1
|
Hinton A, Katti P, Mungai M, Hall DD, Koval O, Shao J, Vue Z, Lopez EG, Rostami R, Neikirk K, Ponce J, Streeter J, Schickling B, Bacevac S, Grueter C, Marshall A, Beasley HK, Do Koo Y, Bodine SC, Nava NGR, Quintana AM, Song LS, Grumbach I, Pereira RO, Glancy B, Abel ED. ATF4-dependent increase in mitochondrial-endoplasmic reticulum tethering following OPA1 deletion in skeletal muscle. J Cell Physiol 2024; 239:e31204. [PMID: 38419397 PMCID: PMC11144302 DOI: 10.1002/jcp.31204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024]
Abstract
Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are protein- and lipid-enriched hubs that mediate interorganellar communication by contributing to the dynamic transfer of Ca2+, lipid, and other metabolites between these organelles. Defective MERCs are associated with cellular oxidative stress, neurodegenerative disease, and cardiac and skeletal muscle pathology via mechanisms that are poorly understood. We previously demonstrated that skeletal muscle-specific knockdown (KD) of the mitochondrial fusion mediator optic atrophy 1 (OPA1) induced ER stress and correlated with an induction of Mitofusin-2, a known MERC protein. In the present study, we tested the hypothesis that Opa1 downregulation in skeletal muscle cells alters MERC formation by evaluating multiple myocyte systems, including from mice and Drosophila, and in primary myotubes. Our results revealed that OPA1 deficiency induced tighter and more frequent MERCs in concert with a greater abundance of MERC proteins involved in calcium exchange. Additionally, loss of OPA1 increased the expression of activating transcription factor 4 (ATF4), an integrated stress response (ISR) pathway effector. Reducing Atf4 expression prevented the OPA1-loss-induced tightening of MERC structures. OPA1 reduction was associated with decreased mitochondrial and sarcoplasmic reticulum, a specialized form of ER, calcium, which was reversed following ATF4 repression. These data suggest that mitochondrial stress, induced by OPA1 deficiency, regulates skeletal muscle MERC formation in an ATF4-dependent manner.
Collapse
Affiliation(s)
- Antentor Hinton
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA 52242
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | - Prasanna Katti
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA, 20892
| | - Margaret Mungai
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA 52242
| | - Duane D. Hall
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
| | - Olha Koval
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA 52242
| | - Jianqiang Shao
- Central Microscopy Research Facility, Iowa City, IA USA 52242
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | - Edgar Garza Lopez
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
| | - Rahmati Rostami
- Department of Genetic Medicine, Joan & Sanford I. Weill Medical College of Cornell University, New York, NY, USA, 10065
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | - Jessica Ponce
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA 52242
| | - Jennifer Streeter
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA 52242
| | - Brandon Schickling
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Department of Medicine, Duke University, Durham, NC, USA 27708
| | - Serif Bacevac
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA 52242
| | - Chad Grueter
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA 52242
| | - Andrea Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | - Young Do Koo
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA 52242
| | - Sue C. Bodine
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA 52242
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA 73104
| | - Nayeli G. Reyes Nava
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, USA 79968
| | - Anita M. Quintana
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, USA 79968
| | - Long-Sheng Song
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA 52242
| | - Isabella Grumbach
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA 52242
| | - Renata O. Pereira
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA 52242
| | - Brian Glancy
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA, 20892
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - E. Dale Abel
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, Iowa City, IA, USA 52242
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, USA 52242
- Department of Medicine, UCLA School of Medicine, Los Angeles, CA, USA 90095
| |
Collapse
|
2
|
Hinton A, Katti P, Christensen TA, Mungai M, Shao J, Zhang L, Trushin S, Alghanem A, Jaspersen A, Geroux RE, Neikirk K, Biete M, Lopez EG, Shao B, Vue Z, Vang L, Beasley HK, Marshall AG, Stephens D, Damo S, Ponce J, Bleck CKE, Hicsasmaz I, Murray SA, Edmonds RAC, Dajles A, Koo YD, Bacevac S, Salisbury JL, Pereira RO, Glancy B, Trushina E, Abel ED. A Comprehensive Approach to Sample Preparation for Electron Microscopy and the Assessment of Mitochondrial Morphology in Tissue and Cultured Cells. Adv Biol (Weinh) 2023; 7:e2200202. [PMID: 37140138 PMCID: PMC10615857 DOI: 10.1002/adbi.202200202] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 03/24/2023] [Indexed: 05/05/2023]
Abstract
Mitochondria respond to metabolic demands of the cell and to incremental damage, in part, through dynamic structural changes that include fission (fragmentation), fusion (merging of distinct mitochondria), autophagic degradation (mitophagy), and biogenic interactions with the endoplasmic reticulum (ER). High resolution study of mitochondrial structural and functional relationships requires rapid preservation of specimens to reduce technical artifacts coupled with quantitative assessment of mitochondrial architecture. A practical approach for assessing mitochondrial fine structure using two dimensional and three dimensional high-resolution electron microscopy is presented, and a systematic approach to measure mitochondrial architecture, including volume, length, hyperbranching, cristae morphology, and the number and extent of interaction with the ER is described. These methods are used to assess mitochondrial architecture in cells and tissue with high energy demand, including skeletal muscle cells, mouse brain tissue, and Drosophila muscles. The accuracy of assessment is validated in cells and tissue with deletion of genes involved in mitochondrial dynamics.
Collapse
Affiliation(s)
- Antentor Hinton
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - Prasanna Katti
- National Heart, Lung, and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Trace A Christensen
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Margaret Mungai
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Liang Zhang
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Sergey Trushin
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ahmad Alghanem
- Department of Internal Medicine, Division of Cardiology, Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO, 63130, USA
- Eastern Region, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Al Hasa, Saudi Arabia
| | - Adam Jaspersen
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Rachel E Geroux
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kit Neikirk
- College of Natural and Health Sciences, University of Hawaii at Hilo, 200 West Kawili St, Hilo, HI, 96720, USA
| | - Michelle Biete
- College of Natural and Health Sciences, University of Hawaii at Hilo, 200 West Kawili St, Hilo, HI, 96720, USA
| | - Edgar Garza Lopez
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, 37208, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - Dominique Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, 37208, USA
| | - Steven Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, 37208, USA
| | - Jessica Ponce
- School of Medicine, University of Utah, 30 N 1900 E, Salt Lake City, UT, 84132, USA
| | - Christopher K E Bleck
- National Heart, Lung, and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Innes Hicsasmaz
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA
| | - Sandra A Murray
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15206, USA
| | - Ranthony A C Edmonds
- Department of Mathematics, Ohio State University, 281 W Lane Ave, Columbus, OH, 43210, USA
| | - Andres Dajles
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Young Do Koo
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA
| | - Serif Bacevac
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA
| | - Jeffrey L Salisbury
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Renata O Pereira
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA
| | - Brian Glancy
- National Heart, Lung, and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - E Dale Abel
- Department of Internal Medicine, University of Iowa - Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA
- Department of Medicine, UCLA, 757 Westwood Plaza, Suite 7236, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| |
Collapse
|
3
|
Schöck F, González-Morales N. The insect perspective on Z-disc structure and biology. J Cell Sci 2022; 135:277280. [PMID: 36226637 DOI: 10.1242/jcs.260179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myofibrils are the intracellular structures formed by actin and myosin filaments. They are paracrystalline contractile cables with unusually well-defined dimensions. The sliding of actin past myosin filaments powers contractions, and the entire system is held in place by a structure called the Z-disc, which anchors the actin filaments. Myosin filaments, in turn, are anchored to another structure called the M-line. Most of the complex architecture of myofibrils can be reduced to studying the Z-disc, and recently, important advances regarding the arrangement and function of Z-discs in insects have been published. On a very small scale, we have detailed protein structure information. At the medium scale, we have cryo-electron microscopy maps, super-resolution microscopy and protein-protein interaction networks, while at the functional scale, phenotypic data are available from precise genetic manipulations. All these data aim to answer how the Z-disc works and how it is assembled. Here, we summarize recent data from insects and explore how it fits into our view of the Z-disc, myofibrils and, ultimately, muscles.
Collapse
Affiliation(s)
- Frieder Schöck
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | | |
Collapse
|
4
|
Ajayi PT, Katti P, Zhang Y, Willingham TB, Sun Y, Bleck CKE, Glancy B. Regulation of the evolutionarily conserved muscle myofibrillar matrix by cell type dependent and independent mechanisms. Nat Commun 2022; 13:2661. [PMID: 35562354 PMCID: PMC9106682 DOI: 10.1038/s41467-022-30401-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/29/2022] [Indexed: 12/29/2022] Open
Abstract
Skeletal muscles play a central role in human movement through forces transmitted by contraction of the sarcomere. We recently showed that mammalian sarcomeres are connected through frequent branches forming a singular, mesh-like myofibrillar matrix. However, the extent to which myofibrillar connectivity is evolutionarily conserved as well as mechanisms which regulate the specific architecture of sarcomere branching remain unclear. Here, we demonstrate the presence of a myofibrillar matrix in the tubular, but not indirect flight (IF) muscles within Drosophila melanogaster. Moreover, we find that loss of transcription factor H15 increases sarcomere branching frequency in the tubular jump muscles, and we show that sarcomere branching can be turned on in IF muscles by salm-mediated conversion to tubular muscles. Finally, we demonstrate that neurochondrin misexpression results in myofibrillar connectivity in IF muscles without conversion to tubular muscles. These data indicate an evolutionarily conserved myofibrillar matrix regulated by both cell-type dependent and independent mechanisms.
Collapse
Affiliation(s)
- Peter T Ajayi
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA
| | - Prasanna Katti
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA
| | - Yingfan Zhang
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA
| | | | - Ye Sun
- Electron Microscopy Core, NHLBI, NIH, Bethesda, MD, 20892, USA
| | | | - Brian Glancy
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA.
- NIAMS, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Development of the indirect flight muscles of Aedes aegypti, a main arbovirus vector. BMC DEVELOPMENTAL BIOLOGY 2021; 21:11. [PMID: 34445959 PMCID: PMC8394598 DOI: 10.1186/s12861-021-00242-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 08/08/2021] [Indexed: 11/22/2022]
Abstract
Background Flying is an essential function for mosquitoes, required for mating and, in the case of females, to get a blood meal and consequently function as a vector. Flight depends on the action of the indirect flight muscles (IFMs), which power the wings beat. No description of the development of IFMs in mosquitoes, including Aedes aegypti, is available.
Methods A. aegypti thoraces of larvae 3 and larvae 4 (L3 and L4) instars were analyzed using histochemistry and bright field microscopy. IFM primordia from L3 and L4 and IFMs from pupal and adult stages were dissected and processed to detect F-actin labelling with phalloidin-rhodamine or TRITC, or to immunodetection of myosin and tubulin using specific antibodies, these samples were analyzed by confocal microscopy. Other samples were studied using transmission electron microscopy. Results At L3–L4, IFM primordia for dorsal-longitudinal muscles (DLM) and dorsal–ventral muscles (DVM) were identified in the expected locations in the thoracic region: three primordia per hemithorax corresponding to DLM with anterior to posterior orientation were present. Other three primordia per hemithorax, corresponding to DVM, had lateral position and dorsal to ventral orientation. During L3 to L4 myoblast fusion led to syncytial myotubes formation, followed by myotendon junctions (MTJ) creation, myofibrils assembly and sarcomere maturation. The formation of Z-discs and M-line during sarcomere maturation was observed in pupal stage and, the structure reached in teneral insects a classical myosin thick, and actin thin filaments arranged in a hexagonal lattice structure. Conclusions A general description of A. aegypti IFM development is presented, from the myoblast fusion at L3 to form myotubes, to sarcomere maturation at adult stage. Several differences during IFM development were observed between A. aegypti (Nematoceran) and Drosophila melanogaster (Brachyceran) and, similitudes with Chironomus sp. were observed as this insect is a Nematoceran, which is taxonomically closer to A. aegypti and share the same number of larval stages. Supplementary Information The online version contains supplementary material available at 10.1186/s12861-021-00242-8.
Collapse
|
6
|
Avellaneda J, Rodier C, Daian F, Brouilly N, Rival T, Luis NM, Schnorrer F. Myofibril and mitochondria morphogenesis are coordinated by a mechanical feedback mechanism in muscle. Nat Commun 2021; 12:2091. [PMID: 33828099 PMCID: PMC8027795 DOI: 10.1038/s41467-021-22058-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/23/2021] [Indexed: 02/01/2023] Open
Abstract
Complex animals build specialised muscles to match specific biomechanical and energetic needs. Hence, composition and architecture of sarcomeres and mitochondria are muscle type specific. However, mechanisms coordinating mitochondria with sarcomere morphogenesis are elusive. Here we use Drosophila muscles to demonstrate that myofibril and mitochondria morphogenesis are intimately linked. In flight muscles, the muscle selector spalt instructs mitochondria to intercalate between myofibrils, which in turn mechanically constrain mitochondria into elongated shapes. Conversely in cross-striated leg muscles, mitochondria networks surround myofibril bundles, contacting myofibrils only with thin extensions. To investigate the mechanism causing these differences, we manipulated mitochondrial dynamics and found that increased mitochondrial fusion during myofibril assembly prevents mitochondrial intercalation in flight muscles. Strikingly, this causes the expression of cross-striated muscle specific sarcomeric proteins. Consequently, flight muscle myofibrils convert towards a partially cross-striated architecture. Together, these data suggest a biomechanical feedback mechanism downstream of spalt synchronizing mitochondria with myofibril morphogenesis.
Collapse
Affiliation(s)
- Jerome Avellaneda
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Clement Rodier
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Fabrice Daian
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Nicolas Brouilly
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Thomas Rival
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Nuno Miguel Luis
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France.
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
7
|
Garcez M, Branco-Santos J, Gracio PC, Homem CCF. Mitochondrial Dynamics in the Drosophila Ovary Regulates Germ Stem Cell Number, Cell Fate, and Female Fertility. Front Cell Dev Biol 2021; 8:596819. [PMID: 33585443 PMCID: PMC7876242 DOI: 10.3389/fcell.2020.596819] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/30/2020] [Indexed: 01/07/2023] Open
Abstract
The fate and proliferative capacity of stem cells have been shown to strongly depend on their metabolic state. Mitochondria are the powerhouses of the cell being responsible for energy production via oxidative phosphorylation (OxPhos) as well as for several other metabolic pathways. Mitochondrial activity strongly depends on their structural organization, with their size and shape being regulated by mitochondrial fusion and fission, a process known as mitochondrial dynamics. However, the significance of mitochondrial dynamics in the regulation of stem cell metabolism and fate remains elusive. Here, we characterize the role of mitochondria morphology in female germ stem cells (GSCs) and in their more differentiated lineage. Mitochondria are particularly important in the female GSC lineage. Not only do they provide these cells with their energy requirements to generate the oocyte but they are also the only mitochondria pool to be inherited by the offspring. We show that the undifferentiated GSCs predominantly have fissed mitochondria, whereas more differentiated germ cells have more fused mitochondria. By reducing the levels of mitochondrial dynamics regulators, we show that both fused and fissed mitochondria are required for the maintenance of a stable GSC pool. Surprisingly, we found that disrupting mitochondrial dynamics in the germline also strongly affects nurse cells morphology, impairing egg chamber development and female fertility. Interestingly, reducing the levels of key enzymes in the Tricarboxylic Acid Cycle (TCA), known to cause OxPhos reduction, also affects GSC number. This defect in GSC self-renewal capacity indicates that at least basal levels of TCA/OxPhos are required in GSCs. Our findings show that mitochondrial dynamics is essential for female GSC maintenance and female fertility, and that mitochondria fusion and fission events are dynamically regulated during GSC differentiation, possibly to modulate their metabolic profile.
Collapse
Affiliation(s)
- Marcia Garcez
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal.,Graduate Program in Areas of Basic and Applied Biology (GABBA), Universidade do Porto, Porto, Portugal
| | - Joana Branco-Santos
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Patricia C Gracio
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Catarina C F Homem
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
8
|
Katti P, Rai M, Srivastava S, D'Silva P, Nongthomba U. Marf-mediated mitochondrial fusion is imperative for the development and functioning of indirect flight muscles (IFMs) in drosophila. Exp Cell Res 2021; 399:112486. [PMID: 33450208 DOI: 10.1016/j.yexcr.2021.112486] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 11/15/2022]
Abstract
Dynamic changes in mitochondrial shape and size are vital for mitochondrial health and for tissue development and function. Adult Drosophila indirect flight muscles contain densely packed mitochondria. We show here that mitochondrial fusion is critical during early muscle development (in pupa) and that silencing of the outer mitochondrial membrane fusion gene, Marf, in muscles results in smaller mitochondria that are functionally defective. This leads to abnormal muscle development resulting in muscle dysfunction in adult flies. However, post-developmental silencing of Marf has no obvious effects on mitochondrial and muscle phenotype in adult flies, indicating the importance of mitochondrial fusion during early muscle development.
Collapse
Affiliation(s)
- Prasanna Katti
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560 012, India.
| | - Mamta Rai
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560 012, India
| | - Shubhi Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560 012, India.
| |
Collapse
|
9
|
Glancy B, Kim Y, Katti P, Willingham TB. The Functional Impact of Mitochondrial Structure Across Subcellular Scales. Front Physiol 2020; 11:541040. [PMID: 33262702 PMCID: PMC7686514 DOI: 10.3389/fphys.2020.541040] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are key determinants of cellular health. However, the functional role of mitochondria varies from cell to cell depending on the relative demands for energy distribution, metabolite biosynthesis, and/or signaling. In order to support the specific needs of different cell types, mitochondrial functional capacity can be optimized in part by modulating mitochondrial structure across several different spatial scales. Here we discuss the functional implications of altering mitochondrial structure with an emphasis on the physiological trade-offs associated with different mitochondrial configurations. Within a mitochondrion, increasing the amount of cristae in the inner membrane improves capacity for energy conversion and free radical-mediated signaling but may come at the expense of matrix space where enzymes critical for metabolite biosynthesis and signaling reside. Electrically isolating individual cristae could provide a protective mechanism to limit the spread of dysfunction within a mitochondrion but may also slow the response time to an increase in cellular energy demand. For individual mitochondria, those with relatively greater surface areas can facilitate interactions with the cytosol or other organelles but may be more costly to remove through mitophagy due to the need for larger phagophore membranes. At the network scale, a large, stable mitochondrial reticulum can provide a structural pathway for energy distribution and communication across long distances yet also enable rapid spreading of localized dysfunction. Highly dynamic mitochondrial networks allow for frequent content mixing and communication but require constant cellular remodeling to accommodate the movement of mitochondria. The formation of contact sites between mitochondria and several other organelles provides a mechanism for specialized communication and direct content transfer between organelles. However, increasing the number of contact sites between mitochondria and any given organelle reduces the mitochondrial surface area available for contact sites with other organelles as well as for metabolite exchange with cytosol. Though the precise mechanisms guiding the coordinated multi-scale mitochondrial configurations observed in different cell types have yet to be elucidated, it is clear that mitochondrial structure is tailored at every level to optimize mitochondrial function to meet specific cellular demands.
Collapse
Affiliation(s)
- Brian Glancy
- Muscle Energetics Laboratory, NHLBI, National Institutes of Health, Bethesda, MD, United States
- NIAMS, National Institutes of Health, Bethesda, MD, United States
| | - Yuho Kim
- Muscle Energetics Laboratory, NHLBI, National Institutes of Health, Bethesda, MD, United States
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA, United States
| | - Prasanna Katti
- Muscle Energetics Laboratory, NHLBI, National Institutes of Health, Bethesda, MD, United States
| | - T. Bradley Willingham
- Muscle Energetics Laboratory, NHLBI, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
10
|
Bretscher H, O’Connor MB. The Role of Muscle in Insect Energy Homeostasis. Front Physiol 2020; 11:580687. [PMID: 33192587 PMCID: PMC7649811 DOI: 10.3389/fphys.2020.580687] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
Maintaining energy homeostasis is critical for ensuring proper growth and maximizing survival potential of all organisms. Here we review the role of somatic muscle in regulating energy homeostasis in insects. The muscle is not only a large consumer of energy, it also plays a crucial role in regulating metabolic signaling pathways and energy stores of the organism. We examine the metabolic pathways required to supply the muscle with energy, as well as muscle-derived signals that regulate metabolic energy homeostasis.
Collapse
Affiliation(s)
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
11
|
Mollo N, Cicatiello R, Aurilia M, Scognamiglio R, Genesio R, Charalambous M, Paladino S, Conti A, Nitsch L, Izzo A. Targeting Mitochondrial Network Architecture in Down Syndrome and Aging. Int J Mol Sci 2020; 21:E3134. [PMID: 32365535 PMCID: PMC7247689 DOI: 10.3390/ijms21093134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are organelles that mainly control energy conversion in the cell. In addition, they also participate in many relevant activities, such as the regulation of apoptosis and calcium levels, and other metabolic tasks, all closely linked to cell viability. Functionality of mitochondria appears to depend upon their network architecture that may dynamically pass from an interconnected structure with long tubular units, to a fragmented one with short separate fragments. A decline in mitochondrial quality, which presents itself as an altered structural organization and a function of mitochondria, has been observed in Down syndrome (DS), as well as in aging and in age-related pathologies. This review provides a basic overview of mitochondrial dynamics, from fission/fusion mechanisms to mitochondrial homeostasis. Molecular mechanisms determining the disruption of the mitochondrial phenotype in DS and aging are discussed. The impaired activity of the transcriptional co-activator PGC-1α/PPARGC1A and the hyperactivation of the mammalian target of rapamycin (mTOR) kinase are emerging as molecular underlying causes of these mitochondrial alterations. It is, therefore, likely that either stimulating the PGC-1α activity or inhibiting mTOR signaling could reverse mitochondrial dysfunction. Evidence is summarized suggesting that drugs targeting either these pathways or other factors affecting the mitochondrial network may represent therapeutic approaches to improve and/or prevent the effects of altered mitochondrial function. Overall, from all these studies it emerges that the implementation of such strategies may exert protective effects in DS and age-related diseases.
Collapse
Affiliation(s)
- Nunzia Mollo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Rita Cicatiello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Miriam Aurilia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Roberta Scognamiglio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Rita Genesio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Maria Charalambous
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council, 80131 Naples, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Conti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Lucio Nitsch
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council, 80131 Naples, Italy
| | - Antonella Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
12
|
Fundc1 is necessary for proper body axis formation during embryogenesis in zebrafish. Sci Rep 2019; 9:18910. [PMID: 31827208 PMCID: PMC6906497 DOI: 10.1038/s41598-019-55415-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/28/2019] [Indexed: 12/19/2022] Open
Abstract
FUN14 domain-containing protein 1 (FUNDC1) is a mitochondrial outer membrane protein which is responsible for hypoxia-induced mitophagy in mammalian cells. Knockdown of fundc1 is known to cause severe defects in the body axis of a rare minnow. To understand the role of Fundc1 in embryogenesis, we used zebrafish in this study. We used bioimaging to locate zebrafish Fundc1 (DrFundc1) with MitoTracker, a marker of mitochondria, and/or CellLight Lysosomes-GFP, a label of lysosomes, in the transfected ovary cells of grass carp. The use of Western blotting detected DrFundc1 as a component of mitochondrial proteins with endogenous COX IV, LC3B, and FUNDC1 in transgenic human embryonic kidney 293 T cells. DrFundc1 induced LC3B activation. The ectopic expression of Drfundc1 caused cell death and apoptosis as well as impairing cell proliferation in the 293 T cell line, as detected by Trypan blue, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and incorporation of BrdU. DrFundc1 up-regulated expression of both autophagy- and apoptosis-related genes, including ATG5, ATG7, LC3B, BECLIN1, and BAX in transgenic 293 T cells. A knockdown of Drfundc1 using short hairpin RNA (shRNA) led to midline bifurcation with two notochords and two spinal cords in zebrafish embryos. Co-injection of Drfundc1 mRNA repaired defects resulting from shRNA. Knockdown of Drfundc1 resulted in up- or down-regulation of genes related to autophagy and apoptosis, as well as decreased expression of neural genes such as cyclinD1, pax2a, opl, and neuroD1. In summary, DrFundc1 is a mitochondrial protein which is involved in mitophagy and is critical for typical body axis development in zebrafish.
Collapse
|
13
|
Mollo N, Nitti M, Zerillo L, Faicchia D, Micillo T, Accarino R, Secondo A, Petrozziello T, Calì G, Cicatiello R, Bonfiglio F, Sarnataro V, Genesio R, Izzo A, Pinton P, Matarese G, Paladino S, Conti A, Nitsch L. Pioglitazone Improves Mitochondrial Organization and Bioenergetics in Down Syndrome Cells. Front Genet 2019; 10:606. [PMID: 31316549 PMCID: PMC6609571 DOI: 10.3389/fgene.2019.00606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction plays a primary role in neurodevelopmental anomalies and neurodegeneration of Down syndrome (DS) subjects. For this reason, targeting mitochondrial key genes, such as PGC-1α/PPARGC1A, is emerging as a good therapeutic approach to attenuate cognitive disability in DS. After demonstrating the efficacy of the biguanide metformin (a PGC-1α activator) in a cell model of DS, we extended the study to other molecules that regulate the PGC-1α pathway acting on PPAR genes. We, therefore, treated trisomic fetal fibroblasts with different doses of pioglitazone (PGZ) and evaluated the effects on mitochondrial dynamics and function. Treatment with PGZ significantly increased mRNA and protein levels of PGC-1α. Mitochondrial network was fully restored by PGZ administration affecting the fission-fusion mitochondrial machinery. Specifically, optic atrophy 1 (OPA1) and mitofusin 1 (MFN1) were upregulated while dynamin-related protein 1 (DRP1) was downregulated. These effects, together with a significant increase of basal ATP content and oxygen consumption rate, and a significant decrease of reactive oxygen species (ROS) production, provide strong evidence of an overall improvement of mitochondria bioenergetics in trisomic cells. In conclusion, we demonstrate that PGZ is able to improve mitochondrial phenotype even at low concentrations (0.5 μM). We also speculate that a combination of drugs that target mitochondrial function might be advantageous, offering potentially higher efficacy and lower individual drug dosage.
Collapse
Affiliation(s)
- Nunzia Mollo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Nitti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Lucrezia Zerillo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Deriggio Faicchia
- Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Teresa Micillo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Rossella Accarino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Agnese Secondo
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Tiziana Petrozziello
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Gaetano Calì
- Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Rita Cicatiello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Viviana Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Rita Genesio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Antonella Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giuseppe Matarese
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Anna Conti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Lucio Nitsch
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| |
Collapse
|
14
|
Kim Y, Yang DS, Katti P, Glancy B. Protein composition of the muscle mitochondrial reticulum during postnatal development. J Physiol 2019; 597:2707-2727. [PMID: 30919448 PMCID: PMC6826232 DOI: 10.1113/jp277579] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/11/2019] [Indexed: 01/24/2023] Open
Abstract
KEY POINTS Muscle mitochondrial networks changed from a longitudinal, fibre parallel orientation to a perpendicular configuration during postnatal development. Mitochondrial dynamics, mitophagy and calcium uptake proteins were abundant during early postnatal development. Mitochondrial biogenesis and oxidative phosphorylation proteins were upregulated throughout muscle development. Postnatal muscle mitochondrial network formation is accompanied by a change in protein expression profile from mitochondria designed for co-ordinated cellular assembly to mitochondria highly specialized for cellular energy metabolism. ABSTRACT Striated muscle mitochondria form connected networks capable of rapid cellular energy distribution. However, the mitochondrial reticulum is not formed at birth and the mechanisms driving network development remain unclear. In the present study, we aimed to establish the network formation timecourse and protein expression profile during postnatal development of the murine muscle mitochondrial reticulum. Two-photon microscopy was used to observe mitochondrial network orientation in tibialis anterior (TA) muscles of live mice at postnatal days (P) 1, 7, 14, 21 and 42, respectively. All muscle fibres maintained a longitudinal, fibre parallel mitochondrial network orientation early in development (P1-7). Mixed networks were most common at P14 but, by P21, almost all fibres had developed the perpendicular mitochondrial orientation observed in mature, glycolytic fibres. Tandem mass tag proteomics were then applied to examine changes in 6869 protein abundances in developing TA muscles. Mitochondrial proteins increased by 32% from P1 to P42. In addition, both nuclear- and mitochondrial-DNA encoded oxidative phosphorylation (OxPhos) components were increased during development, whereas OxPhos assembly factors decreased. Although mitochondrial dynamics and mitophagy were induced at P1-7, mitochondrial biogenesis was enhanced after P14. Moreover, calcium signalling proteins and the mitochondrial calcium uniporter had the highest expression early in postnatal development. In conclusion, mitochondrial networks transform from a fibre parallel to perpendicular orientation during the second and third weeks after birth in murine glycolytic skeletal muscle. This structural transition is accompanied by a change in protein expression profile from mitochondria designed for co-ordinated cellular assembly to mitochondria highly specialized for cellular energy metabolism.
Collapse
Affiliation(s)
- Yuho Kim
- National Heart, Lung, and Blood Institute National Institutes of HealthBethesdaMDUSA
| | - Daniel S. Yang
- National Heart, Lung, and Blood Institute National Institutes of HealthBethesdaMDUSA
| | - Prasanna Katti
- National Heart, Lung, and Blood Institute National Institutes of HealthBethesdaMDUSA
| | - Brian Glancy
- National Heart, Lung, and Blood Institute National Institutes of HealthBethesdaMDUSA
- National Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
15
|
Chandran S, Suggs JA, Wang BJ, Han A, Bhide S, Cryderman DE, Moore SA, Bernstein SI, Wallrath LL, Melkani GC. Suppression of myopathic lamin mutations by muscle-specific activation of AMPK and modulation of downstream signaling. Hum Mol Genet 2019; 28:351-371. [PMID: 30239736 PMCID: PMC6337691 DOI: 10.1093/hmg/ddy332] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 12/14/2022] Open
Abstract
Laminopathies are diseases caused by dominant mutations in the human LMNA gene encoding A-type lamins. Lamins are intermediate filaments that line the inner nuclear membrane, provide structural support for the nucleus and regulate gene expression. Drosophila melanogaster models of skeletal muscle laminopathies were developed to investigate the pathological defects caused by mutant lamins and identify potential therapeutic targets. Human disease-causing LMNA mutations were modeled in Drosophila Lamin C (LamC) and expressed in indirect flight muscle (IFM). IFM-specific expression of mutant, but not wild-type LamC, caused held-up wings indicative of myofibrillar defects. Analyses of the muscles revealed cytoplasmic aggregates of nuclear envelope (NE) proteins, nuclear and mitochondrial dysmorphology, myofibrillar disorganization and up-regulation of the autophagy cargo receptor p62. We hypothesized that the cytoplasmic aggregates of NE proteins trigger signaling pathways that alter cellular homeostasis, causing muscle dysfunction. In support of this hypothesis, transcriptomics data from human muscle biopsy tissue revealed misregulation of the AMP-activated protein kinase (AMPK)/4E-binding protein 1 (4E-BP1)/autophagy/proteostatic pathways. Ribosomal protein S6K (S6K) messenger RNA (mRNA) levels were increased and AMPKα and mRNAs encoding downstream targets were decreased in muscles expressing mutant LMNA relative controls. The Drosophila laminopathy models were used to determine if altering the levels of these factors modulated muscle pathology. Muscle-specific over-expression of AMPKα and down-stream targets 4E-BP, Forkhead box transcription factors O (Foxo) and Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), as well as inhibition of S6K, suppressed the held-up wing phenotype, myofibrillar defects and LamC aggregation. These findings provide novel insights on mutant LMNA-based disease mechanisms and identify potential targets for drug therapy.
Collapse
Affiliation(s)
- Sahaana Chandran
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University, San Diego, CA, USA
| | - Jennifer A Suggs
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University, San Diego, CA, USA
| | - Bingyan J Wang
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University, San Diego, CA, USA
| | - Andrew Han
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University, San Diego, CA, USA
| | - Shruti Bhide
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University, San Diego, CA, USA
| | - Diane E Cryderman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Steven A Moore
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Sanford I Bernstein
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University, San Diego, CA, USA
| | - Lori L Wallrath
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Girish C Melkani
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University, San Diego, CA, USA
| |
Collapse
|
16
|
Kiyama T, Chen CK, Wang SW, Pan P, Ju Z, Wang J, Takada S, Klein WH, Mao CA. Essential roles of mitochondrial biogenesis regulator Nrf1 in retinal development and homeostasis. Mol Neurodegener 2018; 13:56. [PMID: 30333037 PMCID: PMC6192121 DOI: 10.1186/s13024-018-0287-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 10/02/2018] [Indexed: 01/08/2023] Open
Abstract
Background Mitochondrial dysfunction has been implicated in the pathologies of a number of retinal degenerative diseases in both the outer and inner retina. In the outer retina, photoreceptors are particularly vulnerable to mutations affecting mitochondrial function due to their high energy demand and sensitivity to oxidative stress. However, it is unclear how defective mitochondrial biogenesis affects neural development and contributes to neural degeneration. In this report, we investigated the in vivo function of nuclear respiratory factor 1 (Nrf1), a major transcriptional regulator of mitochondrial biogenesis in both proliferating retinal progenitor cells (RPCs) and postmitotic rod photoreceptor cells (PRs). Methods We used mouse genetic techniques to generate RPC-specific and rod PR-specific Nrf1 conditional knockout mouse models. We then applied a comprehensive set of tools, including histopathological and molecular analyses, RNA-seq, and electroretinography on these mouse lines to study Nrf1-regulated genes and Nrf1’s roles in both developing retinas and differentiated rod PRs. For all comparisons between genotypes, a two-tailed two-sample student’s t-test was used. Results were considered significant when P < 0.05. Results We uncovered essential roles of Nrf1 in cell proliferation in RPCs, cell migration and survival of newly specified retinal ganglion cells (RGCs), neurite outgrowth in retinal explants, reconfiguration of metabolic pathways in RPCs, and mitochondrial morphology, position, and function in rod PRs. Conclusions Our findings provide in vivo evidence that Nrf1 and Nrf1-mediated pathways have context-dependent and cell-state-specific functions during neural development, and disruption of Nrf1-mediated mitochondrial biogenesis in rod PRs results in impaired mitochondria and a slow, progressive degeneration of rod PRs. These results offer new insights into the roles of Nrf1 in retinal development and neuronal homeostasis and the differential sensitivities of diverse neuronal tissues and cell types of dysfunctional mitochondria. Moreover, the conditional Nrf1 allele we have generated provides the opportunity to develop novel mouse models to understand how defective mitochondrial biogenesis contributes to the pathologies and disease progression of several neurodegenerative diseases, including glaucoma, age-related macular degeneration, Parkinson’s diseases, and Huntington’s disease.
Collapse
Affiliation(s)
- Takae Kiyama
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., MSB 7.024, Houston, TX, 77030, USA
| | - Ching-Kang Chen
- Department of Ophthalmology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Steven W Wang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Ping Pan
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., MSB 7.024, Houston, TX, 77030, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Shinako Takada
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Present Address: Office of Scientific Review, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - William H Klein
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Chai-An Mao
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., MSB 7.024, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Honey protects against wings posture error and molecular changes related to mitochondrial pathways induced by hypoxia/reoxygenation in adult Drosophila melanogaster. Chem Biol Interact 2018; 291:245-252. [PMID: 29964003 DOI: 10.1016/j.cbi.2018.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 06/07/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023]
Abstract
We conducted an investigation to evaluate the effects of Brazilian Pampa biome honey and its major phenolic compounds on the development of an erected wings posture phenotype and related mitochondrial aspects induced by Hypoxia/Reoxygenation (H/R) in Drosophila melanogaster. Flies were pre-treated for 3 days with a 10% honey solution and different concentrations of caffeic acid and ρ-coumaric acid and then submitted to hypoxia for 3 h. We observed that after reoxygenation, some flies acquired an erected wings posture and that this feature may be related to mortality. In addition, H/R induced down-regulation of ewg mRNA expression, which could be associated to the observed complex phenotype. H/R also caused a dysregulation in opa1-like, ldh and diap genes expression and reduced O2 fluxes in flie's mitochondria. Honey mitigated opa1-like mRNA expression changes provoked by H/R. Differently from honey, caffeic and ρ-coumaric acids displayed no protective effects. In conclusion, we report for the first time the protective effects of honey against complex phenotypes and mitochondrial changes induced by H/R in adult flies.
Collapse
|
18
|
Chaturvedi D, Reichert H, Gunage RD, VijayRaghavan K. Identification and functional characterization of muscle satellite cells in Drosophila. eLife 2017; 6:e30107. [PMID: 29072161 PMCID: PMC5681227 DOI: 10.7554/elife.30107] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/24/2017] [Indexed: 01/03/2023] Open
Abstract
Work on genetic model systems such as Drosophila and mouse has shown that the fundamental mechanisms of myogenesis are remarkably similar in vertebrates and invertebrates. Strikingly, however, satellite cells, the adult muscle stem cells that are essential for the regeneration of damaged muscles in vertebrates, have not been reported in invertebrates. In this study, we show that lineal descendants of muscle stem cells are present in adult muscle of Drosophila as small, unfused cells observed at the surface and in close proximity to the mature muscle fibers. Normally quiescent, following muscle fiber injury, we show that these cells express Zfh1 and engage in Notch-Delta-dependent proliferative activity and generate lineal descendant populations, which fuse with the injured muscle fiber. In view of strikingly similar morphological and functional features, we consider these novel cells to be the Drosophila equivalent of vertebrate muscle satellite cells.
Collapse
Affiliation(s)
- Dhananjay Chaturvedi
- Department of Developmental Biology and GeneticsNational Center for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| | | | - Rajesh D Gunage
- Department of Developmental Biology and GeneticsNational Center for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| | - K VijayRaghavan
- Department of Developmental Biology and GeneticsNational Center for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| |
Collapse
|
19
|
Overexpression of miRNA-9 Generates Muscle Hypercontraction Through Translational Repression of Troponin-T in Drosophila melanogaster Indirect Flight Muscles. G3-GENES GENOMES GENETICS 2017; 7:3521-3531. [PMID: 28866639 PMCID: PMC5633399 DOI: 10.1534/g3.117.300232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding endogenous RNAs, typically 21-23 nucleotides long, that regulate gene expression, usually post-transcriptionally, by binding to the 3'-UTR of target mRNA, thus blocking translation. The expression of several miRNAs is significantly altered during cardiac hypertrophy, myocardial ischemia, fibrosis, heart failure, and other cardiac myopathies. Recent studies have implicated miRNA-9 (miR-9) in myocardial hypertrophy. However, a detailed mechanism remains obscure. In this study, we have addressed the roles of miR-9 in muscle development and function using a genetically tractable model system, the indirect flight muscles (IFMs) of Drosophila melanogaster Bioinformatics analysis identified 135 potential miR-9a targets, of which 27 genes were associated with Drosophila muscle development. Troponin-T (TnT) was identified as major structural gene target of miR-9a. We show that flies overexpressing miR-9a in the IFMs have abnormal wing position and are flightless. These flies also exhibit a loss of muscle integrity and sarcomeric organization causing an abnormal muscle condition known as "hypercontraction." Additionally, miR-9a overexpression resulted in the reduction of TnT protein levels while transcript levels were unaffected. Furthermore, muscle abnormalities associated with miR-9a overexpression were completely rescued by overexpression of TnT transgenes which lacked the miR-9a binding site. These findings indicate that miR-9a interacts with the 3'-UTR of the TnT mRNA and downregulates the TnT protein levels by translational repression. The reduction in TnT levels leads to a cooperative downregulation of other thin filament structural proteins. Our findings have implications for understanding the cellular pathophysiology of cardiomyopathies associated with miR-9 overexpression.
Collapse
|
20
|
Lionaki E, Gkikas I, Tavernarakis N. Differential Protein Distribution between the Nucleus and Mitochondria: Implications in Aging. Front Genet 2016; 7:162. [PMID: 27695477 PMCID: PMC5025450 DOI: 10.3389/fgene.2016.00162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/01/2016] [Indexed: 01/05/2023] Open
Abstract
The coordination of nuclear and mitochondrial genomes plays a pivotal role in maintenance of mitochondrial biogenesis and functionality during stress and aging. Environmental and cellular inputs signal to nucleus and/or mitochondria to trigger interorganellar compensatory responses. Loss of this tightly orchestrated coordination results in loss of cellular homeostasis and underlies various pathologies and age-related diseases. Several signaling cascades that govern interorganellar communication have been revealed up to now, and have been classified as part of the anterograde (nucleus to mitochondria) or retrograde (mitochondrial to nucleus) response. Many of these molecular pathways rely on the dual distribution of nuclear or mitochondrial components under basal or stress conditions. These dually localized components usually engage in specific tasks in their primary organelle of function, whilst upon cellular stimuli, they appear in the other organelle where they engage in the same or a different task, triggering a compensatory stress response. In this review, we focus on protein factors distributed between the nucleus and mitochondria and activated to exert their functions upon basal or stress conditions. We further discuss implications of bi-organellar targeting in the context of aging.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Heraklion, Greece
| | - Ilias Gkikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-HellasHeraklion, Greece; Department of Basic Sciences, Faculty of Medicine, University of CreteHeraklion, Greece
| |
Collapse
|
21
|
Rai M, Katti P, Nongthomba U. Spatio-temporal coordination of cell cycle exit, fusion and differentiation of adult muscle precursors by Drosophila Erect wing (Ewg). Mech Dev 2016; 141:109-118. [DOI: 10.1016/j.mod.2016.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/16/2016] [Accepted: 03/25/2016] [Indexed: 12/12/2022]
|
22
|
Gallart-Palau X, Ng CH, Ribera J, Sze SK, Lim KL. Drosophila expressing human SOD1 successfully recapitulates mitochondrial phenotypic features of familial amyotrophic lateral sclerosis. Neurosci Lett 2016; 624:47-52. [PMID: 27163198 DOI: 10.1016/j.neulet.2016.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 02/12/2016] [Accepted: 05/05/2016] [Indexed: 11/30/2022]
Abstract
Mitochondrial pathology is a seminal pathogenic hallmark of familial amyotrophic lateral sclerosis (FALS) which is extensively manifested by human patients and mutant SOD1(G93A) mammalian models. Rodents expressing human FALS-associated mutations successfully mimic several human disease features; although they are not as amenable to genetic and therapeutic compound screenings as non-mammalian models. In this study, we report a newly generated and characterized Drosophila model that expresses human SOD1(G93A) in muscle fibers. Presence of SOD1(G93A) in thoracic muscles causes mitochondrial pathology and impairs normal motor behavior in these flies. Use of this new FALS-24B-SOD1(G93A) fly model holds promise for better understanding of the mitochondrial affectation process in FALS and for the discovery of novel therapeutic compounds able to reverse mitochondrial dysfunction in this fatal disease.
Collapse
Affiliation(s)
- Xavier Gallart-Palau
- Experimental Medicine Department, Medical School, University of Lleida, 25198 Lleida, Catalonia, Spain; Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), 25198 Lleida, Catalonia, Spain; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Chee-Hoe Ng
- Department of Research, National Neuroscience Institute, Singapore 308433, Singapore; Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Joan Ribera
- Experimental Medicine Department, Medical School, University of Lleida, 25198 Lleida, Catalonia, Spain; Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), 25198 Lleida, Catalonia, Spain
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Kah-Leong Lim
- Department of Physiology, National University of Singapore, Singapore 117543, Singapore; Department of Research, National Neuroscience Institute, Singapore 308433, Singapore; Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| |
Collapse
|
23
|
Zappia MP, Frolov MV. E2F function in muscle growth is necessary and sufficient for viability in Drosophila. Nat Commun 2016; 7:10509. [PMID: 26823289 PMCID: PMC4740182 DOI: 10.1038/ncomms10509] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/22/2015] [Indexed: 01/08/2023] Open
Abstract
The E2F transcription factor is a key cell cycle regulator. However, the inactivation of the entire E2F family in Drosophila is permissive throughout most of animal development until pupation when lethality occurs. Here we show that E2F function in the adult skeletal muscle is essential for animal viability since providing E2F function in muscles rescues the lethality of the whole-body E2F-deficient animals. Muscle-specific loss of E2F results in a significant reduction in muscle mass and thinner myofibrils. We demonstrate that E2F is dispensable for proliferation of muscle progenitor cells, but is required during late myogenesis to directly control the expression of a set of muscle-specific genes. Interestingly, E2f1 provides a major contribution to the regulation of myogenic function, while E2f2 appears to be less important. These findings identify a key function of E2F in skeletal muscle required for animal viability, and illustrate how the cell cycle regulator is repurposed in post-mitotic cells.
Collapse
Affiliation(s)
- Maria Paula Zappia
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, Illinois 60607, USA
| | - Maxim V. Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, Illinois 60607, USA
| |
Collapse
|