1
|
Panmanee W, Tran MTH, Seye SN, Strome ED. Altered S-AdenosylMethionine availability impacts dNTP pools in Saccharomyces cerevisiae. Yeast 2024; 41:513-524. [PMID: 38961653 PMCID: PMC12044341 DOI: 10.1002/yea.3973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/30/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024] Open
Abstract
Saccharomyces cerevisiae has long been used as a model organism to study genome instability. The SAM1 and SAM2 genes encode AdoMet synthetases, which generate S-AdenosylMethionine (AdoMet) from Methionine (Met) and ATP. Previous work from our group has shown that deletions of the SAM1 and SAM2 genes cause changes to AdoMet levels and impact genome instability in opposite manners. AdoMet is a key product of methionine metabolism and the major methyl donor for methylation events of proteins, RNAs, small molecules, and lipids. The methyl cycle is interrelated to the folate cycle which is involved in de novo synthesis of purine and pyrimidine deoxyribonucleotides (dATP, dTTP, dCTP, and dGTP). AdoMet also plays a role in polyamine production, essential for cell growth and used in detoxification of reactive oxygen species (ROS) and maintenance of the redox status in cells. This is also impacted by the methyl cycle's role in production of glutathione, another ROS scavenger and cellular protectant. We show here that sam2∆/sam2∆ cells, previously characterized with lower levels of AdoMet and higher genome instability, have a higher level of each dNTP (except dTTP), contributing to a higher overall dNTP pool level when compared to wildtype. Unchecked, these increased levels can lead to multiple types of DNA damage which could account for the genome instability increases in these cells.
Collapse
Affiliation(s)
- Warunya Panmanee
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, Kentucky, USA
| | - Men T H Tran
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, Kentucky, USA
| | - Serigne N Seye
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, Kentucky, USA
| | - Erin D Strome
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, Kentucky, USA
| |
Collapse
|
2
|
Remines M, Schoonover MG, Knox Z, Kenwright K, Hoffert KM, Coric A, Mead J, Ampfer J, Seye S, Strome ED. Profiling the compendium of changes in Saccharomyces cerevisiae due to mutations that alter availability of the main methyl donor S-Adenosylmethionine. G3 (BETHESDA, MD.) 2024; 14:jkae002. [PMID: 38184845 PMCID: PMC10989883 DOI: 10.1093/g3journal/jkae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/17/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
The SAM1 and SAM2 genes encode for S-Adenosylmethionine (AdoMet) synthetase enzymes, with AdoMet serving as the main cellular methyl donor. We have previously shown that independent deletion of these genes alters chromosome stability and AdoMet concentrations in opposite ways in Saccharomyces cerevisiae. To characterize other changes occurring in these mutants, we grew wildtype, sam1Δ/sam1Δ, and sam2Δ/sam2Δ strains in 15 different Phenotypic Microarray plates with different components and measured growth variations. RNA-Sequencing was also carried out on these strains and differential gene expression determined for each mutant. We explored how the phenotypic growth differences are linked to the altered gene expression, and hypothesize mechanisms by which loss of the SAM genes and subsequent AdoMet level changes, impact pathways and processes. We present 6 stories, discussing changes in sensitivity or resistance to azoles, cisplatin, oxidative stress, arginine biosynthesis perturbations, DNA synthesis inhibitors, and tamoxifen, to demonstrate the power of this novel methodology to broadly profile changes due to gene mutations. The large number of conditions that result in altered growth, as well as the large number of differentially expressed genes with wide-ranging functionality, speaks to the broad array of impacts that altering methyl donor abundance can impart. Our findings demonstrate that some cellular changes are directly related to AdoMet-dependent methyltransferases and AdoMet availability, some are directly linked to the methyl cycle and its role in production of several important cellular components, and others reveal impacts of SAM gene mutations on previously unconnected pathways.
Collapse
Affiliation(s)
- McKayla Remines
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Makailyn G Schoonover
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Zoey Knox
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Kailee Kenwright
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Kellyn M Hoffert
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Amila Coric
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - James Mead
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Joseph Ampfer
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Serigne Seye
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Erin D Strome
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| |
Collapse
|
3
|
Antequera-Parrilla P, Castillo-Acosta VM, Bosch-Navarrete C, Ruiz-Pérez LM, González-Pacanowska D. A nuclear orthologue of the dNTP triphosphohydrolase SAMHD1 controls dNTP homeostasis and genomic stability in Trypanosoma brucei. Front Cell Infect Microbiol 2023; 13:1241305. [PMID: 37674581 PMCID: PMC10478004 DOI: 10.3389/fcimb.2023.1241305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Maintenance of dNTPs pools in Trypanosoma brucei is dependent on both biosynthetic and degradation pathways that together ensure correct cellular homeostasis throughout the cell cycle which is essential for the preservation of genomic stability. Both the salvage and de novo pathways participate in the provision of pyrimidine dNTPs while purine dNTPs are made available solely through salvage. In order to identify enzymes involved in degradation here we have characterized the role of a trypanosomal SAMHD1 orthologue denominated TbHD82. Our results show that TbHD82 is a nuclear enzyme in both procyclic and bloodstream forms of T. brucei. Knockout forms exhibit a hypermutator phenotype, cell cycle perturbations and an activation of the DNA repair response. Furthermore, dNTP quantification of TbHD82 null mutant cells revealed perturbations in nucleotide metabolism with a substantial accumulation of dATP, dCTP and dTTP. We propose that this HD domain-containing protein present in kinetoplastids plays an essential role acting as a sentinel of genomic fidelity by modulating the unnecessary and detrimental accumulation of dNTPs.
Collapse
Affiliation(s)
| | - Víctor M. Castillo-Acosta
- Instituto de Parasitología y Biomedicina “López-Neyra, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | | | | | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina “López-Neyra, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| |
Collapse
|
4
|
Remines M, Schoonover M, Knox Z, Kenwright K, Hoffert KM, Coric A, Mead J, Ampfer J, Seye S, Strome ED. Profiling The Compendium Of Changes In Saccharomyces cerevisiae Due To Mutations That Alter Availability Of The Main Methyl Donor S-Adenosylmethionine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544294. [PMID: 37333147 PMCID: PMC10274911 DOI: 10.1101/2023.06.09.544294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The SAM1 and SAM2 genes encode for S-AdenosylMethionine (AdoMet) synthetase enzymes, with AdoMet serving as the main methyl donor. We have previously shown that independent deletion of these genes alters chromosome stability and AdoMet concentrations in opposite ways in S. cerevisiae. To characterize other changes occurring in these mutants, we grew wildtype, sam1∆/sam1∆, and sam2∆/sam2∆ strains in 15 different Phenotypic Microarray plates with different components, equal to 1440 wells, and measured for growth variations. RNA-Sequencing was also carried out on these strains and differential gene expression determined for each mutant. In this study, we explore how the phenotypic growth differences are linked to the altered gene expression, and thereby predict the mechanisms by which loss of the SAM genes and subsequent AdoMet level changes, impact S. cerevisiae pathways and processes. We present six stories, discussing changes in sensitivity or resistance to azoles, cisplatin, oxidative stress, arginine biosynthesis perturbations, DNA synthesis inhibitors, and tamoxifen, to demonstrate the power of this novel methodology to broadly profile changes due to gene mutations. The large number of conditions that result in altered growth, as well as the large number of differentially expressed genes with wide-ranging functionality, speaks to the broad array of impacts that altering methyl donor abundance can impart, even when the conditions tested were not specifically selected as targeting known methyl involving pathways. Our findings demonstrate that some cellular changes are directly related to AdoMet-dependent methyltransferases and AdoMet availability, some are directly linked to the methyl cycle and its role is production of several important cellular components, and others reveal impacts of SAM gene mutations on previously unconnected pathways.
Collapse
Affiliation(s)
- McKayla Remines
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Makailyn Schoonover
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Zoey Knox
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Kailee Kenwright
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Kellyn M. Hoffert
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Amila Coric
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - James Mead
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Joseph Ampfer
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Serigne Seye
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Erin D. Strome
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| |
Collapse
|
5
|
Long MJC, Ly P, Aye Y. Still no Rest for the Reductases: Ribonucleotide Reductase (RNR) Structure and Function: An Update. Subcell Biochem 2022; 99:155-197. [PMID: 36151376 DOI: 10.1007/978-3-031-00793-4_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein we present a multidisciplinary discussion of ribonucleotide reductase (RNR), the essential enzyme uniquely responsible for conversion of ribonucleotides to deoxyribonucleotides. This chapter primarily presents an overview of this multifaceted and complex enzyme, covering RNR's role in enzymology, biochemistry, medicinal chemistry, and cell biology. It further focuses on RNR from mammals, whose interesting and often conflicting roles in health and disease are coming more into focus. We present pitfalls that we think have not always been dealt with by researchers in each area and further seek to unite some of the field-specific observations surrounding this enzyme. Our work is thus not intended to cover any one topic in extreme detail, but rather give what we consider to be the necessary broad grounding to understand this critical enzyme holistically. Although this is an approach we have advocated in many different areas of scientific research, there is arguably no other single enzyme that embodies the need for such broad study than RNR. Thus, we submit that RNR itself is a paradigm of interdisciplinary research that is of interest from the perspective of the generalist and the specialist alike. We hope that the discussions herein will thus be helpful to not only those wanting to tackle RNR-specific problems, but also those working on similar interdisciplinary projects centering around other enzymes.
Collapse
Affiliation(s)
- Marcus J C Long
- University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Biochemistry, UNIL, Epalinges, Switzerland
| | - Phillippe Ly
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- EPFL SB ISIC LEAGO, Lausanne, Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- EPFL SB ISIC LEAGO, Lausanne, Switzerland.
| |
Collapse
|
6
|
Soriano I, Vazquez E, De Leon N, Bertrand S, Heitzer E, Toumazou S, Bo Z, Palles C, Pai CC, Humphrey TC, Tomlinson I, Cotterill S, Kearsey SE. Expression of the cancer-associated DNA polymerase ε P286R in fission yeast leads to translesion synthesis polymerase dependent hypermutation and defective DNA replication. PLoS Genet 2021; 17:e1009526. [PMID: 34228709 PMCID: PMC8284607 DOI: 10.1371/journal.pgen.1009526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/16/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Somatic and germline mutations in the proofreading domain of the replicative DNA polymerase ε (POLE-exonuclease domain mutations, POLE-EDMs) are frequently found in colorectal and endometrial cancers and, occasionally, in other tumours. POLE-associated cancers typically display hypermutation, and a unique mutational signature, with a predominance of C > A transversions in the context TCT and C > T transitions in the context TCG. To understand better the contribution of hypermutagenesis to tumour development, we have modelled the most recurrent POLE-EDM (POLE-P286R) in Schizosaccharomyces pombe. Whole-genome sequencing analysis revealed that the corresponding pol2-P287R allele also has a strong mutator effect in vivo, with a high frequency of base substitutions and relatively few indel mutations. The mutations are equally distributed across different genomic regions, but in the immediate vicinity there is an asymmetry in AT frequency. The most abundant base-pair changes are TCT > TAT transversions and, in contrast to human mutations, TCG > TTG transitions are not elevated, likely due to the absence of cytosine methylation in fission yeast. The pol2-P287R variant has an increased sensitivity to elevated dNTP levels and DNA damaging agents, and shows reduced viability on depletion of the Pfh1 helicase. In addition, S phase is aberrant and RPA foci are elevated, suggestive of ssDNA or DNA damage, and the pol2-P287R mutation is synthetically lethal with rad3 inactivation, indicative of checkpoint activation. Significantly, deletion of genes encoding some translesion synthesis polymerases, most notably Pol κ, partially suppresses pol2-P287R hypermutation, indicating that polymerase switching contributes to this phenotype.
Collapse
Affiliation(s)
- Ignacio Soriano
- ZRAB, University of Oxford, Oxford, United Kingdom
- Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Enrique Vazquez
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Nagore De Leon
- ZRAB, University of Oxford, Oxford, United Kingdom
- Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | | | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Sophia Toumazou
- ZRAB, University of Oxford, Oxford, United Kingdom
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Zhihan Bo
- ZRAB, University of Oxford, Oxford, United Kingdom
| | - Claire Palles
- Gastrointestinal Cancer Genetics Laboratory, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chen-Chun Pai
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Timothy C. Humphrey
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ian Tomlinson
- Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Sue Cotterill
- St. George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | | |
Collapse
|
7
|
Prestel A, Wichmann N, Martins JM, Marabini R, Kassem N, Broendum SS, Otterlei M, Nielsen O, Willemoës M, Ploug M, Boomsma W, Kragelund BB. The PCNA interaction motifs revisited: thinking outside the PIP-box. Cell Mol Life Sci 2019; 76:4923-4943. [PMID: 31134302 PMCID: PMC6881253 DOI: 10.1007/s00018-019-03150-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/16/2019] [Accepted: 05/13/2019] [Indexed: 02/08/2023]
Abstract
Proliferating cell nuclear antigen (PCNA) is a cellular hub in DNA metabolism and a potential drug target. Its binding partners carry a short linear motif (SLiM) known as the PCNA-interacting protein-box (PIP-box), but sequence-divergent motifs have been reported to bind to the same binding pocket. To investigate how PCNA accommodates motif diversity, we assembled a set of 77 experimentally confirmed PCNA-binding proteins and analyzed features underlying their binding affinity. Combining NMR spectroscopy, affinity measurements and computational analyses, we corroborate that most PCNA-binding motifs reside in intrinsically disordered regions, that structure preformation is unrelated to affinity, and that the sequence-patterns that encode binding affinity extend substantially beyond the boundaries of the PIP-box. Our systematic multidisciplinary approach expands current views on PCNA interactions and reveals that the PIP-box affinity can be modulated over four orders of magnitude by positive charges in the flanking regions. Including the flanking regions as part of the motif is expected to have broad implications, particularly for interpretation of disease-causing mutations and drug-design, targeting DNA-replication and -repair.
Collapse
Affiliation(s)
- Andreas Prestel
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Nanna Wichmann
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Joao M Martins
- Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen Ø, Denmark
| | - Riccardo Marabini
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Noah Kassem
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Sebastian S Broendum
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Olaf Nielsen
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Martin Willemoës
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
- Finsen Laboratory, Biotechnology Research Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Wouter Boomsma
- Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen Ø, Denmark.
| | - Birthe B Kragelund
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
8
|
Hoffert KM, Higginbotham KSP, Gibson JT, Oehrle S, Strome ED. Mutations in the S-Adenosylmethionine Synthetase Genes SAM1 and SAM2 Differentially Affect Genome Stability in Saccharomyces cerevisiae. Genetics 2019; 213:97-112. [PMID: 31320408 PMCID: PMC6727793 DOI: 10.1534/genetics.119.302435] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022] Open
Abstract
Maintenance of genome integrity is a crucial cellular focus that involves a wide variety of proteins functioning in multiple processes. Defects in many different pathways can result in genome instability, a hallmark of cancer. Utilizing a diploid Saccharomyces cerevisiae model, we previously reported a collection of gene mutations that affect genome stability in a haploinsufficient state. In this work we explore the effect of gene dosage on genome instability for one of these genes and its paralog; SAM1 and SAM2 These genes encode S-Adenosylmethionine (AdoMet) synthetases, responsible for the creation of AdoMet from methionine and ATP. AdoMet is the universal methyl donor for methylation reactions and is essential for cell viability. It is the second most used cellular enzyme substrate and is exceptionally well-conserved through evolution. Mammalian cells express three genes, MAT1A, MAT2A, and MAT2B, with distinct expression profiles and functions. Alterations to these AdoMet synthetase genes, and AdoMet levels, are found in many cancers, making them a popular target for therapeutic intervention. However, significant variance in these alterations are found in different tumor types, with the cellular consequences of the variation still unknown. By studying this pathway in the yeast system, we demonstrate that losses of SAM1 and SAM2 have different effects on genome stability through distinctive effects on gene expression and AdoMet levels, and ultimately separate effects on the methyl cycle. Thus, this study provides insight into the mechanisms by which differential expression of the SAM genes have cellular consequences that affect genome instability.
Collapse
Affiliation(s)
- Kellyn M Hoffert
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, Kentucky 41099
| | - Kathryn S P Higginbotham
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, Kentucky 41099
| | - Justin T Gibson
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, Kentucky 41099
| | - Stuart Oehrle
- Waters Field Laboratory, Chemistry Department, Northern Kentucky University, Highland Heights, Kentucky 41099
| | - Erin D Strome
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, Kentucky 41099
| |
Collapse
|
9
|
Cohen R, Milo S, Sharma S, Savidor A, Covo S. Ribonucleotide reductase from Fusarium oxysporum does not Respond to DNA replication stress. DNA Repair (Amst) 2019; 83:102674. [PMID: 31375409 DOI: 10.1016/j.dnarep.2019.102674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
Abstract
Ribonucleotide reductase (RNR) catalyzes the rate limiting step in dNTP biosynthesis and is tightly regulated at the transcription and activity levels. One of the best characterized responses of yeast to DNA damage is up-regulation of RNR transcription and activity and consequently, elevation of the dNTP pools. Hydroxyurea is a universal inhibitor of RNR that causes S phase arrest. It is used in the clinic to treat certain types of cancers. Here we studied the response of the fungal plant pathogen Fusarium oxysporum to hydroxyurea in order to generate hypotheses that can be used in the future in development of a new class of pesticides. F. oxysporum causes severe damage to more than 100 agricultural crops and specifically threatens banana cultivation world-wide. Although the recovery of F. oxysporum from transient hydroxyurea exposure was similar to the one of Saccharomyces cerevisiae, colony formation was strongly inhibited in F. oxysporum in comparison with S. cerevisiae. As expected, genomic and phosphoproteomic analyses of F. oxysporum conidia (spores) exposed to hydroxyurea showed hallmarks of DNA replication perturbation and activation of recombination. Unexpectedly and strikingly, RNR was not induced by either hydroxyurea or the DNA-damaging agent methyl methanesulfonate as determined at the RNA and protein levels. Consequently, dNTP concentrations were significantly reduced, even in response to a low dose of hydroxyurea. Methyl methanesulfonate treatment did not induce dNTP pools in F. oxysporum, in contrast to the response of RNR and dNTP pools to DNA damage and hydroxyurea in several tested organisms. Our results are important because the lack of a feedback mechanism to increase RNR expression in F. oxysporum is expected to sensitize the pathogen to a fungal-specific ribonucleotide inhibitor. The potential impact of our observations on F. oxysporum genome stability and genome evolution is discussed.
Collapse
Affiliation(s)
- Rotem Cohen
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, 76100, Israel
| | - Shira Milo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, 76100, Israel
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Alon Savidor
- de Botton Institute for Protein Profiling, the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, 76100, Israel.
| |
Collapse
|
10
|
Rubio A, García-Blanco N, Vázquez-Bolado A, Belén Suárez M, Moreno S. Nutritional cell cycle reprogramming reveals that inhibition of Cdk1 is required for proper MBF-dependent transcription. J Cell Sci 2018; 131:jcs.218743. [PMID: 30154212 DOI: 10.1242/jcs.218743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/20/2018] [Indexed: 01/22/2023] Open
Abstract
In nature, cells and in particular unicellular microorganisms are exposed to a variety of nutritional environments. Fission yeast cells cultured in nitrogen-rich media grow fast, divide with a large size and show a short G1 and a long G2. However, when cultured in nitrogen-poor media, they exhibit reduced growth rate and cell size and a long G1 and a short G2. In this study, we compared the phenotypes of cells lacking the highly conserved cyclin-dependent kinase (Cdk) inhibitor Rum1 and the anaphase-promoting complex/cyclosome (APC/C) activator Ste9 in nitrogen-rich and nitrogen-poor media. Rum1 and Ste9 are dispensable for cell division in nitrogen-rich medium. However, in nitrogen-poor medium they are essential for generating a proper wave of MluI cell-cycle box binding factor (MBF)-dependent transcription at the end of G1, which is crucial for promoting a successful S phase. Mutants lacking Rum1 and Ste9 showed premature entry into S phase and a reduced wave of MBF-dependent transcription, leading to replication stress, DNA damage and G2 cell cycle arrest. This work demonstrates how reprogramming the cell cycle by changing the nutritional environment may reveal new roles for cell cycle regulators.
Collapse
Affiliation(s)
- Angela Rubio
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain.,Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca. Spain
| | - Natalia García-Blanco
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain.,Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca. Spain
| | - Alicia Vázquez-Bolado
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain.,Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca. Spain
| | - María Belén Suárez
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain.,Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca. Spain
| | - Sergio Moreno
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
11
|
Tramentozzi E, Ferraro P, Hossain M, Stillman B, Bianchi V, Pontarin G. The dNTP triphosphohydrolase activity of SAMHD1 persists during S-phase when the enzyme is phosphorylated at T592. Cell Cycle 2018; 17:1102-1114. [PMID: 30039733 PMCID: PMC6110608 DOI: 10.1080/15384101.2018.1480216] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 06/01/2018] [Accepted: 05/16/2018] [Indexed: 01/31/2023] Open
Abstract
SAMHD1 is the major catabolic enzyme regulating the intracellular concentrations of DNA precursors (dNTPs). The S-phase kinase CDK2-cyclinA phosphorylates SAMHD1 at Thr-592. How this modification affects SAMHD1 function is highly debated. We investigated the role of endogenous SAMHD1 phosphorylation during the cell cycle. Thr-592 phosphorylation occurs first at the G1/S border and is removed during mitotic exit parallel with Thr-phosphorylations of most CDK1 targets. Differential sensitivity to the phosphatase inhibitor okadaic acid suggested different involvement of the PP1 and PP2 families dependent upon the time of the cell cycle. SAMHD1 turn-over indicates that Thr-592 phosphorylation does not cause rapid protein degradation. Furthermore, SAMHD1 influenced the size of the four dNTP pools independently of its phosphorylation. Our findings reveal that SAMHD1 is active during the entire cell cycle and performs an important regulatory role during S-phase by contributing with ribonucleotide reductase to maintain dNTP pool balance for proper DNA replication.
Collapse
Affiliation(s)
| | - Paola Ferraro
- Department of Biology, University of Padova, Padova, Italy
| | - Manzar Hossain
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Vera Bianchi
- Department of Biology, University of Padova, Padova, Italy
| | - Giovanna Pontarin
- Department of Biology, University of Padova, Padova, Italy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
12
|
Guo JR, Li Z, Wang CY, Kei Lam CW, Chen QQ, Zhang WJ, Wai Wong VK, Yao MC, Zhang W. Profiling of ribonucleotides and deoxyribonucleotides pools in response to DNA damage and repair induced by methyl methanesulfonate in cancer and normal cells. Oncotarget 2017; 8:101707-101719. [PMID: 29254198 PMCID: PMC5731908 DOI: 10.18632/oncotarget.21521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/03/2017] [Indexed: 02/04/2023] Open
Abstract
The absolute and relative pool sizes of deoxyribonucleotides (dRNs) are essential in DNA replication fidelity, DNA damage and repair. We found in this study that although DNA damage induced by methyl methanesulfonate (MMS) seemed similar in cancer (HepG2) and normal (LO2) cells, more extensive alterations in ribonucleotides (RNs) and dRNs pools occurred in HepG2 cells indicating that HepG2 cells were more vigilant to DNA damage. After 10 h repair, RNs pools were still severely perturbed in LO2 cells. Compared to LO2 cells, deoxyribonucleotide triphosphates (dNTPs) pools in HepG2 cells elevated by more folds which could facilitate more efficient DNA repair and improve survival probability following DNA damage, although this should definitely lead to higher mutation rates. DNA repair was more efficient in HepG2 cells at S phase and it partly came to an end while DNA repair was still uncompleted in LO2 cells outside S phase. In conclusion, our results demonstrated that HepG2 and LO2 cells presented many differences in nucleotide metabolism, cell cycle checkpoints and DNA repair pathways in response to DNA damage, which could be potential targets for cancer treatment.
Collapse
Affiliation(s)
- Jian-Ru Guo
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, China
| | - Zheng Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, China
| | - Cai-Yun Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, China
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, China
| | - Qian-Qian Chen
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, China
| | - Wei-Jia Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, China
| | - Mei-Cun Yao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, China
| |
Collapse
|
13
|
Pai CC, Kishkevich A, Deegan RS, Keszthelyi A, Folkes L, Kearsey SE, De León N, Soriano I, de Bruin RAM, Carr AM, Humphrey TC. Set2 Methyltransferase Facilitates DNA Replication and Promotes Genotoxic Stress Responses through MBF-Dependent Transcription. Cell Rep 2017; 20:2693-2705. [PMID: 28903048 PMCID: PMC5608972 DOI: 10.1016/j.celrep.2017.08.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 06/10/2017] [Accepted: 08/17/2017] [Indexed: 11/24/2022] Open
Abstract
Chromatin modification through histone H3 lysine 36 methylation by the SETD2 tumor suppressor plays a key role in maintaining genome stability. Here, we describe a role for Set2-dependent H3K36 methylation in facilitating DNA replication and the transcriptional responses to both replication stress and DNA damage through promoting MluI cell-cycle box (MCB) binding factor (MBF)-complex-dependent transcription in fission yeast. Set2 loss leads to reduced MBF-dependent ribonucleotide reductase (RNR) expression, reduced deoxyribonucleoside triphosphate (dNTP) synthesis, altered replication origin firing, and a checkpoint-dependent S-phase delay. Accordingly, prolonged S phase in the absence of Set2 is suppressed by increasing dNTP synthesis. Furthermore, H3K36 is di- and tri-methylated at these MBF gene promoters, and Set2 loss leads to reduced MBF binding and transcription in response to genotoxic stress. Together, these findings provide new insights into how H3K36 methylation facilitates DNA replication and promotes genotoxic stress responses in fission yeast.
Collapse
Affiliation(s)
- Chen-Chun Pai
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | - Anastasiya Kishkevich
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6B, UK
| | - Rachel S Deegan
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Andrea Keszthelyi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex BN1 9RQ, UK
| | - Lisa Folkes
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Stephen E Kearsey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Nagore De León
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Ignacio Soriano
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex BN1 9RQ, UK
| | - Timothy C Humphrey
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
14
|
Fleck O, Fahnøe U, Løvschal KV, Gasasira MFU, Marinova IN, Kragelund BB, Carr AM, Hartsuiker E, Holmberg C, Nielsen O. Deoxynucleoside Salvage in Fission Yeast Allows Rescue of Ribonucleotide Reductase Deficiency but Not Spd1-Mediated Inhibition of Replication. Genes (Basel) 2017; 8:E128. [PMID: 28441348 PMCID: PMC5448002 DOI: 10.3390/genes8050128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 12/12/2022] Open
Abstract
In fission yeast, the small, intrinsically disordered protein S-phase delaying protein 1 (Spd1) blocks DNA replication and causes checkpoint activation at least in part, by inhibiting the enzyme ribonucleotide reductase, which is responsible for the synthesis of DNA. The CRL4Cdt2 E3 ubiquitin ligase mediates degradation of Spd1 and the related protein Spd2 at S phase of the cell cycle. We have generated a conditional allele of CRL4Cdt2, by expressing the highly unstable substrate-recruiting protein Cdt2 from a repressible promoter. Unlike Spd1, Spd2 does not regulate deoxynucleotide triphosphate (dNTP) pools; yet we find that Spd1 and Spd2 together inhibit DNA replication upon Cdt2 depletion. To directly test whether this block of replication was solely due to insufficient dNTP levels, we established a deoxy-nucleotide salvage pathway in fission yeast by expressing the human nucleoside transporter human equilibrative nucleoside transporter 1 (hENT1) and the Drosophila deoxynucleoside kinase. We present evidence that this salvage pathway is functional, as 2 µM of deoxynucleosides in the culture medium is able to rescue the growth of two different temperature-sensitive alleles controlling ribonucleotide reductase. However, salvage completely failed to rescue S phase delay, checkpoint activation, and damage sensitivity, which was caused by CRL4Cdt2 inactivation, suggesting that Spd1-in addition to repressing dNTP synthesis-together with Spd2, can inhibit other replication functions. We propose that this inhibition works at the point of the replication clamp proliferating cell nuclear antigen, a co-factor for DNA replication.
Collapse
Affiliation(s)
- Oliver Fleck
- Cell Cycle and Genome Stability Group, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
- North West Cancer Research Institute, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Ulrik Fahnøe
- Cell Cycle and Genome Stability Group, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Katrine Vyff Løvschal
- Cell Cycle and Genome Stability Group, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | | | - Irina N Marinova
- Cell Cycle and Genome Stability Group, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Antony M Carr
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK.
| | - Edgar Hartsuiker
- North West Cancer Research Institute, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Christian Holmberg
- Cell Cycle and Genome Stability Group, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Olaf Nielsen
- Cell Cycle and Genome Stability Group, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
15
|
Abstract
Cyclin Dependent Kinases (CDKs) are important regulators of DNA replication. In this work we have investigated the consequences of increasing or decreasing the CDK activity in S phase. To this end we identified S-phase regulators of the fission yeast CDK, Cdc2, and used appropriate mutants to modulate Cdc2 activity. In fission yeast Mik1 has been thought to be the main regulator of Cdc2 activity in S phase. However, we find that Wee1 has a major function in S phase and thus we used wee1 mutants to investigate the consequences of increased Cdc2 activity. These wee1 mutants display increased replication stress and, particularly in the absence of the S-phase checkpoint, accumulate DNA damage. Notably, more cells incorporate EdU in a wee1(-) strain as compared to wildtype, suggesting altered regulation of DNA replication. In addition, a higher number of cells contain chromatin-bound Cdc45, an indicator of active replication forks. In addition, we found that Cdc25 is required to activate Cdc2 in S phase and used a cdc25 mutant to explore a situation where Cdc2 activity is reduced. Interestingly, a cdc25 mutant has a higher tolerance for replication stress than wild-type cells, suggesting that reduced CDK activity in S phase confers resistance to at least some forms of replication stress.
Collapse
Affiliation(s)
- Silje Anda
- a Department of Radiation Biology , Institute for Cancer Research, Oslo University Hospital , Oslo , Montebello , Norway
| | - Christiane Rothe
- a Department of Radiation Biology , Institute for Cancer Research, Oslo University Hospital , Oslo , Montebello , Norway
| | - Erik Boye
- a Department of Radiation Biology , Institute for Cancer Research, Oslo University Hospital , Oslo , Montebello , Norway
| | - Beáta Grallert
- a Department of Radiation Biology , Institute for Cancer Research, Oslo University Hospital , Oslo , Montebello , Norway
| |
Collapse
|
16
|
Pai CC, Kearsey SE. A Critical Balance: dNTPs and the Maintenance of Genome Stability. Genes (Basel) 2017; 8:genes8020057. [PMID: 28146119 PMCID: PMC5333046 DOI: 10.3390/genes8020057] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/24/2017] [Indexed: 01/14/2023] Open
Abstract
A crucial factor in maintaining genome stability is establishing deoxynucleoside triphosphate (dNTP) levels within a range that is optimal for chromosomal replication. Since DNA replication is relevant to a wide range of other chromosomal activities, these may all be directly or indirectly affected when dNTP concentrations deviate from a physiologically normal range. The importance of understanding these consequences is relevant to genetic disorders that disturb dNTP levels, and strategies that inhibit dNTP synthesis in cancer chemotherapy and for treatment of other disorders. We review here how abnormal dNTP levels affect DNA replication and discuss the consequences for genome stability.
Collapse
Affiliation(s)
- Chen-Chun Pai
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | - Stephen E Kearsey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| |
Collapse
|
17
|
Skoneczna A, Kaniak A, Skoneczny M. Genetic instability in budding and fission yeast-sources and mechanisms. FEMS Microbiol Rev 2015; 39:917-67. [PMID: 26109598 PMCID: PMC4608483 DOI: 10.1093/femsre/fuv028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 12/17/2022] Open
Abstract
Cells are constantly confronted with endogenous and exogenous factors that affect their genomes. Eons of evolution have allowed the cellular mechanisms responsible for preserving the genome to adjust for achieving contradictory objectives: to maintain the genome unchanged and to acquire mutations that allow adaptation to environmental changes. One evolutionary mechanism that has been refined for survival is genetic variation. In this review, we describe the mechanisms responsible for two biological processes: genome maintenance and mutation tolerance involved in generations of genetic variations in mitotic cells of both Saccharomyces cerevisiae and Schizosaccharomyces pombe. These processes encompass mechanisms that ensure the fidelity of replication, DNA lesion sensing and DNA damage response pathways, as well as mechanisms that ensure precision in chromosome segregation during cell division. We discuss various factors that may influence genome stability, such as cellular ploidy, the phase of the cell cycle, transcriptional activity of a particular region of DNA, the proficiency of DNA quality control systems, the metabolic stage of the cell and its respiratory potential, and finally potential exposure to endogenous or environmental stress. The stability of budding and fission yeast genomes is influenced by two contradictory factors: (1) the need to be fully functional, which is ensured through the replication fidelity pathways of nuclear and mitochondrial genomes through sensing and repairing DNA damage, through precise chromosome segregation during cell division; and (2) the need to acquire changes for adaptation to environmental challenges.
Collapse
Affiliation(s)
- Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Aneta Kaniak
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| |
Collapse
|
18
|
Sastre-Moreno G, Sánchez A, Esteban V, Blanco L. ATP insertion opposite 8-oxo-deoxyguanosine by Pol4 mediates error-free tolerance in Schizosaccharomyces pombe. Nucleic Acids Res 2014; 42:9821-37. [PMID: 25106870 PMCID: PMC4150805 DOI: 10.1093/nar/gku711] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
7,8-Dihydro-8-oxo-deoxyguanosine (8oxodG) is a highly premutagenic DNA lesion due to its ability to mispair with adenine. Schizosaccharomyces pombe lacks homologs for relevant enzymes that repair 8oxodG, which suggests that this lesion could be persistent and must be tolerated. Here we show that SpPol4, the unique PolX in fission yeast, incorporates ATP opposite 8oxodG almost exclusively when all nucleotides (ribos and deoxys) are provided at physiological concentrations. Remarkably, this SpPol4-specific reaction could also occur during the NHEJ of DSBs. In cell extracts, misincorporation of ATP opposite 8oxodG was shown to be SpPol4-specific, although RNase H2 efficiently recognized the 8oxodG:AMP mispair to remove AMP and trigger error-free incorporation of dCTP. These data are the first evidence that ribonucleotides can be used safely for 8oxodG tolerance, suggesting that insertion of the highly abundant ATP substrate could be beneficial to promote efficient and error-free repair of 8oxodG-associated DSBs. Moreover, we demonstrate that purified SpPol4 uses 8oxo-dGTP and 8oxo-GTP as substrates for DNA polymerization, although with poor efficiency compared to the incorporation of undamaged nucleotides opposite either 8oxodG or undamaged templates. This suggests that SpPol4 is specialized in tolerating 8oxodG as a DNA template, without contributing significantly to the accumulation of this lesion in the DNA.
Collapse
Affiliation(s)
- Guillermo Sastre-Moreno
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, 28049 Madrid, Spain
| | - Arancha Sánchez
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, 28049 Madrid, Spain
| | - Verónica Esteban
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, 28049 Madrid, Spain
| | - Luis Blanco
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, 28049 Madrid, Spain
| |
Collapse
|
19
|
Vejrup-Hansen R, Fleck O, Landvad K, Fahnøe U, Broendum SS, Schreurs AS, Kragelund BB, Carr AM, Holmberg C, Nielsen O. Spd2 assists Spd1 in the modulation of ribonucleotide reductase architecture but does not regulate deoxynucleotide pools. J Cell Sci 2014; 127:2460-70. [PMID: 24652833 DOI: 10.1242/jcs.139816] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
In yeasts, small intrinsically disordered proteins (IDPs) modulate ribonucleotide reductase (RNR) activity to ensure an optimal supply of dNTPs for DNA synthesis. The Schizosaccharomyces pombe Spd1 protein can directly inhibit the large RNR subunit (R1), import the small subunit (R2) into the nucleus and induce an architectural change in the R1-R2 holocomplex. Here, we report the characterization of Spd2, a protein with sequence similarity to Spd1. We show that Spd2 is a CRL4(Cdt2)-controlled IDP that functions together with Spd1 in the DNA damage response and in modulation of RNR architecture. However, Spd2 does not regulate dNTP pools and R2 nuclear import. Furthermore, deletion of spd2 only weakly suppresses the Rad3(ATR) checkpoint dependency of CRL4(Cdt2) mutants. However, when we raised intracellular dNTP pools by inactivation of RNR feedback inhibition, deletion of spd2 could suppress the checkpoint dependency of CRL4(Cdt2) mutant cells to the same extent as deletion of spd1. Collectively, these observations suggest that Spd1 on its own regulates dNTP pools, whereas in combination with Spd2 it modulates RNR architecture and sensitizes cells to DNA damage.
Collapse
Affiliation(s)
- Rasmus Vejrup-Hansen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N., Denmark
| | - Oliver Fleck
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N., Denmark NWCR Institute, School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Katrine Landvad
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N., Denmark
| | - Ulrik Fahnøe
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N., Denmark
| | - Sebastian S Broendum
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N., Denmark
| | - Ann-Sofie Schreurs
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9RQ, UK
| | - Birthe B Kragelund
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N., Denmark
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9RQ, UK
| | - Christian Holmberg
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N., Denmark
| | - Olaf Nielsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N., Denmark
| |
Collapse
|
20
|
Guarino E, Salguero I, Kearsey SE. Cellular regulation of ribonucleotide reductase in eukaryotes. Semin Cell Dev Biol 2014; 30:97-103. [PMID: 24704278 DOI: 10.1016/j.semcdb.2014.03.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/26/2014] [Indexed: 12/22/2022]
Abstract
Synthesis of deoxynucleoside triphosphates (dNTPs) is essential for both DNA replication and repair and a key step in this process is catalyzed by ribonucleotide reductases (RNRs), which reduce ribonucleotides (rNDPs) to their deoxy forms. Tight regulation of RNR is crucial for maintaining the correct levels of all four dNTPs, which is important for minimizing the mutation rate and avoiding genome instability. Although allosteric control of RNR was the first discovered mechanism involved in regulation of the enzyme, other controls have emerged in recent years. These include regulation of expression of RNR genes, proteolysis of RNR subunits, control of the cellular localization of the small RNR subunit, and regulation of RNR activity by small protein inhibitors. This review will focus on these additional mechanisms of control responsible for providing a balanced supply of dNTPs.
Collapse
Affiliation(s)
- Estrella Guarino
- Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom.
| | - Israel Salguero
- Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom.
| | - Stephen E Kearsey
- Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom.
| |
Collapse
|