1
|
Risteski P, Martinčić J, Jagrić M, Tintor E, Petelinec A, Tolić IM. Microtubule poleward flux as a target for modifying chromosome segregation errors. Proc Natl Acad Sci U S A 2024; 121:e2405015121. [PMID: 39541344 PMCID: PMC11588092 DOI: 10.1073/pnas.2405015121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Cancer cells often display errors in chromosome segregation, some of which result from improper chromosome alignment at the spindle midplane. Chromosome alignment is facilitated by different rates of microtubule poleward flux between sister kinetochore fibers. However, the role of the poleward flux in supporting mitotic fidelity remains unknown. Here, we introduce the hypothesis that the finely tuned poleward flux safeguards against lagging chromosomes and micronuclei at mitotic exit by promoting chromosome alignment in metaphase. We used human untransformed RPE-1 cells depleted of KIF18A/kinesin-8 as a system with reduced mitotic fidelity, which we rescued by three mechanistically independent treatments, comprising low-dose taxol or codepletion of the spindle proteins HAUS8 or NuMA. The rescue of mitotic errors was due to shortening of the excessively long overlaps of antiparallel microtubules, serving as a platform for motor proteins that drive the flux, which in turn slowed down the overly fast flux and improved chromosome alignment. In contrast to the prevailing view, the rescue was not accompanied by reduction of overall microtubule growth rates. Instead, speckle microscopy revealed that the improved chromosome alignment in the rescue treatments was associated with slower growth and flux of kinetochore microtubules. In a similar manner, a low-dose taxol treatment rescued mitotic errors in a high-grade serous ovarian carcinoma cell line OVKATE. Collectively, our results highlight the potential of targeting microtubule poleward flux to modify chromosome instability and provide insight into the mechanism through which low doses of taxol rescue certain mitotic errors in cancer cells.
Collapse
Affiliation(s)
- Patrik Risteski
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| | - Jelena Martinčić
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| | - Mihaela Jagrić
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| | - Erna Tintor
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| | - Ana Petelinec
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| | - Iva M. Tolić
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| |
Collapse
|
2
|
Li T, Gachet Y, Tournier S. MAARS Software for Automatic and Quantitative Analysis of Mitotic Progression. Methods Mol Biol 2024; 2740:275-293. [PMID: 38393482 DOI: 10.1007/978-1-0716-3557-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
In this chapter, we describe a software called MAARS (Mitotic Analysis And Recording System) that enables automatic and quantitative analysis of mitotic progression on an open-source platform. This computer-assisted analysis of cell division allows the unbiased acquisition of multiple parameters such as cell shape or size, metaphase or anaphase delays, as well as various mitotic abnormalities. This chapter describes the power of such an expert system to highlight the complexity of the mechanisms required to prevent mitotic chromosome segregation errors, leading to aneuploidy.
Collapse
Affiliation(s)
- Tong Li
- MCD, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse Cedex, France
- Wellcome Sanger Institute, Cambridge, UK
| | - Yannick Gachet
- MCD, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse Cedex, France.
| | - Sylvie Tournier
- MCD, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse Cedex, France.
| |
Collapse
|
3
|
Shah S, Mittal P, Kumar D, Mittal A, Ghosh SK. Evidence of kinesin motors involved in stable kinetochore assembly during early meiosis. Mol Biol Cell 2023; 34:ar107. [PMID: 37556230 PMCID: PMC10559306 DOI: 10.1091/mbc.e22-12-0569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
During mitosis, the budding yeast, kinetochores remain attached to microtubules, except for a brief period during S phase. Sister-kinetochores separate into two clusters (bilobed organization) upon stable end-on attachment to microtubules emanating from opposite spindle poles. However, in meiosis, the outer kinetochore protein (Ndc80) reassembles at the centromeres much later after prophase I, establishing new kinetochore-microtubule attachments. Perhaps due to this, despite homolog bi-orientation, we observed that the Ndc80 are linearly dispersed between spindle poles during metaphase I of meiosis. The presence of end-on attachment marker Dam1 as a cluster near each pole suggests one of the other possibilities that the pole-proximal and pole-distal kinetochores are attached end-on and laterally to the microtubules, respectively. Colocalization studies of kinetochores and kinesin motors suggest that budding yeast kinesin 5, Cin8, and Kip1 perhaps localize to the end-on attached kinetochores while kinesin 8 and Kip3 resides at all the kinetochores. Our findings, including kinesin 5 and Ndc80 coappearance after prophase I and reduced Ndc80 levels in cin8 null mutant, suggest that kinesin motors are crucial for kinetochore reassembly and stability during early meiosis. Thus, this work reports yet another meiosis specific function of kinesin motors.
Collapse
Affiliation(s)
- Seema Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Priyanka Mittal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Deepanshu Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Anjani Mittal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Santanu K. Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
4
|
Ansari S, Gergely ZR, Flynn P, Li G, Moore JK, Betterton MD. Quantifying Yeast Microtubules and Spindles Using the Toolkit for Automated Microtubule Tracking (TAMiT). Biomolecules 2023; 13:939. [PMID: 37371519 DOI: 10.3390/biom13060939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 06/29/2023] Open
Abstract
Fluorescently labeled proteins absorb and emit light, appearing as Gaussian spots in fluorescence imaging. When fluorescent tags are added to cytoskeletal polymers such as microtubules, a line of fluorescence and even non-linear structures results. While much progress has been made in techniques for imaging and microscopy, image analysis is less well-developed. Current analysis of fluorescent microtubules uses either manual tools, such as kymographs, or automated software. As a result, our ability to quantify microtubule dynamics and organization from light microscopy remains limited. Despite the development of automated microtubule analysis tools for in vitro studies, analysis of images from cells often depends heavily on manual analysis. One of the main reasons for this disparity is the low signal-to-noise ratio in cells, where background fluorescence is typically higher than in reconstituted systems. Here, we present the Toolkit for Automated Microtubule Tracking (TAMiT), which automatically detects, optimizes, and tracks fluorescent microtubules in living yeast cells with sub-pixel accuracy. Using basic information about microtubule organization, TAMiT detects linear and curved polymers using a geometrical scanning technique. Images are fit via an optimization problem for the microtubule image parameters that are solved using non-linear least squares in Matlab. We benchmark our software using simulated images and show that it reliably detects microtubules, even at low signal-to-noise ratios. Then, we use TAMiT to measure monopolar spindle microtubule bundle number, length, and lifetime in a large dataset that includes several S. pombe mutants that affect microtubule dynamics and bundling. The results from the automated analysis are consistent with previous work and suggest a direct role for CLASP/Cls1 in bundling spindle microtubules. We also illustrate automated tracking of single curved astral microtubules in S. cerevisiae, with measurement of dynamic instability parameters. The results obtained with our fully-automated software are similar to results using hand-tracked measurements. Therefore, TAMiT can facilitate automated analysis of spindle and microtubule dynamics in yeast cells.
Collapse
Affiliation(s)
- Saad Ansari
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Zachary R Gergely
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Patrick Flynn
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Gabriella Li
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Meredith D Betterton
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
5
|
Murase Y, Yamagishi M, Okada N, Toya M, Yajima J, Hamada T, Sato M. Fission yeast Dis1 is an unconventional TOG/XMAP215 that induces microtubule catastrophe to drive chromosome pulling. Commun Biol 2022; 5:1298. [PMID: 36435910 PMCID: PMC9701203 DOI: 10.1038/s42003-022-04271-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022] Open
Abstract
The shortening of microtubules attached to kinetochores is the driving force of chromosome movement during cell division. Specific kinesins are believed to shorten microtubules but are dispensable for viability in yeast, implying the existence of additional factors responsible for microtubule shortening. Here, we demonstrate that Dis1, a TOG/XMAP215 ortholog in fission yeast, promotes microtubule shortening to carry chromosomes. Although TOG/XMAP215 orthologs are generally accepted as microtubule polymerases, Dis1 promoted microtubule catastrophe in vitro and in vivo. Notably, microtubule catastrophe was promoted when the tip was attached to kinetochores, as they steadily anchored Dis1 at the kinetochore-microtubule interface. Engineered Dis1 oligomers artificially tethered at a chromosome arm region induced the shortening of microtubules in contact, frequently pulling the chromosome arm towards spindle poles. This effect was not brought by oligomerised Alp14. Thus, unlike Alp14 and other TOG/XMAP215 orthologs, Dis1 plays an unconventional role in promoting microtubule catastrophe, thereby driving chromosome movement.
Collapse
Affiliation(s)
- Yuichi Murase
- grid.5290.e0000 0004 1936 9975Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480 Japan
| | - Masahiko Yamagishi
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902 Tokyo Japan
| | - Naoyuki Okada
- grid.5290.e0000 0004 1936 9975Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480 Japan ,grid.5808.50000 0001 1503 7226Instituto de Biologia Molecular e Celular, Instituto de Investigacao e Inovacao em Saude (i3S), Universidade do Porto, 208 Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Mika Toya
- grid.5290.e0000 0004 1936 9975Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480 Japan ,grid.5290.e0000 0004 1936 9975Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 Japan ,grid.5290.e0000 0004 1936 9975Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 Japan
| | - Junichiro Yajima
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902 Tokyo Japan ,grid.26999.3d0000 0001 2151 536XKomaba Institute for Science, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, 153-8902 Tokyo Japan ,grid.26999.3d0000 0001 2151 536XResearch Center for Complex Systems Biology, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, 153-8902 Tokyo Japan
| | - Takahiro Hamada
- grid.444568.f0000 0001 0672 2184Department of Bioscience, Faculty of Life Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama-shi 700-0005 Japan
| | - Masamitsu Sato
- grid.5290.e0000 0004 1936 9975Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480 Japan ,grid.5290.e0000 0004 1936 9975Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 Japan ,grid.5290.e0000 0004 1936 9975Institute for Medical-Oriented Structural Biology, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480 Japan
| |
Collapse
|
6
|
Risteski P, Božan D, Jagrić M, Bosilj A, Pavin N, Tolić IM. Length-dependent poleward flux of sister kinetochore fibers promotes chromosome alignment. Cell Rep 2022; 40:111169. [PMID: 35926461 PMCID: PMC9364240 DOI: 10.1016/j.celrep.2022.111169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/20/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022] Open
Abstract
Chromosome alignment at the spindle equator promotes proper chromosome segregation and depends on pulling forces exerted at kinetochore fiber tips together with polar ejection forces. However, kinetochore fibers are also subjected to forces driving their poleward flux. Here we introduce a flux-driven centering model that relies on flux generated by forces within the overlaps of bridging and kinetochore fibers. This centering mechanism works so that the longer kinetochore fiber fluxes faster than the shorter one, moving the kinetochores toward the center. We develop speckle microscopy in human spindles and confirm the key prediction that kinetochore fiber flux is length dependent. Kinetochores are better centered when overlaps are shorter and the kinetochore fiber flux slower than the bridging fiber flux. We identify Kif18A and Kif4A as overlap and flux regulators and NuMA as a fiber coupler. Thus, length-dependent sliding forces exerted by the bridging fiber onto kinetochore fibers support chromosome alignment. A flux-driven centering model explains chromosome alignment at the spindle equator Kinetochore fiber poleward flux is driven by overlap microtubules Kinetochore centering requires faster flux of the longer sister kinetochore fiber Chromosome alignment depends on the overlap length of bridging microtubules
Collapse
Affiliation(s)
- Patrik Risteski
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Domagoj Božan
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| | - Mihaela Jagrić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Agneza Bosilj
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia.
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
7
|
Hunter B, Benoit MPMH, Asenjo AB, Doubleday C, Trofimova D, Frazer C, Shoukat I, Sosa H, Allingham JS. Kinesin-8-specific loop-2 controls the dual activities of the motor domain according to tubulin protofilament shape. Nat Commun 2022; 13:4198. [PMID: 35859148 PMCID: PMC9300613 DOI: 10.1038/s41467-022-31794-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022] Open
Abstract
Kinesin-8s are dual-activity motor proteins that can move processively on microtubules and depolymerize microtubule plus-ends, but their mechanism of combining these distinct activities remains unclear. We addressed this by obtaining cryo-EM structures (2.6-3.9 Å) of Candida albicans Kip3 in different catalytic states on the microtubule lattice and on a curved microtubule end mimic. We also determined a crystal structure of microtubule-unbound CaKip3-ADP (2.0 Å) and analyzed the biochemical activity of CaKip3 and kinesin-1 mutants. These data reveal that the microtubule depolymerization activity of kinesin-8 originates from conformational changes of its motor core that are amplified by dynamic contacts between its extended loop-2 and tubulin. On curved microtubule ends, loop-1 inserts into preceding motor domains, forming head-to-tail arrays of kinesin-8s that complement loop-2 contacts with curved tubulin and assist depolymerization. On straight tubulin protofilaments in the microtubule lattice, loop-2-tubulin contacts inhibit conformational changes in the motor core, but in the ADP-Pi state these contacts are relaxed, allowing neck-linker docking for motility. We propose that these tubulin shape-induced alternations between pro-microtubule-depolymerization and pro-motility kinesin states, regulated by loop-2, are the key to the dual activity of kinesin-8 motors.
Collapse
Affiliation(s)
- Byron Hunter
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Matthieu P M H Benoit
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ana B Asenjo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Caitlin Doubleday
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Daria Trofimova
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Corey Frazer
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Irsa Shoukat
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Hernando Sosa
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - John S Allingham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
8
|
Pineda-Santaella A, Fernández-Castillo N, Jiménez-Martín A, Macías-Cabeza MDC, Sánchez-Gómez Á, Fernández-Álvarez A. Loss of kinesin-8 improves the robustness of the self-assembled spindle in Schizosaccharomyces pombe. J Cell Sci 2021; 134:271184. [PMID: 34346498 PMCID: PMC8435293 DOI: 10.1242/jcs.253799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 07/19/2021] [Indexed: 11/30/2022] Open
Abstract
Chromosome segregation in female meiosis in many metazoans is mediated by acentrosomal spindles, the existence of which implies that microtubule spindles self-assemble without the participation of the centrosomes. Although it is thought that acentrosomal meiosis is not conserved in fungi, we recently reported the formation of self-assembled microtubule arrays, which were able to segregate chromosomes, in fission yeast mutants, in which the contribution of the spindle pole body (SPB; the centrosome equivalent in yeast) was specifically blocked during meiosis. Here, we demonstrate that this unexpected microtubule formation represents a bona fide type of acentrosomal spindle. Moreover, a comparative analysis of these self-assembled spindles and the canonical SPB-dependent spindle reveals similarities and differences; for example, both spindles have a similar polarity, but the location of the γ-tubulin complex differs. We also show that the robustness of self-assembled spindles can be reinforced by eliminating kinesin-8 family members, whereas kinesin-8 mutants have an adverse impact on SPB-dependent spindles. Hence, we consider that reinforced self-assembled spindles in yeast will help to clarify the molecular mechanisms behind acentrosomal meiosis, a crucial step towards better understanding gametogenesis. Summary: We report a comparative analysis of self-assembled spindles and canonical centrosomal spindles in fission yeast, which could clarify the mechanisms underlying acentrosomal meiosis.
Collapse
Affiliation(s)
- Alberto Pineda-Santaella
- Andalusian Centre for Developmental Biology (CABD), Universidad Pablo de Olavide - Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Ctra. Utrera Km. 4, 41013 Seville, Spain
| | - Nazaret Fernández-Castillo
- Andalusian Centre for Developmental Biology (CABD), Universidad Pablo de Olavide - Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Ctra. Utrera Km. 4, 41013 Seville, Spain
| | - Alberto Jiménez-Martín
- Andalusian Centre for Developmental Biology (CABD), Universidad Pablo de Olavide - Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Ctra. Utrera Km. 4, 41013 Seville, Spain
| | - María Del Carmen Macías-Cabeza
- Andalusian Centre for Developmental Biology (CABD), Universidad Pablo de Olavide - Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Ctra. Utrera Km. 4, 41013 Seville, Spain
| | - Ángela Sánchez-Gómez
- Andalusian Centre for Developmental Biology (CABD), Universidad Pablo de Olavide - Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Ctra. Utrera Km. 4, 41013 Seville, Spain
| | - Alfonso Fernández-Álvarez
- Andalusian Centre for Developmental Biology (CABD), Universidad Pablo de Olavide - Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Ctra. Utrera Km. 4, 41013 Seville, Spain
| |
Collapse
|
9
|
Barisic M, Rajendraprasad G, Steblyanko Y. The metaphase spindle at steady state - Mechanism and functions of microtubule poleward flux. Semin Cell Dev Biol 2021; 117:99-117. [PMID: 34053864 DOI: 10.1016/j.semcdb.2021.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022]
Abstract
The mitotic spindle is a bipolar cellular structure, built from tubulin polymers, called microtubules, and interacting proteins. This macromolecular machine orchestrates chromosome segregation, thereby ensuring accurate distribution of genetic material into the two daughter cells during cell division. Powered by GTP hydrolysis upon tubulin polymerization, the microtubule ends exhibit a metastable behavior known as the dynamic instability, during which they stochastically switch between the growth and shrinkage phases. In the context of the mitotic spindle, dynamic instability is furthermore regulated by microtubule-associated proteins and motor proteins, which enables the spindle to undergo profound changes during mitosis. This highly dynamic behavior is essential for chromosome capture and congression in prometaphase, as well as for chromosome alignment to the spindle equator in metaphase and their segregation in anaphase. In this review we focus on the mechanisms underlying microtubule dynamics and sliding and their importance for the maintenance of shape, structure and dynamics of the metaphase spindle. We discuss how these spindle properties are related to the phenomenon of microtubule poleward flux, highlighting its highly cooperative molecular basis and role in keeping the metaphase spindle at a steady state.
Collapse
Affiliation(s)
- Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center (DCRC), Strandboulevarden 49, 2100 Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| | - Girish Rajendraprasad
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center (DCRC), Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Yulia Steblyanko
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center (DCRC), Strandboulevarden 49, 2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Risteski P, Jagrić M, Pavin N, Tolić IM. Biomechanics of chromosome alignment at the spindle midplane. Curr Biol 2021; 31:R574-R585. [PMID: 34033791 DOI: 10.1016/j.cub.2021.03.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During metaphase, chromosomes are aligned in a lineup at the equatorial plane of the spindle to ensure synchronous poleward movement of chromatids in anaphase and proper nuclear reformation at the end of mitosis. Chromosome alignment relies on microtubules, several types of motor protein and numerous other microtubule-associated and regulatory proteins. Because of the multitude of players involved, the mechanisms of chromosome alignment are still under debate. Here, we discuss the current models of alignment based on poleward pulling forces exerted onto sister kinetochores by kinetochore microtubules, which show length-dependent dynamics and undergo poleward flux, and polar ejection forces that push the chromosome arms away from the pole. We link these models with the recent ideas based on mechanical coupling between bridging and kinetochore microtubules, where sliding of bridging microtubules promotes overlap length-dependent sliding of kinetochore fibers and thus the alignment of sister kinetochores at the spindle equator. Finally, we discuss theoretical models of forces acting on chromosomes during metaphase.
Collapse
Affiliation(s)
- Patrik Risteski
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Mihaela Jagrić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
11
|
McIntosh JR. Anaphase A. Semin Cell Dev Biol 2021; 117:118-126. [PMID: 33781672 DOI: 10.1016/j.semcdb.2021.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Anaphase A is the motion of recently separated chromosomes to the spindle pole they face. It is accompanied by the shortening of kinetochore-attached microtubules. The requisite tubulin depolymerization may occur at kinetochores, at poles, or both, depending on the species and/or the time in mitosis. These depolymerization events are local and suggest that cells regulate microtubule dynamics in specific places, presumably by the localization of relevant enzymes and microtubule-associated proteins to specific loci, such as pericentriolar material and outer kinetochores. Motor enzymes can contribute to anaphase A, both by altering microtubule stability and by pushing or pulling microtubules through the cell. The generation of force on chromosomes requires couplings that can both withstand the considerable force that spindles can generate and simultaneously permit tubulin addition and loss. This chapter reviews literature on the molecules that regulate anaphase microtubule dynamics, couple dynamic microtubules to kinetochores and poles, and generate forces for microtubule and chromosome motion.
Collapse
Affiliation(s)
- J Richard McIntosh
- Dept. of Molecular, Cellular, and Developmental Biology University of Colorado, Boulder, CO 80309-0347, USA.
| |
Collapse
|
12
|
Shake It Off: The Elimination of Erroneous Kinetochore-Microtubule Attachments and Chromosome Oscillation. Int J Mol Sci 2021; 22:ijms22063174. [PMID: 33804687 PMCID: PMC8003821 DOI: 10.3390/ijms22063174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 01/17/2023] Open
Abstract
Cell proliferation and sexual reproduction require the faithful segregation of chromosomes. Chromosome segregation is driven by the interaction of chromosomes with the spindle, and the attachment of chromosomes to the proper spindle poles is essential. Initial attachments are frequently erroneous due to the random nature of the attachment process; however, erroneous attachments are selectively eliminated. Proper attachment generates greater tension at the kinetochore than erroneous attachments, and it is thought that attachment selection is dependent on this tension. However, studies of meiotic chromosome segregation suggest that attachment elimination cannot be solely attributed to tension, and the precise mechanism of selective elimination of erroneous attachments remains unclear. During attachment elimination, chromosomes oscillate between the spindle poles. A recent study on meiotic chromosome segregation in fission yeast has suggested that attachment elimination is coupled to chromosome oscillation. In this review, the possible contribution of chromosome oscillation in the elimination of erroneous attachment is discussed in light of the recent finding.
Collapse
|
13
|
Lin Y, Wei YL, She ZY. Kinesin-8 motors: regulation of microtubule dynamics and chromosome movements. Chromosoma 2020; 129:99-110. [PMID: 32417983 DOI: 10.1007/s00412-020-00736-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/01/2023]
Abstract
Microtubules are essential for intracellular transport, cell motility, spindle assembly, and chromosome segregation during cell division. Microtubule dynamics regulate the proper spindle organization and thus contribute to chromosome congression and segregation. Accumulating studies suggest that kinesin-8 motors are emerging regulators of microtubule dynamics and organizations. In this review, we provide an overview of the studies focused on kinesin-8 motors in cell division. We discuss the structures and molecular kinetics of kinesin-8 motors. We highlight the essential roles and mechanisms of kinesin-8 in the regulation of microtubule dynamics and spindle organization. We also shed light on the functions of kinesin-8 motors in chromosome movement and the spindle assembly checkpoint during the cell cycle.
Collapse
Affiliation(s)
- Yang Lin
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Ya-Lan Wei
- Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350011, Fujian, China.,Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China. .,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
14
|
Pinder C, Matsuo Y, Maurer SP, Toda T. Kinesin-8 and Dis1/TOG collaborate to limit spindle elongation from prophase to anaphase A for proper chromosome segregation in fission yeast. J Cell Sci 2019; 132:jcs232306. [PMID: 31427431 PMCID: PMC6765184 DOI: 10.1242/jcs.232306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022] Open
Abstract
High-fidelity chromosome segregation relies on proper microtubule regulation. Kinesin-8 has been shown to destabilise microtubules to reduce metaphase spindle length and chromosome movements in multiple species. XMAP215/chTOG polymerases catalyse microtubule growth for spindle assembly, elongation and kinetochore-microtubule attachment. Understanding of their biochemical activity has advanced, but little work directly addresses the functionality and interplay of these conserved factors. We utilised the synthetic lethality of fission yeast kinesin-8 (Klp5-Klp6) and XMAP215/chTOG (Dis1) to study their individual and overlapping roles. We found that the non-motor kinesin-8 tailbox is essential for mitotic function; mutation compromises plus-end-directed processivity. Klp5-Klp6 induces catastrophes to control microtubule length and, surprisingly, Dis1 collaborates with kinesin-8 to slow spindle elongation. Together, they enforce a maximum spindle length for a viable metaphase-anaphase transition and limit elongation during anaphase A to prevent lagging chromatids. Our work provides mechanistic insight into how kinesin-8 negatively regulates microtubules and how this functionally overlaps with Dis1 and highlights the importance of spindle length control in mitosis.
Collapse
Affiliation(s)
- Corinne Pinder
- Cell Regulation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Yuzy Matsuo
- Cell Regulation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Synthetic and Systems Biochemistry of the Microtubule Cytoskeleton Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sebastian P Maurer
- Synthetic and Systems Biochemistry of the Microtubule Cytoskeleton Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Takashi Toda
- Cell Regulation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| |
Collapse
|
15
|
Kashiwazaki J, Yoneda Y, Mutoh T, Arai R, Yoshida M, Mabuchi I. A unique kinesin-like protein, Klp8, is involved in mitosis and cell morphology through microtubule stabilization. Cytoskeleton (Hoboken) 2019; 76:355-367. [PMID: 31276301 DOI: 10.1002/cm.21551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/23/2019] [Accepted: 07/01/2019] [Indexed: 11/10/2022]
Abstract
Kinesins are microtubule (MT)-based motors involved in various cellular functions including intracellular transport of vesicles and organelles, and dynamics of chromosomes during cell division. The fission yeast Schizosaccharomyces pombe expresses nine kinesin-like proteins (klps). Klp8 is one of them and has not been characterized yet though it has been reported to localize at the division site. Here, we studied function and localization of Klp8 in S. pombe cells. The gene klp8+ was not essential for both viability and cytoskeletal organization. Klp8-YFP was concentrated as medial cortical dots during interphase, and organized into a ring at the division site during mitosis. The Klp8 ring seemed to be localized in the space between the actomyosin contractile ring and the plasma membrane. The Klp8 ring shrank as cytokinesis proceeded. In klp8-deleted (Δ) cells, the speed of spindle elongation during anaphase B was slowed down. Overproduction of Klp8 caused bent or elongated cells, in which MTs were abnormally elongated and less dynamic than those in normal cells. Deletion of klp8+ gene suppressed the delay in mitotic entry in blt1Δ cells. These results suggest that Klp8 is involved in mitosis and cell morphology through MT stabilization.
Collapse
Affiliation(s)
- Jun Kashiwazaki
- Department of Life Science, Gakushuin University, Tokyo, Japan
| | - Yumi Yoneda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadashi Mutoh
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Ritsuko Arai
- Chemical Genetics Laboratory, RIKEN, Wako, Japan
| | - Minoru Yoshida
- Chemical Genetics Laboratory, RIKEN, Wako, Japan.,CREST Research Project, Japan Science and Technology Corporation, Wako, Japan
| | - Issei Mabuchi
- Department of Life Science, Gakushuin University, Tokyo, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Winters L, Ban I, Prelogović M, Kalinina I, Pavin N, Tolić IM. Pivoting of microtubules driven by minus-end-directed motors leads to spindle assembly. BMC Biol 2019; 17:42. [PMID: 31122217 PMCID: PMC6533735 DOI: 10.1186/s12915-019-0656-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/16/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND At the beginning of mitosis, the cell forms a spindle made of microtubules and associated proteins to segregate chromosomes. An important part of spindle architecture is a set of antiparallel microtubule bundles connecting the spindle poles. A key question is how microtubules extending at arbitrary angles form an antiparallel interpolar bundle. RESULTS Here, we show in fission yeast that microtubules meet at an oblique angle and subsequently rotate into antiparallel alignment. Our live-cell imaging approach provides a direct observation of interpolar bundle formation. By combining experiments with theory, we show that microtubules from each pole search for those from the opposite pole by performing random angular movement. Upon contact, two microtubules slide sideways along each other in a directed manner towards the antiparallel configuration. We introduce the contour length of microtubules as a measure of activity of motors that drive microtubule sliding, which we used together with observation of Cut7/kinesin-5 motors and our theory to reveal the minus-end-directed motility of this motor in vivo. CONCLUSION Random rotational motion helps microtubules from the opposite poles to find each other and subsequent accumulation of motors allows them to generate forces that drive interpolar bundle formation.
Collapse
Affiliation(s)
- Lora Winters
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Ivana Ban
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia
| | - Marcel Prelogović
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia
| | - Iana Kalinina
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia.
| | - Iva M Tolić
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany.
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
17
|
Shrestha S, Hazelbaker M, Yount AL, Walczak CE. Emerging Insights into the Function of Kinesin-8 Proteins in Microtubule Length Regulation. Biomolecules 2018; 9:biom9010001. [PMID: 30577528 PMCID: PMC6359247 DOI: 10.3390/biom9010001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Proper regulation of microtubules (MTs) is critical for the execution of diverse cellular processes, including mitotic spindle assembly and chromosome segregation. There are a multitude of cellular factors that regulate the dynamicity of MTs and play critical roles in mitosis. Members of the Kinesin-8 family of motor proteins act as MT-destabilizing factors to control MT length in a spatially and temporally regulated manner. In this review, we focus on recent advances in our understanding of the structure and function of the Kinesin-8 motor domain, and the emerging contributions of the C-terminal tail of Kinesin-8 proteins to regulate motor activity and localization.
Collapse
Affiliation(s)
- Sanjay Shrestha
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA.
| | - Mark Hazelbaker
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA.
| | - Amber L Yount
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Claire E Walczak
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
18
|
Edzuka T, Goshima G. Drosophila kinesin-8 stabilizes the kinetochore-microtubule interaction. J Cell Biol 2018; 218:474-488. [PMID: 30538142 PMCID: PMC6363442 DOI: 10.1083/jcb.201807077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/24/2018] [Accepted: 11/28/2018] [Indexed: 02/06/2023] Open
Abstract
Kinesin-8 motor proteins control chromosome alignment in a variety of species, but the specific biochemical activity responsible is unclear. Edzuka and Goshima find that Drosophila kinesin-8 (Klp67A) exhibits both microtubule plus end–stabilizing and –destabilizing activities in vitro. In cells, Klp67A, and likely human kinesin-8 (KIF18A) as well, stabilize the kinetochore–microtubule attachment during mitosis. Kinesin-8 is required for proper chromosome alignment in a variety of animal and yeast cell types. However, it is unclear how this motor protein family controls chromosome alignment, as multiple biochemical activities, including inconsistent ones between studies, have been identified. Here, we find that Drosophila kinesin-8 (Klp67A) possesses both microtubule (MT) plus end–stabilizing and –destabilizing activity, in addition to kinesin-8's commonly observed MT plus end–directed motility and tubulin-binding activity in vitro. We further show that Klp67A is required for stable kinetochore–MT attachment during prometaphase in S2 cells. In the absence of Klp67A, abnormally long MTs interact in an “end-on” fashion with kinetochores at normal frequency. However, the interaction is unstable, and MTs frequently become detached. This phenotype is rescued by ectopic expression of the MT plus end–stabilizing factor CLASP, but not by artificial shortening of MTs. We show that human kinesin-8 (KIF18A) is also important to ensure proper MT attachment. Overall, these results suggest that the MT-stabilizing activity of kinesin-8 is critical for stable kinetochore–MT attachment.
Collapse
Affiliation(s)
- Tomoya Edzuka
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.,Marine Biological Laboratory, Woods Hole, MA
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan .,Marine Biological Laboratory, Woods Hole, MA
| |
Collapse
|
19
|
Amin P, Soper Ní Chafraidh S, Leontiou I, Hardwick KG. Regulated reconstitution of spindle checkpoint arrest and silencing through chemically induced dimerisation in vivo. J Cell Sci 2018; 132:jcs.219766. [PMID: 30237224 PMCID: PMC6398473 DOI: 10.1242/jcs.219766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
Chemically induced dimerisation (CID) uses small molecules to control specific protein-protein interactions. We employed CID dependent on the plant hormone abscisic acid (ABA) to reconstitute spindle checkpoint signalling in fission yeast. The spindle checkpoint signal usually originates at unattached or inappropriately attached kinetochores. These are complex, multiprotein structures with several important functions. To bypass kinetochore complexity, we took a reductionist approach to studying checkpoint signalling. We generated a synthetic checkpoint arrest ectopically by inducing heterodimerisation of the checkpoint proteins Mph1 (the fission yeast homologue of Mps1) and Spc7 (the fission yeast homologue of KNL1). These proteins were engineered such that they cannot localise to kinetochores, and only form a complex in the presence of ABA. Using this novel assay we were able to checkpoint arrest a synchronous population of cells within 30 min of ABA addition. This assay allows detailed genetic dissection of checkpoint activation and, importantly, also provides a valuable tool for studying checkpoint silencing. To analyse silencing of the checkpoint and the ensuing mitotic exit, we simply washed out the ABA from arrested fission yeast cells. We show here that silencing is critically dependent on protein phosphatase 1 (PP1) recruitment to Mph1-Spc7 signalling platforms.
Collapse
Affiliation(s)
- Priya Amin
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Sadhbh Soper Ní Chafraidh
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Ioanna Leontiou
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Kevin G Hardwick
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| |
Collapse
|
20
|
Meadows JC, Messin LJ, Kamnev A, Lancaster TC, Balasubramanian MK, Cross RA, Millar JB. Opposing kinesin complexes queue at plus tips to ensure microtubule catastrophe at cell ends. EMBO Rep 2018; 19:embr.201846196. [PMID: 30206188 PMCID: PMC6216294 DOI: 10.15252/embr.201846196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 11/24/2022] Open
Abstract
In fission yeast, the lengths of interphase microtubule (iMT) arrays are adapted to cell length to maintain cell polarity and to help centre the nucleus and cell division ring. Here, we show that length regulation of iMTs is dictated by spatially regulated competition between MT‐stabilising Tea2/Tip1/Mal3 (Kinesin‐7) and MT‐destabilising Klp5/Klp6/Mcp1 (Kinesin‐8) complexes at iMT plus ends. During MT growth, the Tea2/Tip1/Mal3 complex remains bound to the plus ends of iMT bundles, thereby restricting access to the plus ends by Klp5/Klp6/Mcp1, which accumulate behind it. At cell ends, Klp5/Klp6/Mcp1 invades the space occupied by the Tea2/Tip1/Tea1 kinesin complex triggering its displacement from iMT plus ends and MT catastrophe. These data show that in vivo, whilst an iMT length‐dependent model for catastrophe factor accumulation has validity, length control of iMTs is an emergent property reflecting spatially regulated competition between distinct kinesin complexes at the MT plus tip.
Collapse
Affiliation(s)
- John C Meadows
- Division of Biomedical Sciences, Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| | - Liam J Messin
- Division of Biomedical Sciences, Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| | - Anton Kamnev
- Division of Biomedical Sciences, Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| | - Theresa C Lancaster
- Division of Biomedical Sciences, Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| | - Mohan K Balasubramanian
- Division of Biomedical Sciences, Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| | - Robert A Cross
- Division of Biomedical Sciences, Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jonathan Ba Millar
- Division of Biomedical Sciences, Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
21
|
Dave S, Anderson SJ, Sinha Roy P, Nsamba ET, Bunning AR, Fukuda Y, Gupta ML. Discrete regions of the kinesin-8 Kip3 tail differentially mediate astral microtubule stability and spindle disassembly. Mol Biol Cell 2018; 29:1866-1877. [PMID: 29874146 PMCID: PMC6085823 DOI: 10.1091/mbc.e18-03-0199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To function in diverse cellular processes, the dynamic properties of microtubules must be tightly regulated. Cellular microtubules are influenced by a multitude of regulatory proteins, but how their activities are spatiotemporally coordinated within the cell, or on specific microtubules, remains mostly obscure. The conserved kinesin-8 motor proteins are important microtubule regulators, and family members from diverse species combine directed motility with the ability to modify microtubule dynamics. Yet how kinesin-8 activities are appropriately deployed in the cellular context is largely unknown. Here we reveal the importance of the nonmotor tail in differentially controlling the physiological functions of the budding yeast kinesin-8, Kip3. We demonstrate that the tailless Kip3 motor domain adequately governs microtubule dynamics at the bud tip to allow spindle positioning in early mitosis. Notably, discrete regions of the tail mediate specific functions of Kip3 on astral and spindle microtubules. The region proximal to the motor domain operates to spatially regulate astral microtubule stability, while the distal tail serves a previously unrecognized role to control the timing of mitotic spindle disassembly. These findings provide insights into how nonmotor tail domains differentially control kinesin functions in cells and the mechanisms that spatiotemporally control the stability of cellular microtubules.
Collapse
Affiliation(s)
- Sandeep Dave
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Samuel J Anderson
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Pallavi Sinha Roy
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Emmanuel T Nsamba
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Angela R Bunning
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Yusuke Fukuda
- Cell and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Mohan L Gupta
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| |
Collapse
|
22
|
McIntosh JR. Assessing the Contributions of Motor Enzymes and Microtubule Dynamics to Mitotic Chromosome Motions. Annu Rev Cell Dev Biol 2018; 33:1-22. [PMID: 28992437 DOI: 10.1146/annurev-cellbio-100616-060827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During my graduate work with Keith Porter, I became fascinated by the mitotic spindle, an interest that has motivated much of my scientific work ever since. I began spindle studies by using electron microscopes, instruments that have made significant contributions to our understanding of spindle organization. Such instruments have helped to elucidate the distributions of spindle microtubules, the interactions among them, their molecular polarity, and their associations with both kinetochores and spindle poles. Our lab has also investigated some processes of spindle physiology: microtubule dynamics, the actions of microtubule-associated proteins (including motor enzymes), the character of forces generated by specific spindle components, and factors that control mitotic progression. Here, I give a personal perspective on some of this intellectual history and on what recent discoveries imply about the mechanisms of chromosome motion.
Collapse
Affiliation(s)
- J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347;
| |
Collapse
|
23
|
Klemm AH, Bosilj A, Gluncˇic M, Pavin N, Tolic IM. Metaphase kinetochore movements are regulated by kinesin-8 motors and microtubule dynamic instability. Mol Biol Cell 2018; 29:1332-1345. [PMID: 29851559 PMCID: PMC5994901 DOI: 10.1091/mbc.e17-11-0667] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During metaphase, sister chromatids are connected to microtubules extending from the opposite spindle poles via kinetochores to protein complexes on the chromosome. Kinetochores congress to the equatorial plane of the spindle and oscillate around it, with kinesin-8 motors restricting these movements. Yet, the physical mechanism underlying kinetochore movements is unclear. We show that kinetochore movements in the fission yeast Schizosaccharomyces pombe are regulated by kinesin-8-promoted microtubule catastrophe, force-induced rescue, and microtubule dynamic instability. A candidate screen showed that among the selected motors only kinesin-8 motors Klp5/Klp6 are required for kinetochore centering. Kinesin-8 accumulates at the end of microtubules, where it promotes catastrophe. Laser ablation of the spindle resulted in kinetochore movement toward the intact spindle pole in wild-type and klp5Δ cells, suggesting that kinetochore movement is driven by pulling forces. Our theoretical model with Langevin description of microtubule dynamic instability shows that kinesin-8 motors are required for kinetochore centering, whereas sensitivity of rescue to force is necessary for the generation of oscillations. We found that irregular kinetochore movements occur for a broader range of parameters than regular oscillations. Thus, our work provides an explanation for how regulation of microtubule dynamic instability contributes to kinetochore congression and the accompanying movements around the spindle center.
Collapse
Affiliation(s)
- Anna H Klemm
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Agneza Bosilj
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Matko Gluncˇic
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Iva M Tolic
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.,Division of Molecular Biology, Rud¯er Boškovic´ Institute, 10000 Zagreb, Croatia
| |
Collapse
|
24
|
Abstract
Kinesins are a superfamily of ATP-dependent motors important for many microtubule-based functions, including multiple roles in mitosis. Small-molecule inhibitors of mitotic kinesins disrupt cell division and are being developed as antimitotic therapies. We investigated the molecular mechanism of the multitasking human mitotic kinesin Kif18A and its inhibition by the small molecule BTB-1. We used cryo-electron microscopy to visualize nucleotide-dependent conformational changes in microtubule-bound Kif18A, and the conformation of microtubule-bound, BTB-1-bound Kif18A. We calculated a putative BTB-1–binding site and validated this site experimentally to reveal the BTB-1 inhibition mechanism. Our work points to a general mechanism of kinesin inhibition, with wide implications for a targeted blockade of these motors in both dividing and interphase cells. Kinesin motors play diverse roles in mitosis and are targets for antimitotic drugs. The clinical significance of these motors emphasizes the importance of understanding the molecular basis of their function. Equally important, investigations into the modes of inhibition of these motors provide crucial information about their molecular mechanisms. Kif18A regulates spindle microtubules through its dual functionality, with microtubule-based stepping and regulation of microtubule dynamics. We investigated the mechanism of Kif18A and its inhibition by the small molecule BTB-1. The Kif18A motor domain drives ATP-dependent plus-end microtubule gliding, and undergoes conformational changes consistent with canonical mechanisms of plus-end–directed motility. The Kif18A motor domain also depolymerizes microtubule plus and minus ends. BTB-1 inhibits both of these microtubule-based Kif18A activities. A reconstruction of BTB-1–bound, microtubule-bound Kif18A, in combination with computational modeling, identified an allosteric BTB-1–binding site near loop5, where it blocks the ATP-dependent conformational changes that we characterized. Strikingly, BTB-1 binding is close to that of well-characterized Kif11 inhibitors that block tight microtubule binding, whereas BTB-1 traps Kif18A on the microtubule. Our work highlights a general mechanism of kinesin inhibition in which small-molecule binding near loop5 prevents a range of conformational changes, blocking motor function.
Collapse
|
25
|
Zhu Q, Zheng F, Liu AP, Qian J, Fu C, Lin Y. Shape Transformation of the Nuclear Envelope during Closed Mitosis. Biophys J 2017; 111:2309-2316. [PMID: 27851952 DOI: 10.1016/j.bpj.2016.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 09/28/2016] [Accepted: 10/07/2016] [Indexed: 11/18/2022] Open
Abstract
The nuclear envelope (NE) in lower eukaryotes such as Schizosaccharomyces pombe undergoes large morphology changes during closed mitosis. However, which physical parameters are important in governing the shape evolution of the NE, and how defects in the dividing chromosomes/microtubules are reflected in those parameters, are fundamental questions that remain unresolved. In this study, we show that improper separation of chromosomes in genetically deficient cells leads to membrane tethering or asymmetric division in contrast to the formation of two equal-sized daughter nuclei in wild-type cells. We hypothesize that the poleward force is transmitted to the nuclear membrane through its physical contact with the separated sister chromatids at the two spindle poles. A theoretical model is developed to predict the morphology evolution of the NE where key factors such as the work done by the poleward force and bending and surface energies stored in the membrane have been taken into account. Interestingly, the predicted phase diagram, summarizing the dependence of nuclear shape on the size of the load transmission regions, and the pole-to-pole distance versus surface area relationship all quantitatively agree well with our experimental observations, suggesting that this model captures the essential physics involved in closed mitosis.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Fan Zheng
- Chinese Academy of Sciences Center for Excellence in Molecular Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Jin Qian
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chuanhai Fu
- Chinese Academy of Sciences Center for Excellence in Molecular Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
26
|
Möckel MM, Heim A, Tischer T, Mayer TU. Xenopus laevis Kif18A is a highly processive kinesin required for meiotic spindle integrity. Biol Open 2017; 6:463-470. [PMID: 28228376 PMCID: PMC5399559 DOI: 10.1242/bio.023952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly and functionality of the mitotic spindle depends on the coordinated activities of microtubule-associated motor proteins of the dynein and kinesin superfamily. Our current understanding of the function of motor proteins is significantly shaped by studies using Xenopus laevis egg extract as its open structure allows complex experimental manipulations hardly feasible in other model systems. Yet, the Kinesin-8 orthologue of human Kif18A has not been described in Xenopus laevis so far. Here, we report the cloning and characterization of Xenopus laevis (Xl) Kif18A. Xenopus Kif18A is expressed during oocyte maturation and its depletion from meiotic egg extract results in severe spindle defects. These defects can be rescued by wild-type Kif18A, but not Kif18A lacking motor activity or the C-terminus. Single-molecule microscopy assays revealed that Xl_Kif18A possesses high processivity, which depends on an additional C-terminal microtubule-binding site. Human tissue culture cells depleted of endogenous Kif18A display mitotic defects, which can be rescued by wild-type, but not tail-less Xl_Kif18A. Thus, Xl_Kif18A is the functional orthologue of human Kif18A whose activity is essential for the correct function of meiotic spindles in Xenopus oocytes. Summary: The highly processive kinesin Kif18A, which is expressed during oocyte maturation in Xenopus laevis, is required for correct spindle formation in meiotic egg extracts and can functionally complement human Kif18A in tissue culture cells.
Collapse
Affiliation(s)
- Martin M Möckel
- Department of Molecular Genetics and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
| | - Andreas Heim
- Department of Molecular Genetics and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
| | - Thomas Tischer
- Department of Molecular Genetics and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
| | - Thomas U Mayer
- Department of Molecular Genetics and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
| |
Collapse
|
27
|
Mechanisms of Chromosome Congression during Mitosis. BIOLOGY 2017; 6:biology6010013. [PMID: 28218637 PMCID: PMC5372006 DOI: 10.3390/biology6010013] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/07/2017] [Accepted: 01/28/2017] [Indexed: 12/13/2022]
Abstract
Chromosome congression during prometaphase culminates with the establishment of a metaphase plate, a hallmark of mitosis in metazoans. Classical views resulting from more than 100 years of research on this topic have attempted to explain chromosome congression based on the balance between opposing pulling and/or pushing forces that reach an equilibrium near the spindle equator. However, in mammalian cells, chromosome bi-orientation and force balance at kinetochores are not required for chromosome congression, whereas the mechanisms of chromosome congression are not necessarily involved in the maintenance of chromosome alignment after congression. Thus, chromosome congression and maintenance of alignment are determined by different principles. Moreover, it is now clear that not all chromosomes use the same mechanism for congressing to the spindle equator. Those chromosomes that are favorably positioned between both poles when the nuclear envelope breaks down use the so-called "direct congression" pathway in which chromosomes align after bi-orientation and the establishment of end-on kinetochore-microtubule attachments. This favors the balanced action of kinetochore pulling forces and polar ejection forces along chromosome arms that drive chromosome oscillatory movements during and after congression. The other pathway, which we call "peripheral congression", is independent of end-on kinetochore microtubule-attachments and relies on the dominant and coordinated action of the kinetochore motors Dynein and Centromere Protein E (CENP-E) that mediate the lateral transport of peripheral chromosomes along microtubules, first towards the poles and subsequently towards the equator. How the opposite polarities of kinetochore motors are regulated in space and time to drive congression of peripheral chromosomes only now starts to be understood. This appears to be regulated by position-dependent phosphorylation of both Dynein and CENP-E and by spindle microtubule diversity by means of tubulin post-translational modifications. This so-called "tubulin code" might work as a navigation system that selectively guides kinetochore motors with opposite polarities along specific spindle microtubule populations, ultimately leading to the congression of peripheral chromosomes. We propose an integrated model of chromosome congression in mammalian cells that depends essentially on the following parameters: (1) chromosome position relative to the spindle poles after nuclear envelope breakdown; (2) establishment of stable end-on kinetochore-microtubule attachments and bi-orientation; (3) coordination between kinetochore- and arm-associated motors; and (4) spatial signatures associated with post-translational modifications of specific spindle microtubule populations. The physiological consequences of abnormal chromosome congression, as well as the therapeutic potential of inhibiting chromosome congression are also discussed.
Collapse
|
28
|
Inositol Pyrophosphate Kinase Asp1 Modulates Chromosome Segregation Fidelity and Spindle Function in Schizosaccharomyces pombe. Mol Cell Biol 2016; 36:3128-3140. [PMID: 27697865 DOI: 10.1128/mcb.00330-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/29/2016] [Indexed: 01/08/2023] Open
Abstract
Chromosome transmission fidelity during mitosis is of critical importance for the fitness of an organism, as mistakes will lead to aneuploidy, which has a causative role in numerous severe diseases. Proper segregation of chromosomes depends on interdependent processes at the microtubule-kinetochore interface and the spindle assembly checkpoint. Here we report the discovery of a new element essential for chromosome transmission fidelity that implicates inositol pyrophosphates (IPPs) as playing a key role in this process. The protein is Asp1, the Schizosaccharomyces pombe member of the highly conserved Vip1 family. Vip1 enzymes are bifunctional: they consist of an IPP-generating kinase domain and a pyrophosphatase domain that uses such IPPs as substrates. We show that Asp1 kinase function is required for bipolar spindle formation. The absence of Asp1-generated IPPs resulted in errors in sister chromatid biorientation, a prolonged checkpoint-controlled delay of anaphase onset, and chromosome missegregation. Remarkably, expression of Asp1 variants that generated higher-than-wild-type levels of IPPs led to a faster-than-wild-type entry into anaphase A without an increase in chromosome missegregation. In fact, the chromosome transmission fidelity of a nonessential chromosome was enhanced with increased cellular IPPs. Thus, we identified an element that optimized the wild-type chromosome transmission process.
Collapse
|
29
|
Walczak CE, Zong H, Jain S, Stout JR. Spatial regulation of astral microtubule dynamics by Kif18B in PtK cells. Mol Biol Cell 2016; 27:3021-3030. [PMID: 27559136 PMCID: PMC5063611 DOI: 10.1091/mbc.e16-04-0254] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/19/2016] [Indexed: 01/07/2023] Open
Abstract
The spatial and temporal control of microtubule dynamics is fundamentally important for proper spindle assembly and chromosome segregation. This is achieved, in part, by the multitude of proteins that bind to and regulate spindle microtubules, including kinesin superfamily members, which act as microtubule-destabilizing enzymes. These fall into two general classes: the kinesin-13 proteins, which directly depolymerize microtubules, and the kinesin-8 proteins, which are plus end-directed motors that either destabilize microtubules or cap the microtubule plus ends. Here we analyze the contribution of a PtK kinesin-8 protein, Kif18B, in the control of mitotic microtubule dynamics. Knockdown of Kif18B causes defects in spindle microtubule organization and a dramatic increase in astral microtubules. Kif18B-knockdown cells had defects in chromosome alignment, but there were no defects in chromosome segregation. The long astral microtubules that occur in the absence of Kif18B are limited in length by the cell cortex. Using EB1 tracking, we show that Kif18B activity is spatially controlled, as loss of Kif18B has the most dramatic effect on the lifetimes of astral microtubules that extend toward the cell cortex. Together our studies provide new insight into how diverse kinesins contribute to spatial microtubule organization in the spindle.
Collapse
Affiliation(s)
| | - Hailing Zong
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Sachin Jain
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Jane R Stout
- Medical Sciences, Indiana University, Bloomington, IN 47405
| |
Collapse
|
30
|
Affiliation(s)
- Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| | - Iva M. Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| |
Collapse
|
31
|
Gergely ZR, Crapo A, Hough LE, McIntosh JR, Betterton MD. Kinesin-8 effects on mitotic microtubule dynamics contribute to spindle function in fission yeast. Mol Biol Cell 2016; 27:3490-3514. [PMID: 27146110 PMCID: PMC5221583 DOI: 10.1091/mbc.e15-07-0505] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 04/26/2016] [Indexed: 11/17/2022] Open
Abstract
Kinesin-8 motor proteins destabilize microtubules and increase chromosome loss in mitosis. In fission yeast, aberrant microtubule-driven kinetochore pushing movements, tripolar mitotic spindles, and fluctuations in metaphase spindle length occurred in kinesin-8–deletion mutants. A mathematical model can explain these results. Kinesin-8 motor proteins destabilize microtubules. Their absence during cell division is associated with disorganized mitotic chromosome movements and chromosome loss. Despite recent work studying effects of kinesin-8s on microtubule dynamics, it remains unclear whether the kinesin-8 mitotic phenotypes are consequences of their effect on microtubule dynamics, their well-established motor activity, or additional, unknown functions. To better understand the role of kinesin-8 proteins in mitosis, we studied the effects of deletion of the fission yeast kinesin-8 proteins Klp5 and Klp6 on chromosome movements and spindle length dynamics. Aberrant microtubule-driven kinetochore pushing movements and tripolar mitotic spindles occurred in cells lacking Klp5 but not Klp6. Kinesin-8–deletion strains showed large fluctuations in metaphase spindle length, suggesting a disruption of spindle length stabilization. Comparison of our results from light microscopy with a mathematical model suggests that kinesin-8–induced effects on microtubule dynamics, kinetochore attachment stability, and sliding force in the spindle can explain the aberrant chromosome movements and spindle length fluctuations seen.
Collapse
Affiliation(s)
- Zachary R Gergely
- Department of Physics, University of Colorado at Boulder, Boulder, CO 80309.,Department of MCD Biology, University of Colorado at Boulder, Boulder, CO 80309
| | - Ammon Crapo
- Department of Physics, University of Colorado at Boulder, Boulder, CO 80309
| | - Loren E Hough
- Department of Physics, University of Colorado at Boulder, Boulder, CO 80309
| | - J Richard McIntosh
- Department of MCD Biology, University of Colorado at Boulder, Boulder, CO 80309
| | | |
Collapse
|
32
|
Mary H, Fouchard J, Gay G, Reyes C, Gauthier T, Gruget C, Pécréaux J, Tournier S, Gachet Y. Fission yeast kinesin-8 controls chromosome congression independently of oscillations. J Cell Sci 2015; 128:3720-30. [PMID: 26359299 PMCID: PMC4631777 DOI: 10.1242/jcs.160465] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/03/2015] [Indexed: 01/09/2023] Open
Abstract
In higher eukaryotes, efficient chromosome congression relies, among other players, on the activity of chromokinesins. Here, we provide a quantitative analysis of kinetochore oscillations and positioning in Schizosaccharomyces pombe, a model organism lacking chromokinesins. In wild-type cells, chromosomes align during prophase and, while oscillating, maintain this alignment throughout metaphase. Chromosome oscillations are dispensable both for kinetochore congression and stable kinetochore alignment during metaphase. In higher eukaryotes, kinesin-8 family members control chromosome congression by regulating their oscillations. By contrast, here, we demonstrate that fission yeast kinesin-8 controls chromosome congression by an alternative mechanism. We propose that kinesin-8 aligns chromosomes by controlling pulling forces in a length-dependent manner. A coarse-grained model of chromosome segregation implemented with a length-dependent process that controls the force at kinetochores is necessary and sufficient to mimic kinetochore alignment, and prevents the appearance of lagging chromosomes. Taken together, these data illustrate how the local action of a motor protein at kinetochores provides spatial cues within the spindle to align chromosomes and to prevent aneuploidy. Highlighted Article: Quantitative analysis in S. pombe reveals that chromosome oscillations are dispensable for kinetochore congression in mitosis. Kinesin-8 controls chromosome congression through length-dependent pulling forces.
Collapse
Affiliation(s)
- Hadrien Mary
- Université de Toulouse, LBCMCP, 118 route de Narbonne, Toulouse F-31062, France CNRS, LBCMCP-UMR5088, Toulouse F-31062, France
| | - Jonathan Fouchard
- Université de Toulouse, LBCMCP, 118 route de Narbonne, Toulouse F-31062, France CNRS, LBCMCP-UMR5088, Toulouse F-31062, France
| | - Guillaume Gay
- DAMCB, 43 rue Horace Bertin, Marseille 13005, France
| | - Céline Reyes
- Université de Toulouse, LBCMCP, 118 route de Narbonne, Toulouse F-31062, France CNRS, LBCMCP-UMR5088, Toulouse F-31062, France
| | - Tiphaine Gauthier
- Université de Toulouse, LBCMCP, 118 route de Narbonne, Toulouse F-31062, France CNRS, LBCMCP-UMR5088, Toulouse F-31062, France
| | - Clémence Gruget
- Université de Toulouse, LBCMCP, 118 route de Narbonne, Toulouse F-31062, France CNRS, LBCMCP-UMR5088, Toulouse F-31062, France
| | - Jacques Pécréaux
- IGDR, Institute of Genetics and Development of Rennes, University Rennes 1, Rennes F-35043, France
| | - Sylvie Tournier
- Université de Toulouse, LBCMCP, 118 route de Narbonne, Toulouse F-31062, France CNRS, LBCMCP-UMR5088, Toulouse F-31062, France
| | - Yannick Gachet
- Université de Toulouse, LBCMCP, 118 route de Narbonne, Toulouse F-31062, France CNRS, LBCMCP-UMR5088, Toulouse F-31062, France
| |
Collapse
|
33
|
Microtubule-depolymerizing kinesins in the regulation of assembly, disassembly, and length of cilia and flagella. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:241-65. [PMID: 26008787 DOI: 10.1016/bs.ircmb.2015.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Defects in ciliary assembly, maintenance, and signaling are associated with various human diseases and developmental disorders, termed ciliopathies. Eukaryotic flagella and cilia (interchangeable terms) are microtubule-based organelles. Thus, microtubule dynamics and microtubule-dependent transport are predicted to affect the structural integrity and functionality of cilia profoundly. Kinesin-2 is well known for its role in intraflagellar transport to transport ciliary precursors and signaling molecules. Recently, microtubule-depolymerizing kinesins found in kinesin-8, -13, and -14A families have emerged as regulators of cilia. We first discuss ciliary kinesins identified in the flagellar or ciliary proteome, and then focus on the function and regulation of microtubule-depolymerizing kinesins. Lastly, we review the recent advances of microtubule-depolymerizing kinesins in controlling ciliary assembly, disassembly, and length.
Collapse
|
34
|
Mitosis, microtubule dynamics and the evolution of kinesins. Exp Cell Res 2015; 334:61-9. [PMID: 25708751 DOI: 10.1016/j.yexcr.2015.02.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/10/2015] [Indexed: 12/20/2022]
|
35
|
Glunčić M, Maghelli N, Krull A, Krstić V, Ramunno-Johnson D, Pavin N, Tolić IM. Kinesin-8 motors improve nuclear centering by promoting microtubule catastrophe. PHYSICAL REVIEW LETTERS 2015; 114:078103. [PMID: 25763975 DOI: 10.1103/physrevlett.114.078103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Indexed: 06/04/2023]
Abstract
In fission yeast, microtubules push against the cell edge, thereby positioning the nucleus in the cell center. Kinesin-8 motors regulate microtubule catastrophe; however, their role in nuclear positioning is not known. Here we develop a physical model that describes how kinesin-8 motors affect nuclear centering by promoting a microtubule catastrophe. Our model predicts the improved centering of the nucleus in the presence of motors, which we confirmed experimentally in living cells. The model also predicts a characteristic time for the recentering of a displaced nucleus, which is supported by our experiments where we displaced the nucleus using optical tweezers.
Collapse
Affiliation(s)
- Matko Glunčić
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Nicola Maghelli
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Alexander Krull
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Vladimir Krstić
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | | | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - Iva M Tolić
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
36
|
Wachowicz P, Chasapi A, Krapp A, Cano Del Rosario E, Schmitter D, Sage D, Unser M, Xenarios I, Rougemont J, Simanis V. Analysis of S. pombe SIN protein association to the SPB reveals two genetically separable states of the SIN. J Cell Sci 2014; 128:741-54. [PMID: 25501816 DOI: 10.1242/jcs.160150] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Schizosaccharomyces pombe septation initiation network (SIN) regulates cytokinesis, and asymmetric association of SIN proteins with the mitotic spindle pole bodies (SPBs) is important for its regulation. Here, we have used semi-automated image analysis to study SIN proteins in large numbers of wild-type and mutant cells. Our principal conclusions are: first, that the association of Cdc7p with the SPBs in early mitosis is frequently asymmetric, with a bias in favour of the new SPB; second, that the early association of Cdc7p-GFP to the SPB depends on Plo1p but not Spg1p, and is unaffected by mutations that influence its asymmetry in anaphase; third, that Cdc7p asymmetry in anaphase B is delayed by Pom1p and by activation of the spindle assembly checkpoint, and is promoted by Rad24p; and fourth, that the length of the spindle, expressed as a fraction of the length of the cell, at which Cdc7p becomes asymmetric is similar in cells dividing at different sizes. These data reveal that multiple regulatory mechanisms control the SIN in mitosis and lead us to propose a two-state model to describe the SIN.
Collapse
Affiliation(s)
- Paulina Wachowicz
- Cell cycle control laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), SV-ISREC, 1015 Lausanne, Switzerland
| | - Anastasia Chasapi
- Swiss-Prot. Group and Vital-IT Group, Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Andrea Krapp
- Cell cycle control laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), SV-ISREC, 1015 Lausanne, Switzerland
| | - Elena Cano Del Rosario
- Cell cycle control laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), SV-ISREC, 1015 Lausanne, Switzerland
| | - Daniel Schmitter
- Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Daniel Sage
- Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Michael Unser
- Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ioannis Xenarios
- Swiss-Prot. Group and Vital-IT Group, Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Jacques Rougemont
- Bioinformatics and Biostatistics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Viesturs Simanis
- Cell cycle control laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), SV-ISREC, 1015 Lausanne, Switzerland
| |
Collapse
|
37
|
Tang NH, Toda T. Alp7/TACC recruits kinesin-8-PP1 to the Ndc80 kinetochore protein for timely mitotic progression and chromosome movement. J Cell Sci 2014; 128:354-63. [PMID: 25472718 PMCID: PMC4294777 DOI: 10.1242/jcs.160036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Upon establishment of proper kinetochore–microtubule attachment, the spindle assembly checkpoint (SAC) must be silenced to allow onset of anaphase, which is when sister chromatids segregate equally to two daughter cells. However, how proper kinetochore–microtubule attachment leads to timely anaphase onset remains elusive. Furthermore, the molecular mechanisms of chromosome movement during anaphase A remain unclear. In this study, we show that the fission yeast Alp7/TACC protein recruits a protein complex consisting of the kinesin-8 (Klp5–Klp6) and protein phosphatase 1 (PP1) to the kinetochore upon kinetochore–microtubule attachment. Accumulation of this complex at the kinetochore, on the one hand, facilitates SAC inactivation through PP1, and, on the other hand, accelerates polewards chromosome movement driven by the Klp5–Klp6 motor. We identified an alp7 mutant that had specific defects in binding to the Klp5–Klp6–PP1 complex but with normal localisation to the microtubule and kinetochore. Consistent with our proposition, this mutant shows delayed anaphase onset and decelerated chromosome movement during anaphase A. We propose that the recruitment of kinesin-8–PP1 to the kinetochore through Alp7/TACC interaction plays a crucial role in regulation of timely mitotic progression and chromosome movement during anaphase A.
Collapse
Affiliation(s)
- Ngang Heok Tang
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Takashi Toda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| |
Collapse
|
38
|
The kinetochore protein Kis1/Eic1/Mis19 ensures the integrity of mitotic spindles through maintenance of kinetochore factors Mis6/CENP-I and CENP-A. PLoS One 2014; 9:e111905. [PMID: 25375240 PMCID: PMC4222959 DOI: 10.1371/journal.pone.0111905] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/06/2014] [Indexed: 12/14/2022] Open
Abstract
Microtubules play multiple roles in a wide range of cellular phenomena, including cell polarity establishment and chromosome segregation. A number of microtubule regulators have been identified, including microtubule-associated proteins and kinases, and knowledge of these factors has contributed to our molecular understanding of microtubule regulation of each relevant cellular process. The known regulators, however, are insufficient to explain how those processes are linked to one another, underscoring the need to identify additional regulators. To find such novel mechanisms and microtubule regulators, we performed a screen that combined genetics and microscopy for fission yeast mutants defective in microtubule organization. We isolated approximately 900 mutants showing defects in either microtubule organization or the nuclear envelope, and these mutants were classified into 12 categories. We particularly focused on one mutant, kis1, which displayed spindle defects in early mitosis. The kis1 mutant frequently failed to assemble a normal bipolar spindle. The responsible gene encoded a kinetochore protein, Mis19 (also known as Eic1), which localized to the interface of kinetochores and spindle poles. We also found that the inner kinetochore proteins Mis6/CENP-I and Cnp1/CENP-A were delocalized from kinetochores in the kis1 cells and that kinetochore-microtubule attachment was defective. Another mutant, mis6, also displayed similar spindle defects. We conclude that Kis1 is required for inner kinetochore organization, through which Kis1 ensures kinetochore-microtubule attachment and spindle integrity. Thus, we propose an unexpected relationship between inner kinetochore organization and spindle integrity.
Collapse
|
39
|
Abstract
Accurate segregation of genetic material into two daughter cells is essential for organism reproduction, development, and survival. The cell assembles a macromolecular structure called the mitotic spindle, which is composed of dynamic microtubules (MTs) and many associated proteins that assemble the spindle and drive the segregation of the chromosomes. Members of the kinesin superfamily of MT associated proteins use the energy of ATP hydrolysis to help organize the spindle, to transport cargo within the spindle, and to regulate spindle MT dynamics. The Kinesin-8 and Kinesin-13 families are involved in controlling mitotic spindle morphology, spindle positioning, and chromosome movement. While both kinesin families are MT destabilizing enzymes, it is unclear whether their mechanisms of MT destabilization are mechanistically similar or how they act to destabilize MTs. Recently, three groups identified an additional MT binding domain within the tail of Kinesin-8s that is essential for their roles in regulating MT dynamics and chromosome positioning.
Collapse
|
40
|
Messin LJ, Millar JBA. Role and regulation of kinesin-8 motors through the cell cycle. SYSTEMS AND SYNTHETIC BIOLOGY 2014; 8:205-13. [PMID: 25136382 DOI: 10.1007/s11693-014-9140-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/11/2014] [Accepted: 03/15/2014] [Indexed: 10/25/2022]
Abstract
Members of the kinesin-8 motor family play a central role in controlling microtubule length throughout the eukaryotic cell cycle. Inactivation of kinesin-8 causes defects in cell polarity during interphase and astral and mitotic spindle length, metaphase chromosome alignment, timing of anaphase onset and accuracy of chromosome segregation. Although the biophysical mechanism by which kinesin-8 molecules influence microtubule dynamics has been studied extensively in a variety of species, a consensus view has yet to emerge. One reason for this might be that some members of the kinesin-8 family can associate to other microtubule-associated proteins, cell cycle regulatory proteins and other kinesin family members. In this review we consider how cell cycle specific modification and its association to other regulatory proteins may modulate the function of kinesin-8 to enable it to function as a master regulator of microtubule dynamics.
Collapse
Affiliation(s)
- Liam J Messin
- Mechanochemical Cell Biology Building, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry, CV4 7AL UK
| | - Jonathan B A Millar
- Mechanochemical Cell Biology Building, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry, CV4 7AL UK
| |
Collapse
|
41
|
Rizk RS, Discipio KA, Proudfoot KG, Gupta ML. The kinesin-8 Kip3 scales anaphase spindle length by suppression of midzone microtubule polymerization. ACTA ACUST UNITED AC 2014; 204:965-75. [PMID: 24616221 PMCID: PMC3998799 DOI: 10.1083/jcb.201312039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitotic spindle function is critical for cell division and genomic stability. During anaphase, the elongating spindle physically segregates the sister chromatids. However, the molecular mechanisms that determine the extent of anaphase spindle elongation remain largely unclear. In a screen of yeast mutants with altered spindle length, we identified the kinesin-8 Kip3 as essential to scale spindle length with cell size. Kip3 is a multifunctional motor protein with microtubule depolymerase, plus-end motility, and antiparallel sliding activities. Here we demonstrate that the depolymerase activity is indispensable to control spindle length, whereas the motility and sliding activities are not sufficient. Furthermore, the microtubule-destabilizing activity is required to counteract Stu2/XMAP215-mediated microtubule polymerization so that spindle elongation terminates once spindles reach the appropriate final length. Our data support a model where Kip3 directly suppresses spindle microtubule polymerization, limiting midzone length. As a result, sliding forces within the midzone cannot buckle spindle microtubules, which allows the cell boundary to define the extent of spindle elongation.
Collapse
Affiliation(s)
- Rania S Rizk
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | | | | | | |
Collapse
|
42
|
Interplay between mitotic kinesins and the Aurora kinase–PP1 (protein phosphatase 1) axis. Biochem Soc Trans 2013; 41:1761-5. [DOI: 10.1042/bst20130191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Correct transmission of genetic information from mother to daughter cells is necessary for development and survival. Accurate segregation is achieved by bipolar attachment of sister kinetochores in each chromatid pair to spindle microtubules emanating from opposite spindle poles, a process known as chromosome bi-orientation. Achieving this requires dynamic interplay between kinetochore proteins, kinesin motor proteins and cell cycle regulators. Chromosome bi-orientation is monitored by a surveillance mechanism known as the SAC (spindle assembly checkpoint). The Aurora B kinase, which is bound to the inner centromere during early mitosis, plays a central role in both chromosome bi-orientation and the spindle checkpoint. The application of tension across centromeres establishes a spatial gradient of high phosphorylation activity at the inner centromere and low phosphorylation activity at the outer kinetochore. This gradient is further refined by the association of PP1 (protein phosphatase 1) to the outer kinetochore, which stabilizes kinetochore–microtubule interactions and silences the spindle checkpoint by dephosphorylating Aurora B kinase targets when chromosome bi-orientation is achieved. In the present review, I discuss emerging evidence that bidirectional cross-talk between mitotic kinesins and the Aurora kinase–PP1 axis is crucial for co-ordinating chromosome bi-orientation and spindle checkpoint signalling in eukaryotes.
Collapse
|
43
|
Antagonistic spindle motors and MAPs regulate metaphase spindle length and chromosome segregation. Curr Biol 2013; 23:2423-9. [PMID: 24239120 DOI: 10.1016/j.cub.2013.10.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/27/2013] [Accepted: 10/09/2013] [Indexed: 11/24/2022]
Abstract
Metaphase describes a phase of mitosis where chromosomes are attached and oriented on the bipolar spindle for subsequent segregation at anaphase. In diverse cell types, the metaphase spindle is maintained at characteristic constant length [1-3]. Metaphase spindle length is proposed to be regulated by a balance of pushing and pulling forces generated by distinct sets of spindle microtubules (MTs) and their interactions with motors and MT-associated proteins (MAPs). Spindle length is further proposed to be important for chromosome segregation fidelity, as cells with shorter- or longer-than-normal metaphase spindles, generated through deletion or inhibition of individual mitotic motors or MAPs, showed chromosome segregation defects. To test the force-balance model of spindle length control and its effect on chromosome segregation, we applied fast microfluidic temperature control with live-cell imaging to monitor the effect of deleting or switching off different combinations of antagonistic force contributors in the fission yeast metaphase spindle. We show that the spindle midzone proteins kinesin-5 cut7p and MT bundler ase1p contribute to outward-pushing forces and that the spindle kinetochore proteins kinesin-8 klp5/6p and dam1p contribute to inward-pulling forces. Removing these proteins individually led to aberrant metaphase spindle length and chromosome segregation defects. Removing these proteins in antagonistic combination rescued the defective spindle length and in some combinations also partially rescued chromosome segregation defects.
Collapse
|
44
|
Abstract
When chromosome are being separated in preparation for cell division, their motions are slow (~16 nm/s) relative to the speed at which many motor enzymes can move their cellular cargoes (160-1000 nm/s and sometimes even faster) and at which microtubules (MTs) depolymerize (~200 nm/s). Indeed, anaphase chromosome speeds are so slow that viscous drag puts little load on the mechanisms that generate the relevant forces [35]. Available evidence suggests that chromosome speed is due to some form of regulation. For example, big and little chromosomes move at about the same speed, chromosomes that have farther to go move faster than others, and chromosome speed is affected by both temperature and an experimentally applied load. In this essay we review data on these phenomena and present our ideas about likely properties of the mechanisms that regulate chromosome speed.
Collapse
|
45
|
Abstract
The microtubule (MT) cytoskeleton supports a broad range of cellular functions, from providing tracks for intracellular transport, to supporting movement of cilia and flagella, to segregating chromosomes in mitosis. These functions are facilitated by the organizational and dynamic plasticity of MT networks. An important class of enzymes that alters MT dynamics is the depolymerizing kinesin-like proteins, which use their catalytic activities to regulate MT end dynamics. In this review, we discuss four topics surrounding these MT-depolymerizing kinesins. We provide a historical overview of studies focused on these motors and discuss their phylogeny. In the second half, we discuss their enzymology and biophysics and give an overview of their known cellular functions. This discussion highlights the fact that MT-depolymerizing kinesins exhibit a diverse range of design principles, which in turn increases their functional versatility in cells.
Collapse
Affiliation(s)
- Claire E Walczak
- Medical Sciences, Indiana University, Bloomington, Indiana 47405;
| | | | | |
Collapse
|
46
|
Microtubule-sliding activity of a kinesin-8 promotes spindle assembly and spindle-length control. Nat Cell Biol 2013; 15:948-57. [PMID: 23851487 PMCID: PMC3767134 DOI: 10.1038/ncb2801] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 06/04/2013] [Indexed: 12/14/2022]
Abstract
Molecular motors play critical roles in the formation of mitotic spindles, either through controlling the stability of individual microtubules, or by cross-linking and sliding microtubule arrays. Kinesin-8 motors are best known for their regulatory roles in controlling microtubule dynamics. They contain microtubule-destabilizing activities, and restrict spindle length in a wide variety of cell types and organisms. Here, we report for the first time on an anti-parallel microtubule-sliding activity of the budding yeast kinesin-8, Kip3. The in vivo importance of this sliding activity was established through the identification of complementary Kip3 mutants that separate the sliding activity and microtubule destabilizing activity. In conjunction with kinesin-5/Cin8, the sliding activity of Kip3 promotes bipolar spindle assembly and the maintenance of genome stability. We propose a “slide-disassemble” model where Kip3’s sliding and destabilizing activity balance during pre-anaphase. This facilitates normal spindle assembly. However, Kip3’s destabilizing activity dominates in late anaphase, inhibiting spindle elongation and ultimately promoting spindle disassembly.
Collapse
|
47
|
Abstract
Regulating physical size is an essential problem that biological organisms must solve from the subcellular to the organismal scales, but it is not well understood what physical principles and mechanisms organisms use to sense and regulate their size. Any biophysical size-regulation scheme operates in a noisy environment and must be robust to other cellular dynamics and fluctuations. This work develops theory of filament length regulation inspired by recent experiments on kinesin-8 motor proteins, which move with directional bias on microtubule filaments and alter microtubule dynamics. Purified kinesin-8 motors can depolymerize chemically-stabilized microtubules. In the length-dependent depolymerization model, the rate of depolymerization tends to increase with filament length, because long filaments accumulate more motors at their tips and therefore shorten more quickly. When balanced with a constant filament growth rate, this mechanism can lead to a fixed polymer length. However, the mechanism by which kinesin-8 motors affect the length of dynamic microtubules in cells is less clear. We study the more biologically realistic problem of microtubule dynamic instability modulated by a motor-dependent increase in the filament catastrophe frequency. This leads to a significant decrease in the mean filament length and a narrowing of the filament length distribution. The results improve our understanding of the biophysics of length regulation in cells.
Collapse
Affiliation(s)
- Hui-Shun Kuan
- Program in Chemical Physics and Biofrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA
| | | |
Collapse
|
48
|
Kidane D, Sakkas D, Nottoli T, McGrath J, Sweasy JB. Kinesin 5B (KIF5B) is required for progression through female meiosis and proper chromosomal segregation in mitotic cells. PLoS One 2013; 8:e58585. [PMID: 23560038 PMCID: PMC3613343 DOI: 10.1371/journal.pone.0058585] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 02/06/2013] [Indexed: 12/18/2022] Open
Abstract
The fidelity of chromosomal segregation during cell division is important to maintain chromosomal stability in order to prevent cancer and birth defects. Although several spindle-associated molecular motors have been shown to be essential for cell division, only a few chromosome arm-associated motors have been described. Here, we investigated the role of Kinesin 5b (Kif5b) during female mouse meiotic cell development and mitotic cell division. RNA interference (RNAi)-mediated silencing of Kif5b in mouse oocytes induced significant delay in germinal vesicle breakdown (GVBD) and failure in extrusion of the first polar body (PBE). In mitotic cells, knockdown of Kif5b leads to centrosome amplification and a chromosomal segregation defect. These data suggest that KIF5B is critical in suppressing chromosomal instability at the early stages of female meiotic cell development and mitotic cell division.
Collapse
Affiliation(s)
- Dawit Kidane
- Departments of Therapeutic Radiology and Genetics and The Yale Comprehensive Cancer Center, New Haven, Connecticut, United States of America
| | - Denny Sakkas
- Departments of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Timothy Nottoli
- Departments of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - James McGrath
- Yale Animal Genomics Services, Comparative Medicine Faculty, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Joann B. Sweasy
- Departments of Therapeutic Radiology and Genetics and The Yale Comprehensive Cancer Center, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
49
|
Wandke C, Barisic M, Sigl R, Rauch V, Wolf F, Amaro AC, Tan CH, Pereira AJ, Kutay U, Maiato H, Meraldi P, Geley S. Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis. ACTA ACUST UNITED AC 2013; 198:847-63. [PMID: 22945934 PMCID: PMC3432768 DOI: 10.1083/jcb.201110060] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human chromokinesins hKID and KIF4A contribute to proper attachment of chromosomes by controlling the positioning of the chromosome arms and microtubule dynamics, respectively. Chromokinesins are microtubule plus end–directed motor proteins that bind to chromosome arms. In Xenopus egg cell-free extracts, Xkid and Xklp1 are essential for bipolar spindle formation but the functions of the human homologues, hKID (KIF22) and KIF4A, are poorly understood. By using RNAi-mediated protein knockdown in human cells, we find that only co-depletion delayed progression through mitosis in a Mad2-dependent manner. Depletion of hKID caused abnormal chromosome arm orientation, delayed chromosome congression, and sensitized cells to nocodazole. Knockdown of KIF4A increased the number and length of microtubules, altered kinetochore oscillations, and decreased kinetochore microtubule flux. These changes were associated with failures in establishing a tight metaphase plate and an increase in anaphase lagging chromosomes. Co-depletion of both chromokinesins aggravated chromosome attachment failures, which led to mitotic arrest. Thus, hKID and KIF4A contribute independently to the rapid and correct attachment of chromosomes by controlling the positioning of chromosome arms and the dynamics of microtubules, respectively.
Collapse
Affiliation(s)
- Cornelia Wandke
- Biocenter, Division of Molecular Pathophysiology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gardner MK, Zanic M, Howard J. Microtubule catastrophe and rescue. Curr Opin Cell Biol 2012; 25:14-22. [PMID: 23092753 DOI: 10.1016/j.ceb.2012.09.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 09/25/2012] [Accepted: 09/27/2012] [Indexed: 11/28/2022]
Abstract
Microtubules are long cylindrical polymers composed of tubulin subunits. In cells, microtubules play an essential role in architecture and motility. For example, microtubules give shape to cells, serve as intracellular transport tracks, and act as key elements in important cellular structures such as axonemes and mitotic spindles. To accomplish these varied functions, networks of microtubules in cells are very dynamic, continuously remodeling through stochastic length fluctuations at the ends of individual microtubules. The dynamic behavior at the end of an individual microtubule is termed 'dynamic instability'. This behavior manifests itself by periods of persistent microtubule growth interrupted by occasional switching to rapid shrinkage (called microtubule 'catastrophe'), and then by switching back from shrinkage to growth (called microtubule 'rescue'). In this review, we summarize recent findings which provide new insights into the mechanisms of microtubule catastrophe and rescue, and discuss the impact of these findings in regards to the role of microtubule dynamics inside of cells.
Collapse
Affiliation(s)
- Melissa K Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|