1
|
Sanchez-Spitman AB, Böhringer S, Dezentjé VO, Gelderblom H, Swen JJ, Guchelaar HJ. A Genome-Wide Association Study of Endoxifen Serum Concentrations and Adjuvant Tamoxifen Efficacy in Early-Stage Breast Cancer Patients. Clin Pharmacol Ther 2024; 116:155-164. [PMID: 38501904 DOI: 10.1002/cpt.3255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Tamoxifen is part of the standard of care of endocrine therapy for adjuvant treatment of breast cancer. However, survival outcomes with tamoxifen are highly variable. The concentration of endoxifen, the 30-100 times more potent metabolite of tamoxifen and bioactivated by the CYP2D6 enzyme, has been described as the most relevant metabolite of tamoxifen metabolism. A genome-wide association study (GWAS) was performed with the objective to identify genetic polymorphisms associated with endoxifen serum concentration levels and clinical outcome in early-stage breast cancer patients receiving tamoxifen. A GWAS was conducted in 608 women of the CYPTAM study (NTR1509/PMID: 30120701). Germline DNA and clinical and survival characteristics were readily available. Genotyping was performed on Infinium Global Screening Array (686,082 markers) and single nucleotide polymorphism (SNP) imputation by using 1000 Genomes. Relapse-free survival during tamoxifen (RFSt) was defined the primary clinical outcome. Endoxifen serum concentration was analyzed as a continuous variable. Several genetic variants reached genome-wide significance (P value: ≤5 × 10-8). Endoxifen concentrations analysis identified 430 variants, located in TCF20 and WBP2NL genes (chromosome 22), which are in strong linkage disequilibrium with CYP2D6 variants. In the RFSt analysis, several SNP were identified (LPP gene: rs77693286, HR 18.3, 95% CI: 15.2-21.1; rs6790761, OR 18.2, 95% CI: 15.5-21.1). Endoxifen concentrations have a strong association with the chromosome 22, which contains the CYP2D6 gene.
Collapse
Affiliation(s)
| | - Stefan Böhringer
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Vincent Olaf Dezentjé
- Department of Medical Oncology, Antoni van Leeuwenhoek/Dutch Cancer Institute, Amsterdam, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jesse Joachim Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Wang R, Gao Y, Zhang H. ACTN1 interacts with ITGA5 to promote cell proliferation, invasion and epithelial-mesenchymal transformation in head and neck squamous cell carcinoma. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:200-207. [PMID: 36742137 PMCID: PMC9869876 DOI: 10.22038/ijbms.2022.67056.14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/16/2022] [Indexed: 02/07/2023]
Abstract
Objectives The aim of this study was to detect the expression levels of α-Actinin 1 (ACTN1) and ITGA5 in HNSCC and to explore how ACTN1/ITGA5 regulated the proliferative and invasive abilities, as well as the EMT of Head and neck squamous cell carcinoma (HNSCC) cells. Materials and Methods The viability, proliferative, invasive and migrative abilities of HNSCC cells after transfection were, in turn, detected by CCK8 assay, colony formation assay, EdU staining, transwell, as well as wound healing. E-cadherin in transfected cells was assessed utilizing immunofluorescence. RT-qPCR confirmed the transfection effect of ACTN1 and ITGA5 in HNSCC cells and the interaction between ACTN1 and ITGA5 in HNSCC cells was determined by co-immunoprecipitation (Co-IP). With Western blot application, the contents of ACTN1, ITGA5, proliferation-, invasion- and migration-related proteins were estimated. A xenograft model based on nude mice was conducted and Ki-67 content in tumor tissues was evaluated employing immunohistochemistry (IHC) staining. Results ACTN1 interacted with ITGA5. The contents of ACTN1 and ITGA5 were found to be abundant in HNSCC tissues and cells and associated with poor prognosis. ACTN1 depletion imparted suppressive impacts on cell proliferative, invasive and migrative abilities as well as EMT of HNSCC cells, which were reversed by ITGA5 overexpression. In addition, ACTN1 deficiency repressed the growth and metastasis of tumor tissues in tumor xenografts of nude mice. Conclusion ACTN1 positively interacts with ITGA5 to promote proliferation, invasion and EMT of HNSCC cells. Also, ACTN1 promotes tumor growth and metastasis.
Collapse
Affiliation(s)
- Rui Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China,Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Gao
- Department of Otolaryngology-Head and Neck Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China,Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huimin Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China,Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China,Corresponding author: Huimin Zhang. Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 99 Longcheng Street, Xiaodian District, Taiyuan City, Shanxi Province, 030032, China.
| |
Collapse
|
3
|
Al-Farsi H, Al-Azwani I, Malek JA, Chouchane L, Rafii A, Halabi NM. Discovery of new therapeutic targets in ovarian cancer through identifying significantly non-mutated genes. J Transl Med 2022; 20:244. [PMID: 35619151 PMCID: PMC9134657 DOI: 10.1186/s12967-022-03440-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutated and non-mutated genes interact to drive cancer growth and metastasis. While research has focused on understanding the impact of mutated genes on cancer biology, understanding non-mutated genes that are essential to tumor development could lead to new therapeutic strategies. The recent advent of high-throughput whole genome sequencing being applied to many different samples has made it possible to calculate if genes are significantly non-mutated in a specific cancer patient cohort. METHODS We carried out random mutagenesis simulations of the human genome approximating the regions sequenced in the publicly available Cancer Growth Atlas Project for ovarian cancer (TCGA-OV). Simulated mutations were compared to the observed mutations in the TCGA-OV cohort and genes with the largest deviations from simulation were identified. Pathway analysis was performed on the non-mutated genes to better understand their biological function. We then compared gene expression, methylation and copy number distributions of non-mutated and mutated genes in cell lines and patient data from the TCGA-OV project. To directly test if non-mutated genes can affect cell proliferation, we carried out proof-of-concept RNAi silencing experiments of a panel of nine selected non-mutated genes in three ovarian cancer cell lines and one primary ovarian epithelial cell line. RESULTS We identified a set of genes that were mutated less than expected (non-mutated genes) and mutated more than expected (mutated genes). Pathway analysis revealed that non-mutated genes interact in cancer associated pathways. We found that non-mutated genes are expressed significantly more than mutated genes while also having lower methylation and higher copy number states indicating that they could be functionally important. RNAi silencing of the panel of non-mutated genes resulted in a greater significant reduction of cell viability in the cancer cell lines than in the non-cancer cell line. Finally, as a test case, silencing ANKLE2, a significantly non-mutated gene, affected the morphology, reduced migration, and increased the chemotherapeutic response of SKOV3 cells. CONCLUSION We show that we can identify significantly non-mutated genes in a large ovarian cancer cohort that are well-expressed in patient and cell line data and whose RNAi-induced silencing reduces viability in three ovarian cancer cell lines. Targeting non-mutated genes that are important for tumor growth and metastasis is a promising approach to expand cancer therapeutic options.
Collapse
Affiliation(s)
| | | | - Joel A Malek
- Genomics Core, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Lotfi Chouchane
- Genetic Intelligence Laboratory, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Arash Rafii
- Genetic Intelligence Laboratory, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, Qatar.
| | - Najeeb M Halabi
- Genetic Intelligence Laboratory, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
4
|
Jin Y, Yang S, Gao X, Chen D, Luo T, Su S, Shi Y, Yang G, Dong L, Liang J. DEAD-Box Helicase 27 Triggers Epithelial to Mesenchymal Transition by Regulating Alternative Splicing of Lipoma-Preferred Partner in Gastric Cancer Metastasis. Front Genet 2022; 13:836199. [PMID: 35601484 PMCID: PMC9114675 DOI: 10.3389/fgene.2022.836199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
DEAD-box helicase 27 (DDX27) was previously identified as an important mediator during carcinogenesis, while its role in gastric cancer (GC) is not yet fully elucidated. Here, we aimed to investigate the mechanism and clinical significance of DDX27 in GC. Public datasets were analyzed to determine DDX27 expression profiling. The qRT-PCR, Western blot, and immunohistochemistry analyses were employed to investigate the DDX27 expression in GC cell lines and clinical samples. The role of DDX27 in GC metastasis was explored in vitro and in vivo. Mass spectrometry, RNA-seq, and alternative splicing analysis were conducted to demonstrate the DDX27-mediated molecular mechanisms in GC. We discovered that DDX27 was highly expressed in GCs, and a high level of DDX27 indicated poor prognosis. An increased DDX27 expression could promote GC metastasis, while DDX27 knockdown impaired GC aggressiveness. Mechanically, the LLP expression was significantly altered after DDX27 downregulation, and further results indicated that LPP may be regulated by DDX27 via alternative splicing. In summary, our study indicated that DDX27 contributed to GC malignant progression via a prometastatic DDX27/LPP/EMT regulatory axis.
Collapse
Affiliation(s)
- Yirong Jin
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Suzhen Yang
- Department of Digestive Disease and Gastrointestinal Motility Research Room, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoliang Gao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Di Chen
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Tingting Luo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an, China
| | - Song Su
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Yanting Shi
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Gang Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Lei Dong
- Department of Digestive Disease and Gastrointestinal Motility Research Room, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Lei Dong, ; Jie Liang,
| | - Jie Liang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
- *Correspondence: Lei Dong, ; Jie Liang,
| |
Collapse
|
5
|
Pareja F, Lee JY, Brown DN, Piscuoglio S, Gularte-Mérida R, Selenica P, Da Cruz Paula A, Arunachalam S, Kumar R, Geyer FC, Silveira C, da Silva EM, Li A, Marchiò C, Ng CKY, Mariani O, Fuhrmann L, Wen HY, Norton L, Vincent-Salomon A, Brogi E, Reis-Filho JS, Weigelt B. The Genomic Landscape of Mucinous Breast Cancer. J Natl Cancer Inst 2020; 111:737-741. [PMID: 30649385 DOI: 10.1093/jnci/djy216] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/18/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Mucinous carcinoma of the breast (MCB) is a rare histologic form of estrogen receptor (ER)-positive/HER2-negative breast cancer (BC) characterized by tumor cells floating in lakes of mucin. We assessed the genomic landscape of 32 MCBs by whole-exome sequencing and/or RNA-sequencing. GATA3 (23.8%), KMT2C (19.0%), and MAP3K1 (14.3%) were the most frequently mutated genes in pure MCBs. In addition, two recurrent but not pathognomonic fusion genes, OAZ1-CSNK1G2 and RFC4-LPP, were detected in 3/31 (9.7%) and 2/31 (6.5%) samples, respectively. Compared with ER-positive/HER2-negative common forms of BC, MCBs displayed lower PIK3CA and TP53 mutation rates and fewer concurrent 1q gains and 16q losses. Clonal decomposition analysis of the mucinous and ductal components independently microdissected from five mixed MCBs revealed that they are clonally related and evolve following clonal selection or parallel evolution. Our findings indicate that MCB represents a genetically distinct ER-positive/HER2-negative form of BC.
Collapse
Affiliation(s)
- Fresia Pareja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ju Youn Lee
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David N Brown
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Salvatore Piscuoglio
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Sasi Arunachalam
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rahul Kumar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Felipe C Geyer
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Catarina Silveira
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,GenoMed SA, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Edaise M da Silva
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anqi Li
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Caterina Marchiò
- Department of Medical Sciences, FPO-Canndiolo Cancer Institute, University of Turin, Turin, Italy
| | - Charlotte K Y Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Odette Mariani
- Départment de Médecine Diagnostique et Théranostique, Institute Curie, Paris, France
| | - Laetitia Fuhrmann
- Départment de Médecine Diagnostique et Théranostique, Institute Curie, Paris, France
| | - Hannah Y Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anne Vincent-Salomon
- Départment de Médecine Diagnostique et Théranostique, Institute Curie, Paris, France
| | - Edi Brogi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
6
|
Kiepas A, Voorand E, Senecal J, Ahn R, Annis MG, Jacquet K, Tali G, Bisson N, Ursini-Siegel J, Siegel PM, Brown CM. The SHCA adapter protein cooperates with lipoma-preferred partner in the regulation of adhesion dynamics and invadopodia formation. J Biol Chem 2020; 295:10535-10559. [PMID: 32299913 DOI: 10.1074/jbc.ra119.011903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
SHC adaptor protein (SHCA) and lipoma-preferred partner (LPP) mediate transforming growth factor β (TGFβ)-induced breast cancer cell migration and invasion. Reduced expression of either protein diminishes breast cancer lung metastasis, but the reason for this effect is unclear. Here, using total internal reflection fluorescence (TIRF) microscopy, we found that TGFβ enhanced the assembly and disassembly rates of paxillin-containing adhesions in an SHCA-dependent manner through the phosphorylation of the specific SHCA tyrosine residues Tyr-239, Tyr-240, and Tyr-313. Using a BioID proximity labeling approach, we show that SHCA exists in a complex with a variety of actin cytoskeletal proteins, including paxillin and LPP. Consistent with a functional interaction between SHCA and LPP, TGFβ-induced LPP localization to cellular adhesions depended on SHCA. Once localized to the adhesions, LPP was required for TGFβ-induced increases in cell migration and adhesion dynamics. Mutations that impaired LPP localization to adhesions (mLIM1) or impeded interactions with the actin cytoskeleton via α-actinin (ΔABD) abrogated migratory responses to TGFβ. Live-cell TIRF microscopy revealed that SHCA clustering at the cell membrane preceded LPP recruitment. We therefore hypothesize that, in the presence of TGFβ, SHCA promotes the formation of small, dynamic adhesions by acting as a nucleator of focal complex formation. Finally, we defined a previously unknown function for SHCA in the formation of invadopodia, a process that also required LPP. Our results reveal that SHCA controls the formation and function of adhesions and invadopodia, two key cellular structures required for breast cancer metastasis.
Collapse
Affiliation(s)
- Alex Kiepas
- Department of Physiology, McGill University, Montréal H3G 1Y6, Québec, Canada.,Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada
| | - Elena Voorand
- Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada.,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Québec, Canada
| | - Julien Senecal
- Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada.,Division of Experimental Medicine, McGill University, Montréal H4A 3J1, Québec, Canada
| | - Ryuhjin Ahn
- Division of Experimental Medicine, McGill University, Montréal H4A 3J1, Québec, Canada.,Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | - Matthew G Annis
- Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada.,Department of Medicine, McGill University, Montréal H3G 1Y6, Québec, Canada
| | - Kévin Jacquet
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, Québec G1R 2J6, Canada
| | - George Tali
- Department of Physiology, McGill University, Montréal H3G 1Y6, Québec, Canada
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, Québec G1R 2J6, Canada.,PROTEO Network and Cancer Research Centre, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Josie Ursini-Siegel
- Department of Biochemistry, McGill University, Montréal H3G 1Y6, Québec, Canada.,Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada.,Department of Oncology, McGill University, Montréal H4A 3T2, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal H3A 1A3, Québec, Canada .,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Québec, Canada.,Department of Medicine, McGill University, Montréal H3G 1Y6, Québec, Canada
| | - Claire M Brown
- Department of Physiology, McGill University, Montréal H3G 1Y6, Québec, Canada .,Advanced BioImaging Facility (ABIF), McGill University, Montréal H3G 0B1, Québec, Canada
| |
Collapse
|
7
|
Kiepas A, Voorand E, Mubaid F, Siegel PM, Brown CM. Optimizing live-cell fluorescence imaging conditions to minimize phototoxicity. J Cell Sci 2020; 133:jcs242834. [PMID: 31988150 DOI: 10.1242/jcs.242834] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/09/2020] [Indexed: 08/31/2023] Open
Abstract
Fluorescence illumination can cause phototoxicity that negatively affects living samples. This study demonstrates that much of the phototoxicity and photobleaching experienced with live-cell fluorescence imaging occurs as a result of 'illumination overhead' (IO). This occurs when a sample is illuminated but fluorescence emission is not being captured by the microscope camera. Several technological advancements have been developed, including fast-switching LED lamps and transistor-transistor logic (TTL) circuits, to diminish phototoxicity caused by IO. These advancements are not standard features on most microscopes and many biologists are unaware of their necessity for live-cell imaging. IO is particularly problematic when imaging rapid processes that require short exposure times. This study presents a workflow to optimize imaging conditions for measuring both slow and dynamic processes while minimizing phototoxicity on any standard microscope. The workflow includes a guide on how to (1) determine the maximum image exposure time for a dynamic process, (2) optimize excitation light intensity and (3) assess cell health with mitochondrial markers.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Alex Kiepas
- Department of Physiology, McGill University, Montreal, Canada, H3G 1Y6
- Goodman Cancer Research Centre, McGill University, Canada, H3G 1A1
| | - Elena Voorand
- Goodman Cancer Research Centre, McGill University, Canada, H3G 1A1
- Department of Biochemistry, McGill University, Montreal, Canada, H3G 1Y6
| | - Firas Mubaid
- Department of Physiology, McGill University, Montreal, Canada, H3G 1Y6
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Canada, H3G 1A1
- Department of Biochemistry, McGill University, Montreal, Canada, H3G 1Y6
- Department of Medicine, McGill University, Montreal, Canada, H4A 3J1
- Department of Anatomy & Cell Biology, McGill University, Canada, H3G 0B1
| | - Claire M Brown
- Department of Physiology, McGill University, Montreal, Canada, H3G 1Y6
- Department of Anatomy & Cell Biology, McGill University, Canada, H3G 0B1
- Advanced BioImaging Facility (ABIF), McGill University, Montreal, Canada, H3A 0C7
- Cell Information Systems, McGill University, Montreal, Canada, H3G 0B1
- Centre for Applied Mathematics in Bioscience and Medicine (CAMBAM), McGill University, Montreal, Canada, H3G 1Y6
| |
Collapse
|
8
|
Hoock SC, Ritter A, Steinhäuser K, Roth S, Behrends C, Oswald F, Solbach C, Louwen F, Kreis N, Yuan J. RITA modulates cell migration and invasion by affecting focal adhesion dynamics. Mol Oncol 2019; 13:2121-2141. [PMID: 31353815 PMCID: PMC6763788 DOI: 10.1002/1878-0261.12551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/12/2019] [Accepted: 07/21/2019] [Indexed: 12/15/2022] Open
Abstract
RITA, the RBP-J interacting and tubulin-associated protein, has been reported to be related to tumor development, but the underlying mechanisms are not understood. Since RITA interacts with tubulin and coats microtubules of the cytoskeleton, we hypothesized that it is involved in cell motility. We show here that depletion of RITA reduces cell migration and invasion of diverse cancer cell lines and mouse embryonic fibroblasts. Cells depleted of RITA display stable focal adhesions (FA) with elevated active integrin, phosphorylated focal adhesion kinase, and paxillin. This is accompanied by enlarged size and disturbed turnover of FA. These cells also demonstrate increased polymerized tubulin. Interestingly, RITA is precipitated with the lipoma-preferred partner (LPP), which is critical in actin cytoskeleton remodeling and cell migration. Suppression of RITA results in reduced LPP and α-actinin at FA leading to compromised focal adhesion turnover and actin dynamics. This study identifies RITA as a novel crucial player in cell migration and invasion by affecting the turnover of FA through its interference with the dynamics of actin filaments and microtubules. Its deregulation may contribute to malignant progression.
Collapse
Affiliation(s)
- Samira Catharina Hoock
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| | - Andreas Ritter
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| | - Kerstin Steinhäuser
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
- Present address:
Solvadis Distribution GmbHGernsheimGermany
| | - Susanne Roth
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| | - Christian Behrends
- Institute of Biochemistry II, Medical SchoolJ. W.‐Goethe UniversityFrankfurtGermany
- Present address:
Munich Cluster of Systems NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Franz Oswald
- Department of Internal Medicine I, Center for Internal MedicineMedical Center UlmGermany
| | - Christine Solbach
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| | - Frank Louwen
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| | - Nina‐Naomi Kreis
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| |
Collapse
|
9
|
Identifying Methylation Pattern and Genes Associated with Breast Cancer Subtypes. Int J Mol Sci 2019; 20:ijms20174269. [PMID: 31480430 PMCID: PMC6747348 DOI: 10.3390/ijms20174269] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is regarded worldwide as a severe human disease. Various genetic variations, including hereditary and somatic mutations, contribute to the initiation and progression of this disease. The diagnostic parameters of breast cancer are not limited to the conventional protein content and can include newly discovered genetic variants and even genetic modification patterns such as methylation and microRNA. In addition, breast cancer detection extends to detailed breast cancer stratifications to provide subtype-specific indications for further personalized treatment. One genome-wide expression–methylation quantitative trait loci analysis confirmed that different breast cancer subtypes have various methylation patterns. However, recognizing clinically applied (methylation) biomarkers is difficult due to the large number of differentially methylated genes. In this study, we attempted to re-screen a small group of functional biomarkers for the identification and distinction of different breast cancer subtypes with advanced machine learning methods. The findings may contribute to biomarker identification for different breast cancer subtypes and provide a new perspective for differential pathogenesis in breast cancer subtypes.
Collapse
|
10
|
Kannan A, Philley JV, Hertweck KL, Ndetan H, Singh KP, Sivakumar S, Wells RB, Vadlamudi RK, Dasgupta S. Cancer Testis Antigen Promotes Triple Negative Breast Cancer Metastasis and is Traceable in the Circulating Extracellular Vesicles. Sci Rep 2019; 9:11632. [PMID: 31406142 PMCID: PMC6690992 DOI: 10.1038/s41598-019-48064-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Triple negative breast cancer (TNBC) has poor survival, exhibits rapid metastases, lacks targeted therapies and reliable prognostic markers. Here, we examined metastasis promoting role of cancer testis antigen SPANXB1 in TNBC and its utility as a therapeutic target and prognostic biomarker. Expression pattern of SPANXB1 was determined using matched primary cancer, lymph node metastatic tissues and circulating small extracellular vesicles (sEVs). cDNA microarray analysis of TNBC cells stably integrated with a metastasis suppressor SH3GL2 identified SPANXB1 as a potential target gene. TNBC cells overexpressing SH3GL2 exhibited decreased levels of both SPANXB1 mRNA and protein. Silencing of SPANXB1 reduced migration, invasion and reactive oxygen species production of TNBC cells. SPANXB1 depletion augmented SH3GL2 expression and decreased RAC-1, FAK, A-Actinin and Vinculin expression. Phenotypic and molecular changes were reversed upon SPANXB1 re-expression. SPANXB1 overexpressing breast cancer cells with an enhanced SPANXB1:SH3GL2 ratio achieved pulmonary metastasis within 5 weeks, whereas controls cells failed to do so. Altered expression of SPANXB1 was detected in the sEVs of SPANXB1 transduced cells. Exclusive expression of SPANXB1 was traceable in circulating sEVs, which was associated with TNBC progression. SPANXB1 represents a novel and ideal therapeutic target for blocking TNBC metastases due to its unique expression pattern and may function as an EV based prognostic marker to improve TNBC survival. Uniquely restricted expression of SPANXB1 in TNBCs, makes it an ideal candidate for targeted therapeutics and prognostication.
Collapse
Affiliation(s)
- Anbarasu Kannan
- Departments of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Julie V Philley
- Departments of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Kate L Hertweck
- Departments of Biology, The University of Texas at Tyler, Tyler, Texas, USA.,Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Harrison Ndetan
- Departments of Epidemiology and Biostatistics, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Karan P Singh
- Departments of Epidemiology and Biostatistics, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Subramaniam Sivakumar
- Departments of Biochemistry, Sri Sankara Arts and Science College, Kanchipuram, India
| | - Robert B Wells
- Departments of Pathology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Ratna K Vadlamudi
- Departments of Obstetrics and Gynecology, CDP program, Mays Cancer Center, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Santanu Dasgupta
- Departments of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA. .,Departments of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA.
| |
Collapse
|
11
|
Yoshie H, Koushki N, Molter C, Siegel PM, Krishnan R, Ehrlicher AJ. High Throughput Traction Force Microscopy Using PDMS Reveals Dose-Dependent Effects of Transforming Growth Factor-β on the Epithelial-to-Mesenchymal Transition. J Vis Exp 2019. [PMID: 31205302 DOI: 10.3791/59364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cellular contractility is essential in diverse aspects of biology, driving processes that range from motility and division, to tissue contraction and mechanical stability, and represents a core element of multi-cellular animal life. In adherent cells, acto-myosin contraction is seen in traction forces that cells exert on their substrate. Dysregulation of cellular contractility appears in a myriad of pathologies, making contractility a promising target in diverse diagnostic approaches using biophysics as a metric. Moreover, novel therapeutic strategies can be based on correcting the apparent malfunction of cell contractility. These applications, however, require direct quantification of these forces. We have developed silicone elastomer-based traction force microscopy (TFM) in a parallelized multi-well format. Our use of a silicone rubber, specifically polydimethylsiloxane (PDMS), rather than the commonly employed hydrogel polyacrylamide (PAA) enables us to make robust and inert substrates with indefinite shelf-lives requiring no specialized storage conditions. Unlike pillar-PDMS based approaches that have a modulus in the GPa range, the PDMS used here is very compliant, ranging from approximately 0.4 kPa to 100 kPa. We create a high-throughput platform for TFM by partitioning these large monolithic substrates spatially into biochemically independent wells, creating a multi-well platform for traction force screening that is compatible with existing multi-well systems. In this manuscript, we use this multi-well traction force system to examine the Epithelial to Mesenchymal Transition (EMT); we induce EMT in NMuMG cells by exposing them to TGF-β, and to quantify the biophysical changes during EMT. We measure the contractility as a function of concentration and duration of TGF-β exposure. Our findings here demonstrate the utility of parallelized TFM in the context of disease biophysics.
Collapse
Affiliation(s)
| | | | | | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University; Department of Medicine, McGill University
| | | | - Allen J Ehrlicher
- Department of Bioengineering, McGill University; Goodman Cancer Research Centre, McGill University;
| |
Collapse
|
12
|
Yan S, Sun R, Wu S, Jin T, Zhang S, Niu F, Li J, Chen M. Single nucleotide polymorphism in the 3' untranslated region of LPP is a risk factor for lung cancer: a case-control study. BMC Cancer 2019; 19:35. [PMID: 30621612 PMCID: PMC6325744 DOI: 10.1186/s12885-018-5241-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/21/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) in 3'-untranslated region (UTR) of genes related with cell-matrix adhesions and migration might affect miRNA binding and potentially affect the risk of cancer. The present study aimed to screen SNPs in 3' UTR of cancer-related genes and investigate their contribution to the susceptibility of lung cancer. METHODS Seven SNPs were selected and genotyped in a case-control study (322 lung cancer patients and 384 controls) among Chinese Han population. Odds ratio (OR) and 95% confidence intervals (CIs) were calculated by logistic regression adjusted for age and gender in multiple genetic models. RESULTS In stratified analyses by gender, three (rs1064607, rs3796283 and rs2378456) of LPP gene were associated with a significantly increased susceptibility for lung cancer among male population. Besides, LPP rs2378456 weakened lung cancer risk in female. LPP rs1064607 polymorphism was significantly correlated with increased risk of lung adenocarcinoma. Furthermore, AA genotype of TNS3 rs9876 polymorphism was associated with lymphatic metastasis. CONCLUSION Our results provides evidence for the impact of LPP polymorphisms on the susceptibility to lung cancer in Chinese population.
Collapse
Affiliation(s)
- Shouchun Yan
- Department of Respiratory Medicine, The First Affiliated Hospital of School of Medicine of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Department of Emergency Medicine, Xi'an No.1 hospital, Xi'an, 710002, Shaanxi, China
| | - Rong Sun
- Department of Emergency Medicine, Xi'an GaoXin Hospital, Xi'an, 710075, Shaanxi, China
| | - Shan Wu
- Department of Respiratory Medicine, Xi'an No.1 hospital (Gaoling District), Xi'an, 710299, Shaanxi, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, Shaanxi, China
| | - Shanshan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, Shaanxi, China
| | - Fanglin Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, Shaanxi, China
| | - Jingjie Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, Shaanxi, China
| | - Mingwei Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of School of Medicine of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
13
|
Tsubakihara Y, Moustakas A. Epithelial-Mesenchymal Transition and Metastasis under the Control of Transforming Growth Factor β. Int J Mol Sci 2018; 19:ijms19113672. [PMID: 30463358 PMCID: PMC6274739 DOI: 10.3390/ijms19113672] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 02/08/2023] Open
Abstract
Metastasis of tumor cells from primary sites of malignancy to neighboring stromal tissue or distant localities entails in several instances, but not in every case, the epithelial-mesenchymal transition (EMT). EMT weakens the strong adhesion forces between differentiated epithelial cells so that carcinoma cells can achieve solitary or collective motility, which makes the EMT an intuitive mechanism for the initiation of tumor metastasis. EMT initiates after primary oncogenic events lead to secondary secretion of cytokines. The interaction between tumor-secreted cytokines and oncogenic stimuli facilitates EMT progression. A classic case of this mechanism is the cooperation between oncogenic Ras and the transforming growth factor β (TGFβ). The power of TGFβ to mediate EMT during metastasis depends on versatile signaling crosstalk and on the regulation of successive waves of expression of many other cytokines and the progressive remodeling of the extracellular matrix that facilitates motility through basement membranes. Since metastasis involves many organs in the body, whereas EMT affects carcinoma cell differentiation locally, it has frequently been debated whether EMT truly contributes to metastasis. Despite controversies, studies of circulating tumor cells, studies of acquired chemoresistance by metastatic cells, and several (but not all) metastatic animal models, support a link between EMT and metastasis, with TGFβ, often being a common denominator in this link. This article aims at discussing mechanistic cases where TGFβ signaling and EMT facilitate tumor cell dissemination.
Collapse
Affiliation(s)
- Yutaro Tsubakihara
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden.
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
14
|
Ngan E, Kiepas A, Brown CM, Siegel PM. Emerging roles for LPP in metastatic cancer progression. J Cell Commun Signal 2017; 12:143-156. [PMID: 29027626 DOI: 10.1007/s12079-017-0415-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/03/2017] [Indexed: 01/21/2023] Open
Abstract
LIM domain containing proteins are important regulators of diverse cellular processes, and play pivotal roles in regulating the actin cytoskeleton. Lipoma Preferred Partner (LPP) is a member of the zyxin family of LIM proteins that has long been characterized as a promoter of mesenchymal/fibroblast cell migration. More recently, LPP has emerged as a critical inducer of tumor cell migration, invasion and metastasis. LPP is thought to contribute to these malignant phenotypes by virtue of its ability to shuttle into the nucleus, localize to adhesions and, most recently, to promote invadopodia formation. In this review, we will examine the mechanisms through which LPP regulates the functions of adhesions and invadopodia, and discuss potential roles of LPP in mediating cellular responses to mechanical cues within these mechanosensory structures.
Collapse
Affiliation(s)
- Elaine Ngan
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 508, Montréal, Québec, H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Alex Kiepas
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Claire M Brown
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 508, Montréal, Québec, H3A 1A3, Canada. .,Department of Medicine, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
15
|
Kong W, Mou X, Deng J, Di B, Zhong R, Wang S, Yang Y, Zeng W. Differences of immune disorders between Alzheimer's disease and breast cancer based on transcriptional regulation. PLoS One 2017; 12:e0180337. [PMID: 28719625 PMCID: PMC5515412 DOI: 10.1371/journal.pone.0180337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 06/14/2017] [Indexed: 01/01/2023] Open
Abstract
Although chronic inflammation and immune disorders are of great importance to the pathogenesis of both dementia and cancer, the pathophysiological mechanisms are not clearly understood. In recent years, growing epidemiological evidence and meta-analysis data suggest an inverse association between Alzheimer's disease (AD), which is the most common form of dementia, and cancer. It has been revealed that some common genes and biological processes play opposite roles in AD and cancer; however, the biological immune mechanism for the inverse association is not clearly defined. An unsupervised matrix decomposition two-stage bioinformatics procedure was adopted to investigate the opposite behaviors of the immune response in AD and breast cancer (BC) and to discover the underlying transcriptional regulatory mechanisms. Fast independent component analysis (FastICA) was applied to extract significant genes from AD and BC microarray gene expression data. Based on the extracted data, the shared transcription factors (TFs) from AD and BC were captured. Second, the network component analysis (NCA) algorithm in this study was presented to quantitatively deduce the TF activities and regulatory influences because quantitative dynamic regulatory information for TFs is not available via microarray techniques. Based on the NCA results and reconstructed transcriptional regulatory networks, inverse regulatory processes and some known innate immune responses were described in detail. Many of the shared TFs and their regulatory processes were found to be closely related to the adaptive immune response from dramatically different directions and to play crucial roles in both AD and BC pathogenesis. From the above findings, the opposing cellular behaviors demonstrate an invaluable opportunity to gain insights into the pathogenesis of these two types of diseases and to aid in developing new treatments.
Collapse
Affiliation(s)
- Wei Kong
- College of Information Engineering, Shanghai Maritime University, Haigang Ave., Shanghai, P. R. China
| | - Xiaoyang Mou
- Department of Biochemistry, Rowan University and Guava Medicine, Glassboro, New Jersey, United States of America
| | - Jin Deng
- College of Information Engineering, Shanghai Maritime University, Haigang Ave., Shanghai, P. R. China
| | - Benteng Di
- College of Information Engineering, Shanghai Maritime University, Haigang Ave., Shanghai, P. R. China
| | - Ruxing Zhong
- College of Information Engineering, Shanghai Maritime University, Haigang Ave., Shanghai, P. R. China
| | - Shuaiqun Wang
- College of Information Engineering, Shanghai Maritime University, Haigang Ave., Shanghai, P. R. China
| | - Yang Yang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Weiming Zeng
- College of Information Engineering, Shanghai Maritime University, Haigang Ave., Shanghai, P. R. China
| |
Collapse
|
16
|
A proteomic analysis of LRRK2 binding partners reveals interactions with multiple signaling components of the WNT/PCP pathway. Mol Neurodegener 2017; 12:54. [PMID: 28697798 PMCID: PMC5505151 DOI: 10.1186/s13024-017-0193-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/20/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Autosomal-dominant mutations in the Park8 gene encoding Leucine-rich repeat kinase 2 (LRRK2) have been identified to cause up to 40% of the genetic forms of Parkinson's disease. However, the function and molecular pathways regulated by LRRK2 are largely unknown. It has been shown that LRRK2 serves as a scaffold during activation of WNT/β-catenin signaling via its interaction with the β-catenin destruction complex, DVL1-3 and LRP6. In this study, we examine whether LRRK2 also interacts with signaling components of the WNT/Planar Cell Polarity (WNT/PCP) pathway, which controls the maturation of substantia nigra dopaminergic neurons, the main cell type lost in Parkinson's disease patients. METHODS Co-immunoprecipitation and tandem mass spectrometry was performed in a mouse substantia nigra cell line (SN4741) and human HEK293T cell line in order to identify novel LRRK2 binding partners. Inhibition of the WNT/β-catenin reporter, TOPFlash, was used as a read-out of WNT/PCP pathway activation. The capacity of LRRK2 to regulate WNT/PCP signaling in vivo was tested in Xenopus laevis' early development. RESULTS Our proteomic analysis identified that LRRK2 interacts with proteins involved in WNT/PCP signaling such as the PDZ domain-containing protein GIPC1 and Integrin-linked kinase (ILK) in dopaminergic cells in vitro and in the mouse ventral midbrain in vivo. Moreover, co-immunoprecipitation analysis revealed that LRRK2 binds to two core components of the WNT/PCP signaling pathway, PRICKLE1 and CELSR1, as well as to FLOTILLIN-2 and CULLIN-3, which regulate WNT secretion and inhibit WNT/β-catenin signaling, respectively. We also found that PRICKLE1 and LRRK2 localize in signalosomes and act as dual regulators of WNT/PCP and β-catenin signaling. Accordingly, analysis of the function of LRRK2 in vivo, in X. laevis revelaed that LRKK2 not only inhibits WNT/β-catenin pathway, but induces a classical WNT/PCP phenotype in vivo. CONCLUSIONS Our study shows for the first time that LRRK2 activates the WNT/PCP signaling pathway through its interaction to multiple WNT/PCP components. We suggest that LRRK2 regulates the balance between WNT/β-catenin and WNT/PCP signaling, depending on the binding partners. Since this balance is crucial for homeostasis of midbrain dopaminergic neurons, we hypothesize that its alteration may contribute to the pathophysiology of Parkinson's disease.
Collapse
|
17
|
LPP is a Src substrate required for invadopodia formation and efficient breast cancer lung metastasis. Nat Commun 2017; 8:15059. [PMID: 28436416 PMCID: PMC5413977 DOI: 10.1038/ncomms15059] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/24/2017] [Indexed: 01/17/2023] Open
Abstract
We have previously shown that lipoma preferred partner (LPP) mediates TGFβ-induced breast cancer cell migration and invasion. Herein, we demonstrate that diminished LPP expression reduces circulating tumour cell numbers, impairs cancer cell extravasation and diminishes lung metastasis. LPP localizes to invadopodia, along with Tks5/actin, at sites of matrix degradation and at the tips of extravasating breast cancer cells as revealed by intravital imaging of the chick chorioallantoic membrane (CAM). Invadopodia formation, breast cancer cell extravasation and metastasis require an intact LPP LIM domain and the ability of LPP to interact with α-actinin. Finally, we show that Src-mediated LPP phosphorylation at specific tyrosine residues (Y245/301/302) is critical for invadopodia formation, breast cancer cell invasion and metastasis. Together, these data define a previously unknown function for LPP in the formation of invadopodia and reveal a requirement for LPP in mediating the metastatic ability of breast cancer cells.
Collapse
|
18
|
Yadav L, Tamene F, Göös H, van Drogen A, Katainen R, Aebersold R, Gstaiger M, Varjosalo M. Systematic Analysis of Human Protein Phosphatase Interactions and Dynamics. Cell Syst 2017; 4:430-444.e5. [PMID: 28330616 DOI: 10.1016/j.cels.2017.02.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/10/2017] [Accepted: 02/15/2017] [Indexed: 10/19/2022]
Abstract
Coordinated activities of protein kinases and phosphatases ensure phosphorylation homeostasis, which, when perturbed, can instigate diseases, including cancer. Yet, in contrast to kinases, much less is known about protein phosphatase functions and their interactions and complexes. Here, we used quantitative affinity proteomics to assay protein-protein interactions for 54 phosphatases distributed across the three major protein phosphatase families, with additional analysis of their 12 co-factors. We identified 838 high-confidence interactions, of which 631, to our knowledge, have not been reported before. We show that inhibiting the activity of phosphatases PP1 and PP2A by okadaic acid disrupts their specific interactions, supporting the potential of therapeutics that target these proteins. Additional analyses revealed candidate physical and functional interaction links to phosphatase-based regulation of several signaling pathways and to human cancer. Our study provides an initial glimpse of the protein interaction landscape of phosphatases and their functions in cellular regulation.
Collapse
Affiliation(s)
- Leena Yadav
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Fitsum Tamene
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Helka Göös
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Audrey van Drogen
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Riku Katainen
- Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki 00014, Finland
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Matthias Gstaiger
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
| |
Collapse
|
19
|
Transposon insertional mutagenesis in mice identifies human breast cancer susceptibility genes and signatures for stratification. Proc Natl Acad Sci U S A 2017; 114:E2215-E2224. [PMID: 28251929 PMCID: PMC5358385 DOI: 10.1073/pnas.1701512114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite concerted efforts to identify causal genes that drive breast cancer (BC) initiation and progression, we have yet to establish robust signatures to stratify patient risk. Here we used in vivo transposon-based forward genetic screening to identify potentially relevant BC driver genes. Integrating this approach with survival prediction analysis, we identified six gene pairs that could prognose human BC subtypes into high-, intermediate-, and low-risk groups with high confidence and reproducibility. Furthermore, we identified susceptibility gene sets for basal and claudin-low subtypes (21 and 16 genes, respectively) that stratify patients into three relative risk subgroups. These signatures offer valuable prognostic insight into the genetic basis of BC and allow further exploration of the interconnectedness of BC driver genes during disease progression. Robust prognostic gene signatures and therapeutic targets are difficult to derive from expression profiling because of the significant heterogeneity within breast cancer (BC) subtypes. Here, we performed forward genetic screening in mice using Sleeping Beauty transposon mutagenesis to identify candidate BC driver genes in an unbiased manner, using a stabilized N-terminal truncated β-catenin gene as a sensitizer. We identified 134 mouse susceptibility genes from 129 common insertion sites within 34 mammary tumors. Of these, 126 genes were orthologous to protein-coding genes in the human genome (hereafter, human BC susceptibility genes, hBCSGs), 70% of which are previously reported cancer-associated genes, and ∼16% are known BC suppressor genes. Network analysis revealed a gene hub consisting of E1A binding protein P300 (EP300), CD44 molecule (CD44), neurofibromin (NF1) and phosphatase and tensin homolog (PTEN), which are linked to a significant number of mutated hBCSGs. From our survival prediction analysis of the expression of human BC genes in 2,333 BC cases, we isolated a six-gene-pair classifier that stratifies BC patients with high confidence into prognostically distinct low-, moderate-, and high-risk subgroups. Furthermore, we proposed prognostic classifiers identifying three basal and three claudin-low tumor subgroups. Intriguingly, our hBCSGs are mostly unrelated to cell cycle/mitosis genes and are distinct from the prognostic signatures currently used for stratifying BC patients. Our findings illustrate the strength and validity of integrating functional mutagenesis screens in mice with human cancer transcriptomic data to identify highly prognostic BC subtyping biomarkers.
Collapse
|
20
|
Moustakas A, Heldin CH. Mechanisms of TGFβ-Induced Epithelial-Mesenchymal Transition. J Clin Med 2016; 5:jcm5070063. [PMID: 27367735 PMCID: PMC4961994 DOI: 10.3390/jcm5070063] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023] Open
Abstract
Transitory phenotypic changes such as the epithelial–mesenchymal transition (EMT) help embryonic cells to generate migratory descendants that populate new sites and establish the distinct tissues in the developing embryo. The mesenchymal descendants of diverse epithelia also participate in the wound healing response of adult tissues, and facilitate the progression of cancer. EMT can be induced by several extracellular cues in the microenvironment of a given epithelial tissue. One such cue, transforming growth factor β (TGFβ), prominently induces EMT via a group of specific transcription factors. The potency of TGFβ is partly based on its ability to perform two parallel molecular functions, i.e. to induce the expression of growth factors, cytokines and chemokines, which sequentially and in a complementary manner help to establish and maintain the EMT, and to mediate signaling crosstalk with other developmental signaling pathways, thus promoting changes in cell differentiation. The molecules that are activated by TGFβ signaling or act as cooperating partners of this pathway are impossible to exhaust within a single coherent and contemporary report. Here, we present selected examples to illustrate the key principles of the circuits that control EMT under the influence of TGFβ.
Collapse
Affiliation(s)
- Aristidis Moustakas
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE 751 24 Uppsala, Sweden.
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE 751 23 Uppsala, Sweden.
| | - Carl-Henrik Heldin
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE 751 24 Uppsala, Sweden.
| |
Collapse
|
21
|
Transposon mutagenesis identifies genes and cellular processes driving epithelial-mesenchymal transition in hepatocellular carcinoma. Proc Natl Acad Sci U S A 2016; 113:E3384-93. [PMID: 27247392 DOI: 10.1073/pnas.1606876113] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is thought to contribute to metastasis and chemoresistance in patients with hepatocellular carcinoma (HCC), leading to their poor prognosis. The genes driving EMT in HCC are not yet fully understood, however. Here, we show that mobilization of Sleeping Beauty (SB) transposons in immortalized mouse hepatoblasts induces mesenchymal liver tumors on transplantation to nude mice. These tumors show significant down-regulation of epithelial markers, along with up-regulation of mesenchymal markers and EMT-related transcription factors (EMT-TFs). Sequencing of transposon insertion sites from tumors identified 233 candidate cancer genes (CCGs) that were enriched for genes and cellular processes driving EMT. Subsequent trunk driver analysis identified 23 CCGs that are predicted to function early in tumorigenesis and whose mutation or alteration in patients with HCC is correlated with poor patient survival. Validation of the top trunk drivers identified in the screen, including MET (MET proto-oncogene, receptor tyrosine kinase), GRB2-associated binding protein 1 (GAB1), HECT, UBA, and WWE domain containing 1 (HUWE1), lysine-specific demethylase 6A (KDM6A), and protein-tyrosine phosphatase, nonreceptor-type 12 (PTPN12), showed that deregulation of these genes activates an EMT program in human HCC cells that enhances tumor cell migration. Finally, deregulation of these genes in human HCC was found to confer sorafenib resistance through apoptotic tolerance and reduced proliferation, consistent with recent studies showing that EMT contributes to the chemoresistance of tumor cells. Our unique cell-based transposon mutagenesis screen appears to be an excellent resource for discovering genes involved in EMT in human HCC and potentially for identifying new drug targets.
Collapse
|
22
|
Chordin-Like 1 Suppresses Bone Morphogenetic Protein 4-Induced Breast Cancer Cell Migration and Invasion. Mol Cell Biol 2016; 36:1509-25. [PMID: 26976638 DOI: 10.1128/mcb.00600-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 03/03/2016] [Indexed: 02/06/2023] Open
Abstract
ShcA is an important mediator of ErbB2- and transforming growth factor β (TGF-β)-induced breast cancer cell migration, invasion, and metastasis. We show that in the context of reduced ShcA levels, the bone morphogenetic protein (BMP) antagonist chordin-like 1 (Chrdl1) is upregulated in numerous breast cancer cells following TGF-β stimulation. BMPs have emerged as important modulators of breast cancer aggressiveness, and we have investigated the ability of Chrdl1 to block BMP-induced increases in breast cancer cell migration and invasion. Breast cancer-derived conditioned medium containing elevated concentrations of endogenous Chrdl1, as well as medium containing recombinant Chrdl1, suppresses BMP4-induced signaling in multiple breast cancer cell lines. Live-cell migration assays reveal that BMP4 induces breast cancer migration, which is effectively blocked by Chrdl1. We demonstrate that BMP4 also stimulated breast cancer cell invasion and matrix degradation, in part, through enhanced metalloproteinase 2 (MMP2) and MMP9 activity that is antagonized by Chrdl1. Finally, high Chrdl1 expression was associated with better clinical outcomes in patients with breast cancer. Together, our data reveal that Chrdl1 acts as a negative regulator of malignant breast cancer phenotypes through inhibition of BMP signaling.
Collapse
|
23
|
Hsu TI, Chen YJ, Hung CY, Wang YC, Lin SJ, Su WC, Lai MD, Kim SY, Wang Q, Qian K, Goto M, Zhao Y, Kashiwada Y, Lee KH, Chang WC, Hung JJ. A novel derivative of betulinic acid, SYK023, suppresses lung cancer growth and malignancy. Oncotarget 2016; 6:13671-87. [PMID: 25909174 PMCID: PMC4537041 DOI: 10.18632/oncotarget.3701] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/02/2015] [Indexed: 12/25/2022] Open
Abstract
Herein, we evaluated the anti-cancer effect and molecular mechanisms of a novel betulinic acid (BA) derivative, SYK023, by using two mouse models of lung cancer driven by KrasG12D or EGFRL858R. We found that SYK023 inhibits lung tumor proliferation, without side effects in vivo or cytotoxicity in primary lung cells in vitro. SYK023 triggered endoplasmic reticulum (ER) stress. Blockage of ER stress in SYK023-treated cells inhibited SYK023-induced apoptosis. In addition, we found that the expression of cell cycle-related genes, including cyclin A2, B1, D3, CDC25a, and CDC25b decreased but, while those of p15INK4b, p16INK4a, and p21CIP1 increased following SYK023 treatment. Finally, low doses of SYK023 significantly decreased lung cancer metastasis in vitro and in vivo. Expression of several genes related to cell migration, including synaptopodin, were downregulated by SYK023, thereby impairing F-actin polymerization and metastasis. Therefore, SYK023 may be a potentially therapeutic treatment for metastatic lung cancer.
Collapse
Affiliation(s)
- Tsung-I Hsu
- Center for Infection Disease and Signal Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Jung Chen
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yang Hung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Chang Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sin-Jin Lin
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Wu-Chou Su
- Department of Internal Medicine, College of Medicine and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Derg Lai
- Center for Infection Disease and Signal Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sang-Yong Kim
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Qiang Wang
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Keduo Qian
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Yu Zhao
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Yoshiki Kashiwada
- Laboratory of Pharmacognosy, Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima, Japan
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.,Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| | - Wen-Chang Chang
- Center for Infection Disease and Signal Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jan-Jong Hung
- Center for Infection Disease and Signal Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
24
|
Janssens V, Zwaenepoel K, Rossé C, Petit MMR, Goris J, Parker PJ. PP2A binds to the LIM domains of lipoma-preferred partner through its PR130/B″ subunit to regulate cell adhesion and migration. J Cell Sci 2016; 129:1605-18. [PMID: 26945059 PMCID: PMC5333791 DOI: 10.1242/jcs.175778] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 02/18/2016] [Indexed: 01/23/2023] Open
Abstract
Here, we identify the LIM protein lipoma-preferred partner (LPP) as a binding partner of a specific protein phosphatase 2A (PP2A) heterotrimer that is characterised by the regulatory PR130/B″α1 subunit (encoded by PPP2R3A). The PR130 subunit interacts with the LIM domains of LPP through a conserved Zn²⁺-finger-like motif in the differentially spliced N-terminus of PR130. Isolated LPP-associated PP2A complexes are catalytically active. PR130 colocalises with LPP at multiple locations within cells, including focal contacts, but is specifically excluded from mature focal adhesions, where LPP is still present. An LPP-PR130 fusion protein only localises to focal adhesions upon deletion of the domain of PR130 that binds to the PP2A catalytic subunit (PP2A/C), suggesting that PR130-LPP complex formation is dynamic and that permanent recruitment of PP2A activity might be unfavourable for focal adhesion maturation. Accordingly, siRNA-mediated knockdown of PR130 increases adhesion of HT1080 fibrosarcoma cells onto collagen I and decreases their migration in scratch wound and Transwell assays. Complex formation with LPP is mandatory for these PR130-PP2A functions, as neither phenotype can be rescued by re-expression of a PR130 mutant that no longer binds to LPP. Our data highlight the importance of specific, locally recruited PP2A complexes in cell adhesion and migration dynamics.
Collapse
Affiliation(s)
- Veerle Janssens
- Francis Crick Institute, Protein Phosphorylation Laboratory, 44 Lincoln's Inn Fields, London WC2A 3PX, UK Laboratory of Protein Phosphorylation and Proteomics, Dept. of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 PO-box 901, Leuven B-3000, Belgium
| | - Karen Zwaenepoel
- Laboratory of Protein Phosphorylation and Proteomics, Dept. of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 PO-box 901, Leuven B-3000, Belgium
| | - Carine Rossé
- Francis Crick Institute, Protein Phosphorylation Laboratory, 44 Lincoln's Inn Fields, London WC2A 3PX, UK Research Centre, Institut Curie, Paris 75005, France
| | - Marleen M R Petit
- Molecular Oncology Laboratory, Dept. of Human Genetics, KU Leuven, Herestraat 49 PO-box 602, Leuven B-3000, Belgium
| | - Jozef Goris
- Laboratory of Protein Phosphorylation and Proteomics, Dept. of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 PO-box 901, Leuven B-3000, Belgium
| | - Peter J Parker
- Francis Crick Institute, Protein Phosphorylation Laboratory, 44 Lincoln's Inn Fields, London WC2A 3PX, UK Division of Cancer Studies King's College London, Guy's Hospital Campus, Thomas Street, London SE1 9RT, UK
| |
Collapse
|
25
|
Ma B, Cheng H, Gao R, Mu C, Chen L, Wu S, Chen Q, Zhu Y. Zyxin-Siah2-Lats2 axis mediates cooperation between Hippo and TGF-β signalling pathways. Nat Commun 2016; 7:11123. [PMID: 27030211 PMCID: PMC4821889 DOI: 10.1038/ncomms11123] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 02/18/2016] [Indexed: 12/21/2022] Open
Abstract
The evolutionarily conserved Hippo pathway is a regulator that controls organ size, cell growth and tissue homeostasis. Upstream signals of the Hippo pathway have been widely studied, but how microenvironmental factors coordinately regulate this pathway remains unclear. In this study, we identify LIM domain protein Zyxin, as a scaffold protein, that in response to hypoxia and TGF-β stimuli, forms a ternary complex with Lats2 and Siah2 and stabilizes their interaction. This interaction facilitates Lats2 ubiquitination and degradation, Yap dephosphorylation and subsequently activation. We show that Zyxin is required for TGF-β and hypoxia-induced Lats2 downregulation and deactivation of Hippo signalling in MDA-MB-231 cells. Depletion of Zyxin impairs the capability of cell migration, proliferation and tumourigenesis in a xenograft model. Zyxin is upregulated in human breast cancer and positively correlates with histological stages and metastasis. Our study demonstrates that Zyxin-Lats2–Siah2 axis may serve as a potential therapeutic target in cancer treatment. Hippo and TGF-β are crucial signalling pathways involved in the development of various types of tumours. Here, the authors demonstrate that TGF-β can directly regulate Hippo pathway through the stabilization of the scaffold protein Zyxin, which forms a ternary complex with Siah2 and Lats2 promoting Lats2 degradation and YAP activation.
Collapse
Affiliation(s)
- Biao Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hongcheng Cheng
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ruize Gao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chenglong Mu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ling Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shian Wu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Quan Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yushan Zhu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
26
|
Bergeman J, Caillier A, Houle F, Gagné LM, Huot MÉ. Localized translation regulates cell adhesion and transendothelial migration. J Cell Sci 2016; 129:4105-4117. [DOI: 10.1242/jcs.191320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/08/2016] [Indexed: 12/31/2022] Open
Abstract
By progressing through the epithelial to mesenchymal transition (EMT), cancer cells gain the ability to leave the primary tumor site and invade surrounding tissues. These metastatic cancers cells can further increase their plasticity by adopting an amoeboid-like morphology, by undergoing mesenchymal to amoeboid transition (MAT). We found that adhering cells producing spreading initiation centers (SIC), a transient structure localized above nascent adhesion complexes, share common biological and morphological characteristics associated with amoeboid cells. Meanwhile, spreading cells seem to return to a mesenchymal-like morphology. Thus, our results indicate that SIC-induced adhesion recapitulate events associated with amoeboid to mesenchymal transition (AMT). We found that polyadenylated RNAs were enriched within SIC and blocking their translation decreased adhesion potential of metastatic cells that progressed through EMT. These results point to a novel checkpoint regulating cell adhesion and allowing metastatic cells to alter adhesion strength in order to modulate their dissemination.
Collapse
Affiliation(s)
- Jonathan Bergeman
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada, G1R 3S3
| | - Alexia Caillier
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada, G1R 3S3
| | - François Houle
- CRCHU de Québec: Hôtel-Dieu de Québec; Québec, Canada, G1R 3S3
| | - Laurence M. Gagné
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada, G1R 3S3
| | - Marc-Étienne Huot
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada, G1R 3S3
- CRCHU de Québec: Hôtel-Dieu de Québec; Québec, Canada, G1R 3S3
| |
Collapse
|
27
|
Zhang C, Wu H, Wang Y, Zhao Y, Fang X, Chen C, Chen H. Expression Patterns of Circular RNAs from Primary Kinase Transcripts in the Mammary Glands of Lactating Rats. J Breast Cancer 2015; 18:235-41. [PMID: 26472973 PMCID: PMC4600687 DOI: 10.4048/jbc.2015.18.3.235] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/09/2015] [Indexed: 12/23/2022] Open
Abstract
Purpose Circular RNAs (circRNAs), a novel class of RNAs, perform important functions in biological processes. However, the role of circRNAs in the mammary gland remains unknown. The present study is aimed at identifying and characterizing the circRNAs expressed in the mammary gland of lactating rats. Methods Deep sequencing of RNase R-enriched rat lactating mammary gland samples was performed and circRNAs were predicted using a previously reported computational pipeline. Gene ontology terms of circRNA-producing genes were also analyzed. Results A total of 6,824 and 4,523 circRNAs were identified from rat mammary glands at two different lactation stages. Numerous circRNAs were specifically expressed at different lactation stages, and only 1,314 circRNAs were detected at both lactation stages. The majority of the candidate circRNAs map to noncoding intronic and intergenic regions. The results demonstrate a circular preference or specificity of some genes. DAVID analysis revealed an enrichment of protein kinases and related proteins among the set of genes encoding circRNAs. Interestingly, four protein-coding genes (Rev3l, IGSF11, MAML2, and LPP) that also transcribe high levels of circRNAs have been reported to be involved in cancer. Conclusion Our findings provide the basis for comparison between breast cancer profiles and for selecting representative circRNA candidates for future functional characterization in breast development and breast cancer.
Collapse
Affiliation(s)
- ChunLei Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Hui Wu
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - YanHong Wang
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - YuLong Zhao
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - XingTang Fang
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - CaiFa Chen
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Hong Chen
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
28
|
Meinhardt G, Kaltenberger S, Fiala C, Knöfler M, Pollheimer J. ERBB2 gene amplification increases during the transition of proximal EGFR(+) to distal HLA-G(+) first trimester cell column trophoblasts. Placenta 2015; 36:803-8. [PMID: 26071215 DOI: 10.1016/j.placenta.2015.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/11/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Although, DNA copy-number alterations (CNAs) have been well documented in a number of adverse phenotypic conditions, accumulating data suggest that CNAs also occur during physiological processes. Interestingly, extravillous trophoblasts induce the expression of the transforming, proto-oncogene ERBB2, which is frequently amplified in human cancer. However, no data are available to address whether trophoblast-related ERBB2 expression might also be linked to genomic amplification. METHODS Dual color silver as well as fluorescence in situ hybridization analyses were carried out to evaluate frequency and degree of ERBB2 gene and chromosome 17 copy numbers in first trimester placental cell columns and isolated trophoblasts. Proliferative EGFR(+) and differentiated HLA-G(+) trophoblasts were identified or separated by means of in situ immunofluorescence co-stainings and magnetic beads cell isolation, respectively. RESULTS ERBB2 gene amplification is detected in approximately 40% of isolated HLA-G(+) trophoblasts. Although already detectable in EGFR(+) cells, the percentage and extent of ERBB2 amplification was markedly increased in HLA-G(+) trophoblasts in situ and after isolation. Accordingly, HLA-G(+) trophoblasts highly express ERBB2 on protein level. Finally, ERBB2 copy number variations occur independently of aneuploidy as the majority of ERBB2 amplifying cells were cytogenetically diploid for chromosome 17. DISCUSSION ERBB2 gene amplification is a frequent event during EVT differentiation. This finding challenges the long standing paradigm, which associates gene amplification with pathological conditions and further supports recent evidences suggesting that CNAs are a normal feature of developmental processes.
Collapse
Affiliation(s)
- G Meinhardt
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Austria
| | - S Kaltenberger
- Clinical Institute of Pathology, Medical University of Vienna, Austria
| | - C Fiala
- Gynmed Clinic, Vienna, Austria
| | - M Knöfler
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Austria
| | - J Pollheimer
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Austria.
| |
Collapse
|
29
|
GPNMB cooperates with neuropilin-1 to promote mammary tumor growth and engages integrin α5β1 for efficient breast cancer metastasis. Oncogene 2015; 34:5494-504. [PMID: 25772243 DOI: 10.1038/onc.2015.8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 12/23/2014] [Accepted: 01/14/2015] [Indexed: 12/17/2022]
Abstract
Glycoprotein nmb (GPNMB) promotes breast tumor growth and metastasis and its expression in tumor epithelium correlates with poor prognosis in breast cancer patients. Despite its biological and clinical significance, little is known regarding the molecular mechanisms engaged by GPNMB. Herein, we show that GPNMB engages distinct functional domains and mechanisms to promote primary tumor growth and metastasis. We demonstrate that neuropilin-1 (NRP-1) expression is increased in breast cancer cells that overexpress GPNMB. Interestingly, the GPNMB-driven increase in NRP-1 expression potentiated vascular endothelial growth factor signaling in breast cancer cells and was required for the growth, but not metastasis, of these cells in vivo. Interrogation of RNAseq data sets revealed a positive correlation between GPNMB and NRP-1 levels in human breast tumors. Furthermore, we ascribe pro-growth and pro-metastatic functions of GPNMB to its ability to bind α5β1 integrin and increase downstream signaling in breast cancer cells. We show that GPNMB enhances breast cancer cell adhesion to fibronectin, increases α5β1 expression and associates with this receptor through its RGD motif. GPNMB recruitment into integrin complexes activates Src and Fak signaling pathways in an RGD-dependent manner. Importantly, both the RGD motif and cytoplasmic tail of GPNMB are required to promote primary mammary tumor growth; however, only mutation of the RGD motif impaired the formation of lung metastases. Together, these findings identify novel and distinct molecular mediators of GPNMB-induced breast cancer growth and metastasis.
Collapse
|
30
|
Cava C, Bertoli G, Ripamonti M, Mauri G, Zoppis I, Rosa PAD, Gilardi MC, Castiglioni I. Integration of mRNA expression profile, copy number alterations, and microRNA expression levels in breast cancer to improve grade definition. PLoS One 2014; 9:e97681. [PMID: 24866763 PMCID: PMC4035288 DOI: 10.1371/journal.pone.0097681] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 04/23/2014] [Indexed: 12/20/2022] Open
Abstract
Defining the aggressiveness and growth rate of a malignant cell population is a key step in the clinical approach to treating tumor disease. The correct grading of breast cancer (BC) is a fundamental part in determining the appropriate treatment. Biological variables can make it difficult to elucidate the mechanisms underlying BC development. To identify potential markers that can be used for BC classification, we analyzed mRNAs expression profiles, gene copy numbers, microRNAs expression and their association with tumor grade in BC microarray-derived datasets. From mRNA expression results, we found that grade 2 BC is most likely a mixture of grade 1 and grade 3 that have been misclassified, being described by the gene signature of either grade 1 or grade 3. We assessed the potential of the new approach of integrating mRNA expression profile, copy number alterations, and microRNA expression levels to select a limited number of genomic BC biomarkers. The combination of mRNA profile analysis and copy number data with microRNA expression levels led to the identification of two gene signatures of 42 and 4 altered genes (FOXM1, KPNA4, H2AFV and DDX19A) respectively, the latter obtained through a meta-analytical procedure. The 42-based gene signature identifies 4 classes of up- or down-regulated microRNAs (17 microRNAs) and of their 17 target mRNA, and the 4-based genes signature identified 4 microRNAs (Hsa-miR-320d, Hsa-miR-139-5p, Hsa-miR-567 and Hsa-let-7c). These results are discussed from a biological point of view with respect to pathological features of BC. Our identified mRNAs and microRNAs were validated as prognostic factors of BC disease progression, and could potentially facilitate the implementation of assays for laboratory validation, due to their reduced number.
Collapse
Affiliation(s)
- Claudia Cava
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| | - Marilena Ripamonti
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| | - Giancarlo Mauri
- Department of Informatics, Systems and Communications, University of Milan–Bicocca, Milan, Italy
| | - Italo Zoppis
- Department of Informatics, Systems and Communications, University of Milan–Bicocca, Milan, Italy
| | | | - Maria Carla Gilardi
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| |
Collapse
|
31
|
Moustakas A, Heldin P. TGFβ and matrix-regulated epithelial to mesenchymal transition. Biochim Biophys Acta Gen Subj 2014; 1840:2621-34. [PMID: 24561266 DOI: 10.1016/j.bbagen.2014.02.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 02/05/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND The progression of cancer through stages that guide a benign hyperplastic epithelial tissue towards a fully malignant and metastatic carcinoma, is driven by genetic and microenvironmental factors that remodel the tissue architecture. The concept of epithelial-mesenchymal transition (EMT) has evolved to emphasize the importance of plastic changes in tissue architecture, and the cross-communication of tumor cells with various cells in the stroma and with specific molecules in the extracellular matrix (ECM). SCOPE OF THE REVIEW Among the multitude of ECM-embedded cytokines and the regulatory potential of ECM molecules, this article focuses on the cytokine transforming growth factor β (TGFβ) and the glycosaminoglycan hyaluronan, and their roles in cancer biology and EMT. For brevity, we concentrate our effort on breast cancer. MAJOR CONCLUSIONS Both normal and abnormal TGFβ signaling can be detected in carcinoma and stromal cells, and TGFβ-induced EMT requires the expression of hyaluronan synthase 2 (HAS2). Correspondingly, hyaluronan is a major constituent of tumor ECM and aberrant levels of both hyaluronan and TGFβ are thought to promote a wounding reaction to the local tissue homeostasis. The link between EMT and metastasis also involves the mesenchymal-epithelial transition (MET). ECM components, signaling networks, regulatory non-coding RNAs and epigenetic mechanisms form the network of regulation during EMT-MET. GENERAL SIGNIFICANCE Understanding the mechanism that controls epithelial plasticity in the mammary gland promises the development of valuable biomarkers for the prognosis of breast cancer progression and even provides new ideas for a more integrative therapeutic approach against disease. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Aristidis Moustakas
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
| | - Paraskevi Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
32
|
Bonifaci N, Colas E, Serra-Musach J, Karbalai N, Brunet J, Gómez A, Esteller M, Fernández-Taboada E, Berenguer A, Reventós J, Müller-Myhsok B, Amundadottir L, Duell EJ, Pujana MÀ. Integrating gene expression and epidemiological data for the discovery of genetic interactions associated with cancer risk. Carcinogenesis 2013; 35:578-85. [PMID: 24296589 DOI: 10.1093/carcin/bgt403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dozens of common genetic variants associated with cancer risk have been identified through genome-wide association studies (GWASs). However, these variants only explain a modest fraction of the heritability of disease. The missing heritability has been attributed to several factors, among them the existence of genetic interactions (G × G). Systematic screens for G × G in model organisms have revealed their fundamental influence in complex phenotypes. In this scenario, G × G overlap significantly with other types of gene and/or protein relationships. Here, by integrating predicted G × G from GWAS data and complex- and context-defined gene coexpression profiles, we provide evidence for G × G associated with cancer risk. G × G predicted from a breast cancer GWAS dataset identified significant overlaps [relative enrichments (REs) of 8-36%, empirical P values < 0.05 to 10(-4)] with complex (non-linear) gene coexpression in breast tumors. The use of gene or protein data not specific for breast cancer did not reveal overlaps. According to the predicted G × G, experimental assays demonstrated functional interplay between lipoma-preferred partner and transforming growth factor-β signaling in the MCF10A non-tumorigenic mammary epithelial cell model. Next, integration of pancreatic tumor gene expression profiles with pancreatic cancer G × G predicted from a GWAS corroborated the observations made for breast cancer risk (REs of 25-59%). The method presented here can potentially support the identification of genetic interactions associated with cancer risk, providing novel mechanistic hypotheses for carcinogenesis.
Collapse
Affiliation(s)
- Núria Bonifaci
- Breast Cancer and Systems Biology Unit, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Menon R, Im H, Zhang EY, Wu SL, Chen R, Snyder M, Hancock WS, Omenn GS. Distinct splice variants and pathway enrichment in the cell-line models of aggressive human breast cancer subtypes. J Proteome Res 2013; 13:212-27. [PMID: 24111759 DOI: 10.1021/pr400773v] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study was conducted as a part of the Chromosome-Centric Human Proteome Project (C-HPP) of the Human Proteome Organization. The United States team of C-HPP is focused on characterizing the protein-coding genes in chromosome 17. Despite its small size, chromosome 17 is rich in protein-coding genes; it contains many cancer-associated genes, including BRCA1, ERBB2, (Her2/neu), and TP53. The goal of this study was to examine the splice variants expressed in three ERBB2 expressed breast cancer cell-line models of hormone-receptor-negative breast cancers by integrating RNA-Seq and proteomic mass spectrometry data. The cell lines represent distinct phenotypic variations subtype: SKBR3 (ERBB2+ (overexpression)/ER-/PR-; adenocarcinoma), SUM190 (ERBB2+ (overexpression)/ER-/PR-; inflammatory breast cancer), and SUM149 (ERBB2 (low expression) ER-/PR-; inflammatory breast cancer). We identified more than one splice variant for 1167 genes expressed in at least one of the three cancer cell lines. We found multiple variants of genes that are in the signaling pathways downstream of ERBB2 along with variants specific to one cancer cell line compared with the other two cancer cell lines and with normal mammary cells. The overall transcript profiles based on read counts indicated more similarities between SKBR3 and SUM190. The top-ranking Gene Ontology and BioCarta pathways for the cell-line specific variants pointed to distinct key mechanisms including: amino sugar metabolism, caspase activity, and endocytosis in SKBR3; different aspects of metabolism, especially of lipids in SUM190; cell-to-cell adhesion, integrin, and ERK1/ERK2 signaling; and translational control in SUM149. The analyses indicated an enrichment in the electron transport chain processes in the ERBB2 overexpressed cell line models and an association of nucleotide binding, RNA splicing, and translation processes with the IBC models, SUM190 and SUM149. Detailed experimental studies on the distinct variants identified from each of these three breast cancer cell line models that may open opportunities for drug target discovery and help unveil their specific roles in cancer progression and metastasis.
Collapse
Affiliation(s)
- Rajasree Menon
- Department of Computational Medicine & Bioinformatics, University of Michigan , 100 Washtenaw Avenue, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | | | | | | |
Collapse
|