1
|
Ngo JM, Williams JK, Temoche-Diaz MM, Murugupandiyan A, Schekman R. p62 sorts Lupus La and selected microRNAs into breast cancer-derived exosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644464. [PMID: 40166149 PMCID: PMC11957149 DOI: 10.1101/2025.03.20.644464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Exosomes are multivesicular body-derived extracellular vesicles that are secreted by metazoan cells. Exosomes have utility as disease biomarkers, and exosome-mediated miRNA secretion has been proposed to facilitate tumor growth and metastasis. Previously, we demonstrated that the Lupus La protein (La) mediates the selective incorporation of miR-122 into metastatic breast cancer-derived exosomes; however, the mechanism by which La itself is sorted into exosomes remains unknown. Using unbiased proximity labeling proteomics, biochemical fractionation, superresolution microscopy and genetic tools, we establish that the selective autophagy receptor p62 sorts La and miR-122 into exosomes. We then performed small RNA sequencing and found that p62 depletion reduces the exosomal secretion of tumor suppressor miRNAs and results in their accumulation within cells. Our data indicate that p62 is a quality control factor that modulates the miRNA composition of exosomes. Cancer cells may exploit p62-dependent exosome cargo sorting to eliminate tumor suppressor miRNAs and thus to promote cell proliferation.
Collapse
Affiliation(s)
- Jordan Matthew Ngo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Justin Krish Williams
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | | | - Abinayaa Murugupandiyan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
2
|
Wang Z, Pu T, Miao W, Gao Y, Gao J, Zhang X. Olaparib increases chemosensitivity by upregulating miR-125a-3p in ovarian cancer cells. Discov Oncol 2025; 16:291. [PMID: 40064834 PMCID: PMC11893969 DOI: 10.1007/s12672-025-02048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
OBJECTIVE Ovarian cancer is associated with the highest mortality rate among all malignant gynecological tumors. PolyADP-ribose polymerase (PARP) inhibitor maintenance therapy is the standard treatment strategy for this type of cancer, and olaparib is a widely used oral PARP inhibitor for tumors with BRCA mutations. The present study aimed to investigate the effects of olaparib in non-BRCA-mutated ovarian cancer and the potential mechanisms involved. METHODS The antitumor effect of cisplatin alone or in combination with olaparib was analyzed in an ovarian cancer subcutaneous transplantation tumor model in nude mice. Furthermore, the differences in microRNA (miRNA) expression levels were analyzed using miRNA arrays. In addition, the effects of miR-125a-3p on the proliferation of non-BRCA-mutated (A2780 and OVCAR-3) ovarian cancer cells were detected using A Cell Counting Kit-8 and changes in the cell cycle were detected using flow cytometry. Furthermore, SPiDER-βGal was used to detect expression changes in cellular senescence, and the expression of DNA damage repair proteins was detected using western blot analysis. RESULTS The results revealed that cisplatin plus olaparib significantly reduced tumor volume in mice subjected to subcutaneous tumor transplantation, and the expression of miR-125a-3p significantly increased with this treatment combination. The overexpression of miR-125a-3p could inhibit cell migration, invasion and induces cell cycle arrest. CONCLUSION On the whole, the present study demonstrates that the increased expression of miR-125a-3p induces DNA damage and senescence in ovarian cancer cells, which enhances the therapeutic sensitivity.
Collapse
Affiliation(s)
- Zehua Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Tao Pu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Weiwei Miao
- College of Pharmacy, Shanghai University of Medicine and Health Science, Shanghai, 201318, China
| | - Yi Gao
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Jianwen Gao
- College of Health Management, Shanghai Jian Qiao University, No.1111, Huchenghuan Road, Pudong New Area, Shanghai, 201306, China.
| | - Xinyan Zhang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| |
Collapse
|
3
|
Xu C, Tang Y, Lu X, Chen R. Fyn, an important molecule in the brain, is a potential therapeutic target for brain tumours. Front Pharmacol 2024; 15:1485919. [PMID: 39697541 PMCID: PMC11652172 DOI: 10.3389/fphar.2024.1485919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
Under normal physiological conditions, Fyn, a nonreceptor tyrosine kinase, is involved in signal transduction pathways in the nervous system and in the formation and activation of T lymphocytes. Fyn is a member of the Src family of kinases (SFKs) and plays a role in cell morphogenic transformation, motility, proliferation, and death, which in turn influences the development and progression of various cancer types. SFKs are overexpressed or hyperactive in tumours, and they are engaged in several signalling pathways that lead to tumour development. Inhibition of Fyn can enhance patient outcomes and prolong survival. Thus, Fyn is a desirable therapeutic target in a variety of tumour types. To lay the groundwork for further investigation and targeted therapy in tumours, in this article, we review the most recent findings on the function of Fyn in tumours, with an emphasis on its role in gliomas. Understanding the function of Fyn during tumourigenesis and development and in resistance to anticancer therapeutic agents can aid in the development and application of innovative medicines that specifically target this kinase, thus improving the management of cancers.
Collapse
Affiliation(s)
- Chongxi Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Tang
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xing Lu
- Department of Gynecological Nursing, West China Second Hospital, Sichuan University, Chengdu, China
| | - Ruiqi Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Xue Z, Zhang F, Xu S, Chen M, Wang M, Wang M, Ke F, Chen Z, Zhang M. Investigating the effect of Icaritin on hepatocellular carcinoma based on network pharmacology. Front Pharmacol 2023; 14:1208495. [PMID: 37324495 PMCID: PMC10265681 DOI: 10.3389/fphar.2023.1208495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Hepatocellular carcinoma is one of the cancers that kill people in the global population. Icaritin, a small molecule drug approved by NMPA, has demonstrated potential anti-HCC effects. However, its underlying molecular mechanisms remain unclear. We employed a multi-omics approach in this study, including pharmaco-omics and proteomics, to look into the Icaritin's possible molecular targets and workings in the therapy of HCC. Through pharmaco-omics analysis, we identified ten putative target genes of Icaritin, including FYN. The relationship between Icaritin and these target genes, particularly FYN, was further validated through in vitro and in vivo experiments. The outcomes revealed that Icaritin may exert its anti-HCC effects through modulating the FYN gene, highlighting the importance of multi-omics approaches in drug discovery research. This research gives valuable insights regarding the therapeutic potential of Icaritin against HCC and its possible molecular mechanisms.
Collapse
|
5
|
Liu X, Wei Q, Lu L, Cui S, Ma K, Zhang W, Ma F, Li H, Fu X, Zhang C. Immunomodulatory potential of mesenchymal stem cell-derived extracellular vesicles: Targeting immune cells. Front Immunol 2023; 14:1094685. [PMID: 36860847 PMCID: PMC9968735 DOI: 10.3389/fimmu.2023.1094685] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Various intractable inflammatory diseases caused by disorders of immune systems have pressed heavily on public health. Innate and adaptive immune cells as well as secreted cytokines and chemokines are commanders to mediate our immune systems. Therefore, restoring normal immunomodulatory responses of immune cells is crucial for the treatment of inflammatory diseases. Mesenchymal stem cell derived extracellular vesicles (MSC-EVs) are nano-sized double-membraned vesicles acting as paracrine effectors of MSCs. MSC-EVs, containing a variety of therapeutic agents, have shown great potential in immune modulation. Herein, we discuss the novel regulatory functions of MSC-EVs from different sources in the activities of innate and adaptive immune cells like macrophages, granulocytes, mast cells, natural killer (NK) cells, dendritic cells (DCs) and lymphocytes. Then, we summarize the latest clinical trials of MSC-EVs in inflammatory diseases. Furthermore, we prospect the research trend of MSC-EVs in the field of immune modulation. Despite the fact that the research on the role of MSC-EVs in regulating immune cells is in infancy, this cell-free therapy based on MSC-EVs still offers a promising solution for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Xi Liu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qian Wei
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lu Lu
- Institute of NBC Defence, PLA Army, Beijing, China
| | - Shengnan Cui
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Dermatology, China Academy of Chinese Medical Science, Xiyuan Hospital, Beijing, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenhua Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fang Ma
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Haihong Li
- Department of Wound Repair, Institute of Wound Repair and Regeneration Medicine, Southern University of Science and Technology Hospital, Southern University of Science and Technology School of Medicine, Shenzhen, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Liu Y, Zhu Y, Liu S, Liu J, Li X. NORAD lentivirus shRNA mitigates fibrosis and inflammatory responses in diabetic cardiomyopathy via the ceRNA network of NORAD/miR-125a-3p/Fyn. Inflamm Res 2021; 70:1113-1127. [PMID: 34591118 DOI: 10.1007/s00011-021-01500-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE Diabetic cardiomyopathy (DCM) is a serious complication of diabetes, but its pathogenesis is still unclear. This study investigated the mechanism of long noncoding RNA (lncRNA) NORAD in DCM. METHODS Male leptin receptor-deficient (db/db) mice and leptin control mice (db/ +) were procured. DCM model was established by subcutaneous injection of angiotensin II (ATII) in db/db mice. NORAD lentivirus shRNA or Adv-miR-125a-3p was administered to analyze cardiac function, fibrosis, serum biochemical indexes, inflammation and fibrosis. Primary cardiomyocytes were extracted and transfected with miR-125a-3p mimic. The competing endogenous RNA (ceRNA) network of NORAD/miR-125a-3p/Fyn was verified. The levels of fibrosis- and inflammation-related factors were measured. RESULTS In db/db mice treated with ATII, the body weight and serum biochemical indexes were increased, while the cardiac function was decreased, and inflammatory cell infiltration and fibrosis were induced. NORAD was upregulated in diabetic and DCM mice. The 4-week intravenous injection of NORAD lentivirus shRNA reduced body weight and serum biochemical indexes, improved cardiac function, and attenuated inflammation and fibrosis in DCM mice. NORAD acted as a sponge to adsorb miR-125a-3p, and miR-125a-3p targeted Fyn. Intravenous injection of miR-125a-3p adenovirus improved cardiac function and fibrosis and reduced inflammatory responses in DCM mice. Co-overexpression of miR-125-3p and Fyn partly reversed the improving effect of miR-125-3p overexpression on cardiac fibrosis in DCM mice. CONCLUSION NORAD lentivirus shRNA improved cardiac function and fibrosis and reduced inflammatory responses in DCM mice via the ceRNA network of NORAD/miR-125a-3p/Fyn. These findings provide a valuable and promising therapeutic target for the treatment of DCM.
Collapse
Affiliation(s)
- Ye Liu
- Department of Endocrinology, The Second Hospital of ShanXi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Yikun Zhu
- Department of Endocrinology, The Second Hospital of ShanXi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Sujun Liu
- Department of Endocrinology, The Second Hospital of ShanXi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Jiong Liu
- Department of Nuclear Medicine, The Second Hospital of ShanXi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Xing Li
- Department of Endocrinology, The Second Hospital of ShanXi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
7
|
Xu X, Leng J, Zhang X, Capellini TD, Chen Y, Yang L, Chen Z, Zheng S, Zhang X, Zhan S, Wang L, Zhong T, Guo J, Niu L, Wang Y, Dai D, Zhang H, Li L, Cao J. Identification of IGF2BP1-related lncRNA-miRNA-mRNA network in goat skeletal muscle satellite cells. Anim Sci J 2021; 92:e13631. [PMID: 34545661 DOI: 10.1111/asj.13631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/25/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022]
Abstract
Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) plays essential roles in the proliferation of skeletal muscle satellite cells (MuSCs). Increasing evidence has shown that IGF2BP1 regulates the expression of noncoding RNAs and mRNAs. However, the related molecular network remains to be fully understood. Therefore, we performed RNA sequencing and analyzed the microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and mRNAs differentially expressed in goat MuSCs treated with IGF2BP1 overexpressing and empty vectors. A total of 36 miRNAs, 59 lncRNAs, and 44 mRNAs were differentially expressed caused by IGF2BP1. Expectedly, they were enriched in muscle development-related Rap1, PI3K-AKT, and FoxO signaling pathways. Finally, we constructed a lncRNA-miRNA-mRNA interaction network containing 30 lncRNAs, 15 miRNAs, and 34 mRNAs, in which several miRNAs, including miR-133a-3p, miR-204-5p, miR-125a-3p, miR-145-3p, and miR-423-5p, relate with cell growth and participate in muscle development. Overall, we constructed an IGF2BP1-related network, which provides new insight into the myogenic proliferation of goat.
Collapse
Affiliation(s)
- Xiaoli Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Junchen Leng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Terence D Capellini
- Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Yuan Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Liu Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zitong Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shuailong Zheng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xujia Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dinghui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Pan G, Liu Y, Shang L, Zhou F, Yang S. EMT-associated microRNAs and their roles in cancer stemness and drug resistance. Cancer Commun (Lond) 2021; 41:199-217. [PMID: 33506604 PMCID: PMC7968884 DOI: 10.1002/cac2.12138] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Epithelial‐to‐mesenchymal transition (EMT) is implicated in a wide array of malignant behaviors of cancers, including proliferation, invasion, and metastasis. Most notably, previou studies have indicated that both cancer stem‐like properties and drug resistance were associated with EMT. Furthermore, microRNAs (miRNAs) play a pivotal role in the regulation of EMT phenotype, as a result, some miRNAs impact cancer stemness and drug resistance. Therefore, understanding the relationship between EMT‐associated miRNAs and cancer stemness/drug resistance is beneficial to both basic research and clinical treatment. In this review, we preliminarily looked into the various roles that the EMT‐associated miRNAs play in the stem‐like nature of malignant cells. Then, we reviewed the interaction between EMT‐associated miRNAs and the drug‐resistant complex signaling pathways of multiple cancers including lung cancer, gastric cancer, gynecologic cancer, breast cancer, liver cancer, colorectal cancer, pancreatic cancer, esophageal cancer, and nasopharyngeal cancer. We finally discussed the relationship between EMT, cancer stemness, and drug resistance, as well as looked forward to the potential applications of miRNA therapy for malignant tumors.
Collapse
Affiliation(s)
- Guangtao Pan
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Yuhan Liu
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Luorui Shang
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Fangyuan Zhou
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Shenglan Yang
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| |
Collapse
|
9
|
Wei X, Yang Z, Liu H, Tang T, Jiang P, Li X, Liu X. MicroRNA-125a-3p overexpression promotes liver regeneration through targeting proline-rich acidic protein 1. Ann Hepatol 2021; 19:99-106. [PMID: 31558421 DOI: 10.1016/j.aohep.2019.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/16/2019] [Accepted: 04/23/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Liver regeneration plays a valuable significance for hepatectomies, and is mainly attributed to hepatocyte proliferation. MicroRNA-125a-3p was reported to be highly associated with liver regeneration process. We studied the underlying mechanism of the functional role of miR-125a-3p in liver regeneration. MATERIALS AND METHODS The miR-125a-3p mimics and inhibitor vector were constructed and transfected into primary human liver HL-7702 cells, the transfected cell viability was detected using cell counting kit-8 (CCK-8). Cell cycle distribution was analyzed by flow cytometry. With Targetscan and OUGene prediction, the potential targets of miR-125 were verified by real-time quantitative PCR (qPCR) and luciferase reporter assays in turn. The overexpression vector of proline-rich acidic protein 1 (PRAP1) was constructed and co-transfected with miR-125a-3p mimics into HL-7702 cells, detecting the changes of proliferative capacity and cell cycle distribution. Western blot and qPCR performed to analyze gene expressions. RESULTS Overexpressed miR-125a-3p notably increased the hepatocyte viability at 48h, and decreased the number of G1 phase cells (p<0.05). However, miR-125a-3p inhibition suppressed the development of hepatocytes. PRAP1 was the target of miR-125a-3p. After co-transfection with PRAP1 vector, hepatocyte viability was decrease and the G1 phase cell number was increased (p<0.05). More importantly, overexpressed PRAP1 notably decreased the mRNA and protein levels of cyclin D1, cyclin-dependent kinase 2 (CDK2) and cell division cycle 25A (CDC25A). CONCLUSION The elevated miR-125a-3p positively correlated with hepatocyte viability and cell cycle progression due to the modulation of PRAP1, and miR-125a-3p may contribute to improving liver regeneration.
Collapse
Affiliation(s)
- Xiaolin Wei
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital, Shenzhen, China; Academy of Clinical Medicine, Shenzhen University, Shenzhen, China
| | - Zhiqing Yang
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), China
| | - Hui Liu
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital, Shenzhen, China; Academy of Clinical Medicine, Shenzhen University, Shenzhen, China
| | - Tengqian Tang
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), China
| | - Peng Jiang
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), China
| | - Xiaowu Li
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital, Shenzhen, China; Academy of Clinical Medicine, Shenzhen University, Shenzhen, China
| | - Xiangde Liu
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), China.
| |
Collapse
|
10
|
Marangon D, Abbracchio MP, Lecca D. Pathway-Focused Profiling of Oligodendrocytes Over-Expressing miR-125a-3p Reveals Alteration of Wnt and Cell-to-Cell Signaling. Cell Mol Neurobiol 2021; 41:105-114. [PMID: 32239390 PMCID: PMC11448621 DOI: 10.1007/s10571-020-00836-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/24/2020] [Indexed: 12/16/2022]
Abstract
MicroRNAs are small post-transcriptional regulators that modulate gene expression by directly interacting with their target transcripts. Since the interaction between miRNAs and target mRNAs does not require a perfect match, one single miRNA can influence the expression of several genes and lead to a very broad array of functional consequences. Recently, we identified miR-125a-3p as a new regulator of oligodendrocyte development, showing that its over-expression is associated to impaired oligodendrocyte maturation. However, whether and how miR-125a-3p over-expression is causally related to oligodendrocyte maturation is still obscure, as well as the pathways responsible for this effect. To shed light on this issue and to identify the underlying molecular mechanisms, we determined the transcriptomic profile of miR-125a-3p over-expressing oligodendrocytes and, by means of two complementary bioinformatic approaches, we have identified pathways and biological processes consistently modulated by miR-125a-3p alteration. This analysis showed that miR-125a-3p is involved in the regulation of cell-cell interactions and Wnt signaling. By means of pathway-focused PCR arrays, we confirmed that miR-125a-3p induces changes in the expression of several genes encoding for adhesion molecules and gap junctions, which play key roles in oligodendrocytes after exposure to pathological demyelinating stimuli. Moreover, the expression changes of different Wnt targets suggest an over-activation of this pathway. Globally, our studies show that miR-125a-3p over-expression can alter signaling pathways and biological processes essential for myelin formation in oligodendrocytes, suggesting that alteration of miR-125a-3p levels may contribute to impairing oligodendrocyte maturation in demyelinating diseases.
Collapse
Affiliation(s)
- Davide Marangon
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Maria P Abbracchio
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Davide Lecca
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milano, Italy.
| |
Collapse
|
11
|
Wong JS, Cheah YK. Potential miRNAs for miRNA-Based Therapeutics in Breast Cancer. Noncoding RNA 2020; 6:E29. [PMID: 32668603 PMCID: PMC7549352 DOI: 10.3390/ncrna6030029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that can post-transcriptionally regulate the genes involved in critical cellular processes. The aberrant expressions of oncogenic or tumor suppressor miRNAs have been associated with cancer progression and malignancies. This resulted in the dysregulation of signaling pathways involved in cell proliferation, apoptosis and survival, metastasis, cancer recurrence and chemoresistance. In this review, we will first (i) provide an overview of the miRNA biogenesis pathways, and in vitro and in vivo models for research, (ii) summarize the most recent findings on the roles of microRNAs (miRNAs) that could potentially be used for miRNA-based therapy in the treatment of breast cancer and (iii) discuss the various therapeutic applications.
Collapse
Affiliation(s)
- Jun Sheng Wong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| |
Collapse
|
12
|
Fyn Tyrosine Kinase as Harmonizing Factor in Neuronal Functions and Dysfunctions. Int J Mol Sci 2020; 21:ijms21124444. [PMID: 32580508 PMCID: PMC7352836 DOI: 10.3390/ijms21124444] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/25/2022] Open
Abstract
Fyn is a non-receptor or cytoplasmatic tyrosine kinase (TK) belonging to the Src family kinases (SFKs) involved in multiple transduction pathways in the central nervous system (CNS) including synaptic transmission, myelination, axon guidance, and oligodendrocyte formation. Almost one hundred years after the original description of Fyn, this protein continues to attract extreme interest because of its multiplicity of actions in the molecular signaling pathways underlying neurodevelopmental as well as neuropathologic events. This review highlights and summarizes the most relevant recent findings pertinent to the role that Fyn exerts in the brain, emphasizing aspects related to neurodevelopment and synaptic plasticity. Fyn is a common factor in healthy and diseased brains that targets different proteins and shapes different transduction signals according to the neurological conditions. We will primarily focus on Fyn-mediated signaling pathways involved in neuronal differentiation and plasticity that have been subjected to considerable attention lately, opening the fascinating scenario to target Fyn TK for the development of potential therapeutic interventions for the treatment of CNS injuries and certain neurodegenerative disorders like Alzheimer’s disease.
Collapse
|
13
|
Ninio-Many L, Hikri E, Burg-Golani T, Stemmer SM, Shalgi R, Ben-Aharon I. miR-125a Induces HER2 Expression and Sensitivity to Trastuzumab in Triple-Negative Breast Cancer Lines. Front Oncol 2020; 10:191. [PMID: 32185126 PMCID: PMC7058585 DOI: 10.3389/fonc.2020.00191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/04/2020] [Indexed: 11/13/2022] Open
Abstract
The EGFR/HER2 signaling network is an effective therapeutic target for HER2-positive cancers, which are known for their aggressive biological course. Evidence indicates that the EGFR/HER2 network plays a role in the aggressive basal-like subtype as well. Here, we studied the potential role of miR-125a-3p as a modulator of the EGFR/HER2 pathway in basal-like breast cancer. Over-expression of miR-125a-3p reduced the migratory capability of MDA-MB-231 cells and led to an increase in the expression of ErbB2 transcript and protein. The induced ErbB2 responded to trastuzumab and underwent internalization and subsequent intra-lysosomal degradation. Trastuzumab treatment further reduced the migratory capability and induced the apoptosis of the cells. An in-vivo mouse model, which supported the in-vitro findings, showed a synergistic effect for miR-125a-3p and trastuzumab. Trastuzumab-treated miR-125a-3p-induced tumors were significantly smaller than control induced tumors. Our findings indicate that, in the basal-like subtype of breast cancer, miR-125a-3p may act as a tumor suppressor. miR-125a-3p induces an increase in the expression of ErbB2 that may render the cells suitable for treatment with anti-HER2 therapies.
Collapse
Affiliation(s)
- Lihi Ninio-Many
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Elad Hikri
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Tamar Burg-Golani
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Salomon M Stemmer
- Davidoff Center, Rabin Medical Center, Institute of Oncology, Petah-Tiqva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Ruth Shalgi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | | |
Collapse
|
14
|
Wang J, Zheng Y, Bai B, Song Y, Zheng K, Xiao J, Liang Y, Bao L, Zhou Q, Ji L, Feng X. MicroRNA-125a-3p participates in odontoblastic differentiation of dental pulp stem cells by targeting Fyn. Cytotechnology 2020; 72:69-79. [PMID: 31953701 DOI: 10.1007/s10616-019-00358-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 11/23/2019] [Indexed: 12/30/2022] Open
Abstract
Fyn is a member of the protein tyrosine kinase family and its overexpression is associated with various types of inflammation. MicroRNAs can regulate the expression of target genes and play an important role in varied physiological and pathological processes. Based on the important role of Fyn and microRNA-125a-3p (miR-125a-3p) in inflammation, and combined with the bioinformatics studies, we performed in this study and chose miR-125a-3p as the focus of our research. During the progression of inflammation, we found that the expression of miR-125a-3p was decreased while the expression of Fyn was up-regulated. Fyn formed a complex with Neuropilin-1, which inhibited odontoblastic differentiation and expanded inflammatory responses through nuclear factor-κB signal pathways in dental pulp stem cells (DPSCs). These findings suggested that miR-125a-3p plays an important role in odontoblastic differentiation of DPSCs by targeting Fyn, implying its therapeutic potential in dental caries.
Collapse
Affiliation(s)
- Jihua Wang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ya Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Bingbing Bai
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yihua Song
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ke Zheng
- Department of Stomatology, Wuxi No. 2 People Hospital, Wuxi, 214000, China
| | - Jinwen Xiao
- Department of Stomatology, People's Hospital of Haimen, Nantong, China
| | - Yi Liang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Liuliu Bao
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Qiao Zhou
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Lujun Ji
- Department of Stomatology, Tongzhou People's Hospital, Taizhou, 225300, China.
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
15
|
MicroRNA-125a-3p affects smooth muscle cell function in vascular stenosis. J Mol Cell Cardiol 2019; 136:85-94. [PMID: 31499051 DOI: 10.1016/j.yjmcc.2019.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/04/2019] [Accepted: 08/31/2019] [Indexed: 11/21/2022]
Abstract
AIMS Many studies have indicated that microRNAs are closely related to the process of peripheral arterial disease (PAD). Previously, we found that microRNA-125a-3p (miR-125a-3p) in restenotic arteries after interventional therapy of lower extremity vessels was notably decreased compared with that of normal control arteries. However, its role in the development of vascular stenosis is not yet clearly understood. The purpose of this study was to investigate the expression, regulatory mechanism and function of miR-125a-3p in the process of vascular stenosis. METHODS AND RESULTS Quantitative reverse-transcription polymerase chain reaction assays indicated that miR-125a-3p in restenotic arteries after interventional therapy was significantly lower than that in normal control arteries. Immunofluorescence and in situ hybridization co-staining assays in arterial sections demonstrated that miR-125a-3p was mainly expressed in the medial smooth muscle layer. Transfection of miR-125a-3p mimics into cultured vascular smooth muscle cells (VSMCs) effectively inhibited cell proliferation and migration. Then, western blot and luciferase activity assays showed that recombinant human mitogen-activated protein kinase 1 (MAPK1) was a functional target of miR-125a-3p and was involved in miR-125a-3p-mediated cell effects. Finally, the lentiviral infection of miR-125a-3p in balloon-injured rat carotid vascular walls showed that miR-125a-3p overexpression significantly reduced the probability of neointimal membrane production. CONCLUSIONS miR-125a-3p can effectively inhibit the function of VSMCs and the occurrence of vascular stenosis by targeting MAPK1. This study introduces a new molecular mechanism of PAD. We show that regulation of the miR-125a-3p level has the potential to provide a new treatment for PAD and other proliferative vascular diseases.
Collapse
|
16
|
Xu Q, Liu Y, Pan H, Xu T, Li Y, Yuan J, Li P, Yao W, Yan W, Ni C. Aberrant expression of miR-125a-3p promotes fibroblast activation via Fyn/STAT3 pathway during silica-induced pulmonary fibrosis. Toxicology 2019; 414:57-67. [PMID: 30658076 DOI: 10.1016/j.tox.2019.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 12/11/2022]
Abstract
Various miRNAs are dysregulated during initiation and progression of pulmonary fibrosis. However, their function remains limited in silicosis. Here, we observed that miR-125a-3p was downregulated in silica-induced fibrotic murine lung tissues. Ectopic miR-125a-3p expression with chemotherapy attenuated silica-induced pulmonary fibrosis. Further in vitro experiments revealed that TGF-β1 effectively decreased miR-125a-3p expression in fibroblast lines (NIH/3T3 and MRC-5). Overexpression of miR-125a-3p blocked fibroblast activation stimulated by TGF-β1. Mechanistically, miR-125a-3p could bind to the 3'-untranslated region of Fyn and inhibit its expression in both mRNA and protein levels, thus causing inactivation of Fyn downstream effector STAT3. Fyn and p-STAT3, as opposed to miR-125a-3p expression, were elevated in silica-induced fibrotic murine lung tissues and TGF-β1-treated fibroblast lines. Furthermore, Fyn knockdown or p-STAT3 suppression effectively attenuated fibroblast activation and ECM production. Taken together, miR-125a-3p is involved in fibrosis pathogenesis by fibroblast activation, suggesting that targeting miR-125a-3p/Fyn/STAT3 signaling pathway could be a potential therapeutic approach for pulmonary fibrosis.
Collapse
Affiliation(s)
- Qi Xu
- Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Yi Liu
- Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Honghong Pan
- Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Tiantian Xu
- Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Yan Li
- Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Jiali Yuan
- Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Ping Li
- Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Wenxi Yao
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Weiwen Yan
- Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Chunhui Ni
- Department of Occupational Medical and Environmental Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
17
|
MicroRNA-8073: Tumor suppressor and potential therapeutic treatment. PLoS One 2018; 13:e0209750. [PMID: 30589909 PMCID: PMC6307750 DOI: 10.1371/journal.pone.0209750] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 12/11/2018] [Indexed: 01/26/2023] Open
Abstract
The comprehensive screening of intracellular and extracellular microRNAs was performed to identify novel tumor suppressors. We found that miR-8073 was present in exosome and predominantly exported from colorectal cancer cells. Treatment with a synthetic miR-8073 mimic resulted in a dramatic decrease in the proliferation of various types of cancer cells, which was not observed in similarly treated normal cells. As little is known about the biological functions of miR-8073, its target mRNAs were analyzed by both mRNA expression and in silico sequence analyses, leading to five probable target candidates (FOXM1, MBD3, CCND1, KLK10, and CASP2) that enhance survival during the regulation of the cell cycle, cell proliferation, and apoptosis. We experimentally confirmed that miR-8073 binds the 3’-UTR of each of these mRNA target candidates and that the introduction of a synthetic miR-8073 mimic into cancer cells reduced levels of protein expression. Finally, the antiproliferative effects of miR-8073 were validated in vivo: the subcutaneous injection of a synthetic miR-8073 mimic suppressed colorectal tumor volume to 43% in tumor-bearing xenografted mice. These results suggest that because miR-8073 binds, and thus reduces the levels of, these oncogenic targets, cancer cells must actively downregulate miR-8073 as a survival mechanism. The introduction of miR-8073 into tumors could thus inhibit tumor growth, indicating its great potential for cancer therapeutics.
Collapse
|
18
|
Yerushalmi GM, Salmon-Divon M, Ophir L, Yung Y, Baum M, Coticchio G, Fadini R, Mignini-Renzini M, Dal Canto M, Machtinger R, Maman E, Hourvitz A. Characterization of the miRNA regulators of the human ovulatory cascade. Sci Rep 2018; 8:15605. [PMID: 30353018 PMCID: PMC6199329 DOI: 10.1038/s41598-018-33807-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/21/2018] [Indexed: 11/16/2022] Open
Abstract
Ovarian follicular development and ovulation are complex and tightly regulated processes that involve regulation by microRNAs (miRNAs). We previously identified differentially expressed mRNAs between human cumulus granulosa cells (CGCs) from immature early antral follicles (germinal vesicle - GV) and mature preovulatory follicles (metaphase II - M2). In this study, we performed an integrated analysis of the transcriptome and miRNome in CGCs obtained from the GV cumulus-oocyte complex (COC) obtained from IVM and M2 COC obtained from IVF. A total of 43 differentially expressed miRNAs were identified. Using Ingenuity IPA analysis, we identified 7288 potential miRNA-regulated target genes. Two hundred thirty-four of these target genes were also found in our previously generated ovulatory gene library while exhibiting anti-correlated expression to the identified miRNAs. IPA pathway analysis suggested that miR-21 and FOXM1 cooperatively inhibit CDC25A, TOP2A and PRC1. We identified a mechanism for the temporary inhibition of VEGF during ovulation by TGFB1, miR-16-5p and miR-34a-5p. The linkage bioinformatics analysis between the libraries of the coding genes from our preliminary study with the newly generated library of regulatory miRNAs provides us a comprehensive, integrated overview of the miRNA-mRNA co-regulatory networks that may play a key role in controlling post-transcriptomic regulation of the ovulatory process.
Collapse
Affiliation(s)
- G M Yerushalmi
- Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, 52662, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - M Salmon-Divon
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - L Ophir
- Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, 52662, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Y Yung
- Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, 52662, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Baum
- Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, 52662, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - G Coticchio
- Biogenesi, Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20052, Monza, Italy
| | - R Fadini
- Biogenesi, Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20052, Monza, Italy
| | - M Mignini-Renzini
- Biogenesi, Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20052, Monza, Italy
| | - M Dal Canto
- Biogenesi, Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20052, Monza, Italy
| | - R Machtinger
- Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, 52662, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - E Maman
- Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, 52662, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A Hourvitz
- Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, 52662, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
19
|
Kim KC, Yun J, Son DJ, Kim JY, Jung JK, Choi JS, Kim YR, Song JK, Kim SY, Kang SK, Shin DH, Roh YS, Han SB, Hong JT. Suppression of metastasis through inhibition of chitinase 3-like 1 expression by miR-125a-3p-mediated up-regulation of USF1. Am J Cancer Res 2018; 8:4409-4428. [PMID: 30214629 PMCID: PMC6134921 DOI: 10.7150/thno.26467] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/15/2018] [Indexed: 12/30/2022] Open
Abstract
Rationale: Chitinase 3-like 1 (Chi3L1) protein is up-regulated in various diseases including solid cancers. According to Genome-Wide Association Study (GWAS)/Online Mendelian Inheritance in Man (OMIM)/Differentially Expressed Gene (DEG) analyses, Chi3L1 is associated with 38 cancers, and more highly associated with cancer compared to other oncogenes such as EGFR, TNFα, etc. However, the mechanisms and pathways by which Chi3L1 is associated with cancer are not clear. In current study, we investigated the role of Chi3L1 in lung metastasis. Methods: We performed the differentially expressed gene analysis to explore the genes which are associated with Chi3L1 using the web-based platform from Biomart. We investigated the metastases in lung tissues of C57BL/6 mice injected with B16F10 melanoma following treatment with Ad-shChi3L1. We also investigated the expression of USF1 and Chi3L1 in Chi3L1 KD mice lung tissues by Western blotting and IHC. We also analyzed lung cancer cells metastases induced by Chi3L1 using migration and cell proliferation assay in human lung cancer cell lines. The involvement of miR-125a-3p in Chi3L1 regulation was determined by miRNA qPCR and luciferase reporter assay. Results: We showed that melanoma metastasis in lung tissues was significantly reduced in Chi3L1 knock-down mice, accompanied by down-regulation of MMP-9, MMP-13, VEGF, and PCNA in Chi3L1 knock-down mice lung tissue, as well as in human lung cancer cell lines. We also found that USF1 was conversely expressed against Chi3L1. USF1 was increased by knock-down of Chi3L1 in mice lung tissues, as well as in human lung cancer cell lines. In addition, knock-down of USF1 increased Chi3L1 levels in addition to augmenting metastasis cell migration and proliferation in mice model, as well as in human cancer cell lines. Moreover, in human lung tumor tissues, the expression of Chi3L1 was increased but USF1 was decreased in a stage-dependent manner. Finally, Chi3L1 expression was strongly regulated by the indirect translational suppressing activity of USF1 through induction of miR-125a-3p, a target of Chi3L1. Conclusion: Metastases in mice lung tissues and human lung cancer cell lines were decreased by KD of Chi3L1. USF1 bound to the Chi3L1 promoter, however, Chi3L1 expression was decreased by USF1, despite USF1 enhancing the transcriptional activity of Chi3L1. We found that USF1 induced miR-125a-3p levels which suppressed Chi3L1 expression. Ultimately, our results suggest that lung metastasis is suppressed by knock-down of Chi3L1 through miR-125a-3p-mediated up-regulation of USF1.
Collapse
|
20
|
miR-125a-3p is responsible for chemosensitivity in PDAC by inhibiting epithelial-mesenchymal transition via Fyn. Biomed Pharmacother 2018; 106:523-531. [PMID: 29990840 DOI: 10.1016/j.biopha.2018.06.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and resistance to cytotoxic chemotherapy is the major cause of mortality in PDAC patients. miR-125a-3p was found to be down-regulated in PDAC cells; however, the function of miR-125a-3p in PDAC has been elusive. Here, we explored the role of miR-125a-3p in chemosensitivity in PDAC cells. METHODS We used qRT-PCR to detect miR-125a-3p expression in two PDAC cell lines. And we measured cell viability and apoptosis by MTT assay and flow cytometry, respectively. Scratch wound healing assay and transwell invasion assay were used to test the effects of miR-125a-3p and Fyn on cell EMT process. In addition, we validated the interaction of miR-125a-3p and Fyn by dual luciferase reporter assay. qRT-PCR and western blot were used to detect the mRNA and protein expressions of E-cadhrein, N-cadhrein, Snail and Fyn. RESULTS We found that miR-125a-3p was down-regulated in a time-dependent manner following treatment with gemcitabine in PDAC cells. Meanwhile, we found that overexpression of miR-125a-3p significantly increased chemosensitivity to gemcitabine and suppressed epithelial-mesenchymal transition (EMT) of PDAC cells. Mechanistically, miR-125a-3p directly targeted Fyn and decreased the expression of Fyn that functions to promote EMT process in PDAC. Furthermore, overexpression of Fyn could partially reverse the effects of miR-125a-3p on chemosensitivity to gemcitabine. CONCLUSION Our study is the first to show that miR-125a-3p is responsible for chemosensitivity in PDAC and could inhibit epithelial-mesenchymal transition by directly targeting Fyn. This provides a novel potential therapeutic strategy to overcome chemoresistance in PDAC.
Collapse
|
21
|
A Pyrazolo[3,4-d]pyrimidine compound inhibits Fyn phosphorylation and induces apoptosis in natural killer cell leukemia. Oncotarget 2018; 7:65171-65184. [PMID: 27566560 PMCID: PMC5323146 DOI: 10.18632/oncotarget.11496] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/12/2016] [Indexed: 11/30/2022] Open
Abstract
Natural killer (NK) cell neoplasms are characterized by clonal proliferation of cytotoxic NK cells. Since there is no standard treatment to date, new therapeutic options are needed, especially for NK aggressive tumors. Fyn tyrosine kinase has a key role in different biological processes, such as cell growth and differentiation, being also involved in the pathogenesis of hematologic malignancies. Our previous studies led us to identify 4c pyrazolo[3,4-d]pyrimidine compound capable of inhibiting Fyn activation and inducing apoptosis in different cancer cell lines. Here we investigated the presence of Fyn and the effect of its inhibitor in NK malignant cells. Firstly, we showed Fyn over-expression in NK leukemic cells compared to peripheral blood mononuclear cells from healthy donors. Subsequently, we demonstrated that 4c treatment reduced cell viability, induced caspase 3-mediate apoptosis and cell cycle arrest in NK cells. Moreover, by inhibiting Fyn phosphorylation, 4c compound reduced Akt and P70 S6 kinase activation and changed the expression of genes involved in cell death and survival in NK cells. Our study demonstrated that Fyn is involved in the pathogenesis of NK leukemia and that it could represent a potential target for this neoplasm. Moreover, we proved that Fyn inhibitor pyrazolo[3,4-d]pyrimidine compound, could be a started point to develop new therapeutic agents.
Collapse
|
22
|
Zheng L, Meng X, Li X, Zhang Y, Li C, Xiang C, Xing Y, Xia Y, Xi T. miR-125a-3p inhibits ERα transactivation and overrides tamoxifen resistance by targeting CDK3 in estrogen receptor-positive breast cancer. FASEB J 2018; 32:588-600. [PMID: 28939591 DOI: 10.1096/fj.201700461rr] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tamoxifen (TAM) is a major adjuvant therapy for patients who are diagnosed with estrogen receptor-α (ER)-positive breast cancer; however, TAM resistance occurs often during treatment and the underlying mechanism is unclear. Here, we report that miR-125a-3p inhibits ERα transcriptional activity and, thus, ER+ breast cancer cell proliferation, which causes cell-cycle arrest at the G1/S stage, inducing apoptosis and suppressing tumor growth by targeting cyclin-dependent kinase 3 (CDK3) in vitro and in vivo. In addition, CDK3 and miR-125a-3p expression levels were measured in 37 cancerous tissues paired with noncancerous samples, and their expression levels were negatively associated with miR-125a-3p level. Of interest, miR-125a-3p level is down-regulated in MCF-7 TAM-resistant (TamR) cells. Of more importance, up-regulation of miR-125a-3p resensitizes MCF-7 TamR cells to TAM, which is dependent on CDK3 expression. These results suggest that miR-125a-3p can function as a novel tumor suppressor in ER+ breast cancer by targeting CDK3, which may be a potential therapeutic approach for TamR breast cancer therapy.-Zheng, L., Meng, X., Li, X., Zhang, Y., Li, C., Xiang, C., Xing, Y., Xia, Y., Xi, T. miR-125a-3p inhibits ERα transactivation and overrides tamoxifen resistance by targeting CDK3 in estrogen receptor-positive breast cancer.
Collapse
Affiliation(s)
- Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
- Department of Pharmacology of Chinese Materia Medica, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Xia Meng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Cheng Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Chenxi Xiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Yufeng Xia
- Department of Pharmacology of Chinese Materia Medica, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Tao Xi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
23
|
Hosseini MK, Gunel T, Gumusoglu E, Benian A, Aydinli K. MicroRNA expression profiling in placenta and maternal plasma in early pregnancy loss. Mol Med Rep 2018; 17:4941-4952. [PMID: 29393376 PMCID: PMC5865953 DOI: 10.3892/mmr.2018.8530] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/14/2017] [Indexed: 01/03/2023] Open
Abstract
Early pregnancy loss (EPL), also termed early miscarriage, is determined as the unintentional expulsion of an embryo or fetus prior to the 12th week of gestation. EPL frequency is ~15% in pregnancies. Fetal development and growth is associate with placental function and vessel development; therefore, the placental genome would represent a useful miscarriage model for (epi)genetic and genomic studies. An important factor of placental development and function is epigenetic regulation of gene expression. microRNAs (miRNAs) are the primary epigenetic regulators which have an important role in placental development and function. In the present study, maternal plasma and villous tissue were collected from 16 EPL cases in 6th-8th gestational weeks (GWs) and 8 abortions (control group) in 6th-8th GWs. Detection of the differences in miRNA expression was performed using microarrays and dysregulated miRNAs were validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). miRNA microarray findings revealed that four miRNAs, including hsa-miRNA (miR)-125a-3p, hsa-miR-3663-3p, hsa-miR-423-5p and hsa-miR-575 were upregulated in tissue samples. In maternal plasma, two miRNAs (hsa-let-7c, hsa-miR-122) were upregulated and one miRNA (hsa-miR-135a) was downregulated. A total of 6 out of 7 dysregulated miRNAs were validated using RT-qPCR. The target genes of these dysregulated miRNAs were detected using the GeneSpring database. The aim of the present study was to detect dysregulated miRNAs in maternal plasma and villous cells and identify the target genes of dysregulated miRNAs and their associated pathways. The target gene analyses have revealed that the affected genes are primarily associated with cell migration, proliferation, implantation, adhesion, angiogenesis and differentiation and all are involved with EPL pathogenesis. Therefore, the present study may contribute to the understanding of the molecular mechanisms which lead to EPL.
Collapse
Affiliation(s)
- Mohammad Kazem Hosseini
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul 34134, Turkey
| | - Tuba Gunel
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul 34134, Turkey
| | - Ece Gumusoglu
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul 34134, Turkey
| | - Ali Benian
- Department of Obstetrics and Gynecology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul 34098, Turkey
| | | |
Collapse
|
24
|
|
25
|
Fujii S, Miura Y, Fujishiro A, Shindo T, Shimazu Y, Hirai H, Tahara H, Takaori-Kondo A, Ichinohe T, Maekawa T. Graft-Versus-Host Disease Amelioration by Human Bone Marrow Mesenchymal Stromal/Stem Cell-Derived Extracellular Vesicles Is Associated with Peripheral Preservation of Naive T Cell Populations. Stem Cells 2017; 36:434-445. [PMID: 29239062 DOI: 10.1002/stem.2759] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 12/13/2022]
Abstract
A substantial proportion of patients with acute graft-versus-host disease (aGVHD) respond to cell therapy with culture-expanded human bone marrow mesenchymal stromal/stem cells (BM-MSCs). However, the mechanisms by which these cells can ameliorate aGVHD-associated complications remain to be clarified. We show here that BM-MSC-derived extracellular vesicles (EVs) recapitulated the therapeutic effects of BM-MSCs against aGVHD. Systemic infusion of human BM-MSC-derived EVs prolonged the survival of mice with aGVHD and reduced the pathologic damage in multiple GVHD-targeted organs. In EV-treated GVHD mice, CD4+ and CD8+ T cells were suppressed. Importantly, the ratio of CD62L-CD44+ to CD62L + CD44- T cells was decreased, suggesting that BM-MSC-derived EVs suppressed the functional differentiation of T cells from a naive to an effector phenotype. BM-MSC-derived EVs also preserved CD4 + CD25 + Foxp3+ regulatory T cell populations. In a culture of CD3/CD28-stimulated human peripheral blood mononuclear cells with BM-MSC-derived EVs, CD3+ T cell activation was suppressed. However, these cells were not suppressed in cultures with EVs derived from normal human dermal fibroblasts (NHDFs). NHDF-derived EVs did not ameliorate the clinical or pathological characteristics of aGVHD in mice, suggesting an immunoregulatory function unique to BM-MSC-derived EVs. Microarray analysis of microRNAs in BM-MSC-derived EVs versus NHDF-derived EVs showed upregulation of miR-125a-3p and downregulation of cell proliferative processes, as identified by Gene Ontology enrichment analysis. Collectively, our findings provide the first evidence that amelioration of aGVHD by therapeutic infusion of BM-MSC-derived EVs is associated with the preservation of circulating naive T cells, possibly due to the unique microRNA profiles of BM-MSC-derived EVs. Stem Cells 2018;36:434-445.
Collapse
Affiliation(s)
- Sumie Fujii
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuo Miura
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan.,Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Aya Fujishiro
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan.,Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Takero Shindo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yutaka Shimazu
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideyo Hirai
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Taira Maekawa
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
26
|
Liang L, Gao C, Li Y, Sun M, Xu J, Li H, Jia L, Zhao Y. miR-125a-3p/FUT5-FUT6 axis mediates colorectal cancer cell proliferation, migration, invasion and pathological angiogenesis via PI3K-Akt pathway. Cell Death Dis 2017; 8:e2968. [PMID: 28771224 PMCID: PMC5596543 DOI: 10.1038/cddis.2017.352] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 12/18/2022]
Abstract
The fucosyltransferase (FUT) family produces glycans, a fundamental event in several cancers, including colorectal cancer (CRC). miR-125a-3p is a non-coding RNA that can reduce cell proliferation and migration in cancer. In this study, we explored the levels of miR-125a-3p and FUT expression in human CRC tissues and two human CRC cell lines by qPCR. The results showed that miR-125a-3p, FUT5 and FUT6 are differentially expressed in normal and tumour tissues. On the basis of our previous research, FUT can be regulated by miRNA, which influences the proliferation and invasion of breast and hepatocellular cancer cells. We hypothesised that FUT5 and FUT6 may be regulated by miR-125a-3p. Luciferase reporter analyses were applied to identify potential target genes of miR-125a-3p. A functional study showed that miR-125a-3p overexpression can inhibit the proliferation, migration, invasion and angiogenesis of CRC cells via down-regulating FUT5 and FUT6. In addition, regulating miR-125a-3p, FUT5 or FUT6 expression markedly modulated the activity of the PI3K/Akt signalling pathway, and this effect of FUT5 or FUT6 could be reversed by transfection with miR-125a-3p-mimics. Taken together, our data suggest that both FUT5 and FUT6 can promote the development of CRC via the PI3K/Akt signalling pathway, which is regulated by miR-125a-3p. miR-125a-3p may serve as a predictive biomarker and a potential therapeutic target in CRC treatment.
Collapse
Affiliation(s)
- Leilei Liang
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Chengshun Gao
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yang Li
- College of Laboratory Medicine, Dalian Medical University, Dalian, China
| | - Mingming Sun
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jingchao Xu
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Huairui Li
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian, China
| | - Yongfu Zhao
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
27
|
Abstract
Circulating exosome holds great potentials as biomarker for diagnosis and prognosis of human cancers. Previously, we have applied small RNA sequencing to identify aberrantly expressed exosomal miRNAs as candidates for diagnostic markers in colon cancer patients. In this validation cohort, plasma derived exosomal miRNA was isolated from 50 early-stage colon cancer patients and 50 matched healthy volunteers. Real-time qRT-PCR revealed that miR-125a-3p, miR-320c were significantly up-regulated in plasma exosomes of the patients with early stage colon cancer. ROC curve showed that miR-125a-3p abundant level may predict colon cancer with an area of under the curve (AUC) of 68.5%, in comparison to that of CEA at 83.6%. Combination of miR-125a-3P and CEA improved the AUC to 85.5%. In addition, plasma exosome level of miR-125a-3p and miR-320c showed significant correlation with nerve infiltration (P < 0.01), but not with tumor size, infiltration depth, and differentiation degree (P > 0.05). On the contrary, plasma CEA level is correlated with tumor size, infiltration depth, and differentiation degree (P < 0.05, r = 0.3009–0.7270), but not with nerve infiltration (P = 0.744). In conclusion, this follow-up study demonstrated circulating plasma exosomal miR-125a-3p is readily accessible as diagnosis biomarker for early-stage colon cancer. When combined with conventional diagnostic markers, miR-125a-3p can improve the diagnostic power.
Collapse
|
28
|
Regulation of GVBD in mouse oocytes by miR-125a-3p and Fyn kinase through modulation of actin filaments. Sci Rep 2017; 7:2238. [PMID: 28533542 PMCID: PMC5440411 DOI: 10.1038/s41598-017-02071-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 04/07/2017] [Indexed: 01/06/2023] Open
Abstract
Meiotically arrested oocytes are characterized by the presence of the nuclear structure known as germinal-vesicle (GV), the breakdown of which (GVBD) is associated with resumption of meiosis. Fyn is a pivotal factor in resumption of the first meiotic division; its inhibition markedly decreases the fraction of oocytes undergoing GVBD. Here, we reveal that in mouse oocytes Fyn is post-transcriptionally regulated by miR-125a-3p. We demonstrate that in oocytes resuming meiosis miR-125a-3p and Fyn exhibit a reciprocal expression pattern; miR-125a-3p decreases alongside with an increase in Fyn expression. Microinjection of miR-125a-3p inhibits GVBD, an effect that is markedly reduced by Fyn over-expression, and impairs the organization of the actin rim surrounding the nucleus. Lower rate of GVBD is also observed in oocytes exposed to cytochalasin-D or blebbistatin, which interfere with actin polymerization and contractility of actin bundles, respectively. By down-regulating Fyn in HEK-293T cells, miR-125a-3p reduces the interaction between actin and A-type lamins, which constitute the nuclear-lamina. Our findings suggest a mechanism, by which a decrease in miR-125a-3p during oocyte maturation facilitates GVBD by allowing Fyn up-regulation and the resulting stabilization of the interaction between actin and A-type lamins.
Collapse
|
29
|
Lee M, Kim EJ, Jeon MJ. MicroRNAs 125a and 125b inhibit ovarian cancer cells through post-transcriptional inactivation of EIF4EBP1. Oncotarget 2017; 7:8726-42. [PMID: 26646586 PMCID: PMC4891000 DOI: 10.18632/oncotarget.6474] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 11/25/2015] [Indexed: 01/23/2023] Open
Abstract
The aim of the present study was to identify the specific miRNAs involved in regulation of EIF4EBP1 expression in ovarian cancer and to define their biological function. miRNA mimics and miRNA inhibitors were used in quantitative PCR, western blotting, and luciferase reporter assays to assess cell migration, invasiveness, and viability. miR-125a and miR-125b were downregulated in ovarian cancer tissue and cell lines relative to healthy controls. Increased expression of miR-125a and miR-125b inhibited invasion and migration of SKOV3 and OVCAR-429 ovarian cancer cells and was associated with a decrease in EIF4EBP1 expression. The inverse relationship between miR-125a and miR-125b was corroborated by cotransfection of a luciferase reporter plasmid. Furthermore, miR-125a and miR-125b caused apoptosis and decreased cell viability and migration in an apparently EIF4EBP1-directed manner. Collectively, these results indicate that miR-125a and miR-125b are important posttranscriptional regulators of EIF4EBP1 expression, providing rationale for new therapeutic approaches to suppress tumour invasion and migration using miR-125a, miR-125b, or their mimics for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Maria Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Jae Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Myung Jae Jeon
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Zahratka JA, Shao Y, Shaw M, Todd K, Formica SV, Khrestian M, Montine T, Leverenz JB, Bekris LM. Regulatory region genetic variation is associated with FYN expression in Alzheimer's disease. Neurobiol Aging 2016; 51:43-53. [PMID: 28033507 DOI: 10.1016/j.neurobiolaging.2016.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 10/26/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022]
Abstract
Neurofibrillary tangles (NFTs), composed of hyperphosphorylated tau, are a key pathologic feature of Alzheimer's disease (AD). Tau phosphorylation is under the control of multiple kinases and phosphatases, including Fyn. Previously, our group found an association between 2 regulatory single nucleotide polymorphisms in the FYN gene with increased tau levels in the cerebrospinal fluid. In this study, we hypothesized that Fyn expression in the brain is influenced by AD status and genetic content. We found that Fyn protein, but not messenger RNA, levels were increased in AD patients compared to cognitively normal controls and are associated with regulatory region single nucleotide polymorphisms. In addition, the expression of the FYN 3'UTR can decrease expression in multiple cell lines, suggesting this regulatory region plays an important role in FYN expression. Taken together, these data suggest that FYN expression is regulated according to AD status and regulatory region haplotype, and genetic variants may be instrumental in the development of neurofibrillary tangles in AD and other tauopathies.
Collapse
Affiliation(s)
- Jeffrey A Zahratka
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Yvonne Shao
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - McKenzie Shaw
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Kaitlin Todd
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Shane V Formica
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Maria Khrestian
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Thomas Montine
- Department of Pathology, Stanford University, Palo Alto, CA, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lynn M Bekris
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
31
|
Tu XM, Gu YL, Ren GQ. miR-125a-3p targetedly regulates GIT1 expression to inhibit osteoblastic proliferation and differentiation. Exp Ther Med 2016; 12:4099-4106. [PMID: 28101188 DOI: 10.3892/etm.2016.3874] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/22/2016] [Indexed: 01/02/2023] Open
Abstract
Osteoblasts are a prerequisite for osteogenesis and bone formation, and play a key role in metabolic balance, growth, development and wound repair. G protein-coupled receptor kinase interacting protein 1 (GIT1) and a series of miRNAs are known to have important effects in the growth and migration of osteoblasts, but little is known about micro RNAs (miRNAs) targeting GIT1. The present study found that miR-125a-3p has matching sites on GIT1. In the osteoblastic differentiation process of human bone marrow-derived mesenchymal stem cells (HMSCs), the expression of miR-125a-3p was suppressed compared with that in non-differentiating (HMSCs) while the expression of GIT1 showed a gradual and significant increase. Thus, miR-125a-3p expression was negatively correlated with the expression of GIT1. Following the transfection of human osteoblasts with miR-125a-3p mimics and inhibitors, respectively, the effect on GIT1 expression was opposite to the change of miR-125a-3p expression. In addition, the impact of miR-125a-3p and GIT1 on osteoblastic proliferation and differentiation was detected, and the results indicated that miR-125a-3p targetedly regulated GIT1 expression to inhibit osteoblastic proliferation and differentiation. These findings may provide a theoretical basis for clarifying the physiological and pathological role of miRNAs in osteoblast differentiation and maturation processes, and for the physiological and pathological investigation of bone.
Collapse
Affiliation(s)
- Xiao-Mei Tu
- Department of Nursing, Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Yang-Lin Gu
- Department of Orthopedics, Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Guo-Qin Ren
- Department of Nursing, Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| |
Collapse
|
32
|
Lecca D, Marangon D, Coppolino GT, Méndez AM, Finardi A, Costa GD, Martinelli V, Furlan R, Abbracchio MP. MiR-125a-3p timely inhibits oligodendroglial maturation and is pathologically up-regulated in human multiple sclerosis. Sci Rep 2016; 6:34503. [PMID: 27698367 PMCID: PMC5048305 DOI: 10.1038/srep34503] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 09/09/2016] [Indexed: 12/31/2022] Open
Abstract
In the mature central nervous system (CNS), oligodendrocytes provide support and insulation to axons thanks to the production of a myelin sheath. During their maturation to myelinating cells, oligodendroglial precursors (OPCs) follow a very precise differentiation program, which is finely orchestrated by transcription factors, epigenetic factors and microRNAs (miRNAs), a class of small non-coding RNAs involved in post-transcriptional regulation. Any alterations in this program can potentially contribute to dysregulated myelination, impaired remyelination and neurodegenerative conditions, as it happens in multiple sclerosis (MS). Here, we identify miR-125a-3p, a developmentally regulated miRNA, as a new actor of oligodendroglial maturation, that, in the mammalian CNS regulates the expression of myelin genes by simultaneously acting on several of its already validated targets. In cultured OPCs, over-expression of miR-125a-3p by mimic treatment impairs while its inhibition with an antago-miR stimulates oligodendroglial maturation. Moreover, we show that miR-125a-3p levels are abnormally high in the cerebrospinal fluid of MS patients bearing active demyelinating lesions, suggesting that its pathological upregulation may contribute to MS development, at least in part by blockade of OPC differentiation leading to impaired repair of demyelinated lesions.
Collapse
Affiliation(s)
- Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| | - Davide Marangon
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| | - Giusy T Coppolino
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| | - Aida Menéndez Méndez
- Departamento de Bioquímica y Biología Molecular IV, Universidad Complutense de Madrid, 28040, Spain
| | - Annamaria Finardi
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Gloria Dalla Costa
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Vittorio Martinelli
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Roberto Furlan
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| |
Collapse
|
33
|
Matsushima S, Kuroda J, Zhai P, Liu T, Ikeda S, Nagarajan N, Oka SI, Yokota T, Kinugawa S, Hsu CP, Li H, Tsutsui H, Sadoshima J. Tyrosine kinase FYN negatively regulates NOX4 in cardiac remodeling. J Clin Invest 2016; 126:3403-16. [PMID: 27525436 DOI: 10.1172/jci85624] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/30/2016] [Indexed: 01/05/2023] Open
Abstract
NADPH oxidases (Noxes) produce ROS that regulate cell growth and death. NOX4 expression in cardiomyocytes (CMs) plays an important role in cardiac remodeling and injury, but the posttranslational mechanisms that modulate this enzyme are poorly understood. Here, we determined that FYN, a Src family tyrosine kinase, interacts with the C-terminal domain of NOX4. FYN and NOX4 colocalized in perinuclear mitochondria, ER, and nuclear fractions in CMs, and FYN expression negatively regulated NOX4-induced O2- production and apoptosis in CMs. Mechanistically, we found that direct phosphorylation of tyrosine 566 on NOX4 was critical for this FYN-mediated negative regulation. Transverse aortic constriction activated FYN in the left ventricle (LV), and FYN-deficient mice displayed exacerbated cardiac hypertrophy and dysfunction and increased ROS production and apoptosis. Deletion of Nox4 rescued the exaggerated LV remodeling in FYN-deficient mice. Furthermore, FYN expression was markedly decreased in failing human hearts, corroborating its role as a regulator of cardiac cell death and ROS production. In conclusion, FYN is activated by oxidative stress and serves as a negative feedback regulator of NOX4 in CMs during cardiac remodeling.
Collapse
|
34
|
Xie YG, Yu Y, Hou LK, Wang X, Zhang B, Cao XC. FYN promotes breast cancer progression through epithelial-mesenchymal transition. Oncol Rep 2016; 36:1000-6. [DOI: 10.3892/or.2016.4894] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/10/2016] [Indexed: 11/06/2022] Open
|
35
|
MiR-125a regulates ovarian cancer proliferation and invasion by repressing GALNT14 expression. Biomed Pharmacother 2016; 80:381-387. [DOI: 10.1016/j.biopha.2015.12.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 12/21/2015] [Indexed: 12/21/2022] Open
|
36
|
Tang L, Shen H, Li X, Li Z, Liu Z, Xu J, Ma S, Zhao X, Bai X, Li M, Wang Q, Ji J. MiR-125a-5p decreases after long non-coding RNA HOTAIR knockdown to promote cancer cell apoptosis by releasing caspase 2. Cell Death Dis 2016; 7:e2137. [PMID: 26962687 PMCID: PMC4823942 DOI: 10.1038/cddis.2016.41] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/30/2016] [Accepted: 02/02/2016] [Indexed: 01/01/2023]
Abstract
HOTAIR (homeobox transcript antisense RNA), one of the prototypical long non-coding RNAs, has been verified overexpressed in multiple carcinomas and has emerged as a promising novel anticancer target. Its well-established role is acting as a predictor of poor prognosis and promoting cancer cell metastasis. Recently, another important mission of HOTAIR was uncovered that targeting HOTAIR caused cancer cell apoptosis. Nevertheless, so far there is no published data elaborating the mechanism. Here, we report that microRNA miR-125a-5p decreases and releases caspase 2 to promote cancer cell apoptosis after HOTAIR knockdown. We applied siRNAs targeting HOTAIR to various cancer cells, and observed apoptosis in all of these cell lines. RNA sequencing detected that miR-125a-5p was decreased after HOTAIR knockdown and miR-125a-5p mimics could rescue the apoptosis induced by HOTAIR deficiency. Luciferase assays identified caspase 2, an initiator caspase, to be a new target of miR-125a-5p. Elevated expression and subsequent cleavage of caspase 2 was observed after HOTAIR knockdown or inhibition of miR-125a-5p. RNAi of caspase 2 could attenuate the apoptosis induced by HOTAIR knockdown. In 80 clinical colon cancer tissues, HOTAIR and miR-125a-5p levels were higher than adjacent tissues, whereas caspase 2 was lower. MiR-125a-5p expression level was significantly correlated with colon tumor size, lymph node metastasis and clinical stage. These findings indicate that miR-125a-5p decreases after HOTAIR knockdown to promote cancer cell apoptosis by releasing caspase 2. Our work reveals a previously unidentified apoptotic mechanism, which might be exploitable in anticancer drug development.
Collapse
Affiliation(s)
- L Tang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - H Shen
- Key Laboratory of Genomics and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - X Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Z Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Z Liu
- Institute of Forensic Science, Ministry of Public Security, Beijing, China
| | - J Xu
- Institute of Forensic Science, Ministry of Public Security, Beijing, China
| | - S Ma
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - X Zhao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - X Bai
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - M Li
- Department of General Surgery, Beijing ChaoYang Hospital, Capital University of Medical Sciences, Beijing, China
| | - Q Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - J Ji
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
37
|
Hsu CY, Hsieh TH, Tsai CF, Chen HS, Liang PI, Hsu YL, Tsai EM. Synthetic Steroid Hormones Regulated Cell Proliferation Through MicroRNA-34a-5p in Human Ovarian Endometrioma1. Biol Reprod 2016; 94. [DOI: 10.1095/biolreprod.115.133330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
38
|
Bar-Joseph H, Ben-Ami I, Ron-El R, Shalgi R, Chuderland D. Pigment epithelium-derived factor regulation by human chorionic gonadotropin in granulosa cells. Reproduction 2016; 151:179-85. [DOI: 10.1530/rep-15-0478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 11/26/2015] [Indexed: 02/02/2023]
Abstract
Human chorionic gonadotropin (hCG) is a known trigger of ovarian hyperstimulation syndrome (OHSS), a potentially life-threatening complication of assisted reproduction. Administration of hCG results in the release of vascular endothelial growth factor (VEGF) from the ovary. We have previously shown that expression of pigment epithelium-derived factor (PEDF) in granulosa cell line is regulated by hCG, reciprocally to VEGF, and that the PEDF–VEGF balance is impaired in OHSS. Our aim was to explore the signaling network by which hCG downregulates the expression of PEDF mRNA and protein in granulosa cells. We applied specific chemical inhibitors and stimuli to human primary granulosa cells and rat granulosa cell line. We found that PKA and protein kinase C, as well as EGFR, ERK1/2 and PI3K, participate in the signaling network. The finding that hCG-induced PEDF downregulation and VEGF upregulation are mediated by similar signaling cascades emphasizes the delicate regulation of ovarian angiogenesis.
Collapse
|
39
|
Riester SM, Arsoy D, Camilleri ET, Dudakovic A, Paradise CR, Evans JM, Torres-Mora J, Rizzo M, Kloen P, Julio MKD, van Wijnen AJ, Kakar S. RNA sequencing reveals a depletion of collagen targeting microRNAs in Dupuytren's disease. BMC Med Genomics 2015; 8:59. [PMID: 26446724 PMCID: PMC4597401 DOI: 10.1186/s12920-015-0135-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/20/2015] [Indexed: 01/08/2023] Open
Abstract
Background Dupuytren’s disease is an inherited disorder in which patients develop fibrotic contractures of the hand. Current treatment strategies include surgical excision or enzymatic digestion of fibrotic tissue. MicroRNAs, which are key posttranscriptional regulators of genes expression, have been shown to play an important regulatory role in disorders of fibrosis. Therefore in this investigation, we apply high throughput next generation RNA sequencing strategies to characterize microRNA expression in diseased and healthy palmar fascia to elucidate molecular mechanisms responsible for pathogenic fibrosis. Methods We applied high throughput RNA sequencing techniques to quantify the expression of all known human microRNAs in Dupuytren’s and control palmar fascia. MicroRNAs that were differentially expressed between diseased and healthy tissue samples were used for computational target prediction using the bioinformatics tool ComiR. Molecular pathways that were predicted to be differentially expressed based on computational analysis were validated by performing RT-qPCR on RNA extracted from diseased and non-diseased palmar fascia biopsies. Results A comparison of microRNAs expressed in Dupuytren’s fascia and control fascia identified 74 microRNAs with a 2-fold enrichment in Dupuytren’s tissue, and 32 microRNAs with enrichment in control fascia. Computational target prediction for differentially expressed microRNAs indicated preferential targeting of collagens and extracellular matrix related proteins in control palmar fascia. RT-qPCR confirmed the decreased expression of microRNA targeted collagens in control palmar fascia tissues. Discussion Control palmar fascia show decreased expression of mRNAs encoding collagens that are preferentially targeted by microRNAs enriched in non-diseased fascia. Thus alterations in microRNA regulatory networks may play an important role in driving the pathogenic fibrosis seen in Dupuytren’s disease via direct regulatory effects on extracellular matrix protein synthesis. Conclusion Dupuytren’s fascia and healthy palmar fascia can be distinguished by unique microRNA profiles, which are predicted to preferentially target collagens and other extracellular matrix proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0135-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Scott M Riester
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Diren Arsoy
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Emily T Camilleri
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Christopher R Paradise
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Jared M Evans
- Department of Biomedical Statistics and Informatics, Mayo Clinic Rochester, Rochester, MN, USA.
| | | | - Marco Rizzo
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Peter Kloen
- Department of Orthopedic Surgery, Academic Medical Center, Amsterdam, The Netherlands.
| | | | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
40
|
Yin H, Sun Y, Wang X, Park J, Zhang Y, Li M, Yin J, Liu Q, Wei M. Progress on the relationship between miR-125 family and tumorigenesis. Exp Cell Res 2015; 339:252-60. [PMID: 26407906 DOI: 10.1016/j.yexcr.2015.09.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/25/2015] [Accepted: 09/19/2015] [Indexed: 12/21/2022]
Abstract
miRNA-125 family, which is a highly conserved miRNA family throughout evolution, is consist of miRNA-125a-3p, miRNA-125a-5p, miRNA-125b-1 and miRNA-125b-2.The aberrant expression of miR-125 familyis tightly related to tumorigenesis and tumor development. The downstream targets of miRNA-125 include transcription factors like STAT3, cytokines like IL-6 and TGF-β, tumor suppressing protein p53, pro-apoptotic protein Bak1 and RNA binding protein HuR et al. Through regulating these downstream targets miR-125 family is involved in regulating tumorigenesis and tumor development. Nowadays, miR-125b have already became a putative and valuable biomarker for cancer diagnosis, treatment and prognosis. In this review, we mainly summarize the dual function of miRNA-125 family in suppression and promotion of cancer cells and further elaborate its regulatory mechanisms from four facets, proliferation, apoptosis, invasion or metastasis and immune response.
Collapse
Affiliation(s)
- Hang Yin
- Dalian 24 High School, Dalian 116023, China
| | - Yuqiang Sun
- Department of Neurosurgery, The Second Afiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Xiaofeng Wang
- Department of Neurosurgery, The Second Afiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Jeiyoun Park
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yuanyang Zhang
- Department of Ultrasonography, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Molin Li
- Department of Pathophysiology, Dalian Medical University, Dalian 116044, China
| | - Jian Yin
- Department of Neurosurgery, The Second Afiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Qiang Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Minghai Wei
- Department of Neurosurgery, The Second Afiliated Hospital of Dalian Medical University, Dalian 116023, China.
| |
Collapse
|
41
|
Grossman H, Chuderland D, Ninio-Many L, Hasky N, Kaplan-Kraicer R, Shalgi R. A novel regulatory pathway in granulosa cells, the LH/human chorionic gonadotropin-microRNA-125a-3p-Fyn pathway, is required for ovulation. FASEB J 2015; 29:3206-16. [DOI: 10.1096/fj.14-269449] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/31/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Hadas Grossman
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv, Tel Aviv, Israel
| | - Dana Chuderland
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv, Tel Aviv, Israel
| | - Lihi Ninio-Many
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv, Tel Aviv, Israel
| | - Noa Hasky
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv, Tel Aviv, Israel
| | - Ruth Kaplan-Kraicer
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv, Tel Aviv, Israel
| | - Ruth Shalgi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv, Tel Aviv, Israel
| |
Collapse
|
42
|
MicroRNA Expression Profile of Neural Progenitor-Like Cells Derived from Rat Bone Marrow Mesenchymal Stem Cells under the Influence of IGF-1, bFGF and EGF. Int J Mol Sci 2015; 16:9693-718. [PMID: 25938966 PMCID: PMC4463612 DOI: 10.3390/ijms16059693] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/17/2015] [Accepted: 04/17/2015] [Indexed: 01/04/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) enhances cellular proliferation and reduces apoptosis during the early differentiation of bone marrow derived mesenchymal stem cells (BMSCs) into neural progenitor-like cells (NPCs) in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). BMSCs were differentiated in three groups of growth factors: (A) EGF + bFGF, (B) EGF + bFGF + IGF-1, and (C) without growth factor. To unravel the molecular mechanisms of the NPCs derivation, microarray analysis using GeneChip® miRNA arrays was performed. The profiles were compared among the groups. Annotated microRNA fingerprints (GSE60060) delineated 46 microRNAs temporally up-regulated or down-regulated compared to group C. The expressions of selected microRNAs were validated by real-time PCR. Among the 46 microRNAs, 30 were consistently expressed for minimum of two consecutive time intervals. In Group B, only miR-496 was up-regulated and 12 microRNAs, including the let-7 family, miR-1224, miR-125a-3p, miR-214, miR-22, miR-320, miR-708, and miR-93, were down-regulated. Bioinformatics analysis reveals that some of these microRNAs (miR-22, miR-214, miR-125a-3p, miR-320 and let-7 family) are associated with reduction of apoptosis. Here, we summarize the roles of key microRNAs associated with IGF-1 in the differentiation of BMSCs into NPCs. These findings may provide clues to further our understanding of the mechanisms and roles of microRNAs as key regulators of BMSC-derived NPC maintenance.
Collapse
|
43
|
Treatment with recombinant tissue plasminogen activator alters the microRNA expression profiles in mouse brain after acute ischemic stroke. Neurol Sci 2015; 36:1463-70. [DOI: 10.1007/s10072-015-2149-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/03/2015] [Indexed: 10/23/2022]
|
44
|
Ninio-Many L, Shalgi R, Ben-Aharon I. miR-125a--does the difference lie in the isoform? Cell Cycle 2015; 14:785-6. [PMID: 25790088 PMCID: PMC4614516 DOI: 10.1080/15384101.2015.1010961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 12/23/2014] [Accepted: 01/09/2015] [Indexed: 10/22/2022] Open
Affiliation(s)
- Lihi Ninio-Many
- Department of Cell and Developmental Biology; Sackler Faculty of Medicine; Tel-Aviv University; Tel-Aviv, Israel
| | - Ruth Shalgi
- Department of Cell and Developmental Biology; Sackler Faculty of Medicine; Tel-Aviv University; Tel-Aviv, Israel
| | - Irit Ben-Aharon
- Institute of Oncology; Davidoff Center; Rabin Medical Center; Beilinson Campus; Petah-Tiqva, and Sackler Faculty of Medicine; Tel-Aviv University; Tel-Aviv, Israel
| |
Collapse
|
45
|
Abrantes JLF, Tornatore TF, Pelizzaro-Rocha KJ, de Jesus MB, Cartaxo RT, Milani R, Ferreira-Halder CV. Crosstalk between kinases, phosphatases and miRNAs in cancer. Biochimie 2014; 107 Pt B:167-87. [PMID: 25230087 DOI: 10.1016/j.biochi.2014.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023]
Abstract
Reversible phosphorylation of proteins, performed by kinases and phosphatases, is the major post translational protein modification in eukaryotic cells. This intracellular event represents a critical regulatory mechanism of several signaling pathways and can be related to a vast array of diseases, including cancer. Cancer research has produced increasing evidence that kinase and phosphatase activity can be compromised by mutations and also by miRNA silencing, performed by small non-coding and endogenously produced RNA molecules that lead to translational repression. miRNAs are believed to target about one-third of human mRNAs while a single miRNA may target about 200 transcripts simultaneously. Regulation of the phosphorylation balance by miRNAs has been a topic of intense research over the last years, spanning topics going as far as cancer aggressiveness and chemotherapy resistance. By addressing recent studies that have shown miRNA expression patterns as phenotypic signatures of cancers and how miRNA influence cellular processes such as apoptosis, cell cycle control, angiogenesis, inflammation and DNA repair, we discuss how kinases, phosphatases and miRNAs cooperatively act in cancer biology.
Collapse
Affiliation(s)
- Júlia L F Abrantes
- Department of Biochemistry, Institute of Biology, UNICAMP, 13083-970 Campinas, Brazil
| | - Thaís F Tornatore
- Department of Biochemistry, Institute of Biology, UNICAMP, 13083-970 Campinas, Brazil
| | | | - Marcelo B de Jesus
- Department of Biochemistry, Institute of Biology, UNICAMP, 13083-970 Campinas, Brazil
| | - Rodrigo T Cartaxo
- Department of Biochemistry, Institute of Biology, UNICAMP, 13083-970 Campinas, Brazil
| | - Renato Milani
- Department of Biochemistry, Institute of Biology, UNICAMP, 13083-970 Campinas, Brazil
| | | |
Collapse
|
46
|
Uppal A, Ferguson MK, Posner MC, Hellman S, Khodarev NN, Weichselbaum RR. Towards a molecular basis of oligometastatic disease: potential role of micro-RNAs. Clin Exp Metastasis 2014; 31:735-48. [PMID: 24968866 PMCID: PMC4138440 DOI: 10.1007/s10585-014-9664-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 06/09/2014] [Indexed: 02/06/2023]
Abstract
Oligometastasis is a cancer disease state characterized by a limited number of metastatic tumors involving single or few organs and with biological properties that make them potentially amenable to locoregional antitumor therapy. Current clinical data show that they are potentially curable with surgical resection or/and radiotherapy. Yet, mechanisms of progression from primary tumor to oligometastasis, rather than to polymetastases, is lacking in detail. In the current review we focus on the role of micro-RNAs in the regulation of metastases development and the role they may play in the differentiation of oligometastatic from polymetastatic progression. We also discuss the analyses of metastatic samples from oligo-and polymetastatic patients, which suggest that oligometastasis is a distinct biologic entity regulated in part by micro-RNAs. In addition, a review of the known functions of oligometastatic-specific micro-RNAs suggest that they regulate multiple steps in the metastatic cascade, including epithelial–mesenchymal transition, tumor invasion, intravasation, distant vascular extravasation and proliferation in a distant organ. Understanding the role of micro-RNAs and their target genes in oligometastatic disease may allow for the development of targeted therapies to effectively conrol the spread of metastases.
Collapse
Affiliation(s)
- Abhineet Uppal
- Department of Surgery, The University of Chicago, MC 5029, 5841 S. Maryland Ave, Chicago, IL, 60637, USA,
| | | | | | | | | | | |
Collapse
|
47
|
CHA HWAJUN, LEE GHANGTAI, LEE KWANGSIK, LEE KUNKOOK, HONG JINTAE, LEE NAKYEONG, KIM SOOYEON, LEE BOMI, AN INSOOK, HAHN HYUNGJIN, AHN KYUJOONG, LEE SUJAE, AN SUNGKWAN, BAE SEUNGHEE. Photoprotective effect of arctiin against ultraviolet B-induced damage in HaCaT keratinocytes is mediated by microRNA expression changes. Mol Med Rep 2014; 10:1363-70. [DOI: 10.3892/mmr.2014.2326] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 04/16/2014] [Indexed: 11/05/2022] Open
|
48
|
Rivalin R, Lepinoux-Chambaud C, Eyer J, Savagner F. The NFL-TBS.40-63 anti-glioblastoma peptide disrupts microtubule and mitochondrial networks in the T98G glioma cell line. PLoS One 2014; 9:e98473. [PMID: 24896268 PMCID: PMC4045719 DOI: 10.1371/journal.pone.0098473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 05/02/2014] [Indexed: 11/18/2022] Open
Abstract
Despite aggressive therapies, including combinations of surgery, radiotherapy and chemotherapy, glioblastoma remains a highly aggressive brain cancer with the worst prognosis of any central nervous system disease. We have previously identified a neurofilament-derived cell-penetrating peptide, NFL-TBS.40-63, that specifically enters by endocytosis in glioblastoma cells, where it induces microtubule destruction and inhibits cell proliferation. Here, we explore the impact of NFL-TBS.40-63 peptide on the mitochondrial network and its functions by using global cell respiration, quantitative PCR analysis of the main actors directing mitochondrial biogenesis, western blot analysis of the oxidative phosphorylation (OXPHOS) subunits and confocal microscopy. We show that the internalized peptide disturbs mitochondrial and microtubule networks, interferes with mitochondrial dynamics and induces a rapid depletion of global cell respiration. This effect may be related to reduced expression of the NRF-1 transcription factor and of specific miRNAs, which may impact mitochondrial biogenesis, in regard to default mitochondrial mobility.
Collapse
Affiliation(s)
- Romain Rivalin
- Université d'Angers, Angers, France
- Laboratoire Neurobiologie & Transgenese, LNBT, UPRES EA-3143, Université d'Angers, Bâtiment IBS-IRIS, Angers, France
| | - Claire Lepinoux-Chambaud
- Université d'Angers, Angers, France
- Laboratoire Neurobiologie & Transgenese, LNBT, UPRES EA-3143, Université d'Angers, Bâtiment IBS-IRIS, Angers, France
| | - Joël Eyer
- Université d'Angers, Angers, France
- Laboratoire Neurobiologie & Transgenese, LNBT, UPRES EA-3143, Université d'Angers, Bâtiment IBS-IRIS, Angers, France
| | - Frédérique Savagner
- Université d'Angers, Angers, France
- Laboratoire Neurobiologie & Transgenese, LNBT, UPRES EA-3143, Université d'Angers, Bâtiment IBS-IRIS, Angers, France
- CHU Angers, Laboratoire de Biochimie, Angers, France
- * E-mail:
| |
Collapse
|
49
|
Ninio-Many L, Grossman H, Levi M, Zilber S, Tsarfaty I, Shomron N, Tuvar A, Chuderland D, Stemmer SM, Ben-Aharon I, Shalgi R. MicroRNA miR-125a-3p modulates molecular pathway of motility and migration in prostate cancer cells. Oncoscience 2014; 1:250-261. [PMID: 25594017 PMCID: PMC4278297 DOI: 10.18632/oncoscience.30] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/28/2014] [Indexed: 12/21/2022] Open
Abstract
Fyn kinase is implicated in prostate cancer. We illustrate the role of miR-125a-3p in cellular pathways accounted for motility and migration of prostate cancer cells, probably through its regulation on Fyn expression and Fyn-downstream proteins. Prostate cancer PC3 cells were transiently transfected with empty miR-Vec (control) or with miR-125a-3p. Overexpression of miR-125a-3p reduced migration of PC3 cells and increased apoptosis. Live cell confocal imaging indicated that overexpression of miR-125a-3p reduced the cells' track speed and length and impaired phenotype. Fyn, FAK and paxillin, displayed reduced activity following miR-125a-3p overexpression. Accordingly, actin rearrangement and cells' protrusion formation were impaired. An inverse correlation between miR-125a-3p and Gleason score was observed in human prostate cancer tissues. Our study demonstrated that miR-125a-3p may regulate migration of prostate cancer cells.
Collapse
Affiliation(s)
- Lihi Ninio-Many
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Israel.,This work was performed in partial fulfillment of the requirements for a Ph.D. degree of Lihi Ninio-Many, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Hadas Grossman
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Mattan Levi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Sofia Zilber
- Department of Pathology, Rabin Medical Center, Beilinson Campus, Petah-Tiqva, Israel
| | - Ilan Tsarfaty
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Anna Tuvar
- Department of Pathology, Rabin Medical Center, Beilinson Campus, Petah-Tiqva, Israel
| | - Dana Chuderland
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Salomon M Stemmer
- Institute of Oncology, Davidoff Center, Rabin Medical Center, Beilinson Campus, Petah-Tiqva, and Sackler School of Medicine, Tel Aviv University, Israel
| | - Irit Ben-Aharon
- Institute of Oncology, Davidoff Center, Rabin Medical Center, Beilinson Campus, Petah-Tiqva, and Sackler School of Medicine, Tel Aviv University, Israel
| | - Ruth Shalgi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
50
|
Zhou DH, Wang X, Feng Q. EGCG enhances the efficacy of cisplatin by downregulating hsa-miR-98-5p in NSCLC A549 cells. Nutr Cancer 2014; 66:636-44. [PMID: 24712372 DOI: 10.1080/01635581.2014.894101] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In the current study, the enhanced efficacy of cisplatin caused by (-)-epigallocatechin-3-gallate (EGCG) in nonsmall cell lung cancer (NSCLC) A549 cells was observed. The tumor size was significantly smaller in vivo in the combination of cisplatin and EGCG group, as compared with cisplatin-only group. However, in NCI-H460 cells, another kind of NSCLC cells, the efficacy of cisplatin was antagonized by EGCG. MiRNA microarray showed that hsa-miR-98-5p and hsa-miR-125a-3p were differentially expressed after EGCG treatment in these 2 cell lines. After transfection of hsa-miR-98-5p inhibitor, the survival fraction of both A549 and NCI-H460 cells was decreased upon cisplatin treatment. Meanwhile, as a critical regulator in the cisplatin-induced apoptosis, p53 was elevated by silencing of hsa-miR-98-5p. These results suggested that EGCG inhibited the expression of hsa-miR-98-5p, followed by an increase of p53, thus the efficacy of cisplatin was enhanced. Bioinformatics analysis showed that hsa-miR-125a-3p might have a strong connection with classical MAPK pathway. Taken together, these findings indicate that hsa-miR-98-5p could be a potential target in clinical cisplatin treatment of NSCLC. The combination of EGCG and cisplatin might be an effective therapeutic strategy in treating some type of NSCLC, although the possibility of antagonistic interactions must also be taken into account.
Collapse
Affiliation(s)
- Dong-Hu Zhou
- a Department of Nutrition and Food Safety, Key Laboratory of Toxicology, School of Public Health , Nanjing Medical University , Nanjing , Jiangsu , China
| | | | | |
Collapse
|