1
|
Gard AL, Luu RJ, Maloney R, Cooper MH, Cain BP, Azizgolshani H, Isenberg BC, Borenstein JT, Ong J, Charest JL, Vedula EM. A high-throughput, 28-day, microfluidic model of gingival tissue inflammation and recovery. Commun Biol 2023; 6:92. [PMID: 36690695 PMCID: PMC9870913 DOI: 10.1038/s42003-023-04434-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Nearly half of American adults suffer from gum disease, including mild inflammation of gingival tissue, known as gingivitis. Currently, advances in therapeutic treatments are hampered by a lack of mechanistic understanding of disease progression in physiologically relevant vascularized tissues. To address this, we present a high-throughput microfluidic organ-on-chip model of human gingival tissue containing keratinocytes, fibroblast and endothelial cells. We show the triculture model exhibits physiological tissue structure, mucosal barrier formation, and protein biomarker expression and secretion over several weeks. Through inflammatory cytokine administration, we demonstrate the induction of inflammation measured by changes in barrier function and cytokine secretion. These states of inflammation are induced at various time points within a stable culture window, providing a robust platform for evaluation of therapeutic agents. These data reveal that the administration of specific small molecule inhibitors mitigates the inflammatory response and enables tissue recovery, providing an opportunity for identification of new therapeutic targets for gum disease with the potential to facilitate relevant preclinical drug efficacy and toxicity testing.
Collapse
Affiliation(s)
| | | | - Ryan Maloney
- Bioengineering Division, Draper, Cambridge, MA, USA
| | | | - Brian P Cain
- Bioengineering Division, Draper, Cambridge, MA, USA
| | | | | | | | - Jane Ong
- Colgate-Palmolive Company, Piscataway, NJ, USA
| | | | - Else M Vedula
- Bioengineering Division, Draper, Cambridge, MA, USA.
| |
Collapse
|
2
|
Wang P, Liang J, Shi LZ, Wang Y, Zhang P, Ouyang M, Preece D, Peng Q, Shao L, Fan J, Sun J, Li SS, Berns MW, Zhao H, Wang Y. Visualizing Spatiotemporal Dynamics of Intercellular Mechanotransmission upon Wounding. ACS PHOTONICS 2018; 5:3565-3574. [PMID: 31069245 PMCID: PMC6502247 DOI: 10.1021/acsphotonics.8b00383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
During cell-to-cell communications, the interplay between physical and biochemical cues is essential for informational exchange and functional coordination, especially in multicellular organisms. However, it remains a challenge to visualize intercellular signaling dynamics in single live cells. Here, we report a photonic approach, based on laser microscissors and Förster resonance energy transfer (FRET) microscopy, to study intercellular signaling transmission. First, using our high-throughput screening platform, we developed a highly sensitive FRET-based biosensor (SCAGE) for Src kinase, a key regulator of intercellular interactions and signaling cascades. Notably, SCAGE showed a more than 40-fold sensitivity enhancement than the original biosensor in live mammalian cells. Next, upon local severance of physical intercellular connections by femtosecond laser pulses, SCAGE enabled the visualization of a transient Src activation across neighboring cells. Lastly, we found that this observed transient Src activation following the loss of cell-cell contacts depends on the passive structural support of cytoskeleton but not on the active actomyosin contractility. Hence, by precisely introducing local physical perturbations and directly visualizing spatiotemporal transmission of ensuing signaling events, our integrated approach could be broadly applied to mimic and investigate the wounding process at single-cell resolutions. This integrated approach with highly sensitive FRET-based biosensors provides a unique system to advance our in-depth understanding of molecular mechanisms underlying the physical-biochemical basis of intercellular coupling and wounding processes.
Collapse
Affiliation(s)
- Pengzhi Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Jing Liang
- Department of Chemical and Biomolecular Engineering and Carl R. Woese Institute for Genomic Biology
| | - Linda Z. Shi
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Yi Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ping Zhang
- Institute of Mechanobiology and Biomedical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingxing Ouyang
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Daryl Preece
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Qin Peng
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Lunan Shao
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Jason Fan
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Jie Sun
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shawn S. Li
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario Canada N6A 5C1
- Children’s Health Research Institute, 800 Commissioners Road East, London, Ontario Canada N6C 2 V5
| | - Michael W. Berns
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, California 92612, United States
- Department of Developmental and Cell Biology, School of Biological Sciences, and Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92617, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering and Carl R. Woese Institute for Genomic Biology
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Forte L, Turdo F, Ghirelli C, Aiello P, Casalini P, Iorio MV, D'Ippolito E, Gasparini P, Agresti R, Belmonte B, Sozzi G, Sfondrini L, Tagliabue E, Campiglio M, Bianchi F. The PDGFRβ/ERK1/2 pathway regulates CDCP1 expression in triple-negative breast cancer. BMC Cancer 2018; 18:586. [PMID: 29792166 PMCID: PMC5967041 DOI: 10.1186/s12885-018-4500-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 05/11/2018] [Indexed: 01/29/2023] Open
Abstract
Background CDCP1, a transmembrane protein with tumor pro-metastatic activity, was recently identified as a prognostic marker in TNBC, the most aggressive breast cancer subtype still lacking an effective molecular targeted therapy. The mechanisms driving CDCP1 over-expression are not fully understood, although several stimuli derived from tumor microenvironment, such as factors present in Wound Healing Fluids (WHFs), reportedly increase CDCP1 levels. Methods The expression of CDCP1, PDGFRβ and ERK1/2cell was tested by Western blot after stimulation of MDA-MB-231 cells with PDGF-BB and, similarly, in presence or not of ERK1/2 inhibitor in a panel of TNBC cell lines. Knock-down of PDGFRβ was established in MDA-MB-231 cells to detect CDCP1 upon WHF treatment. Immunohistochemical staining was used to detect the expression of CDCP1 and PDGFRβ in TNBC clinical samples. Results We discovered that PDGF-BB-mediated activation of PDGFRβ increases CDCP1 protein expression through the downstream activation of ERK1/2. Inhibition of ERK1/2 activity reduced per se CDCP1 expression, evidence strengthening its role in CDCP1 expression regulation. Knock-down of PDGFRβ in TNBC cells impaired CDCP1 increase induced by WHF treatment, highlighting the role if this receptor as a central player of the WHF-mediated CDCP1 induction. A significant association between CDCP1 and PDGFRβ immunohistochemical staining was observed in TNBC specimens, independently of CDCP1 gene gain, thus corroborating the relevance of the PDGF-BB/PDGFRβ axis in the modulation of CDCP1 expression. Conclusion We have identified PDGF-BB/PDGFRβ–mediated pathway as a novel player in the regulation of CDCP1 in TNCBs through ERK1/2 activation. Our results provide the basis for the potential use of PDGFRβ and ERK1/2 inhibitors in targeting the aggressive features of CDCP1-positive TNBCs. Electronic supplementary material The online version of this article (10.1186/s12885-018-4500-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luca Forte
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Federica Turdo
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Cristina Ghirelli
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Piera Aiello
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Patrizia Casalini
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | | | - Elvira D'Ippolito
- Start Up Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Patrizia Gasparini
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Roberto Agresti
- Division of Surgical Oncology, Breast Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health, Human Pathology Section, University of Palermo, Palermo, Italy
| | - Gabriella Sozzi
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Mangiagalli 31, 20133, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy.
| | - Manuela Campiglio
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Francesca Bianchi
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy.,Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Mangiagalli 31, 20133, Milan, Italy
| |
Collapse
|
4
|
Caselli A, Paoli P, Santi A, Mugnaioni C, Toti A, Camici G, Cirri P. Low molecular weight protein tyrosine phosphatase: Multifaceted functions of an evolutionarily conserved enzyme. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1339-55. [PMID: 27421795 DOI: 10.1016/j.bbapap.2016.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 12/31/2022]
Abstract
Originally identified as a low molecular weight acid phosphatase, LMW-PTP is actually a protein tyrosine phosphatase that acts on many phosphotyrosine-containing cellular proteins that are primarily involved in signal transduction. Differences in sequence, structure, and substrate recognition as well as in subcellular localization in different organisms enable LMW-PTP to exert many different functions. In fact, during evolution, the LMW-PTP structure adapted to perform different catalytic actions depending on the organism type. In bacteria, this enzyme is involved in the biosynthesis of group 1 and 4 capsules, but it is also a virulence factor in pathogenic strains. In yeast, LMW-PTPs dephosphorylate immunophilin Fpr3, a peptidyl-prolyl-cis-trans isomerase member of the protein chaperone family. In humans, LMW-PTP is encoded by the ACP1 gene, which is composed of three different alleles, each encoding two active enzymes produced by alternative RNA splicing. In animals, LMW-PTP dephosphorylates a number of growth factor receptors and modulates their signalling processes. The involvement of LMW-PTP in cancer progression and in insulin receptor regulation as well as its actions as a virulence factor in a number of pathogenic bacterial strains may promote the search for potent, selective and bioavailable LMW-PTP inhibitors.
Collapse
Affiliation(s)
- Anna Caselli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Viale Morgagni 50, 50134 Florence, Italy.
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Viale Morgagni 50, 50134 Florence, Italy.
| | - Alice Santi
- Vascular Proteomics, Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK.
| | - Camilla Mugnaioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Viale Morgagni 50, 50134 Florence, Italy.
| | - Alessandra Toti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Viale Morgagni 50, 50134 Florence, Italy.
| | - Guido Camici
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Viale Morgagni 50, 50134 Florence, Italy.
| | - Paolo Cirri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Viale Morgagni 50, 50134 Florence, Italy.
| |
Collapse
|
5
|
Abstract
Percutaneous angioplasty is a nonsurgical method able to restore patency in atherosclerotic blood vessels through the expansion of a balloon. The clinical outcome of this technique has been significantly enhanced by the combined deployment of a stent. Although stents are successful in the majority of cases, a large percentage of patients (20-30%) still suffer a second vessel lumen reduction known as in-stent restenosis. In-stent restenosis is recognized to be caused by the mechanical and foreign body challenges elicited by the device. Drug-eluting stents have been recently made available to tackle restenosis, but their short clinical history and high costs may limit their future use. The present review links the most recent biologic findings related to in-stent restenosis to the devices' phyisico-chemical features in an attempt to demonstrate that a new generation of stents may be developed without the need of drug elution.
Collapse
Affiliation(s)
- Matteo Santin
- School of Pharmacy & Biomolecular Sciences, University of Brighton, UK.
| | | | | |
Collapse
|
6
|
Abstract
Protein kinases represent one of the largest families of genes found in eukaryotes. Kinases mediate distinct cellular processes ranging from proliferation, differentiation, survival, and apoptosis. Ligand-mediated activation of receptor kinases can lead to the production of endogenous hydrogen peroxide (H₂O₂) by membrane-bound NADPH oxidases. In turn, H₂O₂ can be utilized as a secondary messenger in signal transduction pathways. This review presents an overview of the molecular mechanisms involved in redox regulation of protein kinases and its effects on signaling cascades. In the first half, we will focus primarily on receptor tyrosine kinases (RTKs), whereas the latter will concentrate on downstream non-receptor kinases involved in relaying stimulant response. Select examples from the literature are used to highlight the functional role of H₂O₂ regarding kinase activity, as well as the components involved in H₂O₂ production and regulation during cellular signaling. In addition, studies demonstrating direct modulation of protein kinases by H₂O₂ through cysteine oxidation will be emphasized. Identification of these redox-sensitive residues may help uncover signaling mechanisms conserved within kinase subfamilies. In some cases, these residues can even be exploited as targets for the development of new therapeutics. Continued efforts in this field will further basic understanding of kinase redox regulation, and delineate the mechanisms involved in physiological and pathological H₂O₂ responses.
Collapse
Affiliation(s)
- Thu H Truong
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
7
|
The role of low-molecular-weight protein tyrosine phosphatase (LMW-PTP ACP1) in oncogenesis. Tumour Biol 2013; 34:1979-89. [DOI: 10.1007/s13277-013-0784-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/27/2013] [Indexed: 01/20/2023] Open
|
8
|
Systemic perturbation of the ERK signaling pathway by the proteasome inhibitor, MG132. PLoS One 2012; 7:e50975. [PMID: 23226437 PMCID: PMC3511445 DOI: 10.1371/journal.pone.0050975] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/30/2012] [Indexed: 11/19/2022] Open
Abstract
Inhibition of the ubiquitin-proteasome protein degradation pathway has been identified as a viable strategy for anti-tumor therapy based on its broad effects on cell proliferation. By the same token, the variety of elicited effects confounds the interpretation of cell-based experiments using proteasome inhibitors such as MG132. It has been proposed that MG132 treatment reduces growth factor-stimulated phosphorylation of extracellular signal-regulated kinases (ERKs), at least in part through upregulation of dual specificity phosphatases (DUSPs). Here, we show that the effects of MG132 treatment on ERK signaling are more widespread, leading to a reduction in activation of the upstream kinase MEK. This suggests that MG132 systemically perturbs the intracellular phosphoproteome, impacting ERK signaling by reducing phosphorylation status at multiple levels of the kinase cascade.
Collapse
|
9
|
Schulte J, Weidig M, Balzer P, Richter P, Franz M, Junker K, Gajda M, Friedrich K, Wunderlich H, Östman A, Petersen I, Berndt A. Expression of the E-cadherin repressors Snail, Slug and Zeb1 in urothelial carcinoma of the urinary bladder: relation to stromal fibroblast activation and invasive behaviour of carcinoma cells. Histochem Cell Biol 2012; 138:847-60. [DOI: 10.1007/s00418-012-0998-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2012] [Indexed: 12/14/2022]
|
10
|
Abstract
Phosphatidylinositol 3-kinase (PI3K), one member of lipid kinase family, has been demonstrated to play a key role in regulating cell proliferation, adhesion, survival, and motility. Recent studies indicate that PI3K related signaling pathway is one of the most commonly activated pathways in human cancers. Accordingly, pharmacological inhibition of key nodes in this signaling cascade has been a focus in developmental therapeutics. To date, Inhibitors targeting PI3K or nodes in this pathway, AKT and mTOR, are best studied and have reached clinical trials. In this review, we will focus on recent progress on understanding of PI3Ks signaling pathway and the development of PI3K inhibitors.
Collapse
Affiliation(s)
- Yingwei Chen
- Department of Gastroenterology, School of Medicine, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | | | | |
Collapse
|
11
|
Guildford AL, Stewart HJS, Morris C, Santin M. Substrate-induced phenotypic switches of human smooth muscle cells: an in vitro study of in-stent restenosis activation pathways. J R Soc Interface 2010; 8:641-9. [PMID: 21106574 DOI: 10.1098/rsif.2010.0532] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In-stent restenosis is a clinical complication following coronary angioplasty caused by the implantation of the metal device in the atherosclerotic vessel. Histological examination has shown a clear contribution of both inflammatory and smooth muscle cells (SMCs) to the deposition of an excess of neointimal tissue. However, the sequence of events leading to clinically relevant restenosis is unknown. This paper aims to study the phenotype of SMCs when adhering on substrates and exposed to biochemical stimuli typical of the early phases of stent implantation. In particular, human SMC phenotype was studied when adhering on extracellular matrix-like material (collagen-rich gel), thrombus-like material (fibrin gel) and stent material (stainless steel) in the presence or absence of a platelet-derived growth factor (PDGF) stimulus. Cells on the collagen and fibrin-rich substrates maintained their contractile phenotype. By contrast, cells on stainless steel acquired a secretory phenotype with a proliferation rate 50 per cent higher than cells on the natural substrates. Cells on stainless steel also showed an increase in PDGF-BB receptor expression, thus explaining the increase in proliferation observed when cells were subject to PDGF-BB stimuli. The stainless steel substrate also promoted a different pattern of β1-integrin localization and an altered expression of hyaluronan (HA) synthase isoforms where the synthesis of high-molecular-weight HA seemed to be favoured. These findings highlighted the induction of a phenotypic pattern in SMC by the stainless steel substrate whereby the formation of a HA-rich neointimal tissue is enhanced.
Collapse
Affiliation(s)
- Anna L Guildford
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | | | | | | |
Collapse
|
12
|
Cell migration is regulated by platelet-derived growth factor receptor endocytosis. Mol Cell Biol 2009; 29:4508-18. [PMID: 19528233 DOI: 10.1128/mcb.00015-09] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cell migration requires spatial and temporal processes that detect and transfer extracellular stimuli into intracellular signals. The platelet-derived growth factor (PDGF) receptor is a cell surface receptor on fibroblasts that regulates proliferation and chemotaxis in response to PDGF. How the PDGF signal is transmitted accurately through the receptor into cells is an unresolved question. Here, we report a new intracellular signaling pathway by which DOCK4, a Rac1 guanine exchange factor, and Dynamin regulate cell migration by PDGF receptor endocytosis. We showed by a series of biochemical and microscopy techniques that Grb2 serves as an adaptor protein in the formation of a ternary complex between the PDGF receptor, DOCK4, and Dynamin, which is formed at the leading edge of cells. We found that this ternary complex regulates PDGF-dependent cell migration by promoting PDGF receptor endocytosis and Rac1 activation at the cell membrane. This study revealed a new mechanism by which cell migration is regulated by PDGF receptor endocytosis.
Collapse
|
13
|
McCarthy HS, Williams JH, Davie MW, Marshall MJ. Platelet-derived growth factor stimulates osteoprotegerin production in osteoblastic cells. J Cell Physiol 2009; 218:350-4. [DOI: 10.1002/jcp.21600] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Nakata S, Fujita N, Kitagawa Y, Okamoto R, Ogita H, Takai Y. Regulation of Platelet-derived Growth Factor Receptor Activation by Afadin through SHP-2. J Biol Chem 2007; 282:37815-25. [DOI: 10.1074/jbc.m707461200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
15
|
Chiarugi P, Fiaschi T. Redox signalling in anchorage-dependent cell growth. Cell Signal 2007; 19:672-82. [PMID: 17204396 DOI: 10.1016/j.cellsig.2006.11.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 11/24/2006] [Accepted: 11/24/2006] [Indexed: 12/22/2022]
Abstract
Current data have provided new perspectives concerning the regulation of non-transformed cell proliferation in response to both soluble growth factors and to adhesive cues. Non-transformed cells are anchorage dependent for the execution of the mitotic program and cannot avoid the concomitant signals starting from mitogenic molecules, as growth factors, and adhesive agents belonging to extracellular matrix. Reactive oxygen species play a key role during both growth factor and integrin receptor signalling and these second messengers are recognised to have a synergistic function for anchorage-dependent growth signalling. Redox regulated proteins include protein tyrosine phosphatases and protein tyrosine kinases, although with opposite regulation of their enzymatic activity, and cytoskeletal proteins as beta-actin. In this review we support a role of ROS as key second messengers granting a proper executed mitosis for anchorage-dependent cells, through redox regulation of several downstream targets. Deregulation of these redox pathways may help to guide transformed cells to elude the native apoptotic response to abolishment of signals started by cell/ECM contact, sustaining ectopic anchorage-independent cancer cell growth.
Collapse
Affiliation(s)
- Paola Chiarugi
- Department of Biochemical Sciences, University of Florence, Italy.
| | | |
Collapse
|
16
|
Harrison M, Siddiq A, Guildford A, Bone A, Santin M. Stent material surface and glucose activate mononuclear cells of control, type 1 and type 2 diabetes subjects. J Biomed Mater Res A 2007; 83:52-7. [PMID: 17377967 DOI: 10.1002/jbm.a.31204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In stent restenosis (ISR) has been described as an unaccomplished tissue healing and its rate is particularly high in diabetic patients. Evidence has been collected which relates the formation of ISR proteoglycan-rich neointimal tissue to the accumulation and protracted activation of macrophages around the stent metal struts. Here, the in vitro activation of mononuclear cells adhering to stainless steel (a material of choice in stent manufacturing) from control and diabetic (types 1 and 2) subjects was assessed in the presence of different glucose levels. The results showed that cells from the control and type 1 diabetes groups produced significantly higher levels of TGF-beta1 when adhering on stainless steel (p = 0.04 and p = 0.01), but a significant PDGF-BB secretion was observed only in control subjects. When tested at physiological glucose concentration, the effect of the stainless steel on control cells was more pronounced. The present study shows that mononuclear cells adhering onto stainless steel secrete growth factors relevant to ISR. Cells from diabetic subjects seem to secrete relatively higher levels of PDGF under hyperglycaemic conditions regardless of the substrate exposed thus offering an explanation for the higher incidence of restenosis in these patients.
Collapse
Affiliation(s)
- Moira Harrison
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building Lewes Road, Brighton BN2 4GJ, United Kingdom
| | | | | | | | | |
Collapse
|
17
|
Chen CN, Li YSJ, Yeh YT, Lee PL, Usami S, Chien S, Chiu JJ. Synergistic roles of platelet-derived growth factor-BB and interleukin-1beta in phenotypic modulation of human aortic smooth muscle cells. Proc Natl Acad Sci U S A 2006; 103:2665-70. [PMID: 16477012 PMCID: PMC1413813 DOI: 10.1073/pnas.0510973103] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The phenotype of smooth muscle cells (SMCs) plays an important role in vascular function in health and disease. We investigated the mechanism of modulation of SMC phenotype (from contractile to synthetic) induced by the synergistic action of a growth factor (platelet-derived growth factor, PDGF-BB) and a cytokine (interleukin, IL-1beta). Human aortic SMCs grown on polymerized collagen showed high expression levels of contractile markers (smooth muscle alpha-actin, myosin heavy chain, and calponin). These levels were not significantly affected by PDGF-BB and IL-1beta individually, but decreased markedly after the combined usage of PDGF-BB and IL-1beta. PDGF/IL-1beta costimulation also induced a sustained phosphorylation of Akt and p70 ribosomal S6 kinase (p70S6K). The effects of PDGF/IL-1beta costimulation on contractile marker expression and Akt and p70S6K phosphorylation were blocked by the phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 and by adenovirus expressing a dominant-negative Akt, and they were mimicked by constitutively active Akt. PDGF-BB/IL-1beta induced a sustained phosphorylation of PDGF receptor (PDGFR)-beta and its association with IL-1 receptor (IL-1R1). Such activation and association of receptors were blocked by a PDGFR-beta neutralizing antibody (AF385), an IL-1R1 antagonist (IL-1ra), as well as a specific inhibitor of PDGFR-beta phosphorylation (AG1295); these agents also eliminated the PDGF-BB/IL-1beta-induced signaling and phenotypic modulation. PDGF-BB/IL-1beta inhibited the polymerized collagen-induced serum response factor DNA binding activity in the nucleus, and this effect was mediated by the PDGFR-beta/IL-1R1 association and phosphatidylinositol 3-kinase/Akt/p70S6K pathway. Our findings provide insights into the mechanism of SMC phenotypic modulation from contractile to synthetic, e.g., in atherosclerosis.
Collapse
MESH Headings
- Aorta/cytology
- Aorta/drug effects
- Aorta/enzymology
- Aortic Diseases/enzymology
- Atherosclerosis/enzymology
- Becaplermin
- Cells, Cultured
- Collagen/metabolism
- Drug Synergism
- Humans
- Interleukin-1/pharmacology
- Muscle Contraction
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Phenotype
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Phosphorylation
- Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- Platelet-Derived Growth Factor/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-sis
- Ribosomal Protein S6 Kinases, 70-kDa/antagonists & inhibitors
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Serum Response Factor/metabolism
Collapse
Affiliation(s)
- Cheng-Nan Chen
- *Division of Medical Engineering Research, National Health Research Institutes (Zhunan Campus), Miaoli 350, Taiwan, Republic of China
- Department of Bioengineering and Whitaker Institute of Biomedical Engineering, University of California, San Diego, La Jolla, CA 92093-0427; and
| | - Yi-Shuan J. Li
- Department of Bioengineering and Whitaker Institute of Biomedical Engineering, University of California, San Diego, La Jolla, CA 92093-0427; and
| | - Yi-Ting Yeh
- *Division of Medical Engineering Research, National Health Research Institutes (Zhunan Campus), Miaoli 350, Taiwan, Republic of China
| | - Pei-Ling Lee
- *Division of Medical Engineering Research, National Health Research Institutes (Zhunan Campus), Miaoli 350, Taiwan, Republic of China
| | - Shunichi Usami
- Department of Bioengineering and Whitaker Institute of Biomedical Engineering, University of California, San Diego, La Jolla, CA 92093-0427; and
| | - Shu Chien
- Department of Bioengineering and Whitaker Institute of Biomedical Engineering, University of California, San Diego, La Jolla, CA 92093-0427; and
- To whom correspondence may be addressed. E-mail:
or
| | - Jeng-Jiann Chiu
- *Division of Medical Engineering Research, National Health Research Institutes (Zhunan Campus), Miaoli 350, Taiwan, Republic of China
- Institute of Biomedical Engineering, National Yang-Ming University, Taipei 112, Taiwan, Republic of China
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
18
|
Mitola S, Brenchio B, Piccinini M, Tertoolen L, Zammataro L, Breier G, Rinaudo MT, den Hertog J, Arese M, Bussolino F. Type I collagen limits VEGFR-2 signaling by a SHP2 protein-tyrosine phosphatase-dependent mechanism 1. Circ Res 2005; 98:45-54. [PMID: 16339483 DOI: 10.1161/01.res.0000199355.32422.7b] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During angiogenesis, a combined action between newly secreted extracellular matrix proteins and the repertoire of integrins expressed by endothelial cells contributes in the regulation of their biological functions. Extracellular matrix-engaged integrins influence tyrosine kinase receptors, thus promoting a regulatory cross-talk between adhesive and soluble stimuli. For instance, vitronectin has been reported to positively regulate VEGFR-2. Here, we show that collagen I downregulates VEGF-A-mediated VEGFR-2 activation. This activity requires the tyrosine phosphatase SHP2, which is recruited to the activated VEGFR-2 when cells are plated on collagen I, but not on vitronectin. Constitutive expression of SHP2(C459S) mutant inhibits the negative role of collagen I on VEGFR-2 phosphorylation. VEGFR-2 undergoes internalisation, which is associated with dynamin II phosphorylation. Expression of SHP2(C459S) impairs receptor internalisation suggesting that SHP2-dependent dephosphorylation regulates this process. These findings demonstrate that collagen I in provisional extracellular matrix surrounding nascent capillaries triggers a signaling pathway that negatively regulates angiogenesis.
Collapse
Affiliation(s)
- Stefania Mitola
- Institute for Cancer Research and Treatment, Department of Oncological Sciences, University of Torino, Turin, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Giannoni E, Buricchi F, Raugei G, Ramponi G, Chiarugi P. Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol Cell Biol 2005; 25:6391-403. [PMID: 16024778 PMCID: PMC1190365 DOI: 10.1128/mcb.25.15.6391-6403.2005] [Citation(s) in RCA: 353] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Src tyrosine kinases are central components of adhesive responses and are required for cell spreading onto the extracellular matrix. Among other intracellular messengers elicited by integrin ligation are reactive oxygen species, which act as synergistic mediators of cytoskeleton rearrangement and cell spreading. We report that after integrin ligation, the tyrosine kinase Src is oxidized and activated. Src displays an early activation phase, concurrent with focal adhesion formation and driven mainly by Tyr527 dephosphorylation, and a late phase, concomitant with reactive oxygen species production, cell spreading, and integrin-elicited kinase oxidation. In addition, our results suggest that reactive oxygen species are key mediators of in vitro and in vivo v-Src tumorigenic properties, as both antioxidant treatments and the oxidant-insensitive C245A and C487A Src mutants greatly decrease invasivity, serum-independent and anchorage-independent growth, and tumor onset. Therefore we propose that, in addition to the known phosphorylation/dephosphorylation circuitry, redox regulation of Src activity is required during both cell attachment to the extracellular matrix and tumorigenesis.
Collapse
Affiliation(s)
- Elisa Giannoni
- Dipartimento di Scienze Biochimiche, Viale Morgagni 50, 50134 Firenze, Italy
| | | | | | | | | |
Collapse
|
20
|
Yoshimura H, Nariai Y, Terashima M, Mitani T, Tanigawa Y. Taurine suppresses platelet-derived growth factor (PDGF) BB-induced PDGF-β receptor phosphorylation by protein tyrosine phosphatase-mediated dephosphorylation in vascular smooth muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1745:350-60. [PMID: 16112211 DOI: 10.1016/j.bbamcr.2005.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 07/06/2005] [Accepted: 07/19/2005] [Indexed: 10/25/2022]
Abstract
In atherosclerosis, abnormal vascular smooth muscle cell (VSMC) proliferation plays an important role to form fibroproliferative lesions and platelet-derived growth factor (PDGF)-BB is one of the most potent chemoattractants and proliferative factors for VSMCs. Taurine, sulfur-containing beta-amino acid, has been considered to prevent the development of atherosclerosis, although the molecular mechanism remains obscure. Previously, we demonstrated that taurine significantly suppressed PDGF-BB-induced cell proliferation, DNA synthesis, immediate-early gene expressions and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation in VSMCs. The present study was aimed at elucidating the precise molecular mechanism of taurine in PDGF-BB signaling pathway. We showed that taurine significantly suppressed PDGF-BB-induced phosphorylation of PDGF-beta receptor and activation of its downstream signaling molecules such as Ras, MAPK/ERK kinase (MEK)1/2 and Akt. Because taurine did not attenuate phorbol 12-myristate 13-acetate (PMA)-induced PDGF-beta receptor-independent ERK1/2 phosphorylation, we further investigated the suppressive mechanism of taurine in PDGF-beta receptor level. Although taurine did not directly affect PDGF receptor autophosphorylation in vitro, taurine promoted PDGF-beta receptor dephosphorylation and restored PDGF-BB-induced suppression of protein tyrosine phosphatase (PTPase) activity. Taken together, we propose that taurine could prevent or delay the progression of atherosclerosis by PTPase-mediated suppression of PDGF-beta receptor phosphorylation, and by decreasing the activation of its downstream signaling molecules in VSMCs.
Collapse
Affiliation(s)
- Hitoshi Yoshimura
- Department of Biochemistry and Molecular Medicine, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | | | | | | | | |
Collapse
|
21
|
Shah K, Vincent F. Divergent roles of c-Src in controlling platelet-derived growth factor-dependent signaling in fibroblasts. Mol Biol Cell 2005; 16:5418-32. [PMID: 16135530 PMCID: PMC1266437 DOI: 10.1091/mbc.e05-03-0263] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The vast complexity of platelet-derived growth factor (PDGF)-induced downstream signaling pathways is well known, but the precise roles of critical players still elude us due to our lack of specific and temporal control over their activities. Accordingly, although Src family members are some of the better characterized effectors of PDGFbeta signaling, considerable controversy still surrounds their precise functions. To address these questions and limitations, we applied a chemical-genetic approach to study the role of c-Src at the cellular level, in defined signaling cascades; we also uncovered novel phosphorylation targets and defined its influence on transcriptional events. The spectacular control of c-Src on actin reorganization and chemotaxis was delineated by global substrate labeling and transcriptional analysis, revealing multiple cytoskeletal proteins and chemotaxis promoting genes to be under c-Src control. Additionally, this tool revealed the contrasting roles of c-Src in controlling DNA synthesis, where it transmits conflicting inputs via the phosphatidylinositol 3 kinase and Ras pathways. Finally, this study reveals a mechanism by which Src family kinases may control PDGF-mediated responses both at transcriptional and translational levels.
Collapse
Affiliation(s)
- Kavita Shah
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
22
|
Takayama Y, May P, Anderson RGW, Herz J. Low Density Lipoprotein Receptor-related Protein 1 (LRP1) Controls Endocytosis and c-CBL-mediated Ubiquitination of the Platelet-derived Growth Factor Receptor β (PDGFRβ). J Biol Chem 2005; 280:18504-10. [PMID: 15753096 DOI: 10.1074/jbc.m410265200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The low density lipoprotein receptor-related protein 1 (LRP1) has been implicated in intracellular signaling functions as well as in lipid metabolism. Recent in vivo and in vitro studies suggest that LRP1 is a physiological modulator of the platelet-derived growth factor (PDGF) signaling pathway. Here we show that in mouse fibroblasts LRP1 modulates PDGF-BB signaling by controlling endocytosis and ligand-induced down-regulation of the PDGF receptor beta (PDGFRbeta). In LRP1-deficient fibroblasts, basal PDGFRbeta tyrosine kinase activity was derepressed, and PDGF-BB-induced endocytosis and degradation of PDGFRbeta were accelerated as compared with control cells. This was accompanied by rapid uptake of receptor-bound PDGF-BB into the cells and by attenuated ERK activation in response to PDGF-BB stimulation. Pulse-chase analysis indicated that the steady-state turnover rate of PDGFRbeta was also accelerated in LRP-deficient fibroblasts. The rapid degradation of PDGFRbeta in the LRP1-deficient fibroblasts was prevented by MG132 and chloroquine. Furthermore, the association of PDGFRbeta with c-Cbl, a ubiquitin E3-ligase, as well as the ligand-induced ubiquitination of PDGFRbeta were increased in LRP1-deficient fibroblasts. We show that LRP1 can directly interact with c-Cbl, suggesting a Sprouty-like role for LRP1 in regulating the access of the PDGFRbeta to the ubiquitination machinery. Thus, LRP1 modulates PDGF signaling by controlling ubiquitination and endocytosis of the PDGFRbeta.
Collapse
Affiliation(s)
- Yoshiharu Takayama
- Departments of Molecular Genetics and Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046, USA
| | | | | | | |
Collapse
|
23
|
Chiarugi P, Giannoni E. Anchorage-dependent cell growth: tyrosine kinases and phosphatases meet redox regulation. Antioxid Redox Signal 2005; 7:578-92. [PMID: 15890002 DOI: 10.1089/ars.2005.7.578] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent data have provided new insight concerning the regulation of nontransformed cell proliferation in response to both soluble growth factors and adhesive cues. Nontransformed cells are anchorage-dependent for the execution of the complete mitotic program and cannot avoid the concomitant signals starting from mitogenic molecules, as growth factors, and adhesive agents belonging to the extracellular matrix. Protein tyrosine kinases (PTKs) and phosphotyrosine phosphatases (PTPs) together with soluble small molecules have been included among intracellular signal transducers of growth factor and extracellular matrix receptors. Reactive oxygen species retain a key role during both growth factor and integrin receptor signaling, and these second messengers are recognized to be a synergistic point of confluence for anchorage-dependent growth signaling. Redox-regulated proteins include PTPs and PTKs, although with opposite regulation of enzymatic activity. Transient oxidation of PTPs leads to their inactivation, through the formation of an intramolecular S-S bridge. Conversely, oxidation of PTKs leads to their activation, either by direct SH modification or, indirectly, by concomitant inhibition of PTPs that leads to sustained activation of PTKs. This review will focus on the redox regulation of PTPs and PTKs during anchorage-dependent cell growth and its implications for tumor biology.
Collapse
Affiliation(s)
- Paola Chiarugi
- Department of Biochemical Sciences, University of Florence, Florence, Italy.
| | | |
Collapse
|
24
|
Biskup C, Böhmer A, Pusch R, Kelbauskas L, Gorshokov A, Majoul I, Lindenau J, Benndorf K, Böhmer FD. Visualization of SHP-1-target interaction. J Cell Sci 2005; 117:5165-78. [PMID: 15456853 DOI: 10.1242/jcs.01397] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Signaling of receptor tyrosine kinases (RTKs) is regulated by protein-tyrosine phosphatases (PTPs). We previously discovered the efficient downregulation of Ros RTK signaling by the SH2 domain PTP SHP-1, which involves a direct interaction of both molecules. Here, we studied the mechanism of this interaction in detail. Phosphopeptides representing the SHP-1 candidate binding sites in the Ros cytoplasmic domain, pY2267 and pY2327, display high affinity binding to the SHP-1 N-terminal SH2 domain (Kd=217 nM and 171 nM, respectively). Y2327 is, however, a poor substrate of Ros kinase and, therefore, contributes little to SHP-1 binding in vitro. To explore the mechanism of association in intact cells, functional fluorescent fusion proteins of Ros and SHP-1 were generated. Complexes of both molecules could be detected by Förster resonance energy transfer (FRET) in intact HEK293 and COS7 cells. As expected, the association required the functional SHP-1 N-terminal SH2 domain. Unexpectedly, pY2267 and pY2327 both contributed to the association. Mutation of Y2327 reduced constitutive association in COS7 cells. Ligand-dependent association was abrogated upon mutation of Y2267 but remained intact when Y2327 was mutated. A phosphopeptide representing the binding site pY2267 was a poor substrate for SHP-1, whereas Ros activation loop phosphotyrosines were effectively dephosphorylated. We propose a model for SHP-1-Ros interaction in which ligand-stimulated phosphorylation of Ros Y2267 by Ros, phosphorylation of Y2327 by a heterologous kinase, and inactivation of Ros by SHP-1-mediated dephosphorylation play a role in the regulation of complex stability.
Collapse
Affiliation(s)
- Christoph Biskup
- Institute of Physiology II, Medical Faculty, Friedrich Schiller University, Drackendorfer Str. 1, 07747 Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cirri P, Taddei ML, Chiarugi P, Buricchi F, Caselli A, Paoli P, Giannoni E, Camici G, Manao G, Raugei G, Ramponi G. Insulin inhibits platelet-derived growth factor-induced cell proliferation. Mol Biol Cell 2004; 16:73-83. [PMID: 15525682 PMCID: PMC539153 DOI: 10.1091/mbc.e04-01-0011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cellular behavior can be considered to be the result of a very complex spatial and temporal integration of intracellular and extracellular signals. These signals arise from serum-soluble factors as well as from cell-substrate or cell-cell interactions. The current approach in mitogenesis studies is generally to analyze the effect of a single growth factor on serum-starved cells. In this context, a metabolic hormone such as insulin is found to be a mitogenic agent in many cellular types. In the present study, we have considered the effect of insulin stimulation in platelet-derived growth factor (PDGF)-activated NIH-3T3 and C2C12 cells. Our results show that insulin is able to inhibit strongly both NIH-3T3 and C2C12 cell growth induced by PDGF, one of the most powerful mitotic agents for these cell types. This inhibitory effect of insulin is due primarily to a premature down-regulation of the PDGF receptor. Thus, when NIH-3T3 or C2C12 cells are stimulated with both PDGF and insulin, we observe a decrease in PDGF receptor phosphorylation with respect to cells treated with PDGF alone. In particular, we find that costimulation with insulin leads to a reduced production of H2O2 with respect to cell stimulation with PDGF alone. The relative low concentration of H2O2 in PDGF/insulin-costimulated cell leads to a limited down-regulation of protein tyrosine phosphatases, and, consequently, to a reduced PDGF receptor phosphorylation efficiency. The latter is very likely to be responsible for the insulin-dependent inhibition of PDGF-receptor mitogenic signaling.
Collapse
Affiliation(s)
- P Cirri
- Dipartimento di Scienze Biochimiche, Università di Firenze, 50134 Firenze, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Magherini F, Gamberi T, Paoli P, Marchetta M, Biagini M, Raugei G, Camici G, Ramponi G, Modesti A. The in vivo tyrosine phosphorylation level of yeast immunophilin Fpr3 is influenced by the LMW-PTP Ltp1. Biochem Biophys Res Commun 2004; 321:424-31. [PMID: 15358193 DOI: 10.1016/j.bbrc.2004.06.158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Indexed: 11/18/2022]
Abstract
Tyr-phosphorylation in Saccharomyces cerevisiae is essential in controlling the activity of MAP kinase regulating mating, pseudohyphal growth, and cell wall biosynthesis. Yeast serves as a model system for studying the biological function of many protein kinases and PTPs. Two LMW-PTP from yeast have been cloned, namely, Ltp1 from S. cerevisiae and Stp1 from Schizosaccharomyces pombe. The sequences of both enzymes are relatively similar to those of the mammalian LMW-PTP. Recently we showed that the yeast immunophilin Fpr3 interacts with Stp1 and its dephosphorylated state induces a growth defective phenotype. Here we show the phosphatase activity of Ltp1 on Fpr3 and we demonstrated that Tyr 184 is the residue phosphorylated on in vivo Fpr3. We also described the marked activation of Ltp1 by adenine in S. cerevisiae proteome and determined in vivo the influence of tyrosine phosphorylation on Fpr3 localization.
Collapse
Affiliation(s)
- Francesca Magherini
- Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chamberlain MD, Berry TR, Pastor MC, Anderson DH. The p85alpha subunit of phosphatidylinositol 3'-kinase binds to and stimulates the GTPase activity of Rab proteins. J Biol Chem 2004; 279:48607-14. [PMID: 15377662 DOI: 10.1074/jbc.m409769200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab5 and Rab4 are small monomeric GTPases localized on early endosomes and function in vesicle fusion events. These Rab proteins regulate the endocytosis and recycling or degradation of activated receptor tyrosine kinases such as the platelet-derived growth factor receptor (PDGFR). The p85alpha subunit of phosphatidylinositol 3'-kinase contains a BH domain with sequence homology to GTPase activating proteins (GAPs), but has not previously been shown to possess GAP activity. In this report, we demonstrate that p85alpha has GAP activity toward Rab5, Rab4, Cdc42, Rac1 and to a lesser extent Rab6, with little GAP activity toward Rab11. Purified recombinant Rab5 and p85alpha can bind directly to each other and not surprisingly, the p85alpha-encoded GAP activity is present in the BH domain. Because p85alpha stays bound to the PDGFR during receptor endocytosis, p85alpha will also be localized to the same early endosomal compartment as Rab5 and Rab4. Taken together, the physical co-localization and the ability of p85alpha to preferentially stimulate the down-regulation of Rab5 and Rab4 GTPases suggests that p85alpha regulates how long Rab5 and Rab4 remain in their GTP-bound active state. Cells expressing BH domain mutants of p85 show a reduced rate of PDGFR degradation as compared with wild type p85 expressing cells. These cells also show sustained activation of the mitogen-activated protein kinase and Akt pathways. Thus, the p85alpha protein may play a role in the down-regulation of activated receptors through its temporal control of the GTPase cycles of Rab5 and Rab4.
Collapse
Affiliation(s)
- M Dean Chamberlain
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan S7N 4H4, Canada
| | | | | | | |
Collapse
|
28
|
Persson C, Sävenhed C, Bourdeau A, Tremblay ML, Markova B, Böhmer FD, Haj FG, Neel BG, Elson A, Heldin CH, Rönnstrand L, Ostman A, Hellberg C. Site-selective regulation of platelet-derived growth factor beta receptor tyrosine phosphorylation by T-cell protein tyrosine phosphatase. Mol Cell Biol 2004; 24:2190-201. [PMID: 14966296 PMCID: PMC350555 DOI: 10.1128/mcb.24.5.2190-2201.2004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The platelet-derived growth factor (PDGF) beta receptor mediates mitogenic and chemotactic signals. Like other tyrosine kinase receptors, the PDGF beta receptor is negatively regulated by protein tyrosine phosphatases (PTPs). To explore whether T-cell PTP (TC-PTP) negatively regulates the PDGF beta receptor, we compared PDGF beta receptor tyrosine phosphorylation in wild-type and TC-PTP knockout (ko) mouse embryos. PDGF beta receptors were hyperphosphorylated in TC-PTP ko embryos. Fivefold-higher ligand-induced receptor phosphorylation was observed in TC-PTP ko mouse embryo fibroblasts (MEFs) as well. Reexpression of TC-PTP partly abolished this difference. As determined with site-specific phosphotyrosine antibodies, the extent of hyperphosphorylation varied among different autophosphorylation sites. The phospholipase Cgamma1 binding site Y1021, previously implicated in chemotaxis, displayed the largest increase in phosphorylation. The increase in Y1021 phosphorylation was accompanied by increased phospholipase Cgamma1 activity and migratory hyperresponsiveness to PDGF. PDGF beta receptor tyrosine phosphorylation in PTP-1B ko MEFs but not in PTPepsilon ko MEFs was also higher than that in control cells. This increase occurred with a site distribution different from that seen after TC-PTP depletion. PDGF-induced migration was not increased in PTP-1B ko cells. In summary, our findings identify TC-PTP as a previously unrecognized negative regulator of PDGF beta receptor signaling and support the general notion that PTPs display site selectivity in their action on tyrosine kinase receptors.
Collapse
Affiliation(s)
- Camilla Persson
- Ludwig Institute for Cancer Research, Uppsala Branch, Biomedical Center, S-751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chiarugi P, Cirri P. Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends Biochem Sci 2003; 28:509-14. [PMID: 13678963 DOI: 10.1016/s0968-0004(03)00174-9] [Citation(s) in RCA: 251] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In addition to protein phosphorylation, redox-dependent post-translational modification of proteins is emerging as a key signaling system that has been conserved throughout evolution and that influences many aspects of cellular homeostasis. Both systems exemplify dynamic regulation of protein function by reversible modification, which, in turn, regulates many cellular processes such as cell proliferation, differentiation and apoptosis. In this article we focus on the interplay between phosphorylation- and redox-dependent signaling at the level of phosphotyrosine phosphatase-mediated regulation of receptor tyrosine kinases (RTKs). We propose that signal transduction by oxygen species through reversible phosphotyrosine phosphatase inhibition, represents a widespread and conserved component of the biochemical machinery that is triggered by RTKs.
Collapse
Affiliation(s)
- Paola Chiarugi
- Dipartimento di Scienze Biochimiche, Università di Firenze, viale Morgagni 50, 50134 Florence, Italy.
| | | |
Collapse
|
30
|
Jandt E, Denner K, Kovalenko M, Ostman A, Böhmer FD. The protein-tyrosine phosphatase DEP-1 modulates growth factor-stimulated cell migration and cell-matrix adhesion. Oncogene 2003; 22:4175-85. [PMID: 12833140 DOI: 10.1038/sj.onc.1206652] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Density-enhanced protein-tyrosine phosphatase-1 (DEP-1 also CD148) is a transmembrane molecule with a single intracellular PTP domain. It has recently been proposed to function as a tumor suppressor. We have previously shown that DEP-1 dephosphorylates the activated platelet-derived growth factor (PDGF) beta-receptor in a site-selective manner (Kovalenko et al. (2000). J. Biol. Chem. 275, 16219-16226). We analysed cell lines with inducible DEP-1 expression for cellular functions of DEP-1. Several aspects of PDGFbeta-receptor signaling were negatively affected by DEP-1 expression. These include PDGF-stimulated activation of inositol trisphosphate formation, Erk1/2, p21Ras, and Src. Activation of receptor-associated phosphoinositide-3 kinase activity and of Akt/PKB were weakly attenuated at early time points of stimulation. Inhibition of PDGF-stimulated signaling depended on DEP-1 catalytic activity. Importantly, DEP-1 inhibited PDGF-stimulated cell migration. The catalytically inactive DEP-1 C1239S variant enhanced cell migration and PDGF-stimulated Erk1/2 activation, suggesting a dominant negative interference with endogenous DEP-1. In contrast to cell migration, cell-substrate adhesion was promoted by active DEP-1 and delayed or suppressed by DEP-1 C1239S, correlating with positive effects of DEP-1 on adhesion-stimulated Src kinase. We propose that negative regulation of growth-factor stimulated cell migration and promotion of cell-matrix adhesion may be related to the function of DEP-1 as tumor suppressor.
Collapse
Affiliation(s)
- Enrico Jandt
- Research Unit Molecular Cell Biology, Medical Faculty, Friedrich Schiller University, Drackendorfer str 1, D-07747 Jena, Germany
| | | | | | | | | |
Collapse
|
31
|
Chiarugi P, Pani G, Giannoni E, Taddei L, Colavitti R, Raugei G, Symons M, Borrello S, Galeotti T, Ramponi G. Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J Cell Biol 2003; 161:933-44. [PMID: 12796479 PMCID: PMC2172955 DOI: 10.1083/jcb.200211118] [Citation(s) in RCA: 350] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Signal transduction by reactive oxygen species (ROS; "redox signaling") has recently come into focus in cellular biology studies. The signaling properties of ROS are largely due to the reversible oxidation of redox-sensitive target proteins, and especially of protein tyrosine phosphatases, whose activity is dependent on the redox state of a low pKa active site cysteine. A variety of mitogenic signals, including those released by receptor tyrosine kinase (RTKs) ligands and oncogenic H-Ras, involve as a critical downstream event the intracellular generation of ROS. Signaling by integrins is also essential for the growth of most cell types and is constantly integrated with growth factor signaling. We provide here evidence that intracellular ROS are generated after integrin engagement and that these oxidant intermediates are necessary for integrin signaling during fibroblast adhesion and spreading. Moreover, we propose a synergistic action of integrins and RTKs for redox signaling. Integrin-induced ROS are required to oxidize/inhibit the low molecular weight phosphotyrosine phosphatase, thereby preventing the enzyme from dephosphorylating and inactivating FAK. Accordingly, FAK phosphorylation and other downstream events, including MAPK phosphorylation, Src phosphorylation, focal adhesion formation, and cell spreading, are all significantly attenuated by inhibition of redox signaling. Hence, we have outlined a redox circuitry whereby, upon cell adhesion, oxidative inhibition of a protein tyrosine phosphatase promotes the phosphorylation/activation and the downstream signaling of FAK and, as a final event, cell adhesion and spreading onto fibronectin.
Collapse
Affiliation(s)
- Paola Chiarugi
- Department of Biochemical Sciences, University of Florence, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Markova B, Herrlich P, Rönnstrand L, Böhmer FD. Identification of protein tyrosine phosphatases associating with the PDGF receptor. Biochemistry 2003; 42:2691-9. [PMID: 12614164 DOI: 10.1021/bi0265574] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein tyrosine phosphatase (PTP) in-gel assays were used to explore association of PTPs with the platelet-derived growth factor beta-receptor (PDGFbetaR). Five PTP activity bands of approximately 120, approximately 70, approximately 60, approximately 53, and approximately 45 kDa could be detected in PDGFbetaR immunoprecipitates and were identified by immunodepletion experiments as PTP-PEST, SHP-2, an active fragment of SHP-2, PTP-1B, and T-cell PTP, respectively. The PTP pattern that was obtained was similar in PDGFbetaR immunoprecipitates from HEK 293 cells overexpressing the human PDGFbetaR and from murine fibroblasts. Association of PTP-1B with the PDGFbetaR was stabilized by pretreatment of the cells with hydrogen peroxide. The epidermal growth factor receptor (EGFR) immunoprecipitated from fibroblasts, and c-Kit isolated from CHRF myeloid cells, were associated with partially overlapping but quantitatively different patterns of PTPs. PTP-PEST was the predominant PTP in EGFR immunoprecipitates, and SHP-1 appeared in c-Kit immunoprecipitates. We propose that the differential association of PTPs with different RTKs is related to their respective contributions to regulation of RTK signaling.
Collapse
Affiliation(s)
- Boyka Markova
- Research Unit Molecular Cell Biology, Medical Faculty, Friedrich Schiller University, Drackendorfer Strasse 1, D-07747 Jena, Germany
| | | | | | | |
Collapse
|
33
|
Chiarugi P, Cirri P, Taddei ML, Giannoni E, Fiaschi T, Buricchi F, Camici G, Raugei G, Ramponi G. Insight into the role of low molecular weight phosphotyrosine phosphatase (LMW-PTP) on platelet-derived growth factor receptor (PDGF-r) signaling. LMW-PTP controls PDGF-r kinase activity through TYR-857 dephosphorylation. J Biol Chem 2002; 277:37331-8. [PMID: 12149261 DOI: 10.1074/jbc.m205203200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Low molecular weight phosphotyrosine phosphatase (LMW-PTP) is an enzyme involved in platelet-derived growth factor-induced mitogenesis and cytoskeleton rearrangement. Our previous results demonstrated that LMW-PTP is able to bind and dephosphorylate activated platelet-derived growth factor receptor (PDGF-r), thus inhibiting cell proliferation. Here we revisit the role of LMW-PTP on activated PDGF-r dephosphorylation. We demonstrate that LMW-PTP preferentially acts on cell surface PDGF-r, excluding the internalized activated receptor pool. Many phosphotyrosine phosphatases act by site-selective dephosphorylation on several sites of PDGF-r, but until now, there has been no evidence of a direct involvement of a specific phosphotyrosine phosphatase in the dephosphorylation of the 857 kinase domain activation tyrosine. Here we report that LMW-PTP affects the kinase activity of the receptor through the binding and dephosphorylation of Tyr-857 and influences many of the signal outputs from the receptor. In particular, we demonstrate a down-regulation of phosphatidylinositol 3-kinase, Src homology phosphatase-2, and phospholipase C-gamma1 binding but not of MAPK activation. In addition, we report a slight action of LMW-PTP on Tyr-716, which directs MAPK activation through Grb2 binding. On the basis of these results, we propose a key role for LMW-PTP in PDGF-r down-regulation through the dephosphorylation of the activation loop Tyr-857, thus determining a general negative regulation of all downstream signals, with the exception of those elicited by internalized receptors.
Collapse
Affiliation(s)
- Paola Chiarugi
- Department of Biochemical Sciences, University of Florence, 50134 Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|