell differentiation.
Collapse
Affiliation(s)
- Matthew Goelzer
- Boise State University, Boise, ID, USA
- Oral Roberts University, Tulsa, OK, USA
| | | | | | - Daniel Conway
- The Ohio State University University, Columbus, OH, USA
| | - Janet Rubin
- University of North Carolina at Chapel Hill, Chapel Hill, USA
| | | |
Collapse
|
3
|
Ambroziak M, Franke J, Wójcicka A, Kolanowska M, Jaxa-Chamiec T, Budaj A. Intronic SYNE1 Gene Novel Variant Associated with Myocardial Infarction in Young People with a Family History of Premature Atherosclerosis: A Case-Control Study in the Polish Population. Int J Mol Sci 2025; 26:2244. [PMID: 40076866 PMCID: PMC11899963 DOI: 10.3390/ijms26052244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Premature myocardial infarction (MI) risk factors, including genetic ones, are crucial for an individual risk stratification. The aim of this study was to investigate the role of genetic variants in young patients with MI and a family history of premature atherosclerosis (FHpa). The studied group consisted of 70 patients aged 26-49 (mean 43.1, SD ± 4.3; 17 women, 53 men), with MI and with FHpa. The targeted enrichment library was prepared and analyzed using the Next-Generation Sequencing method. The results of sequencing were compared to data from the reference control population, consisting of 597 people with no history of MI (418 women, 179 men) aged 18-83 (mean 40.5, SD ± 12.4), using Propensity Score Matching. SYNE1 gene variant NM_182961.4:c.20396+22A>G occurs with a significantly higher incidence in the studied group compared to the control population (OR 4.80 95%CI 1.43-14.45; p = 0.005) as a whole and when matched by age and gender (OR 9.31 95%CI 1.64-95.41; p = 0.004). There were no statistically significant differences in the incidence of variants related to familial hypercholesterolemia (LDLR NM_001195800.2:c.667G>A, PCSK9 NM_182961.4:c.658-36G>A NM_174936.3:c.658-36G>A, and APOB NM_000384.3:c.12382G>A) between both cohorts. A novel variant of the SYNE1 gene is associated with MI in young patients with FHpa.
Collapse
Affiliation(s)
- Michał Ambroziak
- Department of Cardiology, Centre of Postgraduate Medical Education, Grochowski Hospital, 04-073 Warsaw, Poland; (T.J.-C.); (A.B.)
| | - Jakub Franke
- Warsaw Genomics, 02-502 Warsaw, Poland; (J.F.); (A.W.); (M.K.)
- II Department of Radiology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Anna Wójcicka
- Warsaw Genomics, 02-502 Warsaw, Poland; (J.F.); (A.W.); (M.K.)
- Fundacja Wiedziec Wiecej, 01-682 Warsaw, Poland
| | - Monika Kolanowska
- Warsaw Genomics, 02-502 Warsaw, Poland; (J.F.); (A.W.); (M.K.)
- Department of Tumor Biology and Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Tomasz Jaxa-Chamiec
- Department of Cardiology, Centre of Postgraduate Medical Education, Grochowski Hospital, 04-073 Warsaw, Poland; (T.J.-C.); (A.B.)
| | - Andrzej Budaj
- Department of Cardiology, Centre of Postgraduate Medical Education, Grochowski Hospital, 04-073 Warsaw, Poland; (T.J.-C.); (A.B.)
| |
Collapse
|
4
|
Qin Q, Zhou ZY, Liu Y, Zhou F, Cao C, Teng L. Unraveling the nexus of nesprin in dilated cardiomyopathy: From molecular insights to therapeutic prospects. Life Sci 2024; 358:123126. [PMID: 39396640 DOI: 10.1016/j.lfs.2024.123126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Dilated cardiomyopathy is a complex and debilitating heart disorder characterized by the enlargement and weakening of the cardiac chambers, leading to impaired contractility and heart failure. Nesprins, a family of nuclear envelope spectrin repeat proteins that include isoforms Nesprin-1/-2, are integral components of the LInker of Nucleoskeleton and Cytoskeleton complex. They facilitate the connection between the nuclear envelope and the cytoskeleton, crucial for maintaining nuclear architecture, migration and positioning, and mechanical transduction and signaling. Nesprin-1/-2 are abundantly expressed in cardiac and skeletal muscles.They have emerged as key players in the pathogenesis of dilated cardiomyopathy. Mutations in synaptic nuclear envelope-1/-2 genes encoding Nesprin-1/-2 are associated with dilated cardiomyopathy, underscoring their significance in cardiac health. This review highlights the all known cases of Nesprin-1/-2 related dilated cardiomyopathy, focusing on their interactions with the nuclear envelope, their role in mechanical transduction, and their influence on gene expression. Moreover, it delves into the underlying mechanisms through which Nesprin dysfunction disrupts nuclear-cytoskeletal coupling, leading to abnormal nuclear morphology, impaired mechanotransduction, and altered gene regulation. The exploration of Nesprin's impact on dilated cardiomyopathy offers a promising avenue for therapeutic interventions aimed at ameliorating the disease. This review provides a comprehensive overview of recent advancements in understanding the pivotal role of Nesprins in dilated cardiomyopathy research.
Collapse
Affiliation(s)
- Qin Qin
- Department of Cardiology, Yichang Central People's Hospital/The First Clinical Medical College, Three Gorges University, Yichang 443003, Hubei, People's Republic of China; School of Basic Medicine, China Three Gorges University, Yichang 443000, Hubei, People's Republic of China
| | - Zi-Yi Zhou
- Department of Cardiology, Yichang Central People's Hospital/The First Clinical Medical College, Three Gorges University, Yichang 443003, Hubei, People's Republic of China; School of Basic Medicine, China Three Gorges University, Yichang 443000, Hubei, People's Republic of China
| | - Yangyuanzhi Liu
- Department of Cardiology, Yichang Central People's Hospital/The First Clinical Medical College, Three Gorges University, Yichang 443003, Hubei, People's Republic of China; School of Basic Medicine, China Three Gorges University, Yichang 443000, Hubei, People's Republic of China
| | - Fei Zhou
- Department of Cardiology, Yichang Central People's Hospital/The First Clinical Medical College, Three Gorges University, Yichang 443003, Hubei, People's Republic of China
| | - Chunyu Cao
- School of Basic Medicine, China Three Gorges University, Yichang 443000, Hubei, People's Republic of China; College of Basic Medical Sciences, Hubei Key Laboratory of Tumor Microencironment and Immunotherapy, China Three Gorges University, Yichang 443000, Hubei, People's Republic of China
| | - Lin Teng
- Department of Cardiology, Yichang Central People's Hospital/The First Clinical Medical College, Three Gorges University, Yichang 443003, Hubei, People's Republic of China; King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London SE5 9NU, UK.
| |
Collapse
|
5
|
Zohar H, Lindenboim L, Gozlan O, Gundersen GG, Worman HJ, Stein R. Apoptosis-induced translocation of nesprin-2 from the nuclear envelope to mitochondria is associated with mitochondrial dysfunction. Nucleus 2024; 15:2413501. [PMID: 39402980 PMCID: PMC11486236 DOI: 10.1080/19491034.2024.2413501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Accumulating evidence suggests that the nuclear envelope (NE) is not just a target, but also a mediator of apoptosis. We showed recently that the NE protein nesprin-2 has pro-apoptotic activity, which involves its subcellular redistribution and Bcl-2 proteins. Here we further characterize the pro-apoptotic activity of nesprin-2 focusing on its redistribution. We assessed the redistribution kinetics of endogenous nesprin-2 tagged with GFP relative to apoptosis-associated mitochondrial dysfunction. The results show apoptosis-induced GFP-nesprin-2G redistribution occurred by two different modes - complete and partial, both lead to appearance of nesprin-2G near the mitochondria. Moreover, GFP-nesprin-2 redistribution is associated with reduction in mitochondrial membrane potential and mitochondrial outer membrane permeabilization and precedes the appearance of morphological features of apoptosis. Our results show that nesprin-2G redistribution and translocation near mitochondria is an early apoptotic effect associated with mitochondrial dysfunction, which may be responsible for the pro-apoptotic function of nesprin-2.
Collapse
Affiliation(s)
- Hila Zohar
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Liora Lindenboim
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Oren Gozlan
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Howard J Worman
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Reuven Stein
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Srivastava LK, Ehrlicher AJ. Sensing the squeeze: nuclear mechanotransduction in health and disease. Nucleus 2024; 15:2374854. [PMID: 38951951 PMCID: PMC11221475 DOI: 10.1080/19491034.2024.2374854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
The nucleus not only is a repository for DNA but also a center of cellular and nuclear mechanotransduction. From nuclear deformation to the interplay between mechanosensing components and genetic control, the nucleus is poised at the nexus of mechanical forces and cellular function. Understanding the stresses acting on the nucleus, its mechanical properties, and their effects on gene expression is therefore crucial to appreciate its mechanosensitive function. In this review, we examine many elements of nuclear mechanotransduction, and discuss the repercussions on the health of cells and states of illness. By describing the processes that underlie nuclear mechanosensation and analyzing its effects on gene regulation, the review endeavors to open new avenues for studying nuclear mechanics in physiology and diseases.
Collapse
Affiliation(s)
| | - Allen J. Ehrlicher
- Department of Bioengineering, McGill University, Montreal, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
- Centre for Structural Biology, McGill University, Montreal, Canada
- Department of Mechanical Engineering, McGill University, Montreal, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
| |
Collapse
|
7
|
Kuwako KI, Suzuki S. Diverse Roles of the LINC Complex in Cellular Function and Disease in the Nervous System. Int J Mol Sci 2024; 25:11525. [PMID: 39519078 PMCID: PMC11545860 DOI: 10.3390/ijms252111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex, which spans the nuclear envelope, physically connects nuclear components to the cytoskeleton and plays a pivotal role in various cellular processes, including nuclear positioning, cell migration, and chromosomal configuration. Studies have revealed that the LINC complex is essential for different aspects of the nervous system, particularly during development. The significance of the LINC complex in neural lineage cells is further corroborated by the fact that mutations in genes associated with the LINC complex have been implicated in several neurological diseases, including neurodegenerative and psychiatric disorders. In this review, we aimed to summarize the expanding knowledge of LINC complex-related neuronal functions and associated neurological diseases.
Collapse
Affiliation(s)
- Ken-ichiro Kuwako
- Department of Neural and Muscular Physiology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi 693-8501, Shimane, Japan
| | | |
Collapse
|
8
|
Liu N, Hsu J, Mahajan G, Sun H, Laurita KR, Naga Prasad SV, Barnard J, Van Wagoner DR, Kothapalli CR, Chung MK, Smith JD. Common SYNE2 Genetic Variant Associated With Atrial Fibrillation Lowers Expression of Nesprin-2α1 With Downstream Effects on Nuclear and Electrophysiological Traits. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004750. [PMID: 39355904 PMCID: PMC11522946 DOI: 10.1161/circgen.124.004750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/08/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Atrial fibrillation GWAS (genome-wide association studies) identified significant associations for rs1152591 and linked variants in the SYNE2 gene encoding Nesprin-2, which connects the nuclear membrane with the cytoskeleton. METHODS Reporter gene vector transfection and CRISPR-Cas9 editing were used to identify the causal variant regulating the expression of SYNE2α1. After SYNE2 knockdown or SYNE2α1 overexpression in human stem cell-derived cardiomyocytes, nuclear phenotypes were assessed by imaging and atomic force microscopy. Gene expression was assessed by RNAseq and gene set enrichment analysis. Fura-2 AM staining assessed calcium transients. Optical mapping assessed action potential duration and conduction velocity. RESULTS The risk allele of rs1152591 had lower promoter and enhancer activity and was significantly associated with lower expression of the short SYNE2α1 isoform in human stem cell-derived cardiomyocytes, without an effect on the expression of the full-length SYNE2 mRNA. SYNE2α1 overexpression had dominant negative effects on the nucleus with its overexpression or SYNE2 knockdown leading to increased nuclear area and decreased nuclear stiffness. Gene expression results from SYNE2α1 overexpression demonstrated both concordant and nonconcordant effects with SYNE2 knockdown. SYNE2α1 overexpression had a gain of function on electrophysiology, leading to significantly faster calcium reuptake and decreased assessed action potential duration, while SYNE2 knockdown showed both shortened assessed action potential duration and decreased conduction velocity. CONCLUSIONS rs1152591 was identified as a causal atrial fibrillation variant, with the risk allele decreasing SYNE2α1 expression. Downstream effects of SYNE2α1 overexpression include changes in nuclear stiffness and electrophysiology, which may contribute to the mechanism for the risk allele's association with AF.
Collapse
Affiliation(s)
- Nana Liu
- Depts of Cardiovascular & Metabolic Sciences, Cardiovascular Medicine
| | - Jeffrey Hsu
- Depts of Cardiovascular & Metabolic Sciences, Cardiovascular Medicine
| | - Gautam Mahajan
- Dept of Chemical and Biomedical Engineering, Cleveland State University
| | - Han Sun
- Dept of Quantitative Health Sciences
| | - Kenneth R. Laurita
- Dept of Medicine and Biomedical Engineering, Metrohealth Campus, Cleveland, OH
| | | | | | | | | | - Mina K. Chung
- Depts of Cardiovascular & Metabolic Sciences, Cardiovascular Medicine
- Dept of Cardiovascular Medicine, Cleveland Clinic
| | - Jonathan D. Smith
- Depts of Cardiovascular & Metabolic Sciences, Cardiovascular Medicine
- Dept of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
| |
Collapse
|
9
|
Singh J, Zlatar L, Muñoz-Becerra M, Lochnit G, Herrmann I, Pfister F, Janko C, Knopf J, Leppkes M, Schoen J, Muñoz LE, Schett G, Herrmann M, Schauer C, Mahajan A. Calpain-1 weakens the nuclear envelope and promotes the release of neutrophil extracellular traps. Cell Commun Signal 2024; 22:435. [PMID: 39252008 PMCID: PMC11384698 DOI: 10.1186/s12964-024-01785-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
The inducers of neutrophil extracellular trap (NET) formation are heterogeneous and consequently, there is no specific pathway or signature molecule indispensable for NET formation. But certain events such as histone modification, chromatin decondensation, nuclear envelope breakdown, and NET release are ubiquitous. During NET formation, neutrophils drastically rearrange their cytoplasmic, granular and nuclear content. Yet, the exact mechanism for decoding each step during NET formation still remains elusive. Here, we investigated the mechanism of nuclear envelope breakdown during NET formation. Immunofluorescence microscopic evaluation revealed a gradual disintegration of outer nuclear membrane protein nesprin-1 and alterations in nuclear morphology during NET formation. MALDI-TOF analysis of NETs that had been generated by various inducers detected the accumulation of nesprin-1 fragments. This suggests that nesprin-1 degradation occurs before NET release. In the presence of a calpain-1, inhibitor nesprin-1 degradation was decreased in calcium driven NET formation. Microscopic evaluation confirmed that the disintegration of the lamin B receptor (LBR) and the collapse of the actin cytoskeleton occurs in early and later phases of NET release, respectively. We conclude that the calpain-1 degrades nesprin-1, orchestrates the weakening of the nuclear membrane, contributes to LBR disintegration, and promoting DNA release and finally, NETs formation.
Collapse
Affiliation(s)
- Jeeshan Singh
- Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Leticija Zlatar
- Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Marco Muñoz-Becerra
- Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Günter Lochnit
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Irmgard Herrmann
- Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Felix Pfister
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Uniklinikum Erlangen, Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Uniklinikum Erlangen, Erlangen, Germany
| | - Jasmin Knopf
- Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Moritz Leppkes
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Department of Medicine 1 - Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Janina Schoen
- Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Luis E Muñoz
- Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Martin Herrmann
- Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Christine Schauer
- Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Aparna Mahajan
- Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
10
|
Scott KL, Halfmann CT, Hoefakker AD, Purkayastha P, Wang TC, Lele TP, Roux KJ. Nucleocytoplasmic transport rates are regulated by cellular processes that modulate GTP availability. J Cell Biol 2024; 223:e202308152. [PMID: 38683248 PMCID: PMC11059771 DOI: 10.1083/jcb.202308152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Nucleocytoplasmic transport (NCT), the facilitated diffusion of cargo molecules between the nucleus and cytoplasm through nuclear pore complexes (NPCs), enables numerous fundamental eukaryotic cellular processes. Ran GTPase uses cellular energy in the direct form of GTP to create a gradient across the nuclear envelope (NE) that drives the majority of NCT. We report here that changes in GTP availability resulting from altered cellular physiology modulate the rate of NCT, as monitored using synthetic and natural cargo, and the dynamics of Ran itself. Cell migration, cell spreading, and/or modulation of the cytoskeleton or its connection to the nucleus alter GTP availability and thus rates of NCT, regulating RNA export and protein synthesis. These findings support a model in which changes in cellular physiology that alter GTP availability can regulate the rate of NCT, impacting fundamental cellular processes that extensively utilize NCT.
Collapse
Affiliation(s)
- Kelsey L. Scott
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA
| | | | - Allison D. Hoefakker
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Purboja Purkayastha
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Ting Ching Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Tanmay P. Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA
| | - Kyle J. Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
11
|
Young N, Gui Z, Mustafa S, Papa K, Jessop E, Ruddell E, Bevington L, Quinlan RA, Benham AM, Goldberg MW, Obara B, Karakesisoglou I. Inhibition of PDIs Downregulates Core LINC Complex Proteins, Promoting the Invasiveness of MDA-MB-231 Breast Cancer Cells in Confined Spaces In Vitro. Cells 2024; 13:906. [PMID: 38891038 PMCID: PMC11172124 DOI: 10.3390/cells13110906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/20/2024] Open
Abstract
Eukaryotic cells tether the nucleoskeleton to the cytoskeleton via a conserved molecular bridge, called the LINC complex. The core of the LINC complex comprises SUN-domain and KASH-domain proteins that directly associate within the nuclear envelope lumen. Intra- and inter-chain disulphide bonds, along with KASH-domain protein interactions, both contribute to the tertiary and quaternary structure of vertebrate SUN-domain proteins. The significance of these bonds and the role of PDIs (protein disulphide isomerases) in LINC complex biology remains unclear. Reducing and non-reducing SDS-PAGE analyses revealed a prevalence of SUN2 homodimers in non-tumorigenic breast epithelia MCF10A cells, but not in the invasive triple-negative breast cancer MDA-MB-231 cell line. Furthermore, super-resolution microscopy revealed SUN2 staining alterations in MCF10A, but not in MDA-MB-231 nuclei, upon reducing agent exposure. While PDIA1 levels were similar in both cell lines, pharmacological inhibition of PDI activity in MDA-MB-231 cells led to SUN-domain protein down-regulation, as well as Nesprin-2 displacement from the nucleus. This inhibition also caused changes in perinuclear cytoskeletal architecture and lamin downregulation, and increased the invasiveness of PDI-inhibited MDA-MB-231 cells in space-restrictive in vitro environments, compared to untreated cells. These results emphasise the key roles of PDIs in regulating LINC complex biology, cellular architecture, biomechanics, and invasion.
Collapse
Affiliation(s)
- Natalie Young
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Zizhao Gui
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Suleiman Mustafa
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK; (S.M.); (B.O.)
| | - Kleopatra Papa
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Emily Jessop
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Elizabeth Ruddell
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Laura Bevington
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Roy A. Quinlan
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Adam M. Benham
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Martin W. Goldberg
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Boguslaw Obara
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK; (S.M.); (B.O.)
| | - Iakowos Karakesisoglou
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| |
Collapse
|
12
|
Bougaran P, Bautch VL. Life at the crossroads: the nuclear LINC complex and vascular mechanotransduction. Front Physiol 2024; 15:1411995. [PMID: 38831796 PMCID: PMC11144885 DOI: 10.3389/fphys.2024.1411995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024] Open
Abstract
Vascular endothelial cells line the inner surface of all blood vessels, where they are exposed to polarized mechanical forces throughout their lifespan. Both basal substrate interactions and apical blood flow-induced shear stress regulate blood vessel development, remodeling, and maintenance of vascular homeostasis. Disruption of these interactions leads to dysfunction and vascular pathologies, although how forces are sensed and integrated to affect endothelial cell behaviors is incompletely understood. Recently the endothelial cell nucleus has emerged as a prominent force-transducing organelle that participates in vascular mechanotransduction, via communication to and from cell-cell and cell-matrix junctions. The LINC complex, composed of SUN and nesprin proteins, spans the nuclear membranes and connects the nuclear lamina, the nuclear envelope, and the cytoskeleton. Here we review LINC complex involvement in endothelial cell mechanotransduction, describe unique and overlapping functions of each LINC complex component, and consider emerging evidence that two major SUN proteins, SUN1 and SUN2, orchestrate a complex interplay that extends outward to cell-cell and cell-matrix junctions and inward to interactions within the nucleus and chromatin. We discuss these findings in relation to vascular pathologies such as Hutchinson-Gilford progeria syndrome, a premature aging disorder with cardiovascular impairment. More knowledge of LINC complex regulation and function will help to understand how the nucleus participates in endothelial cell force sensing and how dysfunction leads to cardiovascular disease.
Collapse
Affiliation(s)
- Pauline Bougaran
- Department of Biology, The University of North Carolina, Chapel Hill, NC, United States
| | - Victoria L. Bautch
- Department of Biology, The University of North Carolina, Chapel Hill, NC, United States
- McAllister Heart Institute, The University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
13
|
Copeland I, Wonkam-Tingang E, Gupta-Malhotra M, Hashmi SS, Han Y, Jajoo A, Hall NJ, Hernandez PP, Lie N, Liu D, Xu J, Rosenfeld J, Haldipur A, Desire Z, Coban-Akdemir ZH, Scott DA, Li Q, Chao HT, Zaske AM, Lupski JR, Milewicz DM, Shete S, Posey JE, Hanchard NA. Exome sequencing implicates ancestry-related Mendelian variation at SYNE1 in childhood-onset essential hypertension. JCI Insight 2024; 9:e172152. [PMID: 38716726 PMCID: PMC11141928 DOI: 10.1172/jci.insight.172152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 03/19/2024] [Indexed: 05/12/2024] Open
Abstract
Childhood-onset essential hypertension (COEH) is an uncommon form of hypertension that manifests in childhood or adolescence and, in the United States, disproportionately affects children of African ancestry. The etiology of COEH is unknown, but its childhood onset, low prevalence, high heritability, and skewed ancestral demography suggest the potential to identify rare genetic variation segregating in a Mendelian manner among affected individuals and thereby implicate genes important to disease pathogenesis. However, no COEH genes have been reported to date. Here, we identify recessive segregation of rare and putatively damaging missense variation in the spectrin domain of spectrin repeat containing nuclear envelope protein 1 (SYNE1), a cardiovascular candidate gene, in 3 of 16 families with early-onset COEH without an antecedent family history. By leveraging exome sequence data from an additional 48 COEH families, 1,700 in-house trios, and publicly available data sets, we demonstrate that compound heterozygous SYNE1 variation in these COEH individuals occurred more often than expected by chance and that this class of biallelic rare variation was significantly enriched among individuals of African genetic ancestry. Using in vitro shRNA knockdown of SYNE1, we show that reduced SYNE1 expression resulted in a substantial decrease in the elasticity of smooth muscle vascular cells that could be rescued by pharmacological inhibition of the downstream RhoA/Rho-associated protein kinase pathway. These results provide insights into the molecular genetics and underlying pathophysiology of COEH and suggest a role for precision therapeutics in the future.
Collapse
Affiliation(s)
- Ian Copeland
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Edmond Wonkam-Tingang
- Childhood Complex Disease Genomics Section, National Human Genome Research Institute, NIH, Bethesda, USA
| | | | - S. Shahrukh Hashmi
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yixing Han
- Childhood Complex Disease Genomics Section, National Human Genome Research Institute, NIH, Bethesda, USA
| | - Aarti Jajoo
- Childhood Complex Disease Genomics Section, National Human Genome Research Institute, NIH, Bethesda, USA
| | - Nancy J. Hall
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- US Department of Agriculture Agricultural Research Service Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Paula P. Hernandez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- US Department of Agriculture Agricultural Research Service Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Natasha Lie
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Childhood Complex Disease Genomics Section, National Human Genome Research Institute, NIH, Bethesda, USA
- US Department of Agriculture Agricultural Research Service Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Dan Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jun Xu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jill Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Baylor Genetics, Houston, Texas, USA
| | - Aparna Haldipur
- Childhood Complex Disease Genomics Section, National Human Genome Research Institute, NIH, Bethesda, USA
| | - Zelene Desire
- Childhood Complex Disease Genomics Section, National Human Genome Research Institute, NIH, Bethesda, USA
| | - Zeynep H. Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics
| | - Qing Li
- Childhood Complex Disease Genomics Section, National Human Genome Research Institute, NIH, Bethesda, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics; and
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Cain Pediatric Neurology Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital and Baylor College of Medicine, Houston, Texas, USA
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, Texas, USA
| | - Ana M. Zaske
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Dianna M. Milewicz
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sanjay Shete
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, Texas, USA
| | - Neil A. Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Childhood Complex Disease Genomics Section, National Human Genome Research Institute, NIH, Bethesda, USA
| |
Collapse
|
14
|
Li C, Warren DT, Zhou C, De Silva S, Wilson DGS, Garcia-Maya M, Wheeler MA, Meinke P, Sawyer G, Ehler E, Wehnert M, Rao L, Zhang Q, Shanahan CM. Nesprin-2 is a novel scaffold protein for telethonin and FHL-2 in the cardiomyocyte sarcomere. J Biol Chem 2024; 300:107254. [PMID: 38569934 PMCID: PMC11078644 DOI: 10.1016/j.jbc.2024.107254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
Nesprins comprise a family of multi-isomeric scaffolding proteins, forming the linker of nucleoskeleton-and-cytoskeleton complex with lamin A/C, emerin and SUN1/2 at the nuclear envelope. Mutations in nesprin-1/-2 are associated with Emery-Dreifuss muscular dystrophy (EDMD) with conduction defects and dilated cardiomyopathy (DCM). We have previously observed sarcomeric staining of nesprin-1/-2 in cardiac and skeletal muscle, but nesprin function in this compartment remains unknown. In this study, we show that specific nesprin-2 isoforms are highly expressed in cardiac muscle and localize to the Z-disc and I band of the sarcomere. Expression of GFP-tagged nesprin-2 giant spectrin repeats 52 to 53, localized to the sarcomere of neonatal rat cardiomyocytes. Yeast two-hybrid screening of a cardiac muscle cDNA library identified telethonin and four-and-half LIM domain (FHL)-2 as potential nesprin-2 binding partners. GST pull-down and immunoprecipitation confirmed the individual interactions between nesprin-2/telethonin and nesprin-2/FHL-2, and showed that nesprin-2 and telethonin binding was dependent on telethonin phosphorylation status. Importantly, the interactions between these binding partners were impaired by mutations in nesprin-2, telethonin, and FHL-2 identified in EDMD with DCM and hypertrophic cardiomyopathy patients. These data suggest that nesprin-2 is a novel sarcomeric scaffold protein that may potentially participate in the maintenance and/or regulation of sarcomeric organization and function.
Collapse
Affiliation(s)
- Chen Li
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London, UK; Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Derek T Warren
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London, UK; School of Pharmacy, University of East Anglia, Norwich, UK
| | - Can Zhou
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London, UK
| | - Shanelle De Silva
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London, UK
| | - Darren G S Wilson
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London, UK
| | - Mitla Garcia-Maya
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Matthew A Wheeler
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Peter Meinke
- Friedrich-Baur-Institute at the Department of Neurology, LMU University Hospital, Munich, Germany
| | - Greta Sawyer
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London, UK
| | - Elisabeth Ehler
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Manfred Wehnert
- Institute of Human Genetics, University of Greifswald, Greifswald, Germany
| | - Li Rao
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiuping Zhang
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London, UK.
| | - Catherine M Shanahan
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London, UK.
| |
Collapse
|
15
|
Zi-Yi Z, Qin Q, Fei Z, Cun-Yu C, Lin T. Nesprin proteins: bridging nuclear envelope dynamics to muscular dysfunction. Cell Commun Signal 2024; 22:208. [PMID: 38566066 PMCID: PMC10986154 DOI: 10.1186/s12964-024-01593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
This review presents a comprehensive exploration of the pivotal role played by the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, with a particular focus on Nesprin proteins, in cellular mechanics and the pathogenesis of muscular diseases. Distinguishing itself from prior works, the analysis delves deeply into the intricate interplay of the LINC complex, emphasizing its indispensable contribution to maintaining cellular structural integrity, especially in mechanically sensitive tissues such as cardiac and striated muscles. Additionally, the significant association between mutations in Nesprin proteins and the onset of Dilated Cardiomyopathy (DCM) and Emery-Dreifuss Muscular Dystrophy (EDMD) is highlighted, underscoring their pivotal role in disease pathogenesis. Through a comprehensive examination of DCM and EDMD cases, the review elucidates the disruptions in the LINC complex, nuclear morphology alterations, and muscular developmental disorders, thus emphasizing the essential function of an intact LINC complex in preserving muscle physiological functions. Moreover, the review provides novel insights into the implications of Nesprin mutations for cellular dynamics in the pathogenesis of muscular diseases, particularly in maintaining cardiac structural and functional integrity. Furthermore, advanced therapeutic strategies, including rectifying Nesprin gene mutations, controlling Nesprin protein expression, enhancing LINC complex functionality, and augmenting cardiac muscle cell function are proposed. By shedding light on the intricate molecular mechanisms underlying nuclear-cytoskeletal interactions, the review lays the groundwork for future research and therapeutic interventions aimed at addressing genetic muscle disorders.
Collapse
Affiliation(s)
- Zhou Zi-Yi
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, Hubei, People's Republic of China
- School of Basic Medicine, China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Qin Qin
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, Hubei, People's Republic of China
- School of Basic Medicine, China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Zhou Fei
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, Hubei, People's Republic of China
| | - Cao Cun-Yu
- School of Basic Medicine, China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
- College of Basic Medical Sciences, Hubei Key Laboratory of Tumor Microencironment and immunotherapy, China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Teng Lin
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, Hubei, People's Republic of China.
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London, SE5 9NU, UK.
| |
Collapse
|
16
|
Zhang Z, Jing Y, Zhang A, Liu J, Yang H, Lou X, Xu L, Liu M, Zhang Y, Gu J. Long non-coding RNA-NONMMMUT004552.2 regulates the unloading-induced bone loss through the miRNA-15b-5p/Syne1 in mice. NPJ Microgravity 2024; 10:37. [PMID: 38521778 PMCID: PMC10960867 DOI: 10.1038/s41526-024-00382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Exercise-induced mechanical loading can increase bone strength whilst mechanical unloading enhances bone-loss. Here, we investigated the role of lncRNA NONMMUT004552.2 in unloading-induced bone-loss. Knockout of lncRNA NONMMUT004552.2 in hindlimb-unloaded mice caused an increase in the bone formation and osteoblast activity. The silencing of lncRNA NONMMUT004552.2 also decreased the osteoblast apoptosis and expression of Bax and cleaved caspase-3, increased Bcl-2 protein expression in MC3T3-E1 cells. Mechanistic investigations demonstrated that NONMMUT004552.2 functions as a competing endogenous RNA (ceRNA) to facilitate the protein expression of spectrin repeat containing, nuclear envelope 1 (Syne1) by competitively binding miR-15b-5p and subsequently inhibits the osteoblast differentiation and bone formation in the microgravity unloading environment. These data highlight the importance of the lncRNA NONMMUT004552.2/miR-15b-5p/Syne1 axis for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Medical Engineering, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Yu Jing
- Department of Haematology, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing, 100071, China
| | - Ang Zhang
- Department of Hematology, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - JiShan Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Heming Yang
- Department of General Surgery, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Xiaotong Lou
- Department of Research, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Liyan Xu
- Department of Blood Transfusion, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Min Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yikun Zhang
- Department of Hematology, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China.
| | - Jianwen Gu
- Department of Neurosurgery, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China.
| |
Collapse
|
17
|
Fukushima T, Kobatake K, Miura K, Takemoto K, Yamanaka R, Tasaka R, Kohada Y, Miyamoto S, Sekino Y, Kitano H, Goto K, Ikeda K, Goriki A, Hieda K, Kaminuma O, Hinata N. Nesprin1 Deficiency Is Associated with Poor Prognosis of Renal Cell Carcinoma and Resistance to Sunitinib Treatment. Oncology 2024; 102:868-879. [PMID: 38442705 DOI: 10.1159/000536539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/20/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Nuclear envelope spectrin repeat protein (Nesprin) 1 encoded by SYNE1, crucially regulates the morphology and functions of the cell. Mutations in the SYNE1 gene are associated with various diseases; however, their significance in renal cell carcinoma (RCC) remains unknown. In this study, we have investigated the association of SYNE1/Nesprin1 with the progression and prognosis of clear cell RCC (ccRCC). METHODS In silico analyses of publicly available datasets of patients with RCC were performed. Based on the cohort data, Nesprin1 expression in nephrectomized tissue samples acquired from patients with ccRCC was analyzed using immunohistochemical staining. The invasion, migration, and proliferation of the SYNE1-knockdown human RCC cell lines were analyzed in vitro; moreover, RNA sequencing and gene set enrichment analysis were conducted to study the molecular mechanism underlying the association of SYNE1/Nesprin1 with prognosis of RCC. RESULTS Patients with RCC-associated SYNE1 gene mutations exhibited significantly worse overall and progression-free survivals. Patients with Nesprin1-negative ccRCC tumors exhibit significantly poorer overall, cancer-specific, and recurrence-free survival rates than those recorded in the Nesprin1-positive group. SYNE1 knockdown enhanced the invasion and migration of RCC cells; however, it did not influence the proliferation of cells. RNA sequencing and gene set enrichment analysis revealed that SYNE1 knockdown significantly altered the expression of genes associated with oxidative phosphorylation. Consistently, patients with RCC exhibiting low SYNE1 expression, who were treated with the vascular endothelial growth factor receptor inhibitor sunitinib, had worse progression-free survival. CONCLUSIONS The results indicate that the expression of SYNE1/Nesprin1 and SYNE1 mutations in patients with RCC are closely linked to their prognosis and responsiveness to sunitinib treatment.
Collapse
Affiliation(s)
- Takafumi Fukushima
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan,
| | - Kohei Kobatake
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kento Miura
- Department of Disease Models, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kenshiro Takemoto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryoken Yamanaka
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Disease Models, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Ryo Tasaka
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Kohada
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shunsuke Miyamoto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Kitano
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keisuke Goto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenichiro Ikeda
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akihiro Goriki
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keisuke Hieda
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Osamu Kaminuma
- Department of Disease Models, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Nobuyuki Hinata
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
18
|
Lindenboim L, Zohar H, Gundersen GG, Worman HJ, Stein R. LINC complex protein nesprin-2 has pro-apoptotic activity via Bcl-2 family proteins. Cell Death Discov 2024; 10:29. [PMID: 38225256 PMCID: PMC10789774 DOI: 10.1038/s41420-023-01763-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/13/2023] [Accepted: 12/06/2023] [Indexed: 01/17/2024] Open
Abstract
The apoptotic intrinsic pathway is initiated by perforation of the mitochondrial outer membrane by the effector pro-apoptotic proteins of the Bcl-2 family, Bax and Bak. Bax and Bak need to be activated, a process facilitated by the action of BH3-only pro-apoptotic members of the Bcl-2 family. The latter either directly activates the effector proteins or antagonizes the action of pro-survival Bcl-2 family members such as Bcl-xL. The nuclear envelope is a known target of the apoptotic machinery; however, it may also act as mediator of apoptosis. We showed previously that the nuclear envelope protein nesprin-2, a component of the linker of nucleoskeleton and cytoskeleton (LINC) complex, can bind to Bax in close proximity to the mitochondria and that the binding increases in apoptotic cells. We now show that depleting nesprin-2 inhibits the apoptotic mitochondrial pathway as measured by Bax and Bak activation and cytochrome c release. This survival effect was Bcl-xL-dependent. Nesprin-2 depletion also inhibited spontaneous exposure of the N-terminus of Bak in cells lacking Bcl-xL and increased the presence of Bcl-xL and Bax in the mitochondria. These results indicate that nesprin-2 promotes Bak activation and regulates mitochondrial translocation/retrotranslocation of Bcl-2 family proteins. Our findings demonstrate a new apoptotic pathway whereby the nuclear envelope, via nesprin-2, regulates apoptosis.
Collapse
Affiliation(s)
- Liora Lindenboim
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Hila Zohar
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Howard J Worman
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Reuven Stein
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
19
|
Scott KL, Halfmann CT, Hoefakker AD, Purkayastha P, Wang TC, Lele TP, Roux KJ. Nucleocytoplasmic transport rates are regulated by cellular processes that modulate GTP availability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.29.573651. [PMID: 38234722 PMCID: PMC10793428 DOI: 10.1101/2023.12.29.573651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Nucleocytoplasmic transport (NCT), the facilitated diffusion of cargo molecules between the nucleus and cytoplasm through nuclear pore complexes (NPCs), enables numerous fundamental eukaryotic cellular processes. Ran GTPase uses cellular energy in the direct form of GTP to create a gradient across the nuclear envelope (NE) that drives the majority of NCT. We report here that changes in GTP availability resulting from altered cellular physiology modulate the rate of NCT, as monitored using synthetic and natural cargo, and the dynamics of Ran itself. Cell migration, cell spreading and/or modulation of the cytoskeleton or its connection to the nucleus alter GTP availability and thus rates of NCT, regulating RNA export and protein synthesis. These findings support a model in which changes in cellular physiology that alter GTP availability can regulate the rate of NCT, impacting fundamental cellular processes that extensively utilize NCT.
Collapse
Affiliation(s)
- Kelsey L. Scott
- Enabling Technologies Group, Sanford Research, Sioux Falls SD
| | | | - Allison D. Hoefakker
- Enabling Technologies Group, Sanford Research, Sioux Falls SD
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD
| | - Purboja Purkayastha
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Ting Ching Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Tanmay P. Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
- Department of Translational Medical Sciences, Texas A&M University, Houston, Texas
| | - Kyle J. Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls SD
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD
| |
Collapse
|
20
|
Kim H, Choi Y, Kim SY, Pahk KJ. Increased intracellular diffusivity of macromolecules within a mammalian cell by low-intensity pulsed ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 100:106644. [PMID: 37844347 PMCID: PMC10587770 DOI: 10.1016/j.ultsonch.2023.106644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
Whilst a number of studies have demonstrated that low-intensity pulsed ultrasound (LIPUS) is a promising therapeutic ultrasound technique that can be used for delivering mild mechanical stimuli to target tissue non-invasively, the underlying biophysical mechanisms still remain unclear. Most mechanism studies have focused explicitly on the effects of LIPUS on the cell membrane and mechanosensitive receptors. In the present study, we propose an additional mechanism by which LIPUS propagation through living cells may directly impact intracellular dynamics, particularly the diffusion transport of biomolecules. To support our hypothesis, human epithelial-like cells (SaOS-2 and HeLa) seeded on a confocal dish placed on a microscope stage were exposed to LIPUS with various exposure conditions (ultrasound frequencies of 0.5, 1 and 3 MHz, peak acoustic pressure of 200 and 400 kPa, a pulse repetition frequency of 1 kHz and a 20 % duty cycle), and the diffusivities of various sizes of biomolecules in the cytoplasm area were measured using fluorescence recovery after photobleaching (FRAP). Furthermore, giant unilamellar vesicles (GUVs) filled with macromolecules were used to examine the physical causal relationship between LIPUS and molecular diffusion changes. Nucleocytoplasmic transport coefficients were also measured by modified FRAP that bleaches the whole cell nuclear region. Extracellular signal-regulated kinases (ERK) activity (the phosphorylation dynamics) was monitored using fluorescence resonance energy transfer (FRET) microscopy. All the measurements were taken during, before and after the LIPUS exposure. Our experimental results clearly showed that the diffusion coefficients of macromolecules within the cell increased with acoustic pressure by 12.1 to 33.5 % during the sonication, and the increments were proportional to their molecular sizes regardless of the ultrasound frequency used. This observation in living cells was consistent with the GUVs exposed to the LIPUS, which indicated that the diffusivity increase was a passive physical response to the acoustic energy of LIPUS. Under the 1 MHz LIPUS exposure with 400 kPa, the passive nucleocytoplasmic transport of enhanced green fluorescent protein (EGFP) was accelerated by 21.4 %. With the same LIPUS exposure condition, both the diffusivity and phosphorylation of ERK induced by EGF treatment were significantly elevated simultaneously, which implied that LIPUS could also modify the kinase kinetics in the signal transduction process. Taken together, this study is the first attempt to uncover the physical link between LIPUS and the dynamics of intracellular macromolecules and related biological processes that LIPUS can possibly increase the diffusivity of intracellular macromolecules, leading to the changes in the basic cellular processes: passive nucleocytoplasmic transport and ERK. Our findings can provide a novel perspective that the mechanotransduction process that the intracellular region, in addition to the cell membrane, can convert the acoustic stimuli of LIPUS to biochemical signals.
Collapse
Affiliation(s)
- Hyojun Kim
- LAAS-CNRS, University of Toulouse, CNRS, Toulouse, France
| | - Yeonho Choi
- Department of Bioengineering, Korea University, Seoul, Republic of Korea
| | - So Yeon Kim
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| | - Ki Joo Pahk
- Department of Biomedical Engineering, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
21
|
Kechagia Z, Sáez P, Gómez-González M, Canales B, Viswanadha S, Zamarbide M, Andreu I, Koorman T, Beedle AEM, Elosegui-Artola A, Derksen PWB, Trepat X, Arroyo M, Roca-Cusachs P. The laminin-keratin link shields the nucleus from mechanical deformation and signalling. NATURE MATERIALS 2023; 22:1409-1420. [PMID: 37709930 PMCID: PMC10627833 DOI: 10.1038/s41563-023-01657-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/31/2023] [Indexed: 09/16/2023]
Abstract
The mechanical properties of the extracellular matrix dictate tissue behaviour. In epithelial tissues, laminin is a very abundant extracellular matrix component and a key supporting element. Here we show that laminin hinders the mechanoresponses of breast epithelial cells by shielding the nucleus from mechanical deformation. Coating substrates with laminin-111-unlike fibronectin or collagen I-impairs cell response to substrate rigidity and YAP nuclear localization. Blocking the laminin-specific integrin β4 increases nuclear YAP ratios in a rigidity-dependent manner without affecting the cell forces or focal adhesions. By combining mechanical perturbations and mathematical modelling, we show that β4 integrins establish a mechanical linkage between the substrate and keratin cytoskeleton, which stiffens the network and shields the nucleus from actomyosin-mediated mechanical deformation. In turn, this affects the nuclear YAP mechanoresponses, chromatin methylation and cell invasion in three dimensions. Our results demonstrate a mechanism by which tissues can regulate their sensitivity to mechanical signals.
Collapse
Affiliation(s)
- Zanetta Kechagia
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Pablo Sáez
- Laboratori de Càlcul Numèric (LàCaN), Universitat Politècnica de Catalunya, Barcelona, Spain
- Institut de Matemátiques de la UPC-BarcelonaTech (IMTech), Barcelona, Spain
| | - Manuel Gómez-González
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Brenda Canales
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, King's College London, London, UK
| | - Srivatsava Viswanadha
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Ion Andreu
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Thijs Koorman
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Amy E M Beedle
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Physics, King's College London, London, UK
| | - Alberto Elosegui-Artola
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, King's College London, London, UK
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Marino Arroyo
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Laboratori de Càlcul Numèric (LàCaN), Universitat Politècnica de Catalunya, Barcelona, Spain
- Institut de Matemátiques de la UPC-BarcelonaTech (IMTech), Barcelona, Spain
- Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Barcelona, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- University of Barcelona, Barcelona, Spain.
| |
Collapse
|
22
|
King MC. Dynamic regulation of LINC complex composition and function across tissues and contexts. FEBS Lett 2023; 597:2823-2832. [PMID: 37846646 DOI: 10.1002/1873-3468.14757] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
The concept of mechanotransduction to the nucleus through a direct force transmission mechanism has fascinated cell biologists for decades. Central to such a mechanism is the linker of nucleoskeleton and cytoskeleton (LINC) complex, which spans the nuclear envelope to couple the cytoplasmic cytoskeleton to the nuclear lamina. In reality, there is not one LINC complex identity, but instead, a family of protein configurations of varied composition that exert both shared and unique functions. Regulated expression of LINC complex components, splice variants, and mechanoresponsive protein turnover mechanisms together shape the complement of LINC complex forms present in a given cell type. Disrupting specific gene(s) encoding LINC complex components therefore gives rise to a range of organismal defects. Moreover, evidence suggests that the mechanical environment remodels LINC complexes, providing a feedback mechanism by which cellular context influences the integration of the nucleus into the cytoskeleton. In particular, evidence for crosstalk between the nuclear and cytoplasmic intermediate filament networks communicated through the LINC complex represents an emerging theme in this active area of ongoing investigation.
Collapse
Affiliation(s)
- Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
23
|
Bouchoucha S, Chikhaoui A, Najjar D, Zayoud K, Zouari M, Nessib MN, Kéfi R, Yacoub-Youssef H. Case report: Exome sequencing revealed disease-causing variants in a patient with spondylospinal thoracic dysostosis. Front Pediatr 2023; 11:1132023. [PMID: 37744435 PMCID: PMC10512740 DOI: 10.3389/fped.2023.1132023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Background Spondylocostal dysostosis is a rare genetic disorder caused by mutations in DLL3, MESP2, LFNG, HES7, TBX6, and RIPPLY2. A particular form of this disorder characterized by the association of spondylocostal dysostosis with multiple pterygia has been reported and called spondylospinal thoracic dysostosis. Both disorders affect the spine and ribs, leading to abnormal development of the spine. Spondylospinal thoracic dysostosis is a rare syndrome characterized by the association of multiple vertebral segmentation defects, thoracic cage deformity, and multiple pterygia. This syndrome can be considered a different form of the described spondylocostal dysostosis. However, no genetic testing has been conducted for this rare disorder so far. Methods We report here the case of an 18-month-old female patient presenting the clinical and radiological features of spondylospinal thoracic dysostosis. To determine the underlying genetic etiology, whole exome sequencing (WES) and Sanger sequencing were performed. Results Using WES, we identified a variant in the TPM2 gene c. 628C>T, already reported in the non-lethal form of multiple pterygium syndrome. In addition, following the analysis of WES data, using bioinformatic tools, for oligogenic diseases, we identified candidate modifier genes, CAP2 and ADCY6, that could impact the clinical manifestations. Conclusion We showed a potential association between TPM2 and the uncommon spondylocostal dysostosis phenotype that would require further validation on larger cohort.
Collapse
Affiliation(s)
- Sami Bouchoucha
- Service Orthopédie, Hôpital D’enfant Béchir Hamza,Tunis, Tunisia
| | - Asma Chikhaoui
- Laboratoire de Génomique Biomédicale et Oncogénétique, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Dorra Najjar
- Laboratoire de Génomique Biomédicale et Oncogénétique, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Khouloud Zayoud
- Laboratoire de Génomique Biomédicale et Oncogénétique, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Mohamed Zouari
- Genomics Platform, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | | | - Rym Kéfi
- Laboratoire de Génomique Biomédicale et Oncogénétique, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Houda Yacoub-Youssef
- Laboratoire de Génomique Biomédicale et Oncogénétique, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
24
|
De Silva S, Fan Z, Kang B, Shanahan CM, Zhang Q. Nesprin-1: novel regulator of striated muscle nuclear positioning and mechanotransduction. Biochem Soc Trans 2023; 51:1331-1345. [PMID: 37171063 PMCID: PMC10317153 DOI: 10.1042/bst20221541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023]
Abstract
Nesprins (nuclear envelope spectrin repeat proteins) are multi-isomeric scaffolding proteins. Giant nesprin-1 and -2 localise to the outer nuclear membrane, interact with SUN (Sad1p/UNC-84) domain-containing proteins at the inner nuclear membrane to form the LInker of Nucleoskeleton and Cytoskeleton (LINC) complex, which, in association with lamin A/C and emerin, mechanically couples the nucleus to the cytoskeleton. Despite ubiquitous expression of nesprin giant isoforms, pathogenic mutations in nesprin-1 and -2 are associated with tissue-specific disorders, particularly related to striated muscle such as dilated cardiomyopathy and Emery-Dreifuss muscular dystrophy. Recent evidence suggests this muscle-specificity might be attributable in part, to the small muscle specific isoform, nesprin-1α2, which has a novel role in striated muscle function. Our current understanding of muscle-specific functions of nesprin-1 and its isoforms will be summarised in this review to provide insight into potential pathological mechanisms of nesprin-related muscle disease and may inform potential targets of therapeutic modulation.
Collapse
Affiliation(s)
- Shanelle De Silva
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London SE5 9NU, U.K
| | - Zhijuan Fan
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London SE5 9NU, U.K
- Clinical Laboratory, Tianjin Third Central Hospital, Tianjin 300170, China
| | - Baoqiang Kang
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London SE5 9NU, U.K
| | - Catherine M. Shanahan
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London SE5 9NU, U.K
| | - Qiuping Zhang
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London SE5 9NU, U.K
| |
Collapse
|
25
|
Wu MC, Yu HW, Chen YQ, Ou MH, Serrano R, Huang GL, Wang YK, Lin KH, Fan YJ, Wu CC, Del Álamo JC, Chiou A, Chien S, Kuo JC. Early committed polarization of intracellular tension in response to cell shape determines the osteogenic differentiation of mesenchymal stromal cells. Acta Biomater 2023; 163:287-301. [PMID: 36328121 PMCID: PMC11389728 DOI: 10.1016/j.actbio.2022.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
Abstract
Within the heterogeneous tissue architecture, a comprehensive understanding of how cell shapes regulate cytoskeletal mechanics by adjusting focal adhesions (FAs) signals to correlate with the lineage commitment of mesenchymal stromal cells (MSCs) remains obscure. Here, via engineered extracellular matrices, we observed that the development of mature FAs, coupled with a symmetrical pattern of radial fiber bundles, appeared at the right-angle vertices in cells with square shape. While circular cells aligned the transverse fibers parallel to the cell edge, and moved them centripetally in a counter-clockwise direction, symmetrical bundles of radial fibers at the vertices of square cells disrupted the counter-clockwise swirling and bridged the transverse fibers to move centripetally. In square cells, the contractile force, generated by the myosin IIA-enriched transverse fibers, were concentrated and transmitted outwards along the symmetrical bundles of radial fibers, to the extracellular matrix through FAs, and thereby driving FA organization and maturation. The symmetrical radial fiber bundles concentrated the transverse fibers contractility inward to the linkage between the actin cytoskeleton and the nuclear envelope. The tauter cytoskeletal network adjusted the nuclear-actomyosin force balance to cause nuclear deformability and to increase nuclear translocation of the transcription co-activator YAP, which in turn modulated the switch in MSC commitment. Thus, FAs dynamically respond to geometric cues and remodel actin cytoskeletal network to re-distribute intracelluar tension towards the cell nucleus, and thereby controlling YAP mechanotransduction signaling in regulating MSC fate decision. STATEMENT OF SIGNIFICANCE: We decipher how cellular mechanics is self-organized depending on extracellular geometric features to correlate with mesenchymal stromal cell lineage commitment. In response to geometry constrains on cell morphology, symmetrical radial fiber bundles are assembled and clustered depending on the maturation state of focal adhesions and bridge with the transverse fibers, and thereby establishing the dynamic cytoskeletal network. Contractile force, generated by the myosin-IIA-enriched transverse fibers, is transmitted and dynamically drives the retrograde movement of the actin cytoskeletal network, which appropriately adjusts the nuclear-actomyosin force balance and deforms the cell nucleus for YAP mechano-transduction signaling in regulating mesenchymal stromal cell fate decision.
Collapse
Affiliation(s)
- Ming-Chung Wu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Helen Wenshin Yu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yin-Quan Chen
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Meng-Hsin Ou
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Ricardo Serrano
- Department of Bioengineering and Institute of Engineering in Medicine, University of California at San Diego, La Jolla, CA 92093, USA; Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA 92093, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Guan-Lin Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Kung-Hui Lin
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Jui Fan
- School of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Chi-Chang Wu
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung 411030, Taiwan
| | - Juan C Del Álamo
- Department of Bioengineering and Institute of Engineering in Medicine, University of California at San Diego, La Jolla, CA 92093, USA; Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA 92093, USA; Center for Cardiovascular Biology, University of Washington, School of Medicine, Seattle, WA, 98109, USA; Mechanical Engineering Department, University of Washington, Seattle, WA, 98195, USA
| | - Arthur Chiou
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Shu Chien
- Department of Bioengineering and Institute of Engineering in Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.
| |
Collapse
|
26
|
Martino S, Carollo PS, Barra V. A Glimpse into Chromatin Organization and Nuclear Lamina Contribution in Neuronal Differentiation. Genes (Basel) 2023; 14:genes14051046. [PMID: 37239406 DOI: 10.3390/genes14051046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
During embryonic development, stem cells undergo the differentiation process so that they can specialize for different functions within the organism. Complex programs of gene transcription are crucial for this process to happen. Epigenetic modifications and the architecture of chromatin in the nucleus, through the formation of specific regions of active as well as inactive chromatin, allow the coordinated regulation of the genes for each cell fate. In this mini-review, we discuss the current knowledge regarding the regulation of three-dimensional chromatin structure during neuronal differentiation. We also focus on the role the nuclear lamina plays in neurogenesis to ensure the tethering of the chromatin to the nuclear envelope.
Collapse
Affiliation(s)
- Salvatore Martino
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Pietro Salvatore Carollo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Viviana Barra
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
27
|
Yoshida Y, Uchida K, Kodo K, Ishizaki-Asami R, Maeda J, Katsumata Y, Yuasa S, Fukuda K, Kosaki K, Watanabe Y, Nakagawa O, Yamagishi H. A genetic and developmental biological approach for a family with complex congenital heart diseases-evidence of digenic inheritance. Front Cardiovasc Med 2023; 10:1135141. [PMID: 37180804 PMCID: PMC10166836 DOI: 10.3389/fcvm.2023.1135141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Objective Congenital heart disease (CHD) is caused by cardiovascular developmental defects and has a global prevalence of ∼1%. The etiology of CHD is multifactorial and remains generally unknown, despite advances in analytical techniques based on next-generation sequencing (NGS). The aim of our study was to elucidate the multi-genetic origin and pathogenesis of an intriguing familial case with complex CHD. Methods We performed an original trio-based gene panel analysis using NGS of the family, including two siblings with CHD of single ventricular phenotype, and their unaffected parents. The pathogenicity of the detected rare variants was investigated in silico, and the functional effects of the variants were confirmed in vitro using luciferase assays. The combinatorial effect of gene alterations of the putative responsible genes was tested in vivo using genetically engineered mutant mice. Results NGS-based gene panel analyses revealed two heterozygous rare variants in NODAL and in TBX20 common to the siblings and to just one of parents. Both variants were suspected pathogenic in silico, and decreased transcriptional activities of downstream signaling pathways were observed in vitro. The analyses of Nodal and Tbx20 double mutant mice demonstrated that Nodal+/-Tbx20-/- embryos showed more severe defects than Nodal+/+Tbx20-/- embryos during early heart development. The expression of Pitx2, a known downstream target of Nodal, was downregulated in Tbx20-/- mutants. Conclusions Two rare variants on NODAL and TBX20 genes detected in this family were considered to be loss-of-function mutations. Our results suggest that NODAL and TBX20 may be complementary for the cardiac development, and a combinatorial loss-of-function of NODAL and TBX20 could be implicated in digenic inherence as the etiology of complex CHD associated with single ventricle defects in this family.
Collapse
Affiliation(s)
- Yu Yoshida
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Uchida
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
- Health Center, Keio University, Kanagawa, Japan
| | - Kazuki Kodo
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | | | - Jun Maeda
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | | | - Shinsuke Yuasa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Yusuke Watanabe
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Osamu Nakagawa
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Hiroyuki Yamagishi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
28
|
Saito R, Hara N, Tada M, Wakabayashi M, Miyashita A, Nishizawa M, Onodera O, Ikeuchi T, Kakita A. SYNE1-ataxia: clinicopathologic features of an autopsied patient with novel compound heterozygous mutations. J Neuropathol Exp Neurol 2023; 82:267-271. [PMID: 36525394 DOI: 10.1093/jnen/nlac120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Rie Saito
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Norikazu Hara
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Mari Tada
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | | | - Akinori Miyashita
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masatoyo Nishizawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
29
|
Carollo PS, Barra V. Chromatin epigenetics and nuclear lamina keep the nucleus in shape: Examples from natural and accelerated aging. Biol Cell 2023; 115:e2200023. [PMID: 36117150 DOI: 10.1111/boc.202200023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 01/07/2023]
Abstract
As the repository of genetic information, the cell nucleus must protect DNA integrity from mechanical stresses. The nuclear lamina, which resides within the nuclear envelope (NE), is made up of lamins, intermediate filaments bound to DNA. The nuclear lamina provides the nucleus with the ability to deal with inward as well as outward mechanical stimuli. Chromatin, in turn, through its degrees of compaction, shares this role with the nuclear lamina, thus, ensuring the plasticity of the nucleus. Perturbation of chromatin condensation or the nuclear lamina has been linked to a plethora of biological conditions, that range from cancer and genetic diseases (laminopathies) to aging, both natural and accelerated, such as the case of Hutchinson-Gilford Progeria Syndrome (HGPS). From the experimental results accumulated so far on the topic, a direct link between variations of the epigenetic pattern and nuclear lamina structure would be suggested, however, it has never been clarified thoroughly. This relationship, instead, has a downstream important implication on nucleus shape, genome preservation, force sensing, and, ultimately, aging-related disease onset. With this review, we aim to collect recent studies on the importance of both nuclear lamina components and chromatin status in nuclear mechanics. We also aim to bring to light evidence of the link between DNA methylation and nuclear lamina in natural and accelerated aging.
Collapse
Affiliation(s)
- Pietro Salvatore Carollo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| |
Collapse
|
30
|
Genotype-Phenotype Correlations in Human Diseases Caused by Mutations of LINC Complex-Associated Genes: A Systematic Review and Meta-Summary. Cells 2022; 11:cells11244065. [PMID: 36552829 PMCID: PMC9777268 DOI: 10.3390/cells11244065] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Mutations in genes encoding proteins associated with the linker of nucleoskeleton and cytoskeleton (LINC) complex within the nuclear envelope cause different diseases with varying phenotypes including skeletal muscle, cardiac, metabolic, or nervous system pathologies. There is some understanding of the structure of LINC complex-associated proteins and how they interact, but it is unclear how mutations in genes encoding them can cause the same disease, and different diseases with different phenotypes. Here, published mutations in LINC complex-associated proteins were systematically reviewed and analyzed to ascertain whether patterns exist between the genetic sequence variants and clinical phenotypes. This revealed LMNA is the only LINC complex-associated gene in which mutations commonly cause distinct conditions, and there are no clear genotype-phenotype correlations. Clusters of LMNA variants causing striated muscle disease are located in exons 1 and 6, and metabolic disease-associated LMNA variants are frequently found in the tail of lamin A/C. Additionally, exon 6 of the emerin gene, EMD, may be a mutation "hot-spot", and diseases related to SYNE1, encoding nesprin-1, are most often caused by nonsense type mutations. These results provide insight into the diverse roles of LINC-complex proteins in human disease and provide direction for future gene-targeted therapy development.
Collapse
|
31
|
Shaw NM, Rios-Monterrosa JL, Fedorchak GR, Ketterer MR, Coombs GS, Lammerding J, Wallrath LL. Effects of mutant lamins on nucleo-cytoskeletal coupling in Drosophila models of LMNA muscular dystrophy. Front Cell Dev Biol 2022; 10:934586. [PMID: 36120560 PMCID: PMC9471154 DOI: 10.3389/fcell.2022.934586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The nuclei of multinucleated skeletal muscles experience substantial external force during development and muscle contraction. Protection from such forces is partly provided by lamins, intermediate filaments that form a scaffold lining the inner nuclear membrane. Lamins play a myriad of roles, including maintenance of nuclear shape and stability, mediation of nuclear mechanoresponses, and nucleo-cytoskeletal coupling. Herein, we investigate how disease-causing mutant lamins alter myonuclear properties in response to mechanical force. This was accomplished via a novel application of a micropipette harpooning assay applied to larval body wall muscles of Drosophila models of lamin-associated muscular dystrophy. The assay enables the measurement of both nuclear deformability and intracellular force transmission between the cytoskeleton and nuclear interior in intact muscle fibers. Our studies revealed that specific mutant lamins increase nuclear deformability while other mutant lamins cause nucleo-cytoskeletal coupling defects, which were associated with loss of microtubular nuclear caging. We found that microtubule caging of the nucleus depended on Msp300, a KASH domain protein that is a component of the linker of nucleoskeleton and cytoskeleton (LINC) complex. Taken together, these findings identified residues in lamins required for connecting the nucleus to the cytoskeleton and suggest that not all muscle disease-causing mutant lamins produce similar defects in subcellular mechanics.
Collapse
Affiliation(s)
- Nicholas M. Shaw
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Jose L. Rios-Monterrosa
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Gregory R. Fedorchak
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
| | - Margaret R. Ketterer
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Gary S. Coombs
- Biology Department, Waldorf University, Forest City, IA, United States
| | - Jan Lammerding
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
| | - Lori L. Wallrath
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
32
|
Nadkarni AV, Heald R. Reconstitution of muscle cell microtubule organization in vitro. Cytoskeleton (Hoboken) 2022; 78:492-502. [PMID: 35666041 DOI: 10.1002/cm.21710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022]
Abstract
Skeletal muscle differentiation occurs as muscle precursor cells (myoblasts) elongate and fuse to form multinucleated syncytial myotubes in which the highly-organized actomyosin sarcomeres of muscle fibers assemble. Although less well characterized, the microtubule cytoskeleton also undergoes dramatic rearrangement during myogenesis. The centrosome-nucleated microtubule array found in myoblasts is lost as the nuclear membrane acquires microtubule nucleating activity and microtubules emerge from multiple sites in the cell, eventually rearranging into a grid-like pattern in myotubes. In order to characterize perinuclear microtubule organization using a biochemically tractable system, we isolated nuclei from mouse C2C12 skeletal muscle cells during the course of differentiation and incubated them in cytoplasmic extracts prepared from eggs of the frog Xenopus laevis. Whereas centrosomes associated with myoblast nuclei gave rise to radial microtubule arrays in extracts, myotube nuclei produced a sun-like pattern with microtubules transiently nucleating from the entire nuclear envelope. Perinuclear microtubule growth was suppressed by inhibition of Aurora A kinase or by degradation of RNA, treatments that also inhibited microtubule growth from sperm centrosomes. Myotube nuclei displayed microtubule motor-based movements leading to their separation, as occurs in myotubes. This in vitro assay therefore recapitulates key features of microtubule organization and nuclear movement observed during muscle cell differentiation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ambika V Nadkarni
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA
| | - Rebecca Heald
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
33
|
Andreu I, Granero-Moya I, Chahare NR, Clein K, Molina-Jordán M, Beedle AEM, Elosegui-Artola A, Abenza JF, Rossetti L, Trepat X, Raveh B, Roca-Cusachs P. Mechanical force application to the nucleus regulates nucleocytoplasmic transport. Nat Cell Biol 2022; 24:896-905. [PMID: 35681009 PMCID: PMC7614780 DOI: 10.1038/s41556-022-00927-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/26/2022] [Indexed: 12/30/2022]
Abstract
Mechanical force controls fundamental cellular processes in health and disease, and increasing evidence shows that the nucleus both experiences and senses applied forces. Such forces can lead to the nuclear translocation of proteins, but whether force controls nucleocytoplasmic transport, and how, remains unknown. Here we show that nuclear forces differentially control passive and facilitated nucleocytoplasmic transport, setting the rules for the mechanosensitivity of shuttling proteins. We demonstrate that nuclear force increases permeability across nuclear pore complexes, with a dependence on molecular weight that is stronger for passive than for facilitated diffusion. Owing to this differential effect, force leads to the translocation of cargoes into or out of the nucleus within a given range of molecular weight and affinity for nuclear transport receptors. Further, we show that the mechanosensitivity of several transcriptional regulators can be both explained by this mechanism and engineered exogenously by introducing appropriate nuclear localization signals. Our work unveils a mechanism of mechanically induced signalling, probably operating in parallel with others, with potential applicability across signalling pathways.
Collapse
Affiliation(s)
- Ion Andreu
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain.
- Universidad de Navarra, TECNUN Escuela de Ingeniería, Donostia-San Sebastián, Spain.
| | - Ignasi Granero-Moya
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Nimesh R Chahare
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Kessem Clein
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marc Molina-Jordán
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Amy E M Beedle
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Department of Physics, King's College London, London, UK
| | - Alberto Elosegui-Artola
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Department of Physics, King's College London, London, UK
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London, UK
| | - Juan F Abenza
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Leone Rossetti
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Barak Raveh
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain.
- Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
34
|
Meqbel BRM, Gomes M, Omer A, Gallouzi IE, Horn HF. LINCing Senescence and Nuclear Envelope Changes. Cells 2022; 11:1787. [PMID: 35681483 PMCID: PMC9179861 DOI: 10.3390/cells11111787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023] Open
Abstract
The nuclear envelope (NE) has emerged as a nexus for cellular organization, signaling, and survival. Beyond its role as a barrier to separate the nucleoplasm from the cytoplasm, the NE's role in supporting and maintaining a myriad of other functions has made it a target of study in many cellular processes, including senescence. The nucleus undergoes dramatic changes in senescence, many of which are driven by changes in the NE. Indeed, Lamin B1, a key NE protein that is consistently downregulated in senescence, has become a marker for senescence. Other NE proteins have also been shown to play a role in senescence, including LINC (linker of nucleoskeleton and cytoskeleton) complex proteins. LINC complexes span the NE, forming physical connections between the cytoplasm to the nucleoplasm. In this way, they integrate nuclear and cytoplasmic mechanical signals and are essential not only for a variety of cellular functions but are needed for cell survival. However, LINC complex proteins have been shown to have a myriad of functions in addition to forming a LINC complex, often existing as nucleoplasmic or cytoplasmic soluble proteins in a variety of isoforms. Some of these proteins have now been shown to play important roles in DNA repair, cell signaling, and nuclear shape regulation, all of which are important in senescence. This review will focus on some of these roles and highlight the importance of LINC complex proteins in senescence.
Collapse
Affiliation(s)
- Bakhita R. M. Meqbel
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar;
| | - Matilde Gomes
- KAUST Smart-Health Initiative and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah 21589, Saudi Arabia; (M.G.); (I.E.G.)
| | - Amr Omer
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada;
| | - Imed E. Gallouzi
- KAUST Smart-Health Initiative and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah 21589, Saudi Arabia; (M.G.); (I.E.G.)
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada;
| | - Henning F. Horn
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar;
| |
Collapse
|
35
|
Echarri A. A Multisensory Network Drives Nuclear Mechanoadaptation. Biomolecules 2022; 12:biom12030404. [PMID: 35327596 PMCID: PMC8945967 DOI: 10.3390/biom12030404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/03/2022] Open
Abstract
Cells have adapted to mechanical forces early in evolution and have developed multiple mechanisms ensuring sensing of, and adaptation to, the diversity of forces operating outside and within organisms. The nucleus must necessarily adapt to all types of mechanical signals, as its functions are essential for virtually all cell processes, many of which are tuned by mechanical cues. To sense forces, the nucleus is physically connected with the cytoskeleton, which senses and transmits forces generated outside and inside the cell. The nuclear LINC complex bridges the cytoskeleton and the nuclear lamina to transmit mechanical information up to the chromatin. This system creates a force-sensing macromolecular complex that, however, is not sufficient to regulate all nuclear mechanoadaptation processes. Within the nucleus, additional mechanosensitive structures, including the nuclear envelope and the nuclear pore complex, function to regulate nuclear mechanoadaptation. Similarly, extra nuclear mechanosensitive systems based on plasma membrane dynamics, mechanotransduce information to the nucleus. Thus, the nucleus has the intrinsic structural components needed to receive and interpret mechanical inputs, but also rely on extra nuclear mechano-sensors that activate nuclear regulators in response to force. Thus, a network of mechanosensitive cell structures ensures that the nucleus has a tunable response to mechanical cues.
Collapse
Affiliation(s)
- Asier Echarri
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Mechanoadaptation and Caveolae Biology Laboratory, Areas of Cell & Developmental Biology, Calle Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| |
Collapse
|
36
|
García-García M, Sánchez-Perales S, Jarabo P, Calvo E, Huyton T, Fu L, Ng SC, Sotodosos-Alonso L, Vázquez J, Casas-Tintó S, Görlich D, Echarri A, Del Pozo MA. Mechanical control of nuclear import by Importin-7 is regulated by its dominant cargo YAP. Nat Commun 2022; 13:1174. [PMID: 35246520 PMCID: PMC8897400 DOI: 10.1038/s41467-022-28693-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 01/19/2022] [Indexed: 12/31/2022] Open
Abstract
Mechanical forces regulate multiple essential pathways in the cell. The nuclear translocation of mechanoresponsive transcriptional regulators is an essential step for mechanotransduction. However, how mechanical forces regulate the nuclear import process is not understood. Here, we identify a highly mechanoresponsive nuclear transport receptor (NTR), Importin-7 (Imp7), that drives the nuclear import of YAP, a key regulator of mechanotransduction pathways. Unexpectedly, YAP governs the mechanoresponse of Imp7 by forming a YAP/Imp7 complex that responds to mechanical cues through the Hippo kinases MST1/2. Furthermore, YAP behaves as a dominant cargo of Imp7, restricting the Imp7 binding and the nuclear translocation of other Imp7 cargoes such as Smad3 and Erk2. Thus, the nuclear import process is an additional regulatory layer indirectly regulated by mechanical cues, which activate a preferential Imp7 cargo, YAP, which competes out other cargoes, resulting in signaling crosstalk. The translation of mechanical cues into gene expression changes is dependent on the nuclear import of mechanoresponsive transcriptional regulators. Here the authors identify that Importin-7 drives the nuclear import of one such regulator YAP while YAP then controls Importin-7 response to mechanical cues and restricts Importin-7 binding to other cargoes.
Collapse
Affiliation(s)
- María García-García
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Sara Sánchez-Perales
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Patricia Jarabo
- Instituto Cajal-CSIC, Avda. Doctor Arce, 37, 28002, Madrid, Spain
| | - Enrique Calvo
- Proteomics Unit. Area of Vascular Physiopathology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Trevor Huyton
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Liran Fu
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Sheung Chun Ng
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Laura Sotodosos-Alonso
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Jesús Vázquez
- Proteomics Unit. Area of Vascular Physiopathology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Asier Echarri
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
37
|
Goelzer M, Goelzer J, Ferguson ML, Neu CP, Uzer G. Nuclear envelope mechanobiology: linking the nuclear structure and function. Nucleus 2021; 12:90-114. [PMID: 34455929 PMCID: PMC8432354 DOI: 10.1080/19491034.2021.1962610] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/10/2023] Open
Abstract
The nucleus, central to cellular activity, relies on both direct mechanical input as well as its molecular transducers to sense external stimuli and respond by regulating intra-nuclear chromatin organization that determines cell function and fate. In mesenchymal stem cells of musculoskeletal tissues, changes in nuclear structures are emerging as a key modulator of their differentiation and proliferation programs. In this review we will first introduce the structural elements of the nucleoskeleton and discuss the current literature on how nuclear structure and signaling are altered in relation to environmental and tissue level mechanical cues. We will focus on state-of-the-art techniques to apply mechanical force and methods to measure nuclear mechanics in conjunction with DNA, RNA, and protein visualization in living cells. Ultimately, combining real-time nuclear deformations and chromatin dynamics can be a powerful tool to study mechanisms of how forces affect the dynamics of genome function.
Collapse
Affiliation(s)
- Matthew Goelzer
- Materials Science and Engineering, Boise State University, Boise, ID, US
| | | | - Matthew L. Ferguson
- Biomolecular Science, Boise State University, Boise, ID, US
- Physics, Boise State University, Boise, ID, US
| | - Corey P. Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO, US
| | - Gunes Uzer
- Mechanical and Biomedical Engineering, Boise State University, Boise, ID, US
| |
Collapse
|
38
|
Padilla-Mejia NE, Makarov AA, Barlow LD, Butterfield ER, Field MC. Evolution and diversification of the nuclear envelope. Nucleus 2021; 12:21-41. [PMID: 33435791 PMCID: PMC7889174 DOI: 10.1080/19491034.2021.1874135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic cells arose ~1.5 billion years ago, with the endomembrane system a central feature, facilitating evolution of intracellular compartments. Endomembranes include the nuclear envelope (NE) dividing the cytoplasm and nucleoplasm. The NE possesses universal features: a double lipid bilayer membrane, nuclear pore complexes (NPCs), and continuity with the endoplasmic reticulum, indicating common evolutionary origin. However, levels of specialization between lineages remains unclear, despite distinct mechanisms underpinning various nuclear activities. Several distinct modes of molecular evolution facilitate organellar diversification and to understand which apply to the NE, we exploited proteomic datasets of purified nuclear envelopes from model systems for comparative analysis. We find enrichment of core nuclear functions amongst the widely conserved proteins to be less numerous than lineage-specific cohorts, but enriched in core nuclear functions. This, together with consideration of additional evidence, suggests that, despite a common origin, the NE has evolved as a highly diverse organelle with significant lineage-specific functionality.
Collapse
Affiliation(s)
- Norma E. Padilla-Mejia
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Alexandr A. Makarov
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Lael D. Barlow
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Erin R. Butterfield
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Mark C. Field
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České, Czech Republic
| |
Collapse
|
39
|
Liu L, Liu M, Xie D, Liu X, Yan H. Role of the extracellular matrix and YAP/TAZ in cell reprogramming. Differentiation 2021; 122:1-6. [PMID: 34768156 DOI: 10.1016/j.diff.2021.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 01/04/2023]
Abstract
Stem cells are crucial in the fields of regenerative medicine and cell therapy. Mechanical signals from the cellular microenvironment play an important role in inducing the reprogramming of somatic cells into stem cells in vitro, but the mechanisms of this process have yet to be fully explored. Mechanical signals may activate a physical pathway involving the focal adhesions-cytoskeleton-LINC complex axis, and a chemical pathway involving YAP/TAZ. ENH protein likely plays an important role in connecting and regulating these two pathways. Such mechanisms illustrate one way in which mechanical signals from the cellular microenvironment can induce reprogramming of somatic cells to stem cells, and lays the foundation for a new strategy for inducing and regulating such reprogramming in vitro by means of physical processes related to local mechanical forces.
Collapse
Affiliation(s)
- Lan Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Mengchang Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Defu Xie
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Xingke Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Hong Yan
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
40
|
Wang P, Mao Y, Su Y, Wang J. Comparative analysis of transcriptomic data shows the effects of multiple evolutionary selection processes on codon usage in Marsupenaeus japonicus and Marsupenaeus pulchricaudatus. BMC Genomics 2021; 22:781. [PMID: 34717552 PMCID: PMC8557549 DOI: 10.1186/s12864-021-08106-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Kuruma shrimp, a major commercial shrimp species in the world, has two cryptic or sibling species, Marsupenaeus japonicus and Marsupenaeus pulchricaudatus. Codon usage analysis would contribute to our understanding of the genetic and evolutionary characteristics of the two Marsupenaeus species. In this study, we analyzed codon usage and related indices using coding sequences (CDSs) from RNA-seq data. RESULTS Using CodonW 1.4.2 software, we performed the codon bias analysis of transcriptomes obtained from hepatopancreas tissues, which indicated weak codon bias. Almost all parameters had similar correlations for both species. The gene expression level (FPKM) was negatively correlated with A/T3s. We determined 12 and 14 optimal codons for M. japonicus and M. pulchricaudatus, respectively, and all optimal codons have a C/G-ending. The two Marsupenaeus species had different usage frequencies of codon pairs, which contributed to further analysis of transcriptional differences between them. Orthologous genes that underwent positive selection (ω > 1) had a higher correlation coefficient than that of experienced purifying selection (ω < 1). Parity Rule 2 (PR2) and effective number of codons (ENc) plot analysis showed that the codon usage patterns of both species were influenced by both mutations and selection. Moreover, the average observed ENc value was lower than the expected value for both species, suggesting that factors other than GC may play roles in these phenomena. The results of multispecies clustering based on codon preference were consistent with traditional classification. CONCLUSIONS This study provides a relatively comprehensive understanding of the correlations among codon usage bias, gene expression, and selection pressures of CDSs for M. japonicus and M. pulchricaudatus. The genetic evolution was driven by mutations and selection pressure. Moreover, the results point out new insights into the specificities and evolutionary characteristics of the two Marsupenaeus species.
Collapse
Affiliation(s)
- Panpan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/ Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, China.
| | - Yongquan Su
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jun Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| |
Collapse
|
41
|
The Role of Emerin in Cancer Progression and Metastasis. Int J Mol Sci 2021; 22:ijms222011289. [PMID: 34681951 PMCID: PMC8537873 DOI: 10.3390/ijms222011289] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/27/2022] Open
Abstract
It is commonly recognized in the field that cancer cells exhibit changes in the size and shape of their nuclei. These features often serve as important biomarkers in the diagnosis and prognosis of cancer patients. Nuclear size can significantly impact cell migration due to its incredibly large size. Nuclear structural changes are predicted to regulate cancer cell migration. Nuclear abnormalities are common across a vast spectrum of cancer types, regardless of tissue source, mutational spectrum, and signaling dependencies. The pervasiveness of nuclear alterations suggests that changes in nuclear structure may be crucially linked to the transformation process. The factors driving these nuclear abnormalities, and the functional consequences, are not completely understood. Nuclear envelope proteins play an important role in regulating nuclear size and structure in cancer. Altered expression of nuclear lamina proteins, including emerin, is found in many cancers and this expression is correlated with better clinical outcomes. A model is emerging whereby emerin, as well as other nuclear lamina proteins, binding to the nucleoskeleton regulates the nuclear structure to impact metastasis. In this model, emerin and lamins play a central role in metastatic transformation, since decreased emerin expression during transformation causes the nuclear structural defects required for increased cell migration, intravasation, and extravasation. Herein, we discuss the cellular functions of nuclear lamina proteins, with a particular focus on emerin, and how these functions impact cancer progression and metastasis.
Collapse
|
42
|
Becker R, Vergarajauregui S, Billing F, Sharkova M, Lippolis E, Mamchaoui K, Ferrazzi F, Engel FB. Myogenin controls via AKAP6 non-centrosomal microtubule-organizing center formation at the nuclear envelope. eLife 2021; 10:65672. [PMID: 34605406 PMCID: PMC8523159 DOI: 10.7554/elife.65672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 10/01/2021] [Indexed: 12/22/2022] Open
Abstract
Non-centrosomal microtubule-organizing centers (MTOCs) are pivotal for the function of multiple cell types, but the processes initiating their formation are unknown. Here, we find that the transcription factor myogenin is required in murine myoblasts for the localization of MTOC proteins to the nuclear envelope. Moreover, myogenin is sufficient in fibroblasts for nuclear envelope MTOC (NE-MTOC) formation and centrosome attenuation. Bioinformatics combined with loss- and gain-of-function experiments identified induction of AKAP6 expression as one central mechanism for myogenin-mediated NE-MTOC formation. Promoter studies indicate that myogenin preferentially induces the transcription of muscle- and NE-MTOC-specific isoforms of Akap6 and Syne1, which encodes nesprin-1α, the NE-MTOC anchor protein in muscle cells. Overexpression of AKAP6β and nesprin-1α was sufficient to recruit endogenous MTOC proteins to the nuclear envelope of myoblasts in the absence of myogenin. Taken together, our results illuminate how mammals transcriptionally control the switch from a centrosomal MTOC to an NE-MTOC and identify AKAP6 as a novel NE-MTOC component in muscle cells.
Collapse
Affiliation(s)
- Robert Becker
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Silvia Vergarajauregui
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Florian Billing
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maria Sharkova
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Eleonora Lippolis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kamel Mamchaoui
- Sorbonne Universités UPMC Université Paris 06, INSERM U974, CNRS FRE3617, Center for Research in Myology, GH Pitié Salpêtrière, 47 Boulevard de l'Hôpital, Paris, France
| | - Fulvia Ferrazzi
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Muscle Research Center Erlangen (MURCE), Erlangen, Germany
| |
Collapse
|
43
|
Biallelic SYNE2 Missense Mutations Leading to Nesprin-2 Giant Hypo-Expression Are Associated with Intellectual Disability and Autism. Genes (Basel) 2021; 12:genes12091294. [PMID: 34573277 PMCID: PMC8470961 DOI: 10.3390/genes12091294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/06/2021] [Accepted: 08/20/2021] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurological and developmental disabilities characterised by clinical and genetic heterogeneity. The current study aimed to expand ASD genotyping by investigating potential associations with SYNE2 mutations. Specifically, the disease-causing variants of SYNE2 in 410 trios manifesting neurodevelopmental disorders using whole-exome sequencing were explored. The consequences of the identified variants were studied at the transcript level using quantitative polymerase chain reaction (qPCR). For validation, immunofluorescence and immunoblotting were performed to analyse mutational effects at the protein level. The compound heterozygous variants of SYNE2 (NM_182914.3:c.2483T>G; p.(Val828Gly) and NM_182914.3:c.2362G>A; p.(Glu788Lys)) were identified in a 4.5-year-old male, clinically diagnosed with autism spectrum disorder, developmental delay and intellectual disability. Both variants reside within the nesprin-2 giant spectrin repeat (SR5) domain and are predicted to be highly damaging using in silico tools. Specifically, a significant reduction of nesprin-2 giant protein levels is revealed in patient cells. SYNE2 transcription and the nuclear envelope localisation of the mutant proteins was however unaffected as compared to parental control cells. Collectively, these data provide novel insights into the cardinal role of the nesprin-2 giant in neurodevelopment and suggest that the biallelic hypomorphic SYNE2 mutations may be a new cause of intellectual disability and ASD.
Collapse
|
44
|
Li YL, Cheng XN, Lu T, Shao M, Shi DL. Syne2b/Nesprin-2 Is Required for Actin Organization and Epithelial Integrity During Epiboly Movement in Zebrafish. Front Cell Dev Biol 2021; 9:671887. [PMID: 34222245 PMCID: PMC8248263 DOI: 10.3389/fcell.2021.671887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/28/2021] [Indexed: 11/25/2022] Open
Abstract
Syne2b/nesprin-2 is a giant protein implicated in tethering the nucleus to the cytoskeleton and plays an important role in maintaining cellular architecture. Epiboly is a conserved morphogenetic movement that involves extensive spreading and thinning of the epithelial blastoderm to shape the embryo and organize the three germ layers. Dynamic cytoskeletal organization is critical for this process, but how it is regulated remains elusive. Here we generated a zebrafish syne2b mutant line and analyzed the effects of impaired Syne2b function during early development. By CRISPR/Cas9-mediated genome editing, we obtained a large deletion in the syne2b locus, predicted to cause truncation of the nuclear localization KASH domain in the translated protein. Maternal and zygotic syne2b embryos showed delayed epiboly initiation and progression without defects in embryonic patterning. Remarkably, disruption of Syne2b function severely impaired cytoskeletal organization across the embryo, leading to aberrant clustering of F-actin at multiple cell contact regions and abnormal cell shape changes. These caused disintegration of the epithelial blastoderm before the end of gastrulation in most severely affected embryos. Moreover, the migration of yolk nuclear syncytium also became defective, likely due to disorganized cytoskeletal networks at the blastoderm margin and in the yolk cell. These findings demonstrate an essential function of Syne2b in maintaining cytoskeletal architecture and epithelial integrity during epiboly movement.
Collapse
Affiliation(s)
- Yu-Long Li
- School of Life Sciences, Shandong University, Qingdao, China
| | | | - Tong Lu
- School of Life Sciences, Shandong University, Qingdao, China
| | - Ming Shao
- School of Life Sciences, Shandong University, Qingdao, China
| | - De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Laboratory of Developmental Biology, CNRS-UMR 7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, Paris, France
| |
Collapse
|
45
|
Shu Y, He J, Zhang H, Liu G, Li S, Deng S, Wu H. Dynamic transcriptome and histomorphology analysis of developmental traits of hindlimb thigh muscle from Odorrana tormota and its adaptability to different life history stages. BMC Genomics 2021; 22:369. [PMID: 34016051 PMCID: PMC8138932 DOI: 10.1186/s12864-021-07677-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 05/05/2021] [Indexed: 11/10/2022] Open
Abstract
Background Systematic studies on the development and adaptation of hindlimb muscles in anura amphibians are rare. Here, we integrated analysis of transcriptome and histomorphological data for the hindlimb thigh muscle of Odorrana tormota (concave-eared torrent frog) at different developmental stages, to uncover the developmental traits of hindlimb thigh muscle from O. tormota and its adaptability to different life history stages. Results The development of hindlimb thigh muscle from O. tormota has the following characteristics. Before metamorphosis, myogenous cells proliferate and differentiate into myotubes, and form 11 muscle groups at G41; Primary myofibers and secondary myofibers appeared during metamorphosis; 11 muscle groups differentiated continuously to form myofibers, accompanied by myofibers hypertrophy after metamorphosis; During the growth process of O. tormota from G42 to G46, there were differences between the sexes in the muscle groups that differentiate into muscle fibers, indicating that there was sexual dimorphism in the hindlimb thigh muscles of O. tormota at the metamorphosis stages. Some genes and pathways related to growth, development, and movement ability of O. tormota at different developmental stages were obtained. In addition, some pathways associated with adaptation to metamorphosis and hibernation also were enriched. Furthermore, integrated analysis of the number of myofibers and transcriptome data suggested that myofibers of specific muscle groups in the hindlimbs may be degraded through lysosome and ubiquitin pathways to transform into energy metabolism and other energy-related substances to meet the physiological needs of hibernation. Conclusions These results provide further understanding the hindlimb thigh muscle development pattern of frogs and their adaption to life history stages. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07677-0.
Collapse
Affiliation(s)
- Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China
| | - Jun He
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China
| | - Huijuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China
| | - Guangxuan Liu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China
| | - Shikun Li
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China
| | - Shuaitao Deng
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China. .,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China.
| |
Collapse
|
46
|
What Are the Potential Roles of Nuclear Perlecan and Other Heparan Sulphate Proteoglycans in the Normal and Malignant Phenotype. Int J Mol Sci 2021; 22:ijms22094415. [PMID: 33922532 PMCID: PMC8122901 DOI: 10.3390/ijms22094415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
The recent discovery of nuclear and perinuclear perlecan in annulus fibrosus and nucleus pulposus cells and its known matrix stabilizing properties in tissues introduces the possibility that perlecan may also have intracellular stabilizing or regulatory roles through interactions with nuclear envelope or cytoskeletal proteins or roles in nucleosomal-chromatin organization that may regulate transcriptional factors and modulate gene expression. The nucleus is a mechano-sensor organelle, and sophisticated dynamic mechanoresponsive cytoskeletal and nuclear envelope components support and protect the nucleus, allowing it to perceive and respond to mechano-stimulation. This review speculates on the potential roles of perlecan in the nucleus based on what is already known about nuclear heparan sulphate proteoglycans. Perlecan is frequently found in the nuclei of tumour cells; however, its specific role in these diseased tissues is largely unknown. The aim of this review is to highlight probable roles for this intriguing interactive regulatory proteoglycan in the nucleus of normal and malignant cell types.
Collapse
|
47
|
Hao H, Kalra S, Jameson LE, Guerrero LA, Cain NE, Bolivar J, Starr DA. The Nesprin-1/-2 ortholog ANC-1 regulates organelle positioning in C. elegans independently from its KASH or actin-binding domains. eLife 2021; 10:e61069. [PMID: 33860766 PMCID: PMC8139857 DOI: 10.7554/elife.61069] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/11/2021] [Indexed: 12/15/2022] Open
Abstract
KASH proteins in the outer nuclear membrane comprise the cytoplasmic half of linker of nucleoskeleton and cytoskeleton (LINC) complexes that connect nuclei to the cytoskeleton. Caenorhabditis elegans ANC-1, an ortholog of Nesprin-1/2, contains actin-binding and KASH domains at opposite ends of a long spectrin-like region. Deletion of either the KASH or calponin homology (CH) domains does not completely disrupt nuclear positioning, suggesting neither KASH nor CH domains are essential. Deletions in the spectrin-like region of ANC-1 led to significant defects, but only recapitulated the null phenotype in combination with mutations in the transmembrane (TM) span. In anc-1 mutants, the endoplasmic reticulum ER, mitochondria, and lipid droplets were unanchored, moving throughout the cytoplasm. The data presented here support a cytoplasmic integrity model where ANC-1 localizes to the ER membrane and extends into the cytoplasm to position nuclei, ER, mitochondria, and other organelles in place.
Collapse
Affiliation(s)
- Hongyan Hao
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Shilpi Kalra
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Laura E Jameson
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Leslie A Guerrero
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Natalie E Cain
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Jessica Bolivar
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| |
Collapse
|
48
|
Masood A, Benabdelkamel H, Jammah AA, Ekhzaimy AA, Alfadda AA. Identification of Protein Changes in the Urine of Hypothyroid Patients Treated with Thyroxine Using Proteomics Approach. ACS OMEGA 2021; 6:2367-2378. [PMID: 33521475 PMCID: PMC7841925 DOI: 10.1021/acsomega.0c05686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/04/2021] [Indexed: 05/14/2023]
Abstract
The thyroid gland and thyroid hormones control a multitude of homeostatic functions including maintenance of fluid and electrolyte balance and normal functioning of the kidneys. Thyroid dysfunction alters the sytemic hemodynamic and metabolic balance, thereby affecting the kidney. In this study, we aimed to identify and characterize the urinary proteome of the patients with hypothyroidism. An untargeted proteomic approach with network analysis was used to identify changes in total urinary proteome in patients with newly diagnosed overt hypothyroidism. Urine samples were collected from nine age-matched patients' before and after l-thyroxine treatment. Differences in the abundance of urinary proteins between hypothyroid and euthyroid states were determined using a two-dimensional difference in gel electrophoresis (2D-DIGE) coupled to matrix-assisted laser desorption and ionization time-of-flight (MALDI TOF) mass spectrometry. Alterations in the abundance of urinary proteins, analyzed by Progenesis software, revealed statistically significant differential abundance in a total of 49 spots corresponding to 42 proteins, 28 up and 14 down (≥1.5-fold change, analysis of variance (ANOVA), p ≤ 0.05). The proteins identified in the study are known to regulate processes related to transport, acute phase response, oxidative stress, generation of reactive oxygen species, cellular proliferation, and endocytosis. Bioinformatic analysis using Ingenuity Pathway Analysis (IPA) identified dysregulation of pathways related to amino acid metabolism, molecular transport, and small-molecule biochemistry and involved the MAPK kinase, vascular endothelial growth factor (VEGF), PI3 kinase/Akt, protein kinase C (PKC), signaling pathways. The identified proteins were involved in the regulation of thyroglobulin (Tg) and thyrotropin (TSH) metabolism. Alterations in their levels indicate the presence of a compensatory mechanism aimed at increasing the regulation of Tg in the hypothyroid state.
Collapse
Affiliation(s)
- Afshan Masood
- Proteomics
Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Hicham Benabdelkamel
- Proteomics
Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Anwar A. Jammah
- Department
of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh 12372, Saudi Arabia
| | - Aishah A. Ekhzaimy
- Department
of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh 12372, Saudi Arabia
| | - Assim A. Alfadda
- Proteomics
Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- Department
of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh 12372, Saudi Arabia
| |
Collapse
|
49
|
Lim SM, Cruz VE, Antoku S, Gundersen GG, Schwartz TU. Structures of FHOD1-Nesprin1/2 complexes reveal alternate binding modes for the FH3 domain of formins. Structure 2021; 29:540-552.e5. [PMID: 33472039 DOI: 10.1016/j.str.2020.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/23/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
The nuclear position in eukaryotes is controlled by a nucleo-cytoskeletal network, critical in cell differentiation, division, and movement. Forces are transmitted through conserved Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes that traverse the nuclear envelope and engage on either side of the membrane with diverse binding partners. Nesprin-2-giant (Nes2G), a LINC element in the outer nuclear membrane, connects to the actin directly as well as through FHOD1, a formin primarily involved in actin bundling. Here, we report the crystal structure of Nes2G bound to FHOD1 and show that the presumed G-binding domain of FHOD1 is rather a spectrin repeat (SR) binding enhancer for the neighboring FH3 domain. The structure reveals that SR binding by FHOD1 is likely not regulated by the diaphanous-autoregulatory domain helix of FHOD1. Finally, we establish that Nes1G also has one FHOD1 binding SR, indicating that these abundant, giant Nesprins have overlapping functions in actin-bundle recruitment for nuclear movement.
Collapse
Affiliation(s)
- Sing Mei Lim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Victor E Cruz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Susumu Antoku
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
50
|
Unnikannan CP, Reuveny A, Grunberg D, Volk T. Recruitment of BAF to the nuclear envelope couples the LINC complex to endoreplication. Development 2020; 147:dev.191304. [PMID: 33168584 PMCID: PMC7758627 DOI: 10.1242/dev.191304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022]
Abstract
DNA endoreplication has been implicated as a cell strategy for cell growth and in tissue injury. Here, we demonstrate that barrier-to-autointegration factor (BAF) represses endoreplication in Drosophila myofibers. We show that BAF localization at the nuclear envelope is eliminated in flies with mutations of the linker of nucleoskeleton and cytoskeleton (LINC) complex in which the LEM-domain protein Otefin is excluded, or after disruption of the nucleus-sarcomere connections. Furthermore, BAF localization at the nuclear envelope requires the activity of the BAF kinase VRK1/Ball, and, consistently, non-phosphorylatable BAF-GFP is excluded from the nuclear envelope. Importantly, removal of BAF from the nuclear envelope correlates with increased DNA content in the myonuclei. E2F1, a key regulator of endoreplication, overlaps BAF localization at the myonuclear envelope, and BAF removal from the nuclear envelope results in increased E2F1 levels in the nucleoplasm and subsequent elevated DNA content. We suggest that LINC-dependent and phosphosensitive attachment of BAF to the nuclear envelope, through its binding to Otefin, tethers E2F1 to the nuclear envelope thus inhibiting its accumulation in the nucleoplasm. Summary: Localization of BAF at the nuclear envelope of myonuclei depends on a functional LINC complex and on nucleus-sarcomere connections, and is shown to restrict E2F1 levels in the nucleoplasm.
Collapse
Affiliation(s)
- C P Unnikannan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Adriana Reuveny
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dvorah Grunberg
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|