1
|
Harken AD, Deoli NT, Perez Campos C, Ponnaiya B, Garty G, Lee GS, Casper MJ, Dhingra S, Li W, Johnson GW, Amundson SA, Grabham PW, Hillman EMC, Brenner DJ. Combined ion beam irradiation platform and 3D fluorescence microscope for cellular cancer research. BIOMEDICAL OPTICS EXPRESS 2024; 15:2561-2577. [PMID: 38633084 PMCID: PMC11019671 DOI: 10.1364/boe.522969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
To improve particle radiotherapy, we need a better understanding of the biology of radiation effects, particularly in heavy ion radiation therapy, where global responses are observed despite energy deposition in only a subset of cells. Here, we integrated a high-speed swept confocally-aligned planar excitation (SCAPE) microscope into a focused ion beam irradiation platform to allow real-time 3D structural and functional imaging of living biological samples during and after irradiation. We demonstrate dynamic imaging of the acute effects of irradiation on 3D cultures of U87 human glioblastoma cells, revealing characteristic changes in cellular movement and intracellular calcium signaling following ionizing irradiation.
Collapse
Affiliation(s)
- Andrew D Harken
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, 136 S. Broadway, P.O. Box 21, Irvington, New York 10533, USA
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Naresh T Deoli
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, 136 S. Broadway, P.O. Box 21, Irvington, New York 10533, USA
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Citlali Perez Campos
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - Brian Ponnaiya
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, 136 S. Broadway, P.O. Box 21, Irvington, New York 10533, USA
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Guy Garty
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, 136 S. Broadway, P.O. Box 21, Irvington, New York 10533, USA
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Grace S Lee
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - Malte J Casper
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - Shikhar Dhingra
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - Wenze Li
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - Gary W Johnson
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Peter W Grabham
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Elizabeth M C Hillman
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - David J Brenner
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, 136 S. Broadway, P.O. Box 21, Irvington, New York 10533, USA
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| |
Collapse
|
2
|
Musotto R, Wanderlingh U, D’Ascola A, Spatuzza M, Catania MV, De Pittà M, Pioggia G. Dynamics of astrocytes Ca 2+ signaling: a low-cost fluorescence customized system for 2D cultures. Front Cell Dev Biol 2024; 12:1320672. [PMID: 38322166 PMCID: PMC10844566 DOI: 10.3389/fcell.2024.1320672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
In an effort to help reduce the costs of fluorescence microscopy and expand the use of this valuable technique, we developed a low-cost platform capable of visualising and analysing the spatio-temporal dynamics of intracellular Ca2+ signalling in astrocytes. The created platform, consisting of a specially adapted fluorescence microscope and a data analysis procedure performed with Imagej Fiji software and custom scripts, allowed us to detect relative changes of intracellular Ca2+ ions in astrocytes. To demonstrate the usefulness of the workflow, we applied the methodology to several in vitro astrocyte preparations, specifically immortalised human astrocyte cells and wild-type mouse cells. To demonstrate the reliability of the procedure, analyses were conducted by stimulating astrocyte activity with the agonist dihydroxyphenylglycine (DHPG), alone or in the presence of the antagonist 2-methyl-6-phenylethyl-pyridine (MPEP).
Collapse
Affiliation(s)
- Rosa Musotto
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Messina, Italy
| | - Ulderico Wanderlingh
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Messina, Italy
| | - Angela D’Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, Messina, Italy
| | - Michela Spatuzza
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy
| | - Maria Vincenza Catania
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy
| | - Maurizio De Pittà
- Division of Clinical and Computational Neurosciences, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Basque Center for Applied Mathematics, Bilbao, Spain
- Department of Neurosciences, Faculty of Medicine, The University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Messina, Italy
| |
Collapse
|
3
|
Antonelli L, Polverino F, Albu A, Hada A, Asteriti IA, Degrassi F, Guarguaglini G, Maddalena L, Guarracino MR. ALFI: Cell cycle phenotype annotations of label-free time-lapse imaging data from cultured human cells. Sci Data 2023; 10:677. [PMID: 37794110 PMCID: PMC10551030 DOI: 10.1038/s41597-023-02540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023] Open
Abstract
Detecting and tracking multiple moving objects in a video is a challenging task. For living cells, the task becomes even more arduous as cells change their morphology over time, can partially overlap, and mitosis leads to new cells. Differently from fluorescence microscopy, label-free techniques can be easily applied to almost all cell lines, reducing sample preparation complexity and phototoxicity. In this study, we present ALFI, a dataset of images and annotations for label-free microscopy, made publicly available to the scientific community, that notably extends the current panorama of expertly labeled data for detection and tracking of cultured living nontransformed and cancer human cells. It consists of 29 time-lapse image sequences from HeLa, U2OS, and hTERT RPE-1 cells under different experimental conditions, acquired by differential interference contrast microscopy, for a total of 237.9 hours. It contains various annotations (pixel-wise segmentation masks, object-wise bounding boxes, tracking information). The dataset is useful for testing and comparing methods for identifying interphase and mitotic events and reconstructing their lineage, and for discriminating different cellular phenotypes.
Collapse
Affiliation(s)
- Laura Antonelli
- ICAR, Institute for High-Performance Computing and Networking, National Research Council, Naples, Italy
| | - Federica Polverino
- IBPM, Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Alexandra Albu
- Department of Economics and Law, University of Cassino and Southern Lazio, Cassino, Italy
| | - Aroj Hada
- Department of Economics and Law, University of Cassino and Southern Lazio, Cassino, Italy
| | - Italia A Asteriti
- IBPM, Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Francesca Degrassi
- IBPM, Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Giulia Guarguaglini
- IBPM, Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy.
| | - Lucia Maddalena
- ICAR, Institute for High-Performance Computing and Networking, National Research Council, Naples, Italy.
| | - Mario R Guarracino
- Department of Economics and Law, University of Cassino and Southern Lazio, Cassino, Italy
- Laboratory of Algorithms and Technologies for Networks Analysis, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
4
|
Bailey MLP, Pratt SE, Hinrichsen M, Zhang Y, Bewersdorf J, Regan LJ, Mochrie SGJ. Uncovering diffusive states of the yeast membrane protein, Pma1, and how labeling method can change diffusive behavior. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:42. [PMID: 37294385 PMCID: PMC10369454 DOI: 10.1140/epje/s10189-023-00301-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/15/2023] [Indexed: 06/10/2023]
Abstract
We present and analyze video-microscopy-based single-particle-tracking measurements of the budding yeast (Saccharomyces cerevisiae) membrane protein, Pma1, fluorescently labeled either by direct fusion to the switchable fluorescent protein, mEos3.2, or by a novel, light-touch, labeling scheme, in which a 5 amino acid tag is directly fused to the C-terminus of Pma1, which then binds mEos3.2. The track diffusivity distributions of these two populations of single-particle tracks differ significantly, demonstrating that labeling method can be an important determinant of diffusive behavior. We also applied perturbation expectation maximization (pEMv2) (Koo and Mochrie in Phys Rev E 94(5):052412, 2016), which sorts trajectories into the statistically optimum number of diffusive states. For both TRAP-labeled Pma1 and Pma1-mEos3.2, pEMv2 sorts the tracks into two diffusive states: an essentially immobile state and a more mobile state. However, the mobile fraction of Pma1-mEos3.2 tracks is much smaller ([Formula: see text]) than the mobile fraction of TRAP-labeled Pma1 tracks ([Formula: see text]). In addition, the diffusivity of Pma1-mEos3.2's mobile state is several times smaller than the diffusivity of TRAP-labeled Pma1's mobile state. Thus, the two different labeling methods give rise to very different overall diffusive behaviors. To critically assess pEMv2's performance, we compare the diffusivity and covariance distributions of the experimental pEMv2-sorted populations to corresponding theoretical distributions, assuming that Pma1 displacements realize a Gaussian random process. The experiment-theory comparisons for both the TRAP-labeled Pma1 and Pma1-mEos3.2 reveal good agreement, bolstering the pEMv2 approach.
Collapse
Affiliation(s)
- Mary Lou P Bailey
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT, 06511, USA
- Department of Applied Physics, Yale University, New Haven, CT, 06511, USA
| | - Susan E Pratt
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT, 06511, USA
- Department of Physics, Yale University, New Haven, CT, 06511, USA
| | | | - Yongdeng Zhang
- Department of Cell Biology, Yale University, New Haven, CT, 06511, USA
| | - Joerg Bewersdorf
- Department of Applied Physics, Yale University, New Haven, CT, 06511, USA
- Department of Physics, Yale University, New Haven, CT, 06511, USA
- Department of Cell Biology, Yale University, New Haven, CT, 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Lynne J Regan
- Institute of Quantitative Biology, Biochemistry and Biotechnology, Center for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, 06511, UK
| | - Simon G J Mochrie
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT, 06511, USA.
- Department of Applied Physics, Yale University, New Haven, CT, 06511, USA.
- Department of Physics, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
5
|
Live Cell Imaging of Dynamic Processes in Adult Zebrafish Retinal Cross-Section Cultures. Methods Mol Biol 2023; 2636:367-388. [PMID: 36881311 DOI: 10.1007/978-1-0716-3012-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Following retinal injury, zebrafish possess the remarkable capacity to endogenously regenerate lost retinal neurons from Müller glia-derived neuronal progenitor cells. Additionally, neuronal cell types that are undamaged and persist in the injured retina are also produced. Thus, the zebrafish retina is an excellent system to study the integration of all neuronal cell types into an existing neuronal circuit. The few studies that examined axonal/dendritic outgrowth and the establishment of synaptic contacts by regenerated neurons predominantly utilized fixed tissue samples. We recently established a flatmount culture model to monitor Müller glia nuclear migration in real time by two-photon microscopy. However, in retinal flatmounts, z-stacks of the entire retinal z-dimension have to be acquired to image cells that extend through parts or the entirety of the neural retina, such as bipolar cells and Müller glia, respectively. Cellular processes with fast kinetics might thus be missed. Therefore, we generated a retinal cross-section culture from light-damaged zebrafish to image the entire Müller glia in one z-plane. Isolated dorsal retinal hemispheres were cut into two dorsal quarters and mounted with the cross-section view facing the coverslips of culture dishes, which allowed monitoring Müller glia nuclear migration using confocal microscopy. Confocal imaging of cross-section cultures is ultimately also applicable to live cell imaging of axon/dendrite formation of regenerated bipolar cells, while the flatmount culture model will be more suitable to monitor axon outgrowth of ganglion cells.
Collapse
|
6
|
Magg V, Klein P, Ruggieri A. Monitoring Virus-Induced Stress Granule Dynamics Using Long-Term Live-Cell Imaging. Methods Mol Biol 2022; 2428:325-348. [PMID: 35171489 DOI: 10.1007/978-1-0716-1975-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The integrated stress response is a highly regulated signaling cascade that allows cells to react to a variety of external and internal stimuli. Activation of different stress-responsive kinases leads to the phosphorylation of their common downstream target, the eukaryotic translation initiation factor 2 alpha (eIF2α), which is a critical component of functional translation preinitiation complexes. As a consequence, stalled ribonucleoprotein complexes accumulate in the cytoplasm and condense into microscopically visible cytoplasmic stress granules (SGs). Over the past years, numerous microscopy approaches have been developed to study the spatiotemporal control of SG formation in response to a variety of stressors. Here, we apply long-term live-cell microscopy to monitor the dynamic cellular stress response triggered by infection with chronic hepatitis C virus (HCV) at single-cell level and study the behavior of infected cells that repeatedly switch between a stressed and unstressed state. We describe in detail the engineering of fluorescent SG-reporter cells expressing enhanced yellow fluorescent protein (YFP)-tagged T cell internal antigen 1 (TIA-1) using lentiviral delivery, as well as the production of mCherry-tagged HCV trans-complemented particles, which allow live tracking of SG assembly and disassembly, SG number and size in single infected cells over time.
Collapse
Affiliation(s)
- Vera Magg
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
| | - Philipp Klein
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
7
|
Simões RF, Pino R, Moreira-Soares M, Kovarova J, Neuzil J, Travasso R, Oliveira PJ, Cunha-Oliveira T, Pereira FB. Quantitative analysis of neuronal mitochondrial movement reveals patterns resulting from neurotoxicity of rotenone and 6-hydroxydopamine. FASEB J 2021; 35:e22024. [PMID: 34751984 DOI: 10.1096/fj.202100899r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/24/2021] [Accepted: 10/19/2021] [Indexed: 01/31/2023]
Abstract
Alterations in mitochondrial dynamics, including their intracellular trafficking, are common early manifestations of neuronal degeneration. However, current methodologies used to study mitochondrial trafficking events rely on parameters that are primarily altered in later stages of neurodegeneration. Our objective was to establish a reliable applied statistical analysis to detect early alterations in neuronal mitochondrial trafficking. We propose a novel quantitative analysis of mitochondria trajectories based on innovative movement descriptors, including straightness, efficiency, anisotropy, and kurtosis. We evaluated time- and dose-dependent alterations in trajectory descriptors using biological data from differentiated SH-SY5Y cells treated with the mitochondrial toxicants 6-hydroxydopamine and rotenone. MitoTracker Red CMXRos-labelled mitochondria movement was analyzed by total internal reflection fluorescence microscopy followed by computational modelling to describe the process. Based on the aforementioned trajectory descriptors, this innovative analysis of mitochondria trajectories provides insights into mitochondrial movement characteristics and can be a consistent and sensitive method to detect alterations in mitochondrial trafficking occurring in the earliest time points of neurodegeneration.
Collapse
Affiliation(s)
- Rui F Simões
- CNC, Center for Neuroscience and Cell Biology, UC Biotech, Cantanhede, Portugal
| | - Rute Pino
- CISUC, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal
| | - Maurício Moreira-Soares
- OCBE, Faculty of Medicine, University of Oslo, Oslo, Norway.,Centre for Bioinformatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Jaromira Kovarova
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic.,School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Rui Travasso
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal
| | - Paulo J Oliveira
- CNC, Center for Neuroscience and Cell Biology, UC Biotech, Cantanhede, Portugal
| | | | - Francisco B Pereira
- CISUC, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal.,Coimbra Polytechnic - ISEC, Coimbra, Portugal
| |
Collapse
|
8
|
Wu D, Xu B, Lu M. A heuristic and reliable track-to-track data association approach for multi-cell track reconstruction. APPL INTELL 2021. [DOI: 10.1007/s10489-021-02209-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Multicolor 3D Confocal Imaging of Thick Tissue Sections. Methods Mol Biol 2021; 2350:95-104. [PMID: 34331281 DOI: 10.1007/978-1-0716-1593-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
In multicellular organisms, most physiological and pathological processes involve an interplay between various cells and molecules that act both locally and systemically. To understand how these complex and dynamic processes occur in time and space, imaging techniques are key. Advances in tissue processing techniques and microscopy now allow us to probe these processes at a large scale and at the same time at a level of detail previously unachievable. Indeed, it is now possible to reliably quantify multiple protein expression levels at single-cell resolution in whole organs using three-dimensional fluorescence imaging techniques. Here we describe a method to prepare adult mouse bone tissue for multiplexed confocal imaging of thick tissue sections. Up to eight different fluorophores can be multiplexed using this technique and spectrally resolved using standard confocal microscopy. The optical clearing method described allows detection of these fluorophores up to a depth of >700 μm in the far-red. Although the method was initially developed for bone tissue imaging, we have successfully applied it to several other tissue types.
Collapse
|
10
|
Sahoo PR, Kowada T, Mizukami S. Long-Term Mg 2+ Imaging in Live Cells with a Targetable Fluorescent Probe. Methods Mol Biol 2021; 2274:237-243. [PMID: 34050476 DOI: 10.1007/978-1-0716-1258-3_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Living cells dynamically change their morphology and function according to the cell cycle. Long-term observations of living cells are privileged when we spy the unique, cell cycle-driven molecular events, which cannot be obtained from short-term ones. Mg2+, a metal ion abundant in cells, has been shown to be involved in a variety of physiological phenomena by noninvasive cellular observation using fluorescence microscopy. However, long-term observation of Mg2+ in cells has been a great challenge. Herein, we present a protocol for the long-term microscopic imaging of intracellular Mg2+ levels using a small molecule-protein hybrid fluorescent probe we developed.
Collapse
Affiliation(s)
- Priya Ranjan Sahoo
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, Japan
| | - Toshiyuki Kowada
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, Japan
| | - Shin Mizukami
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
11
|
Price RM, Budzyński MA, Kundra S, Teves SS. Advances in visualizing transcription factor - DNA interactions. Genome 2020; 64:449-466. [PMID: 33113335 DOI: 10.1139/gen-2020-0086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At the heart of the transcription process is the specific interaction between transcription factors (TFs) and their target DNA sequences. Decades of molecular biology research have led to unprecedented insights into how TFs access the genome to regulate transcription. In the last 20 years, advances in microscopy have enabled scientists to add imaging as a powerful tool in probing two specific aspects of TF-DNA interactions: structure and dynamics. In this review, we examine how applications of diverse imaging technologies can provide structural and dynamic information that complements insights gained from molecular biology assays. As a case study, we discuss how applications of advanced imaging techniques have reshaped our understanding of TF behavior across the cell cycle, leading to a rethinking in the field of mitotic bookmarking.
Collapse
Affiliation(s)
- Rachel M Price
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.,Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Marek A Budzyński
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.,Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Shivani Kundra
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.,Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Sheila S Teves
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.,Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
12
|
Cardoso Dos Santos M, Colin I, Ribeiro Dos Santos G, Susumu K, Demarque M, Medintz IL, Hildebrandt N. Time-Gated FRET Nanoprobes for Autofluorescence-Free Long-Term In Vivo Imaging of Developing Zebrafish. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003912. [PMID: 33252168 DOI: 10.1002/adma.202003912] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Indexed: 05/25/2023]
Abstract
The zebrafish is an important vertebrate model for disease, drug discovery, toxicity, embryogenesis, and neuroscience. In vivo fluorescence microscopy can reveal cellular and subcellular details down to the molecular level with fluorescent proteins (FPs) currently the main tool for zebrafish imaging. However, long maturation times, low brightness, photobleaching, broad emission spectra, and sample autofluorescence are disadvantages that cannot be easily overcome by FPs. Here, a bright and photostable terbium-to-quantum dot (QD) Förster resonance energy transfer (FRET) nanoprobe with narrow and tunable emission bands for intracellular in vivo imaging is presented. The long photoluminescence (PL) lifetime enables time-gated (TG) detection without autofluorescence background. Intracellular four-color multiplexing with a single excitation wavelength and in situ assembly and FRET to mCherry demonstrate the versatility of the TG-FRET nanoprobes and the possibility of in vivo bioconjugation to FPs and combined nanoprobe-FP FRET sensing. Upon injection at the one-cell stage, FRET nanoprobes can be imaged in developing zebrafish embryos over seven days with toxicity similar to injected RNA and strongly improved signal-to-background ratios compared to non-TG imaging. This work provides a strategy for advancing in vivo fluorescence imaging applications beyond the capabilities of FPs.
Collapse
Affiliation(s)
- Marcelina Cardoso Dos Santos
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CNRS, CEA, Orsay Cedex, 91405, France
| | - Ingrid Colin
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Gif-sur-Yvette, 91190, France
| | - Gabriel Ribeiro Dos Santos
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CNRS, CEA, Orsay Cedex, 91405, France
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C., 20375, USA
- KeyW Corporation, Hanover, MD, 21076, USA
| | - Michaël Demarque
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Gif-sur-Yvette, 91190, France
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C., 20375, USA
| | - Niko Hildebrandt
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CNRS, CEA, Orsay Cedex, 91405, France
- Laboratoire COBRA (Chimie Organique, Bioorganique Réactivité et Analyse), Université de Rouen Normandie, CNRS, INSA, Mont-Saint-Aignan, 76821, France
| |
Collapse
|
13
|
Towards smart biomanufacturing: a perspective on recent developments in industrial measurement and monitoring technologies for bio-based production processes. J Ind Microbiol Biotechnol 2020; 47:947-964. [PMID: 32895764 PMCID: PMC7695667 DOI: 10.1007/s10295-020-02308-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/31/2020] [Indexed: 12/22/2022]
Abstract
The biomanufacturing industry has now the opportunity to upgrade its production processes to be in harmony with the latest industrial revolution. Technology creates capabilities that enable smart manufacturing while still complying with unfolding regulations. However, many biomanufacturing companies, especially in the biopharma sector, still have a long way to go to fully benefit from smart manufacturing as they first need to transition their current operations to an information-driven future. One of the most significant obstacles towards the implementation of smart biomanufacturing is the collection of large sets of relevant data. Therefore, in this work, we both summarize the advances that have been made to date with regards to the monitoring and control of bioprocesses, and highlight some of the key technologies that have the potential to contribute to gathering big data. Empowering the current biomanufacturing industry to transition to Industry 4.0 operations allows for improved productivity through information-driven automation, not only by developing infrastructure, but also by introducing more advanced monitoring and control strategies.
Collapse
|
14
|
Dallas SL, Moore DS. Using confocal imaging approaches to understand the structure and function of osteocytes and the lacunocanalicular network. Bone 2020; 138:115463. [PMID: 32512167 PMCID: PMC7423610 DOI: 10.1016/j.bone.2020.115463] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
Although overlooked in the past, osteocytes have come to the forefront of skeletal biology and are now recognized as a key cell type that integrates hormonal, mechanical and other signals to control bone mass through regulation of both osteoblast and osteoclast activity. With the surge of recent interest in osteocytes as bone regulatory cells and the discovery that they also function as endocrine regulators of phosphate homeostasis, there has been renewed interest in understanding the structure and function of these unique and relatively inaccessible cells. Osteocytes are embedded within the mineralized bone matrix and are housed within a complex lacunocanalicular system which connects them with the circulation and with other organ systems. This has presented unique challenges for imaging these cells. This review summarizes recent advances in confocal imaging approaches for visualizing osteocytes and their lacunocanalicular networks in both living and fixed bone specimens and discusses how computational approaches can be combined with live and fixed cell imaging techniques to generate quantitative outputs and predictive models. The integration of advanced imaging with computational approaches promises to lead to a more in depth understanding of the structure and function of osteocyte networks and the lacunocanalicular system in the healthy and aging state as well as in pathological conditions in bone.
Collapse
Affiliation(s)
- Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, United States of America.
| | - David S Moore
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, United States of America
| |
Collapse
|
15
|
Yamagishi M, Ohara O, Shirasaki Y. Microfluidic Immunoassays for Time-Resolved Measurement of Protein Secretion from Single Cells. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:67-84. [PMID: 32031877 DOI: 10.1146/annurev-anchem-091619-101212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Measurement of humoral factors secreted from cells has served as an indispensable method to monitor the states of a cell ensemble because humoral factors play crucial roles in cell-cell interaction and aptly reflect the states of individual cells. Although a cell ensemble consisting of a large number of cells has conventionally been the object of such measurements, recent advances in microfluidic technology together with highly sensitive immunoassays have enabled us to quantify secreted humoral factors even from individual cells in either a population or a temporal context. Many groups have reported various miniaturized platforms for immunoassays of proteins secreted from single cells. This review focuses on the current status of time-resolved assay platforms for protein secretion with single-cell resolution. We also discuss future perspectives of time-resolved immunoassays from the viewpoint of systems biology.
Collapse
Affiliation(s)
- Mai Yamagishi
- Department of Biological Sciences, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
- The Futuristic Medical Care Education and Research Organization, Chiba University, Chiba 260-8670, Japan
| | - Yoshitaka Shirasaki
- Department of Biological Sciences, The University of Tokyo, Tokyo 113-0033, Japan;
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| |
Collapse
|
16
|
Andrei L, Kasas S, Ochoa Garrido I, Stanković T, Suárez Korsnes M, Vaclavikova R, Assaraf YG, Pešić M. Advanced technological tools to study multidrug resistance in cancer. Drug Resist Updat 2020; 48:100658. [DOI: 10.1016/j.drup.2019.100658] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023]
|
17
|
Bhowmik D, Culver KSB, Liu T, Odom TW. Resolving Single-Nanoconstruct Dynamics during Targeting and Nontargeting Live-Cell Membrane Interactions. ACS NANO 2019; 13:13637-13644. [PMID: 31398007 PMCID: PMC7830831 DOI: 10.1021/acsnano.9b03144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This paper describes how differences in the dynamics of targeting and nontargeting constructs can provide information on nanoparticle (NP)-cell interactions. We probed translational and rotational dynamics of functionalized Au nanostar (AuNS) nanoconstructs interacting with cells in serum-containing medium. We found that AuNS with targeting ligands had a larger dynamical footprint and faster rotational speed on cell membranes expressing human epidermal growth factor receptor 2 (HER-2) receptors compared to that of AuNS with nontargeting ligands. Targeting and nontargeting nanoconstructs displayed distinct membrane dynamics despite their similar protein adsorption profiles, which suggests that targeted interactions are preserved even in the presence of a protein corona. The high sensitivity of single-NP dynamics can be used to compare different nanoconstruct properties (such as NP size, shape, and surface chemistry) to improve their design as delivery vehicles.
Collapse
Affiliation(s)
- Debanjan Bhowmik
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Kayla S. B. Culver
- Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Tingting Liu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W. Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Corresponding Author: Phone: +1 (847) 491-7674.
| |
Collapse
|
18
|
Loeffler D, Schneiter F, Schroeder T. Pitfalls and requirements in quantifying asymmetric mitotic segregation. Ann N Y Acad Sci 2019; 1466:73-82. [DOI: 10.1111/nyas.14284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Dirk Loeffler
- Department of Biosystems Science and EngineeringEidgenössische Technische Hochschule Zurich Basel Switzerland
| | - Florin Schneiter
- Department of Biosystems Science and EngineeringEidgenössische Technische Hochschule Zurich Basel Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and EngineeringEidgenössische Technische Hochschule Zurich Basel Switzerland
| |
Collapse
|
19
|
Senevirathna BP, Lu S, Dandin MP, Smela E, Abshire PA. Correlation of Capacitance and Microscopy Measurements Using Image Processing for a Lab-on-CMOS Microsystem. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:1214-1225. [PMID: 31283487 DOI: 10.1109/tbcas.2019.2926836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present a capacitance sensor chip developed in a 0.35-μm complementary metal-oxide-semiconductor process for monitoring biological cell viability and proliferation. The chip measures the cell-to-substrate binding through capacitance-to-frequency conversion with a sensitivity of 590 kHz/fF. In vitro experiments with two human ovarian cancer cell lines (CP70 and A2780) were performed and showed the ability to track cell viability in realtime over three days. An imaging platform was developed to provide time-lapse images of the sensor surface, which allowed for concurrent visual and capacitance observation of the cells. The results showed the ability to detect single-cell binding events and changes in cell morphology. Image processing was performed to estimate the cell coverage of sensor electrodes, showing good linear correlation and providing a sensor gain of 1.28 ± 0.29 aF/μm2, which agrees with values reported in the literature. The device is designed for unsupervised operation with minimal packaging requirements. Only a microcontroller is required for readout, making it suitable for applications outside the traditional laboratory setting.
Collapse
|
20
|
Wiesner D, Svoboda D, Maška M, Kozubek M. CytoPacq: a web-interface for simulating multi-dimensional cell imaging. Bioinformatics 2019; 35:4531-4533. [PMID: 31114843 PMCID: PMC6821329 DOI: 10.1093/bioinformatics/btz417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/17/2019] [Accepted: 05/15/2019] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Objective assessment of bioimage analysis methods is an essential step towards understanding their robustness and parameter sensitivity, calling for the availability of heterogeneous bioimage datasets accompanied by their reference annotations. Because manual annotations are known to be arduous, highly subjective and barely reproducible, numerous simulators have emerged over past decades, generating synthetic bioimage datasets complemented with inherent reference annotations. However, the installation and configuration of these tools generally constitutes a barrier to their widespread use. RESULTS We present a modern, modular web-interface, CytoPacq, to facilitate the generation of synthetic benchmark datasets relevant for multi-dimensional cell imaging. CytoPacq poses a user-friendly graphical interface with contextual tooltips and currently allows a comfortable access to various cell simulation systems of fluorescence microscopy, which have already been recognized and used by the scientific community, in a straightforward and self-contained form. AVAILABILITY AND IMPLEMENTATION CytoPacq is a publicly available online service running at https://cbia.fi.muni.cz/simulator. More information about it as well as examples of generated bioimage datasets are available directly through the web-interface. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- David Wiesner
- Centre for Biomedical Image Analysis, Masaryk University, Brno CZ-60200, Czech Republic
| | - David Svoboda
- Centre for Biomedical Image Analysis, Masaryk University, Brno CZ-60200, Czech Republic
| | - Martin Maška
- Centre for Biomedical Image Analysis, Masaryk University, Brno CZ-60200, Czech Republic
| | - Michal Kozubek
- Centre for Biomedical Image Analysis, Masaryk University, Brno CZ-60200, Czech Republic
| |
Collapse
|
21
|
Anthony N, Darmanin C, Bleackley MR, Parisi K, Cadenazzi G, Holmes S, Anderson MA, Nugent KA, Abbey B. Ptychographic imaging of NaD1 induced yeast cell death. BIOMEDICAL OPTICS EXPRESS 2019; 10:4964-4974. [PMID: 31646022 PMCID: PMC6788617 DOI: 10.1364/boe.10.004964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Characterising and understanding the mechanisms involved in cell death are especially important to combating threats to human health, particularly for the study of antimicrobial peptides and their effectiveness against pathogenic fungi. However, imaging these processes often relies on the use of synthetic molecules which bind to specific cellular targets to produce contrast. Here we study yeast cell death, induced by the anti-fungal peptide, NaD1. By treating yeast as a model organism we aim to understand anti-fungal cell death processes without relying on sample modification. Using a quantitative phase imaging technique, ptychography, we were able to produce label free images of yeast cells during death and use them to investigate the mode of action of NaD1. Using this technique we were able to identify a significant phase shift which provided a clear signature of yeast cell death. Additionally, ptychography identifies cell death much earlier than a comparative fluorescence study, providing new insights into the cellular changes that occur during cell death. The results indicate ptychography has great potential as a means of providing additional information about cellular processes which otherwise may be masked by indirect labelling approaches.
Collapse
Affiliation(s)
- Nicholas Anthony
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
- Nanophysics & NIC@IIT, Istituto Italiano Di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
| | - Connie Darmanin
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
| | - Mark R Bleackley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
| | - Kathy Parisi
- Australian National University, ACT 0200, Australia
| | - Guido Cadenazzi
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
| | - Susannah Holmes
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
| | - Marilyn A Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
| | - Keith A Nugent
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
- Australian National University, ACT 0200, Australia
| | - Brian Abbey
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
| |
Collapse
|
22
|
Lim JM, Park C, Park JS, Kim C, Chon B, Cho M. Cytoplasmic Protein Imaging with Mid-Infrared Photothermal Microscopy: Cellular Dynamics of Live Neurons and Oligodendrocytes. J Phys Chem Lett 2019; 10:2857-2861. [PMID: 31025568 DOI: 10.1021/acs.jpclett.9b00616] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mid-infrared photothermal microscopy has been suggested as an alternative to conventional infrared microscopy because in addition to the inherent chemical contrast available upon vibrational excitation, it can feasibly achieve spatial resolution at the submicrometer level. Furthermore, it has substantial potential for real-time bioimaging for the observation of cellular dynamics without photodamage or photobleaching of fluorescent labels. We performed real-time imaging of oligodendrocytes to investigate cellular dynamics throughout the life cycle of a cell, revealing details of cell division and apoptosis, as well as cellular migration. In the case of live neurons, we observed a photothermal contrast associated with traveling protein complexes on an axon, which correspond to the transport of vesicles from the cell body to the dendritic branches of the neuron through the cytoskeleton. We anticipate that mid-infrared photothermal imaging will be of great use for gaining insights into the field of biophysical science, especially with regard to cellular dynamics and functions.
Collapse
Affiliation(s)
- Jong Min Lim
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science , Seoul 02841 , Republic of Korea
| | - Chanjong Park
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science , Seoul 02841 , Republic of Korea
- Department of Chemistry , Korea University , Seoul 02841 , Republic of Korea
| | - Jin-Sung Park
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science , Seoul 02841 , Republic of Korea
| | - Changho Kim
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science , Seoul 02841 , Republic of Korea
| | - Bonghwan Chon
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science , Seoul 02841 , Republic of Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science , Seoul 02841 , Republic of Korea
- Department of Chemistry , Korea University , Seoul 02841 , Republic of Korea
| |
Collapse
|
23
|
Wood NE, Doncic A. A fully-automated, robust, and versatile algorithm for long-term budding yeast segmentation and tracking. PLoS One 2019; 14:e0206395. [PMID: 30917124 PMCID: PMC6436761 DOI: 10.1371/journal.pone.0206395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/08/2019] [Indexed: 12/17/2022] Open
Abstract
Live cell time-lapse microscopy, a widely-used technique to study gene expression and protein dynamics in single cells, relies on segmentation and tracking of individual cells for data generation. The potential of the data that can be extracted from this technique is limited by the inability to accurately segment a large number of cells from such microscopy images and track them over long periods of time. Existing segmentation and tracking algorithms either require additional dyes or markers specific to segmentation or they are highly specific to one imaging condition and cell morphology and/or necessitate manual correction. Here we introduce a fully automated, fast and robust segmentation and tracking algorithm for budding yeast that overcomes these limitations. Full automatization is achieved through a novel automated seeding method, which first generates coarse seeds, then automatically fine-tunes cell boundaries using these seeds and automatically corrects segmentation mistakes. Our algorithm can accurately segment and track individual yeast cells without any specific dye or biomarker. Moreover, we show how existing channels devoted to a biological process of interest can be used to improve the segmentation. The algorithm is versatile in that it accurately segments not only cycling cells with smooth elliptical shapes, but also cells with arbitrary morphologies (e.g. sporulating and pheromone treated cells). In addition, the algorithm is independent of the specific imaging method (bright-field/phase) and objective used (40X/63X/100X). We validate our algorithm's performance on 9 cases each entailing a different imaging condition, objective magnification and/or cell morphology. Taken together, our algorithm presents a powerful segmentation and tracking tool that can be adapted to numerous budding yeast single-cell studies.
Collapse
Affiliation(s)
- N. Ezgi Wood
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| | - Andreas Doncic
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
24
|
Castilla C, Maska M, Sorokin DV, Meijering E, Ortiz-de-Solorzano C. 3-D Quantification of Filopodia in Motile Cancer Cells. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:862-872. [PMID: 30296215 DOI: 10.1109/tmi.2018.2873842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a 3D bioimage analysis workflow to quantitatively analyze single, actin-stained cells with filopodial protrusions of diverse structural and temporal attributes, such as number, length, thickness, level of branching, and lifetime, in time-lapse confocal microscopy image data. Our workflow makes use of convolutional neural networks trained using real as well as synthetic image data, to segment the cell volumes with highly heterogeneous fluorescence intensity levels and to detect individual filopodial protrusions, followed by a constrained nearest-neighbor tracking algorithm to obtain valuable information about the spatio-temporal evolution of individual filopodia. We validated the workflow using real and synthetic 3-D time-lapse sequences of lung adenocarcinoma cells of three morphologically distinct filopodial phenotypes and show that it achieves reliable segmentation and tracking performance, providing a robust, reproducible and less time-consuming alternative to manual analysis of the 3D+t image data.
Collapse
|
25
|
Feigelman J, Ganscha S, Hastreiter S, Schwarzfischer M, Filipczyk A, Schroeder T, Theis FJ, Marr C, Claassen M. Analysis of Cell Lineage Trees by Exact Bayesian Inference Identifies Negative Autoregulation of Nanog in Mouse Embryonic Stem Cells. Cell Syst 2019; 3:480-490.e13. [PMID: 27883891 DOI: 10.1016/j.cels.2016.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/25/2016] [Accepted: 10/31/2016] [Indexed: 11/28/2022]
Abstract
Many cellular effectors of pluripotency are dynamically regulated. In principle, regulatory mechanisms can be inferred from single-cell observations of effector activity across time. However, rigorous inference techniques suitable for noisy, incomplete, and heterogeneous data are lacking. Here, we introduce stochastic inference on lineage trees (STILT), an algorithm capable of identifying stochastic models that accurately describe the quantitative behavior of cell fate markers observed using time-lapse microscopy data collected from proliferating cell populations. STILT performs exact Bayesian parameter inference and stochastic model selection using a particle-filter-based algorithm. We use STILT to investigate the autoregulation of Nanog, a heterogeneously expressed core pluripotency factor, in mouse embryonic stem cells. STILT rejects the possibility of positive Nanog autoregulation with high confidence; instead, model predictions indicate weak negative feedback. We use STILT for rational experimental design and validate model predictions using novel experimental data. STILT is available for download as an open source framework from http://www.imsb.ethz.ch/research/claassen/Software/stilt---stochastic-inference-on-lineage-trees.html.
Collapse
Affiliation(s)
- Justin Feigelman
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland; Department of Mathematics, Technische Universität München, 85748 Garching, Germany
| | - Stefan Ganscha
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Simon Hastreiter
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Michael Schwarzfischer
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Adam Filipczyk
- Department of Microbiology, Oslo University Hospital, 0450 Oslo, Norway
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Department of Mathematics, Technische Universität München, 85748 Garching, Germany
| | - Carsten Marr
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany.
| | - Manfred Claassen
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
26
|
Sorokin DV, Peterlik I, Ulman V, Svoboda D, Necasova T, Morgaenko K, Eiselleova L, Tesarova L, Maska M. FiloGen: A Model-Based Generator of Synthetic 3-D Time-Lapse Sequences of Single Motile Cells With Growing and Branching Filopodia. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:2630-2641. [PMID: 29994200 DOI: 10.1109/tmi.2018.2845884] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The existence of diverse image datasets accompanied by reference annotations is a crucial prerequisite for an objective benchmarking of bioimage analysis methods. Nevertheless, such a prerequisite is hard to satisfy for time lapse, multidimensional fluorescence microscopy image data, manual annotations of which are laborious and often impracticable. In this paper, we present a simulation system capable of generating 3-D time-lapse sequences of single motile cells with filopodial protrusions of user-controlled structural and temporal attributes, such as the number, thickness, length, level of branching, and lifetime of filopodia, accompanied by inherently generated reference annotations. The proposed simulation system involves three globally synchronized modules, each being responsible for a separate task: the evolution of filopodia on a molecular level, linear elastic deformation of the entire cell with filopodia, and the synthesis of realistic, time-coherent cell texture. Its flexibility is demonstrated by generating multiple synthetic 3-D time-lapse sequences of single lung cancer cells of two different phenotypes, qualitatively and quantitatively resembling their real counterparts acquired using a confocal fluorescence microscope.
Collapse
|
27
|
Theorell A, Seiffarth J, Grünberger A, Nöh K. When a single lineage is not enough: Uncertainty-Aware Tracking for spatio-temporal live-cell image analysis. Bioinformatics 2018; 35:1221-1228. [DOI: 10.1093/bioinformatics/bty776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/23/2018] [Accepted: 08/31/2018] [Indexed: 01/16/2023] Open
Affiliation(s)
- Axel Theorell
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Johannes Seiffarth
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Alexander Grünberger
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Multiscale Bioengineering, Bielefeld University, Bielefeld, Germany
| | - Katharina Nöh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
28
|
Dettinger P, Frank T, Etzrodt M, Ahmed N, Reimann A, Trenzinger C, Loeffler D, Kokkaliaris KD, Schroeder T, Tay S. Automated Microfluidic System for Dynamic Stimulation and Tracking of Single Cells. Anal Chem 2018; 90:10695-10700. [PMID: 30059208 DOI: 10.1021/acs.analchem.8b00312] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dynamic environments determine cell fate decisions and function. Understanding the relationship between extrinsic signals on cellular responses and cell fate requires the ability to dynamically change environmental inputs in vitro, while continuously observing individual cells over extended periods of time. This is challenging for nonadherent cells, such as hematopoietic stem and progenitor cells, because media flow displaces and disturbs such cells, preventing culture and tracking of single cells. Here, we present a programmable microfluidic system designed for the long-term culture and time-lapse imaging of nonadherent cells in dynamically changing cell culture conditions without losing track of individual cells. The dynamic, valve-controlled design permits targeted seeding of cells in up to 48 independently controlled culture chambers, each providing sufficient space for long-term cell colony expansion. Diffusion-based media exchange occurs rapidly and minimizes displacement of cells and eliminates shear stress. The chip was successfully tested with long-term culture and tracking of primary hematopoietic stem and progenitor cells, and murine embryonic stem cells. This system will have important applications to analyze dynamic signaling inputs controlling fate choices.
Collapse
Affiliation(s)
- Philip Dettinger
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Tino Frank
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Martin Etzrodt
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Nouraiz Ahmed
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Andreas Reimann
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Christoph Trenzinger
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Dirk Loeffler
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Konstantinos D Kokkaliaris
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Savaş Tay
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland.,Institute for Molecular Engineering , The University of Chicago , 5640 S. Ellis Ave , Chicago , Illinois 60637 , United States
| |
Collapse
|
29
|
Lineage marker synchrony in hematopoietic genealogies refutes the PU.1/GATA1 toggle switch paradigm. Nat Commun 2018; 9:2697. [PMID: 30002371 PMCID: PMC6043612 DOI: 10.1038/s41467-018-05037-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 05/25/2018] [Indexed: 01/21/2023] Open
Abstract
Molecular regulation of cell fate decisions underlies health and disease. To identify molecules that are active or regulated during a decision, and not before or after, the decision time point is crucial. However, cell fate markers are usually delayed and the time of decision therefore unknown. Fortunately, dividing cells induce temporal correlations in their progeny, which allow for retrospective inference of the decision time point. We present a computational method to infer decision time points from correlated marker signals in genealogies and apply it to differentiating hematopoietic stem cells. We find that myeloid lineage decisions happen generations before lineage marker onsets. Inferred decision time points are in agreement with data from colony assay experiments. The levels of the myeloid transcription factor PU.1 do not change during, but long after the predicted lineage decision event, indicating that the PU.1/GATA1 toggle switch paradigm cannot explain the initiation of early myeloid lineage choice.
Collapse
|
30
|
Torres Crigna A, Daniele C, Gamez C, Medina Balbuena S, Pastene DO, Nardozi D, Brenna C, Yard B, Gretz N, Bieback K. Stem/Stromal Cells for Treatment of Kidney Injuries With Focus on Preclinical Models. Front Med (Lausanne) 2018; 5:179. [PMID: 29963554 PMCID: PMC6013716 DOI: 10.3389/fmed.2018.00179] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022] Open
Abstract
Within the last years, the use of stem cells (embryonic, induced pluripotent stem cells, or hematopoietic stem cells), Progenitor cells (e.g., endothelial progenitor cells), and most intensely mesenchymal stromal cells (MSC) has emerged as a promising cell-based therapy for several diseases including nephropathy. For patients with end-stage renal disease (ESRD), dialysis or finally organ transplantation are the only therapeutic modalities available. Since ESRD is associated with a high healthcare expenditure, MSC therapy represents an innovative approach. In a variety of preclinical and clinical studies, MSC have shown to exert renoprotective properties, mediated mainly by paracrine effects, immunomodulation, regulation of inflammation, secretion of several trophic factors, and possibly differentiation to renal precursors. However, studies are highly diverse; thus, knowledge is still limited regarding the exact mode of action, source of MSC in comparison to other stem cell types, administration route and dose, tracking of cells and documentation of therapeutic efficacy by new imaging techniques and tissue visualization. The aim of this review is to provide a summary of published studies of stem cell therapy in acute and chronic kidney injury, diabetic nephropathy, polycystic kidney disease, and kidney transplantation. Preclinical studies with allogeneic or xenogeneic cell therapy were first addressed, followed by a summary of clinical trials carried out with autologous or allogeneic hMSC. Studies were analyzed with respect to source of cell type, mechanism of action etc.
Collapse
Affiliation(s)
- Adriana Torres Crigna
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, University of Heidelberg, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Cristina Daniele
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Carolina Gamez
- Department for Experimental Orthopaedics and Trauma Surgery, Medical Faculty Mannheim, Orthopaedic and Trauma Surgery Centre (OUZ), Heidelberg University, Mannheim, Germany
| | - Sara Medina Balbuena
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Diego O. Pastene
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Daniela Nardozi
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Cinzia Brenna
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Benito Yard
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Karen Bieback
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, University of Heidelberg, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| |
Collapse
|
31
|
Cornwell JA, Nordon RE, Harvey RP. Analysis of cardiac stem cell self-renewal dynamics in serum-free medium by single cell lineage tracking. Stem Cell Res 2018; 28:115-124. [PMID: 29455006 DOI: 10.1016/j.scr.2018.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 02/03/2023] Open
Abstract
Cardiac colony forming unit-fibroblasts (cCFU-F) are a population of stromal cells residing within the SCA1+/PDGFRα+/CD31- fraction of adult mouse hearts, and which have functional characteristics akin to bone marrow mesenchymal stem cells. We hypothesise that they participate in cardiac homeostasis and repair through their actions as lineage progenitors and paracrine signaling hubs. However, cCFU-F are rare and there are no specific markers for these cells, making them challenging to study. cCFU can self-renew in vitro, although the common use of serum has made it difficult to identify cytokines that maintain lineage identity and self-renewal ability. Cell heterogeneity is an additional confounder as cCFU-F cultures are metastable. Here, we address these limitations by identifying serum-free medium (SFM) for growth, and by using cCFU-F isolated from PdgfraGFP/+ mice to record fate outcomes, morphology and PDGFRα expression for hundreds of single cells over time. We show that SFM supplemented with basic fibroblast growth factor, transforming growth factor-β and platelet-derived growth factor, enhanced cCFU-F colony formation and long-term self-renewal, while maintaining cCFU-F potency. cCFU-F cultured in SFM maintained a higher proportion of PDGFRα+ cells, a marker of self-renewing cCFU-F, by increasing Pdgfra-GFP+ divisions and reducing the probability of spontaneous myofibroblast differentiation.
Collapse
Affiliation(s)
- J A Cornwell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia; Australian Research Council Special Research Initiative in Stem Cell Science - Stem Cells, Australia; Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; Department of Life Sciences, Faculty of Dentistry, University of Sydney, Westmead Centre for Oral Health, Westmead Hospital, Westmead 2145, Australia
| | - R E Nordon
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia; Australian Research Council Special Research Initiative in Stem Cell Science - Stem Cells, Australia.
| | - R P Harvey
- Australian Research Council Special Research Initiative in Stem Cell Science - Stem Cells, Australia; Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; School of Biological and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
32
|
Paul-Gilloteaux P, Waharte F, Singh MK, Parrini MC. A Biologist-Friendly Method to Analyze Cross-Correlation Between Protrusion Dynamics and Membrane Recruitment of Actin Regulators. Methods Mol Biol 2018; 1749:279-289. [PMID: 29526004 DOI: 10.1007/978-1-4939-7701-7_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During mesenchymal cell motility, various actin regulators are recruited to the leading edge with exquisite precision in time and space to generate protrusion and retraction cycles. We present here an automated method, named CorRecD (from Correlation Recruitment Dynamics), which quantifies cell edge dynamics, protein recruitment and analyze their cross-correlation. The Wave Regulatory Complex (WRC), a master driver of protrusions, is used as a case-of-study. This biologist-friendly method relies on free software tools and can be applied to any fluorescently tagged protein of interest.
Collapse
Affiliation(s)
- Perrine Paul-Gilloteaux
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris, France.,Cell and Tissue Imaging Facility (PICT-IBiSA), CNRS UMR144, Paris, France.,SFR Santé Francois Bonamy CNRS INSERM Université de Nantes, Nantes, France
| | - François Waharte
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris, France.,Cell and Tissue Imaging Facility (PICT-IBiSA), CNRS UMR144, Paris, France
| | - Manish Kumar Singh
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris, France.,ART Group, Inserm U830, Paris, France
| | - Maria Carla Parrini
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris, France. .,ART Group, Inserm U830, Paris, France.
| |
Collapse
|
33
|
Time-dependent propagators for stochastic models of gene expression: an analytical method. J Math Biol 2017; 77:261-312. [PMID: 29247320 PMCID: PMC6061071 DOI: 10.1007/s00285-017-1196-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/27/2017] [Indexed: 12/01/2022]
Abstract
The inherent stochasticity of gene expression in the context of regulatory networks profoundly influences the dynamics of the involved species. Mathematically speaking, the propagators which describe the evolution of such networks in time are typically defined as solutions of the corresponding chemical master equation (CME). However, it is not possible in general to obtain exact solutions to the CME in closed form, which is due largely to its high dimensionality. In the present article, we propose an analytical method for the efficient approximation of these propagators. We illustrate our method on the basis of two categories of stochastic models for gene expression that have been discussed in the literature. The requisite procedure consists of three steps: a probability-generating function is introduced which transforms the CME into (a system of) partial differential equations (PDEs); application of the method of characteristics then yields (a system of) ordinary differential equations (ODEs) which can be solved using dynamical systems techniques, giving closed-form expressions for the generating function; finally, propagator probabilities can be reconstructed numerically from these expressions via the Cauchy integral formula. The resulting ‘library’ of propagators lends itself naturally to implementation in a Bayesian parameter inference scheme, and can be generalised systematically to related categories of stochastic models beyond the ones considered here.
Collapse
|
34
|
Stadler T, Skylaki S, D Kokkaliaris K, Schroeder T. On the statistical analysis of single cell lineage trees. J Theor Biol 2017; 439:160-165. [PMID: 29208470 PMCID: PMC5764708 DOI: 10.1016/j.jtbi.2017.11.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/10/2017] [Accepted: 11/30/2017] [Indexed: 12/12/2022]
Abstract
Stem cells play a central role in the regeneration and repair of multicellular organisms. However, it remains far from trivial to reliably identify them. Despite decades of work, current techniques to isolate hematopoietic stem cells (HSCs) based on cell-surface markers only result in 50% purity, i.e. half of the sorted cells are not stem cells when functionally tested. Modern microscopy techniques allow us to follow single cells and their progeny for up to weeks in vitro, while recording the cell fates and lifetime of each individual cell. This cell tracking generates so-called lineage trees. Here, we propose statistical techniques to determine if the initial cell in a lineage tree was a HSC. We apply these techniques to murine hematopoietic lineage trees, revealing that 18% of the trees in our HSC dataset display a unique signature, and this signature is compatible with these trees having started from a true stem cell. Assuming 50% purity of HSC empirical datasets, this corresponds to a 0.35 power of the test, and the type-1-error is estimated to be 0.047. In summary, this study shows that statistical analysis of lineage trees could improve the classification of cells, which is currently done based on bio-markers only. Our statistical techniques are not limited to mammalian stem cell biology. Any type of single cell lineage trees, be it from bacteria, single cell eukaryotes, or single cells in a multicellular organism can be investigated. We expect this to contribute to a better understanding of the molecules influencing cellular dynamics at the single cell level.
Collapse
Affiliation(s)
- Tanja Stadler
- Department of Biosystems Science & Engineering (D-BSSE) Mattenstrasse 26, Basel 4058, Switzerland.
| | - Stavroula Skylaki
- Department of Biosystems Science & Engineering (D-BSSE) Mattenstrasse 26, Basel 4058, Switzerland
| | | | - Timm Schroeder
- Department of Biosystems Science & Engineering (D-BSSE) Mattenstrasse 26, Basel 4058, Switzerland.
| |
Collapse
|
35
|
Coutu DL, Kokkaliaris KD, Kunz L, Schroeder T. Multicolor quantitative confocal imaging cytometry. Nat Methods 2017; 15:39-46. [PMID: 29320487 DOI: 10.1038/nmeth.4503] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 10/04/2017] [Indexed: 11/09/2022]
Abstract
Multicolor 3D quantitative imaging of large tissue volumes is necessary to understand tissue development and organization as well as interactions between distinct cell types in situ. However, tissue imaging remains technically challenging, particularly imaging of bone and marrow. Here, we describe a pipeline to reproducibly generate high-dimensional quantitative data from bone and bone marrow that may be extended to any tissue. We generate thick bone sections from adult mouse femurs with preserved tissue microarchitecture and demonstrate eight-color imaging using confocal microscopy without linear unmixing. We introduce XiT, an open-access software for fast and easy data curation, exploration and quantification of large imaging data sets with single-cell resolution. We describe how XiT can be used to correct for potential artifacts in quantitative 3D imaging, and we use the pipeline to measure the spatial relationship between hematopoietic cells, bone matrix and marrow Schwann cells.
Collapse
Affiliation(s)
- Daniel L Coutu
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | | | - Leo Kunz
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
36
|
Quantitative label-free single cell tracking in 3D biomimetic matrices. Sci Rep 2017; 7:14135. [PMID: 29075007 PMCID: PMC5658366 DOI: 10.1038/s41598-017-14458-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
Live cell imaging enables an observation of cell behavior over a period of time and is a growing field in modern cell biology. Quantitative analysis of the spatio-temporal dynamics of heterogeneous cell populations in three-dimensional (3D) microenvironments contributes a better understanding of cell-cell and cell-matrix interactions for many biomedical questions of physiological and pathological processes. However, current live cell imaging and analysis techniques are frequently limited by non-physiological 2D settings. Furthermore, they often rely on cell labelling by fluorescent dyes or expression of fluorescent proteins to enhance contrast of cells, which frequently affects cell viability and behavior of cells. In this work, we present a quantitative, label-free 3D single cell tracking technique using standard bright-field microscopy and affordable computational resources for data analysis. We demonstrate the efficacy of the automated method by studying migratory behavior of a large number of primary human macrophages over long time periods of several days in a biomimetic 3D microenvironment. The new technology provides a highly affordable platform for long-term studies of single cell behavior in 3D settings with minimal cell manipulation and can be implemented for various studies regarding cell-matrix interactions, cell-cell interactions as well as drug screening platform for primary and heterogeneous cell populations.
Collapse
|
37
|
Lee BJ, Mace EM. Acquisition of cell migration defines NK cell differentiation from hematopoietic stem cell precursors. Mol Biol Cell 2017; 28:3573-3581. [PMID: 29021341 PMCID: PMC5706986 DOI: 10.1091/mbc.e17-08-0508] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 11/11/2022] Open
Abstract
Human natural killer (NK) cell precursors undergoing in vitro differentiation from hematopoietic stem cell precursors are tracked by long-term live-cell imaging. As differentiation progresses, NK cells acquire increasingly motile and complex modes of migration. Human natural killer (NK) cells are generated from CD34+ precursors and can be differentiated in vitro by coculture with developmentally supportive stromal cells. We have previously described the acquisition of cell migration as a feature of NK cell terminal maturation in this system. Here we perform continuous long-term imaging and tracking of NK cell progenitors undergoing in vitro differentiation. We demonstrate that NK cell precursors can be tracked over long time periods on the order of weeks by utilizing phase-contrast microscopy and show that these cells acquire increasing motility as they mature. Additionally, we observe that NK cells display a more heterogeneous range of migratory behaviors at later stages of development, with the acquisition of complex modes of migration that are associated with terminal maturation. Together these data demonstrate previously unknown migratory behaviors of innate lymphocytes undergoing lineage differentiation revealed by long-term imaging and analysis workflows.
Collapse
Affiliation(s)
- Barclay J Lee
- Department of Bioengineering, Rice University, Houston, TX 77005.,Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030
| | - Emily M Mace
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030 .,Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
38
|
Hidalgo D, Paz E, Palomares LA, Ramírez OT. Real-time imaging reveals unique heterogeneous population features in insect cell cultures. J Biotechnol 2017; 259:56-62. [DOI: 10.1016/j.jbiotec.2017.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/11/2017] [Accepted: 08/18/2017] [Indexed: 01/17/2023]
|
39
|
Peng T, Thorn K, Schroeder T, Wang L, Theis FJ, Marr C, Navab N. A BaSiC tool for background and shading correction of optical microscopy images. Nat Commun 2017; 8:14836. [PMID: 28594001 PMCID: PMC5472168 DOI: 10.1038/ncomms14836] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 02/03/2017] [Indexed: 01/02/2023] Open
Abstract
Quantitative analysis of bioimaging data is often skewed by both shading in space and background variation in time. We introduce BaSiC, an image correction method based on low-rank and sparse decomposition which solves both issues. In comparison to existing shading correction tools, BaSiC achieves high-accuracy with significantly fewer input images, works for diverse imaging conditions and is robust against artefacts. Moreover, it can correct temporal drift in time-lapse microscopy data and thus improve continuous single-cell quantification. BaSiC requires no manual parameter setting and is available as a Fiji/ImageJ plugin.
Collapse
Affiliation(s)
- Tingying Peng
- Department of Computer Science, Chair of Computer Aided Medical Procedure, Technische Universität München, Boltzmannstr. 3, Garching 85748, Germany.,Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, Ingolstädter Landstraße 1, Neuherberg 85764, Germany.,Center for Mathematics, Chair of Mathematical Modeling of Biological Systems, Technische Universität München, Boltzmannstr. 3, Garching 85748, Germany
| | - Kurt Thorn
- Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16th Street, San Francisco, California 94158, USA
| | - Timm Schroeder
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Basel 4058, Switzerland
| | - Lichao Wang
- Department of Computer Science, Chair of Computer Aided Medical Procedure, Technische Universität München, Boltzmannstr. 3, Garching 85748, Germany.,Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, Ingolstädter Landstraße 1, Neuherberg 85764, Germany.,Center for Mathematics, Chair of Mathematical Modeling of Biological Systems, Technische Universität München, Boltzmannstr. 3, Garching 85748, Germany
| | - Carsten Marr
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| | - Nassir Navab
- Department of Computer Science, Chair of Computer Aided Medical Procedure, Technische Universität München, Boltzmannstr. 3, Garching 85748, Germany.,Department of Computer Science, Chair of Computer Aided Medical Procedure, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| |
Collapse
|
40
|
Cooper S, Bakal C. Accelerating Live Single-Cell Signalling Studies. Trends Biotechnol 2017; 35:422-433. [PMID: 28161141 DOI: 10.1016/j.tibtech.2017.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/24/2016] [Accepted: 01/06/2017] [Indexed: 12/21/2022]
Abstract
The dynamics of signalling networks that couple environmental conditions with cellular behaviour can now be characterised in exquisite detail using live single-cell imaging experiments. Recent improvements in our abilities to introduce fluorescent sensors into cells, coupled with advances in pipelines for quantifying and extracting single-cell data, mean that high-throughput systematic analyses of signalling dynamics are becoming possible. In this review, we consider current technologies that are driving progress in the scale and range of such studies. Moreover, we discuss novel approaches that are allowing us to explore how pathways respond to changes in inputs and even predict the fate of a cell based upon its signalling history and state.
Collapse
Affiliation(s)
- Sam Cooper
- The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK; Department of Computational Systems Medicine, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Chris Bakal
- The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| |
Collapse
|
41
|
Lahne M, Gorsuch RA, Nelson CM, Hyde DR. Culture of Adult Transgenic Zebrafish Retinal Explants for Live-cell Imaging by Multiphoton Microscopy. J Vis Exp 2017. [PMID: 28287581 DOI: 10.3791/55335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
An endogenous regeneration program is initiated by Müller glia in the adult zebrafish (Danio rerio) retina following neuronal damage and death. The Müller glia re-enter the cell cycle and produce neuronal progenitor cells that undergo subsequent rounds of cell divisions and differentiate into the lost neuronal cell types. Both Müller glia and neuronal progenitor cell nuclei replicate their DNA and undergo mitosis in distinct locations of the retina, i.e. they migrate between the basal Inner Nuclear Layer (INL) and the Outer Nuclear Layer (ONL), respectively, in a process described as Interkinetic Nuclear Migration (INM). INM has predominantly been studied in the developing retina. To examine the dynamics of INM in the adult regenerating zebrafish retina in detail, live-cell imaging of fluorescently-labeled Müller glia/neuronal progenitor cells is required. Here, we provide the conditions to isolate and culture dorsal retinas from Tg[gfap:nGFP]mi2004 zebrafish that were exposed to constant intense light for 35 h. We also show that these retinal cultures are viable to perform live-cell imaging experiments, continuously acquiring z-stack images throughout the thickness of the retinal explant for up to 8 h using multiphoton microscopy to monitor the migratory behavior of gfap:nGFP-positive cells. In addition, we describe the details to perform post-imaging analysis to determine the velocity of apical and basal INM. To summarize, we established conditions to study the dynamics of INM in an adult model of neuronal regeneration. This will advance our understanding of this crucial cellular process and allow us to determine the mechanisms that control INM.
Collapse
Affiliation(s)
- Manuela Lahne
- Department of Biological Sciences, University of Notre Dame
| | - Ryne A Gorsuch
- Department of Biological Sciences, University of Notre Dame
| | - Craig M Nelson
- Department of Biological Sciences, University of Notre Dame; Department of Neurosurgery, Mayo Clinic
| | - David R Hyde
- Department of Biological Sciences, University of Notre Dame;
| |
Collapse
|
42
|
England MJ, Bigelow AW, Merchant MJ, Velliou E, Welch D, Brenner DJ, Kirkby KJ. Automated microbeam observation environment for biological analysis-Custom portable environmental control applied to a vertical microbeam system. SENSORS AND ACTUATORS. B, CHEMICAL 2017; 239:1134-1143. [PMID: 29515291 PMCID: PMC5836785 DOI: 10.1016/j.snb.2016.08.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Vertical Microbeams (VMB) are used to irradiate individual cells with low MeV energy ions. The irradiation of cells using VMBs requires cells to be removed from an incubator; this can cause physiological changes to cells because of the lower CO2 concentration, temperature and relative humidity outside of the incubator. Consequently, for experiments where cells require irradiation and observation for extended time periods, it is important to provide a controlled environment. The highly customised nature of the microscopes used on VMB systems means that there are no commercially available environmentally controlled microscope systems for VMB systems. The Automated Microbeam Observation Environment for Biological Analysis (AMOEBA) is a highly flexible modular environmental control system used to create incubator conditions on the end of a VMB. The AMOEBA takes advantage of the recent "maker" movement to create an open source control system that can be easily configured by the user to fit their control needs even beyond VMB applications. When applied to the task of controlling cell medium temperature, CO2 concentration and relative humidity on VMBs it creates a stable environment that allows cells to multiply on the end of a VMB over a period of 36 h, providing a low-cost (costing less than $2700 to build), customisable alternative to commercial time-lapse microscopy systems. AMOEBA adds the potential of VMBs to explore the long-term effects of radiation on single cells opening up new research areas for VMBs.
Collapse
Affiliation(s)
- Matthew J. England
- Ion Beam Centre, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Alan W. Bigelow
- Center for Radiological Research, Columbia University, 630 West 168th Street, New York, NY, USA
| | - Michael J. Merchant
- Christie NHS Foundation Trust, Manchester, United Kingdom
- University of Manchester, Institute of Cancer Sciences—Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Eirini Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, United Kingdom
| | - David Welch
- Center for Radiological Research, Columbia University, 630 West 168th Street, New York, NY, USA
| | - David J. Brenner
- Center for Radiological Research, Columbia University, 630 West 168th Street, New York, NY, USA
| | - Karen J. Kirkby
- Christie NHS Foundation Trust, Manchester, United Kingdom
- University of Manchester, Institute of Cancer Sciences—Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
43
|
Relocation sensors to quantify signaling dynamics in live single cells. Curr Opin Biotechnol 2017; 45:51-58. [PMID: 28131009 DOI: 10.1016/j.copbio.2016.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/26/2016] [Accepted: 12/01/2016] [Indexed: 11/22/2022]
Abstract
All cells are different. Even isogenic cells can possess diverse shapes, reside in different cell-cycle stages or express various sets of proteins. These variations can modulate the cell response to environmental stimuli and thereby provide key insights into the regulation of signal transduction cascades. Fluorescence microscopy allows to visualize these differences and monitor in real-time the responses of live single cells. In order to observe key cellular events, fluorescent biosensors have been developed. Among many assays, relocation reporters play an important role since they enable the quantification of the signal transduction dynamics. Fluorescently tagged endogenous proteins, as well as synthetic constructs, have allowed the measurement of kinase activity, transcription factor activation, transcription and protein expression in live single cells.
Collapse
|
44
|
Characterising live cell behaviour: Traditional label-free and quantitative phase imaging approaches. Int J Biochem Cell Biol 2017; 84:89-95. [PMID: 28111333 DOI: 10.1016/j.biocel.2017.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/23/2016] [Accepted: 01/06/2017] [Indexed: 01/01/2023]
Abstract
Label-free imaging uses inherent contrast mechanisms within cells to create image contrast without introducing dyes/labels, which may confound results. Quantitative phase imaging is label-free and offers higher content and contrast compared to traditional techniques. High-contrast images facilitate generation of individual cell metrics via more robust segmentation and tracking, enabling formation of a label-free dynamic phenotype describing cell-to-cell heterogeneity and temporal changes. Compared to population-level averages, individual cell-level dynamic phenotypes have greater power to differentiate between cellular responses to treatments, which has clinical relevance e.g. in the treatment of cancer. Furthermore, as the data is obtained label-free, the same cells can be used for further assays or expansion, of potential benefit for the fields of regenerative and personalised medicine.
Collapse
|
45
|
Santinha J, Martins L, Häkkinen A, Lloyd-Price J, Oliveira SMD, Gupta A, Annila T, Mora A, Ribeiro AS, Fonseca JR. iCellFusion. Biometrics 2017. [DOI: 10.4018/978-1-5225-0983-7.ch033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Temporal, multimodal microscopy imaging of live cells is becoming widely used in studies of cellular processes. In general, temporal sequences of images with functional and morphological data from live cells are acquired using multiple image sensors. The images from the different sources usually differ in resolution and have non-coincident fields of view, making the merging process complex. We present a new tool – iCellFusion – that performs data fusion of images from Phase-Contrast Microscopy and Fluorescence Microscopy in order to correlate the information on cell morphology, lineage and functionality. Prior to image fusion, iCellFusion performs automatic or computer-aided cell segmentation and establishes cell lineages. We exemplify its usage on time-lapse, multimodal microscopy images of bacteria producing fluorescent spots. We expect iCellFusion to assist research in Cell and Molecular Biology and the healthcare sector, where live-cell imaging is an increasingly important technique to detect and study diseases at the cellular level.
Collapse
Affiliation(s)
- João Santinha
- UNINOVA – Instituto de Desenvolvimento de Novas Tecnologias, Portugal
| | - Leonardo Martins
- UNINOVA – Instituto de Desenvolvimento de Novas Tecnologias, Portugal
| | | | | | | | | | | | - Andre Mora
- UNINOVA – Instituto de Desenvolvimento de Novas Tecnologias, Portugal
| | | | | |
Collapse
|
46
|
Abstract
Sensing and responding to our environment requires functional neurons that act in concert. Neuronal cell loss resulting from degenerative diseases cannot be replaced in humans, causing a functional impairment to integrate and/or respond to sensory cues. In contrast, zebrafish (Danio rerio) possess an endogenous capacity to regenerate lost neurons. Here, we will focus on the processes that lead to neuronal regeneration in the zebrafish retina. Dying retinal neurons release a damage signal, tumor necrosis factor α, which induces the resident radial glia, the Müller glia, to reprogram and re-enter the cell cycle. The Müller glia divide asymmetrically to produce a Müller glia that exits the cell cycle and a neuronal progenitor cell. The arising neuronal progenitor cells undergo several rounds of cell divisions before they migrate to the site of damage to differentiate into the neuronal cell types that were lost. Molecular and immunohistochemical studies have predominantly provided insight into the mechanisms that regulate retinal regeneration. However, many processes during retinal regeneration are dynamic and require live-cell imaging to fully discern the underlying mechanisms. Recently, a multiphoton imaging approach of adult zebrafish retinal cultures was developed. We will discuss the use of live-cell imaging, the currently available tools and those that need to be developed to advance our knowledge on major open questions in the field of retinal regeneration.
Collapse
Affiliation(s)
- Manuela Lahne
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - David R Hyde
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
47
|
Skylaki S, Hilsenbeck O, Schroeder T. Challenges in long-term imaging and quantification of single-cell dynamics. Nat Biotechnol 2016; 34:1137-1144. [DOI: 10.1038/nbt.3713] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/28/2016] [Indexed: 01/21/2023]
|
48
|
Identification of factors promoting ex vivo maintenance of mouse hematopoietic stem cells by long-term single-cell quantification. Blood 2016; 128:1181-92. [DOI: 10.1182/blood-2016-03-705590] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/14/2016] [Indexed: 12/11/2022] Open
Abstract
Key Points
AFT024-induced HSC maintenance correlates with early survival/proliferation whereas early death is a major reason for HSC loss in culture. Dermatopontin is required for ex vivo HSC maintenance, and also improves HSC clonogenicity in stroma-based and stroma-free cultures.
Collapse
|
49
|
Seebach J, Cao J, Schnittler HJ. Quantitative dynamics of VE-cadherin at endothelial cell junctions at a glance: basic requirements and current concepts. Discoveries (Craiova) 2016; 4:e63. [PMID: 32309583 PMCID: PMC7159836 DOI: 10.15190/d.2016.10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Intercellular junctions of the vascular endothelium are dynamic structures that display a high degree of plasticity, which is required to contribute to their regulation of many physiological and pathological processes including monolayer integrity, barrier function, wound healing and angiogenesis. Vascular endothelial cadherin (VE-cadherin) is connected via catenins to the actin cytoskeleton, both of which are key structures in endothelial junction regulation, and thus are the focus of much investigation. Fluorescence-based live cell imaging is the method of choice to study dynamic remodeling in living cells. Although these methods have been successfully applied to many cell types, investigations of endothelial junction dynamics were for a long time limited as they are largely resistant to transfection using many classical protocols. Application of virus-based gene transduction techniques, together with advanced microscopy, now allows both sufficient expression of fluorescence tagged junction-localized proteins in the endothelium and time-lapse recording over long periods. Using highly spatiotemporally resolved fluorescence microscopy it turned out that endothelial junctions display extensive junction heterogeneity at the subcellular level; a fact that largely limits automated quantification by available software. Recent work describes open software tools to quantitatively analyze large amounts of fluorescence-based image data in either single or confluent epithelial and endothelial cells. Based on quantitative VE-cadherin and actin dynamics novel key players, mechanisms and concepts have been suggested that control endothelial junction dynamics. Here we aim to summarize the recent developments in the field.
Collapse
Affiliation(s)
- Jochen Seebach
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster Germany
| | - Jiahui Cao
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster Germany
| | - Hans Joachim Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster Germany
| |
Collapse
|
50
|
Kim YS, Kong WH, Kim H, Hahn SK. Targeted systemic mesenchymal stem cell delivery using hyaluronate - wheat germ agglutinin conjugate. Biomaterials 2016; 106:217-27. [PMID: 27569867 DOI: 10.1016/j.biomaterials.2016.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/28/2016] [Accepted: 08/16/2016] [Indexed: 02/06/2023]
Abstract
A variety of receptors for hyaluronate (HA), a natural linear polysaccharide, were found in the body, which have been exploited as target sites for HA-based drug delivery systems. In this work, mesenchymal stem cells (MSCs) were surface-modified with HA - wheat germ agglutinin (WGA) conjugate for targeted systemic delivery of MSCs to the liver. WGA was conjugated to HA by coupling reaction between aldehyde-modified HA and amine group of WGA. The conjugation of WGA to HA was corroborated by gel permeation chromatography (GPC) and the successful surface modification of MSCs with HA-WGA conjugate was confirmed by confocal microscopy. The synthesized HA-WGA conjugate could be incorporated onto the cellular membrane by agglutinating the cell-associated carbohydrates. Fluorescent imaging for in vivo biodistribution visualized the targeted delivery of the HA-WGA/MSC complex to the liver after intravenous injection. This new strategy for targeted delivery of MSCs using HA-WGA conjugate might be successfully exploited for various regenerative medicines including cell therapy.
Collapse
Affiliation(s)
- Yun Seop Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Korea
| | - Won Ho Kong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Korea
| | - Hyemin Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Korea.
| |
Collapse
|