1
|
Park JE, Jo J, Xu K, Lee SA, Han SB, Lee Y, Cho WK, Li B, Kim SH, Kim DH. Attenuated Nuclear Tension Regulates Progerin-Induced Mechanosensitive Nuclear Wrinkling and Chromatin Remodeling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502375. [PMID: 40344643 DOI: 10.1002/advs.202502375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/17/2025] [Indexed: 05/11/2025]
Abstract
Hutchinson-Gilford progeria syndrome, caused by a mutation in the LMNA gene, leads to increased levels of truncated prelamin A, progerin, in the nuclear membrane. The accumulation of progerin results in defective nuclear morphology and is associated with altered expression of linker of the nucleoskeleton and cytoskeleton complex proteins, which are critical for nuclear signal transduction via molecular coupling between the extranuclear cytoskeleton and lamin-associated nuclear envelope. However, the molecular mechanisms underlying progerin accumulation-induced nuclear deformation and its effects on intranuclear chromosomal organization remain unclear. Here, the spatiotemporal evolution of nuclear wrinkles is analyzed in response to variations in substrate stiffness using a doxycycline-inducible progerin expression system. It is found that cytoskeletal tension regulates the onset of progerin-induced nuclear envelope wrinkling and that the molecular interaction between SUN1 and LMNA controls the actomyosin-dependent attenuation of nuclear tension. Genome-wide analysis of chromatin accessibility and gene expression further suggests that an imbalance in force between the intra- and extranuclear spaces induces nuclear deformation, which specifically regulates progeria-associated gene expression via modification of mechanosensitive signaling pathways. The findings highlight the crucial role of nuclear lamin-cytoskeletal connectivity in bridging nuclear mechanotransduction and the biological aging process.
Collapse
Affiliation(s)
- Ji-Eun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Juhyeon Jo
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Kun Xu
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Sun-Ah Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| | - YigJi Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Won-Ki Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Bo Li
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Soo Hyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
- Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
2
|
Goelzer M, Howard S, Zavala AG, Conway D, Rubin J, Uzer G. Depletion of SUN1/2 induces heterochromatin accrual in mesenchymal stem cells during adipogenesis. Commun Biol 2025; 8:428. [PMID: 40082539 PMCID: PMC11906923 DOI: 10.1038/s42003-025-07832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/24/2025] [Indexed: 03/16/2025] Open
Abstract
Critical to the mechano-regulation of mesenchymal stem cells (MSC), Linker of the Nucleoskeleton and Cytoskeleton (LINC) complex transduces cytoskeletal forces to the nuclei. The LINC complex contains outer nuclear membrane Nesprin proteins that associate with the cytoskeleton and their inner nuclear membrane couplers, SUN proteins. Here we tested the hypothesis that severing of the LINC complex-mediated cytoskeletal connections may have different effects on chromatin organization and MSC differentiation than those due to ablation of SUN proteins. In cells cultured under adipogenic conditions, interrupting LINC complex function through dominant-negative KASH domain expression (dnKASH) increased adipogesis while heterochromatin H3K27 and H3K9 methylation was unaltered. In contrast, SUN1/2 depletion inhibited adipogenic gene expression and fat droplet formation; as well the anti-adipogenic effect of SUN1/2 depletion was accompanied by increased H3K9me3, which was enriched on Adipoq, silencing this fat locus. We conclude that releasing the nucleus from cytoskeletal constraints via dnKASH accelerates adipogenesis while depletion of SUN1/2 increases heterochromatin accrual on adipogenic genes in a fashion independent of LINC complex function. Therefore, while these two approaches both disable LINC complex functions, their divergent effects on the epigenetic landscape indicate they cannot be used interchangeably to study mechanical regulation of cell differentiation.
Collapse
Affiliation(s)
- Matthew Goelzer
- Boise State University, Boise, ID, USA
- Oral Roberts University, Tulsa, OK, USA
| | | | | | - Daniel Conway
- The Ohio State University University, Columbus, OH, USA
| | - Janet Rubin
- University of North Carolina at Chapel Hill, Chapel Hill, USA
| | | |
Collapse
|
3
|
Bougaran P, Bautch VL. Life at the crossroads: the nuclear LINC complex and vascular mechanotransduction. Front Physiol 2024; 15:1411995. [PMID: 38831796 PMCID: PMC11144885 DOI: 10.3389/fphys.2024.1411995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024] Open
Abstract
Vascular endothelial cells line the inner surface of all blood vessels, where they are exposed to polarized mechanical forces throughout their lifespan. Both basal substrate interactions and apical blood flow-induced shear stress regulate blood vessel development, remodeling, and maintenance of vascular homeostasis. Disruption of these interactions leads to dysfunction and vascular pathologies, although how forces are sensed and integrated to affect endothelial cell behaviors is incompletely understood. Recently the endothelial cell nucleus has emerged as a prominent force-transducing organelle that participates in vascular mechanotransduction, via communication to and from cell-cell and cell-matrix junctions. The LINC complex, composed of SUN and nesprin proteins, spans the nuclear membranes and connects the nuclear lamina, the nuclear envelope, and the cytoskeleton. Here we review LINC complex involvement in endothelial cell mechanotransduction, describe unique and overlapping functions of each LINC complex component, and consider emerging evidence that two major SUN proteins, SUN1 and SUN2, orchestrate a complex interplay that extends outward to cell-cell and cell-matrix junctions and inward to interactions within the nucleus and chromatin. We discuss these findings in relation to vascular pathologies such as Hutchinson-Gilford progeria syndrome, a premature aging disorder with cardiovascular impairment. More knowledge of LINC complex regulation and function will help to understand how the nucleus participates in endothelial cell force sensing and how dysfunction leads to cardiovascular disease.
Collapse
Affiliation(s)
- Pauline Bougaran
- Department of Biology, The University of North Carolina, Chapel Hill, NC, United States
| | - Victoria L. Bautch
- Department of Biology, The University of North Carolina, Chapel Hill, NC, United States
- McAllister Heart Institute, The University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Lian J, Du L, Li Y, Yin Y, Yu L, Wang S, Ma H. Hutchinson-Gilford progeria syndrome: Cardiovascular manifestations and treatment. Mech Ageing Dev 2023; 216:111879. [PMID: 37832833 DOI: 10.1016/j.mad.2023.111879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS), also known as hereditary progeria syndrome, is caused by mutations in the LMNA gene and the expression of progerin, which causes accelerated aging and premature death, with most patients dying of heart failure or other cardiovascular complications in their teens. HGPS patients are able to exhibit cardiovascular phenotypes similar to physiological aging, such as extensive atherosclerosis, smooth muscle cell loss, vascular lesions, and electrical and functional abnormalities of the heart. It also excludes the traditional risk causative factors of cardiovascular disease, making HGPS a new model for studying aging-related cardiovascular disease. Here, we analyzed the pathogenesis and pathophysiological characteristics of HGPS and the relationship between HGPS and cardiovascular disease, provided insight into the molecular mechanisms of cardiovascular disease pathogenesis in HGPS patients and treatment strategies for this disease. Moreover, we summarize the disease models used in HGPS studies to improve our understanding of the pathological mechanisms of cardiovascular aging in HGPS patients.
Collapse
Affiliation(s)
- Jing Lian
- Medical School of Yan'an University, Yan'an, China
| | - Linfang Du
- Medical School of Yan'an University, Yan'an, China
| | - Yang Li
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Lu Yu
- Department of Pathology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | | | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
5
|
Perales S, Sigamani V, Rajasingh S, Czirok A, Rajasingh J. Hutchinson-Gilford progeria patient-derived cardiomyocyte model of carrying LMNA gene variant c.1824 C > T. Cell Tissue Res 2023; 394:189-207. [PMID: 37572165 PMCID: PMC11956677 DOI: 10.1007/s00441-023-03813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/12/2023] [Indexed: 08/14/2023]
Abstract
Cardiovascular diseases, atherosclerosis, and strokes are the most common causes of death in patients with Hutchinson-Gilford progeria syndrome (HGPS). The LMNA variant c.1824C > T accounts for ~ 90% of HGPS cases. The detailed molecular mechanisms of Lamin A in the heart remain elusive due to the lack of appropriate in vitro models. We hypothesize that HGPS patient's induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMCs) will provide a model platform to study the cardio-pathologic mechanisms associated with HGPS. To elucidate the effects of progerin in cardiomyocytes, we first obtained skin fibroblasts (SFs) from a de-identified HGPS patient (hPGP1, proband) and both parents from the Progeria Research Foundation. Through Sanger sequencing and restriction fragment length polymorphism, with the enzyme EciI, targeting Lamin A, we characterized hPGP1-SFs as heterozygous mutants for the LMNA variant c.1824 C > T. Additionally, we performed LMNA exon 11 bisulfite sequencing to analyze the methylation status of the progeria cells. Furthermore, we reprogrammed the three SFs into iPSCs and differentiated them into iCMCs, which gained a beating on day 7. Through particle image velocimetry analysis, we found that hPGP1-iCMCs had an irregular contractile function and decreased cardiac-specific gene and protein expressions by qRT-PCR and Western blot. Our progeria-patient-derived iCMCs were found to be functionally and structurally defective when compared to normal iCMCs. This in vitro model will help in elucidating the role of Lamin A in cardiac diseases and the cardio-pathologic mechanisms associated with progeria. It provides a new platform for researchers to study novel treatment approaches for progeria-associated cardiac diseases.
Collapse
Affiliation(s)
- Selene Perales
- Department of Bioscience Research, University of Tennessee Health Science Center, 847 Monroe Avenue, Memphis, TN 38163, USA
| | - Vinoth Sigamani
- Department of Bioscience Research, University of Tennessee Health Science Center, 847 Monroe Avenue, Memphis, TN 38163, USA
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, 847 Monroe Avenue, Memphis, TN 38163, USA
| | - Sheeja Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, 847 Monroe Avenue, Memphis, TN 38163, USA
| | - Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Johnson Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, 847 Monroe Avenue, Memphis, TN 38163, USA.
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, 847 Monroe Avenue, Memphis, TN 38163, USA.
- Department of Medicine-Cardiology, University of Tennessee Health Science Center, 847 Monroe Avenue, Memphis, TN, 38163, USA.
| |
Collapse
|
6
|
Buglak DB, Bougaran P, Kulikauskas MR, Liu Z, Monaghan-Benson E, Gold AL, Marvin AP, Burciu A, Tanke NT, Oatley M, Ricketts SN, Kinghorn K, Johnson BN, Shiau CE, Rogers S, Guilluy C, Bautch VL. Nuclear SUN1 stabilizes endothelial cell junctions via microtubules to regulate blood vessel formation. eLife 2023; 12:83652. [PMID: 36989130 PMCID: PMC10059686 DOI: 10.7554/elife.83652] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Endothelial cells line all blood vessels, where they coordinate blood vessel formation and the blood-tissue barrier via regulation of cell-cell junctions. The nucleus also regulates endothelial cell behaviors, but it is unclear how the nucleus contributes to endothelial cell activities at the cell periphery. Here, we show that the nuclear-localized linker of the nucleoskeleton and cytoskeleton (LINC) complex protein SUN1 regulates vascular sprouting and endothelial cell-cell junction morphology and function. Loss of murine endothelial Sun1 impaired blood vessel formation and destabilized junctions, angiogenic sprouts formed but retracted in SUN1-depleted sprouts, and zebrafish vessels lacking Sun1b had aberrant junctions and defective cell-cell connections. At the cellular level, SUN1 stabilized endothelial cell-cell junctions, promoted junction function, and regulated contractility. Mechanistically, SUN1 depletion altered cell behaviors via the cytoskeleton without changing transcriptional profiles. Reduced peripheral microtubule density, fewer junction contacts, and increased catastrophes accompanied SUN1 loss, and microtubule depolymerization phenocopied effects on junctions. Depletion of GEF-H1, a microtubule-regulated Rho activator, or the LINC complex protein nesprin-1 rescued defective junctions of SUN1-depleted endothelial cells. Thus, endothelial SUN1 regulates peripheral cell-cell junctions from the nucleus via LINC complex-based microtubule interactions that affect peripheral microtubule dynamics and Rho-regulated contractility, and this long-range regulation is important for proper blood vessel sprouting and junction integrity.
Collapse
Affiliation(s)
- Danielle B Buglak
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Pauline Bougaran
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Molly R Kulikauskas
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Ziqing Liu
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Elizabeth Monaghan-Benson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State UniversityRaleighUnited States
| | - Ariel L Gold
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Allison P Marvin
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Andrew Burciu
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Natalie T Tanke
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Morgan Oatley
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Shea N Ricketts
- Department of Pathology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Karina Kinghorn
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Bryan N Johnson
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Celia E Shiau
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Stephen Rogers
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Christophe Guilluy
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State UniversityRaleighUnited States
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
- McAllister Heart Institute, The University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
7
|
Zhang N, Hu Q, Sui T, Fu L, Zhang X, Wang Y, Zhu X, Huang B, Lu J, Li Z, Zhang Y. Unique progerin C-terminal peptide ameliorates Hutchinson-Gilford progeria syndrome phenotype by rescuing BUBR1. NATURE AGING 2023; 3:185-201. [PMID: 36743663 PMCID: PMC10154249 DOI: 10.1038/s43587-023-00361-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 01/04/2023] [Indexed: 04/30/2023]
Abstract
An accumulating body of evidence indicates an association between mitotic defects and the aging process in Hutchinson-Gilford progeria syndrome (HGPS), which is a premature aging disease caused by progerin accumulation. Here, we found that BUBR1, a core component of the spindle assembly checkpoint, was downregulated during HGPS cellular senescence. The remaining BUBR1 was anchored to the nuclear membrane by binding with the C terminus of progerin, thus further limiting the function of BUBR1. Based on this, we established a unique progerin C-terminal peptide (UPCP) that effectively blocked the binding of progerin and BUBR1 and enhanced the expression of BUBR1 by interfering with the interaction between PTBP1 and progerin. Finally, UPCP significantly inhibited HGPS cellular senescence and ameliorated progeroid phenotypes, extending the lifespan of LmnaG609G/G609G mice. Our findings reveal an essential role for the progerin-PTBP1-BUBR1 axis in HGPS. Therapeutics designed around UPCP may be a beneficial strategy for HGPS treatment.
Collapse
Affiliation(s)
- Na Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Qianying Hu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Tingting Sui
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, China
| | - Lu Fu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xinglin Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Yu Wang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Baiqu Huang
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Jun Lu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China.
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, China.
| | - Yu Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China.
| |
Collapse
|
8
|
Salvador J, Iruela-Arispe ML. Nuclear Mechanosensation and Mechanotransduction in Vascular Cells. Front Cell Dev Biol 2022; 10:905927. [PMID: 35784481 PMCID: PMC9247619 DOI: 10.3389/fcell.2022.905927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Vascular cells are constantly subjected to physical forces associated with the rhythmic activities of the heart, which combined with the individual geometry of vessels further imposes oscillatory, turbulent, or laminar shear stresses on vascular cells. These hemodynamic forces play an important role in regulating the transcriptional program and phenotype of endothelial and smooth muscle cells in different regions of the vascular tree. Within the aorta, the lesser curvature of the arch is characterized by disturbed, oscillatory flow. There, endothelial cells become activated, adopting pro-inflammatory and athero-prone phenotypes. This contrasts the descending aorta where flow is laminar and endothelial cells maintain a quiescent and atheroprotective phenotype. While still unclear, the specific mechanisms involved in mechanosensing flow patterns and their molecular mechanotransduction directly impact the nucleus with consequences to transcriptional and epigenetic states. The linker of nucleoskeleton and cytoskeleton (LINC) protein complex transmits both internal and external forces, including shear stress, through the cytoskeleton to the nucleus. These forces can ultimately lead to changes in nuclear integrity, chromatin organization, and gene expression that significantly impact emergence of pathology such as the high incidence of atherosclerosis in progeria. Therefore, there is strong motivation to understand how endothelial nuclei can sense and respond to physical signals and how abnormal responses to mechanical cues can lead to disease. Here, we review the evidence for a critical role of the nucleus as a mechanosensor and the importance of maintaining nuclear integrity in response to continuous biophysical forces, specifically shear stress, for proper vascular function and stability.
Collapse
Affiliation(s)
| | - M. Luisa Iruela-Arispe
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
9
|
Meqbel BRM, Gomes M, Omer A, Gallouzi IE, Horn HF. LINCing Senescence and Nuclear Envelope Changes. Cells 2022; 11:1787. [PMID: 35681483 PMCID: PMC9179861 DOI: 10.3390/cells11111787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023] Open
Abstract
The nuclear envelope (NE) has emerged as a nexus for cellular organization, signaling, and survival. Beyond its role as a barrier to separate the nucleoplasm from the cytoplasm, the NE's role in supporting and maintaining a myriad of other functions has made it a target of study in many cellular processes, including senescence. The nucleus undergoes dramatic changes in senescence, many of which are driven by changes in the NE. Indeed, Lamin B1, a key NE protein that is consistently downregulated in senescence, has become a marker for senescence. Other NE proteins have also been shown to play a role in senescence, including LINC (linker of nucleoskeleton and cytoskeleton) complex proteins. LINC complexes span the NE, forming physical connections between the cytoplasm to the nucleoplasm. In this way, they integrate nuclear and cytoplasmic mechanical signals and are essential not only for a variety of cellular functions but are needed for cell survival. However, LINC complex proteins have been shown to have a myriad of functions in addition to forming a LINC complex, often existing as nucleoplasmic or cytoplasmic soluble proteins in a variety of isoforms. Some of these proteins have now been shown to play important roles in DNA repair, cell signaling, and nuclear shape regulation, all of which are important in senescence. This review will focus on some of these roles and highlight the importance of LINC complex proteins in senescence.
Collapse
Affiliation(s)
- Bakhita R. M. Meqbel
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar;
| | - Matilde Gomes
- KAUST Smart-Health Initiative and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah 21589, Saudi Arabia; (M.G.); (I.E.G.)
| | - Amr Omer
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada;
| | - Imed E. Gallouzi
- KAUST Smart-Health Initiative and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah 21589, Saudi Arabia; (M.G.); (I.E.G.)
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada;
| | - Henning F. Horn
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar;
| |
Collapse
|
10
|
Abolishing the prelamin A ZMPSTE24 cleavage site leads to progeroid phenotypes with near-normal longevity in mice. Proc Natl Acad Sci U S A 2022; 119:2118695119. [PMID: 35197292 PMCID: PMC8892526 DOI: 10.1073/pnas.2118695119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 01/13/2023] Open
Abstract
The zinc metalloprotease ZMPSTE24 removes the last 15 amino acids of prelamin A, including a farnesylated cysteine, to produce mature lamin A. The premature aging disorder Hutchinson–Gilford progeria syndrome is caused by a permanently farnesylated prelamin A variant lacking the ZMPSTE24 cleavage site. ZMPSTE24 loss of function leads to the accumulation of farnesylated prelamin A and causes progeroid disorders. Some studies have implicated prelamin A in physiological aging. We describe mice with an amino acid substitution in prelamin A that blocks the ZMPSTE24-catalyzed cleavage. These mice develop progeroid phenotypes but, in contrast to those modeling Hutchinson–Gilford progeria syndrome or ZMPSTE24 deficiency, have near-normal lifespans, thus providing a model to study the effects of farnesylated prelamin A during aging. Prelamin A is a farnesylated precursor of lamin A, a nuclear lamina protein. Accumulation of the farnesylated prelamin A variant progerin, with an internal deletion including its processing site, causes Hutchinson–Gilford progeria syndrome. Loss-of-function mutations in ZMPSTE24, which encodes the prelamin A processing enzyme, lead to accumulation of full-length farnesylated prelamin A and cause related progeroid disorders. Some data suggest that prelamin A also accumulates with physiological aging. Zmpste24−/− mice die young, at ∼20 wk. Because ZMPSTE24 has functions in addition to prelamin A processing, we generated a mouse model to examine effects solely due to the presence of permanently farnesylated prelamin A. These mice have an L648R amino acid substitution in prelamin A that blocks ZMPSTE24-catalyzed processing to lamin A. The LmnaL648R/L648R mice express only prelamin and no mature protein. Notably, nearly all survive to 65 to 70 wk, with ∼40% of male and 75% of female LmnaL648R/L648R mice having near-normal lifespans of 90 wk (almost 2 y). Starting at ∼10 wk of age, LmnaL648R/L648R mice of both sexes have lower body masses than controls. By ∼20 to 30 wk of age, they exhibit detectable cranial, mandibular, and dental defects similar to those observed in Zmpste24−/− mice and have decreased vertebral bone density compared to age- and sex-matched controls. Cultured embryonic fibroblasts from LmnaL648R/L648R mice have aberrant nuclear morphology that is reversible by treatment with a protein farnesyltransferase inhibitor. These novel mice provide a model to study the effects of farnesylated prelamin A during physiological aging.
Collapse
|
11
|
Chi YH, Wang WP, Hung MC, Liou GG, Wang JY, Chao PHG. Deformation of the nucleus by TGFβ1 via the remodeling of nuclear envelope and histone isoforms. Epigenetics Chromatin 2022; 15:1. [PMID: 34983624 PMCID: PMC8725468 DOI: 10.1186/s13072-021-00434-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/24/2021] [Indexed: 11/18/2022] Open
Abstract
The cause of nuclear shape abnormalities which are often seen in pre-neoplastic and malignant tissues is not clear. In this study we report that deformation of the nucleus can be induced by TGFβ1 stimulation in several cell lines including Huh7. In our results, the upregulated histone H3.3 expression downstream of SMAD signaling contributed to TGFβ1-induced nuclear deformation, a process of which requires incorporation of the nuclear envelope (NE) proteins lamin B1 and SUN1. During this process, the NE constitutively ruptured and reformed. Contrast to lamin B1 which was relatively stationary around the nucleus, the upregulated lamin A was highly mobile, clustering at the nuclear periphery and reintegrating into the nucleoplasm. The chromatin regions that lost NE coverage formed a supra-nucleosomal structure characterized by elevated histone H3K27me3 and histone H1, the formation of which depended on the presence of lamin A. These results provide evidence that shape of the nucleus can be modulated through TGFβ1-induced compositional changes in the chromatin and nuclear lamina.
Collapse
Affiliation(s)
- Ya-Hui Chi
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan.
| | - Wan-Ping Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Ming-Chun Hung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Gunn-Guang Liou
- National Taiwan University College of Medicine, Taipei, 10051, Taiwan
| | - Jing-Ya Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Pen-Hsiu Grace Chao
- Department of Biomedical Engineering, School of Medicine and School of Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
12
|
Ovsiannikova NL, Lavrushkina SV, Ivanova AV, Mazina LM, Zhironkina OA, Kireev II. Lamin A as a Determinant of Mechanical Properties of the Cell Nucleus in Health and Disease. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1288-1300. [PMID: 34903160 DOI: 10.1134/s0006297921100102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 06/14/2023]
Abstract
One of the main factors associated with worse prognosis in oncology is metastasis, which is based on the ability of tumor cells to migrate from the primary source and to form secondary tumors. The search for new strategies to control migration of metastatic cells is one of the urgent issues in biomedicine. One of the strategies to stop spread of cancer cells could be regulation of the nuclear elasticity. Nucleus, as the biggest and stiffest cellular compartment, determines mechanical properties of the cell as a whole, and, hence, could prevent cell migration through the three-dimensional extracellular matrix. Nuclear rigidity is maintained by the nuclear lamina, two-dimensional network of intermediate filaments in the inner nuclear membrane (INM). Here we present the most significant factors defining nucleus rigidity, discuss the role of nuclear envelope composition in the cell migration, as well consider possible approaches to control lamina composition in order to change plasticity of the cell nucleus and ability of the tumor cells to metastasize.
Collapse
Affiliation(s)
- Natalia L Ovsiannikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Svetlana V Lavrushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anastasia V Ivanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ludmila M Mazina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Oxana A Zhironkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Igor I Kireev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Moscow, 117198, Russia
| |
Collapse
|
13
|
Abstract
The nuclear envelope and nucleoskeleton are emerging as signaling centers that regulate how physical information from the extracellular matrix is biochemically transduced into the nucleus, affecting chromatin and controlling cell function. Bone is a mechanically driven tissue that relies on physical information to maintain its physiological function and structure. Disorder that present with musculoskeletal and cardiac symptoms, such as Emery-Dreifuss muscular dystrophies and progeria, correlate with mutations in nuclear envelope proteins including Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, Lamin A/C, and emerin. However, the role of nuclear envelope mechanobiology on bone function remains underexplored. The mesenchymal stem cell (MSC) model is perhaps the most studied relationship between bone regulation and nuclear envelope function. MSCs maintain the musculoskeletal system by differentiating into multiple cell types including osteocytes and adipocytes, thus supporting the bone's ability to respond to mechanical challenge. In this review, we will focus on how MSC function is regulated by mechanical challenges both in vitro and in vivo within the context of bone function specifically focusing on integrin, β-catenin and YAP/TAZ signaling. The importance of the nuclear envelope will be explored within the context of musculoskeletal diseases related to nuclear envelope protein mutations and nuclear envelope regulation of signaling pathways relevant to bone mechanobiology in vitro and in vivo.
Collapse
Affiliation(s)
- Scott Birks
- Boise State University, Micron School of Materials Science and Engineering, United States of America
| | - Gunes Uzer
- Boise State University, Mechanical and Biomedical Engineering, United States of America.
| |
Collapse
|
14
|
M33 condenses chromatin through nuclear body formation and methylation of both histone H3 lysine 9 and lysine 27. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119100. [PMID: 34274396 DOI: 10.1016/j.bbamcr.2021.119100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 11/23/2022]
Abstract
Heterochromatin, a type of condensed DNA in eukaryotic cells, has two main categories: Constitutive heterochromatin, which contains H3K9 methylation, and facultative heterochromatin, which contains H3K27 methylation. Methylated H3K9 and H3K27 serve as docking sites for chromodomain-containing proteins that compact chromatin. M33 (also known as CBX2) is a chromodomain-containing protein that binds H3K27me3 and compacts chromatin in vitro. However, whether M33 mediates chromatin compaction in cellulo remains unknown. Here we show that M33 compacts chromatin into DAPI-intense heterochromatin domains in cells. The formation of these heterochromatin domains requires H3K27me3, which recruits M33 to form nuclear bodies. G9a and SUV39H1 are sequentially recruited into M33 nuclear bodies to create H3K9 methylated chromatin in a process that is independent of HP1α. Finally, M33 decreases progerin-induced nuclear envelope disruption caused by loss of heterochromatin. Our findings demonstrate that M33 mediates the formation of condensed chromatin by forming nuclear bodies containing both H3K27me3 and H3K9me3. Our model of M33-dependent chromatin condensation suggests H3K27 methylation corroborates with H3K9 methylation during the formation of facultative heterochromatin and provides the theoretical basis for developing novel therapies to treat heterochromatin-related diseases.
Collapse
|
15
|
Molecular and Cellular Mechanisms Driving Cardiovascular Disease in Hutchinson-Gilford Progeria Syndrome: Lessons Learned from Animal Models. Cells 2021; 10:cells10051157. [PMID: 34064612 PMCID: PMC8151355 DOI: 10.3390/cells10051157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease that recapitulates many symptoms of physiological aging and precipitates death. Patients develop severe vascular alterations, mainly massive vascular smooth muscle cell loss, vessel stiffening, calcification, fibrosis, and generalized atherosclerosis, as well as electrical, structural, and functional anomalies in the heart. As a result, most HGPS patients die of myocardial infarction, heart failure, or stroke typically during the first or second decade of life. No cure exists for HGPS, and therefore it is of the utmost importance to define the mechanisms that control disease progression in order to develop new treatments to improve the life quality of patients and extend their lifespan. Since the discovery of the HGPS-causing mutation, several animal models have been generated to study multiple aspects of the syndrome and to analyze the contribution of different cell types to the acquisition of the HGPS-associated cardiovascular phenotype. This review discusses current knowledge about cardiovascular features in HGPS patients and animal models and the molecular and cellular mechanisms through which progerin causes cardiovascular disease.
Collapse
|
16
|
Röhrl JM, Arnold R, Djabali K. Nuclear Pore Complexes Cluster in Dysmorphic Nuclei of Normal and Progeria Cells during Replicative Senescence. Cells 2021; 10:cells10010153. [PMID: 33466669 PMCID: PMC7828780 DOI: 10.3390/cells10010153] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 01/10/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disease caused by a mutation in LMNA. A G608G mutation in exon 11 of LMNA is responsible for most HGPS cases, generating a truncated protein called “progerin”. Progerin is permanently farnesylated and accumulates in HGPS cells, causing multiple cellular defects such as nuclear dysmorphism, a thickened lamina, loss of heterochromatin, premature senescence, and clustering of Nuclear Pore Complexes (NPC). To identify the mechanism of NPC clustering in HGPS cells, we evaluated post-mitotic NPC assembly in control and HGPS cells and found no defects. Next, we examined the occurrence of NPC clustering in control and HGPS cells during replicative senescence. We reported that NPC clustering occurs solely in the dysmorphic nuclei of control and HGPS cells. Hence, NPC clustering occurred at a higher frequency in HGPS cells compared to control cells at early passages; however, in late cultures with similar senescence index, NPCs clustering occurred at a similar rate in both control and HGPS. Our results show that progerin does not disrupt post-mitotic reassembly of NPCs. However, NPCs frequently cluster in dysmorphic nuclei with a high progerin content. Additionally, nuclear envelope defects that arise during replicative senescence cause NPC clustering in senescent cells with dysmorphic nuclei.
Collapse
|
17
|
Mechanical suppression of breast cancer cell invasion and paracrine signaling to osteoclasts requires nucleo-cytoskeletal connectivity. Bone Res 2020; 8:40. [PMID: 33298883 PMCID: PMC7673025 DOI: 10.1038/s41413-020-00111-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/29/2020] [Accepted: 07/21/2020] [Indexed: 01/10/2023] Open
Abstract
Exercise benefits the musculoskeletal system and reduces the effects of cancer. The effects of exercise are multifactorial, where metabolic changes and tissue adaptation influence outcomes. Mechanical signals, a principal component of exercise, are anabolic to the musculoskeletal system and restrict cancer progression. We examined the mechanisms through which cancer cells sense and respond to low-magnitude mechanical signals introduced in the form of vibration. Low-magnitude, high-frequency vibration was applied to human breast cancer cells in the form of low-intensity vibration (LIV). LIV decreased matrix invasion and impaired secretion of osteolytic factors PTHLH, IL-11, and RANKL. Furthermore, paracrine signals from mechanically stimulated cancer cells, reduced osteoclast differentiation and resorptive capacity. Disconnecting the nucleus by knockdown of SUN1 and SUN2 impaired LIV-mediated suppression of invasion and osteolytic factor secretion. LIV increased cell stiffness; an effect dependent on the LINC complex. These data show that mechanical vibration reduces the metastatic potential of human breast cancer cells, where the nucleus serves as a mechanosensory apparatus to alter cell structure and intercellular signaling.
Collapse
|
18
|
ESCRT-III controls nuclear envelope deformation induced by progerin. Sci Rep 2020; 10:18877. [PMID: 33139753 PMCID: PMC7606583 DOI: 10.1038/s41598-020-75852-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/21/2020] [Indexed: 01/29/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder, caused by mutation in the gene encoding lamin A/C, which produces a truncated protein called progerin. In cells from HGPS patients, progerin accumulates at the nuclear membrane (NM), where it causes NM deformations. In this study, we investigated whether progerin-induced NM deformation involved ESCRT-III, a protein complex that remodels nuclear and cytoplasmic membranes. The ESCRT-III protein CHMP4B was recruited to sites of aberrant NM proliferation in human cells ectopically expressing progerin and in patient-derived HGPS fibroblasts. Derepression of NM deformation in these cells was observed following depletion of CHMP4B or an ESCRT-III adaptor, ALIX. Treatment with rapamycin (which induce autophagic clearance of progerin and reverse progerin-induced cellular phenotypes) down-regulated progerin-induced NM deformation, whereas treatment with bafilomycin A1 (an inhibitor of autophagy and lysosome-based degradation) or CHMP4B depletion antagonized the effects of rapamycin. These results indicate that the ALIX-mediated ESCRT-III pathway plays a suppressive role in progerin-induced NM deformation and suggest that autophagy down-regulates progerin-induced NM deformation in a manner dependent on ESCRT-III machinery.
Collapse
|
19
|
Loss of MTX2 causes mandibuloacral dysplasia and links mitochondrial dysfunction to altered nuclear morphology. Nat Commun 2020; 11:4589. [PMID: 32917887 PMCID: PMC7486921 DOI: 10.1038/s41467-020-18146-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 07/27/2020] [Indexed: 11/08/2022] Open
Abstract
Mandibuloacral dysplasia syndromes are mainly due to recessive LMNA or ZMPSTE24 mutations, with cardinal nuclear morphological abnormalities and dysfunction. We report five homozygous null mutations in MTX2, encoding Metaxin-2 (MTX2), an outer mitochondrial membrane protein, in patients presenting with a severe laminopathy-like mandibuloacral dysplasia characterized by growth retardation, bone resorption, arterial calcification, renal glomerulosclerosis and severe hypertension. Loss of MTX2 in patients' primary fibroblasts leads to loss of Metaxin-1 (MTX1) and mitochondrial dysfunction, including network fragmentation and oxidative phosphorylation impairment. Furthermore, patients' fibroblasts are resistant to induced apoptosis, leading to increased cell senescence and mitophagy and reduced proliferation. Interestingly, secondary nuclear morphological defects are observed in both MTX2-mutant fibroblasts and mtx-2-depleted C. elegans. We thus report the identification of a severe premature aging syndrome revealing an unsuspected link between mitochondrial composition and function and nuclear morphology, establishing a pathophysiological link with premature aging laminopathies and likely explaining common clinical features.
Collapse
|
20
|
Marcelot A, Worman HJ, Zinn-Justin S. Protein structural and mechanistic basis of progeroid laminopathies. FEBS J 2020; 288:2757-2772. [PMID: 32799420 DOI: 10.1111/febs.15526] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Abstract
Progeroid laminopathies are characterized by the premature appearance of certain signs of physiological aging in a subset of tissues. They are caused by mutations in genes coding for A-type lamins or lamin-binding proteins. Here, we review how different mutations causing progeroid laminopathies alter protein structure or protein-protein interactions and how these impact on mechanisms that protect cell viability and function. One group of progeroid laminopathies, which includes Hutchinson-Gilford progeria syndrome, is characterized by accumulation of unprocessed prelamin A or variants. These are caused by mutations in the A-type lamin gene (LMNA), altering prelamin A itself, or in ZMPSTE24, encoding an endoprotease involved in its processing. The abnormally expressed farnesylated proteins impact on various cellular processes that may contribute to progeroid phenotypes. Other LMNA mutations lead to the production of nonfarnesylated A-type lamin variants with amino acid substitutions in solvent-exposed hot spots located mainly in coil 1B and the immunoglobulin fold domain. Dominant missense mutations might reinforce interactions between lamin domains, thus giving rise to excessively stabilized filament networks. Recessive missense mutations in A-type lamins and barrier-to-autointegration factor (BAF) causing progeroid disorders are found at the interface between these interacting proteins. The amino acid changes decrease the binding affinity of A-type lamins for BAF, which may contribute to lamina disorganization, as well as defective repair of mechanically induced nuclear envelope rupture. Targeting these molecular alterations in A-type lamins and associated proteins identified through structural biology studies could facilitate the design of therapeutic strategies to treat patients with rare but severe progeroid laminopathies.
Collapse
Affiliation(s)
- Agathe Marcelot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Howard J Worman
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette Cedex, France
| |
Collapse
|
21
|
Rahmati M, Silva EA, Reseland JE, A Heyward C, Haugen HJ. Biological responses to physicochemical properties of biomaterial surface. Chem Soc Rev 2020; 49:5178-5224. [PMID: 32642749 DOI: 10.1039/d0cs00103a] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biomedical scientists use chemistry-driven processes found in nature as an inspiration to design biomaterials as promising diagnostic tools, therapeutic solutions, or tissue substitutes. While substantial consideration is devoted to the design and validation of biomaterials, the nature of their interactions with the surrounding biological microenvironment is commonly neglected. This gap of knowledge could be owing to our poor understanding of biochemical signaling pathways, lack of reliable techniques for designing biomaterials with optimal physicochemical properties, and/or poor stability of biomaterial properties after implantation. The success of host responses to biomaterials, known as biocompatibility, depends on chemical principles as the root of both cell signaling pathways in the body and how the biomaterial surface is designed. Most of the current review papers have discussed chemical engineering and biological principles of designing biomaterials as separate topics, which has resulted in neglecting the main role of chemistry in this field. In this review, we discuss biocompatibility in the context of chemistry, what it is and how to assess it, while describing contributions from both biochemical cues and biomaterials as well as the means of harmonizing them. We address both biochemical signal-transduction pathways and engineering principles of designing a biomaterial with an emphasis on its surface physicochemistry. As we aim to show the role of chemistry in the crosstalk between the surface physicochemical properties and body responses, we concisely highlight the main biochemical signal-transduction pathways involved in the biocompatibility complex. Finally, we discuss the progress and challenges associated with the current strategies used for improving the chemical and physical interactions between cells and biomaterial surface.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway. h.j.haugen.odont.uio.no
| | | | | | | | | |
Collapse
|
22
|
Almendáriz-Palacios C, Gillespie ZE, Janzen M, Martinez V, Bridger JM, Harkness TAA, Mousseau DD, Eskiw CH. The Nuclear Lamina: Protein Accumulation and Disease. Biomedicines 2020; 8:E188. [PMID: 32630170 PMCID: PMC7400325 DOI: 10.3390/biomedicines8070188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Cellular health is reliant on proteostasis-the maintenance of protein levels regulated through multiple pathways modulating protein synthesis, degradation and clearance. Loss of proteostasis results in serious disease and is associated with aging. One proteinaceous structure underlying the nuclear envelope-the nuclear lamina-coordinates essential processes including DNA repair, genome organization and epigenetic and transcriptional regulation. Loss of proteostasis within the nuclear lamina results in the accumulation of proteins, disrupting these essential functions, either via direct interactions of protein aggregates within the lamina or by altering systems that maintain lamina structure. Here we discuss the links between proteostasis and disease of the nuclear lamina, as well as how manipulating specific proteostatic pathways involved in protein clearance could improve cellular health and prevent/reverse disease.
Collapse
Affiliation(s)
- Carla Almendáriz-Palacios
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (C.A.-P.); (V.M.)
| | - Zoe E. Gillespie
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| | - Matthew Janzen
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| | - Valeria Martinez
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (C.A.-P.); (V.M.)
| | - Joanna M. Bridger
- Centre for Genome Engineering and Maintenance, College of Health, Life and Medical Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK;
| | - Troy A. A. Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| | - Darrell D. Mousseau
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK S7N 5A5, Canada;
| | - Christopher H. Eskiw
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (C.A.-P.); (V.M.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| |
Collapse
|
23
|
Lamin A/C Mechanotransduction in Laminopathies. Cells 2020; 9:cells9051306. [PMID: 32456328 PMCID: PMC7291067 DOI: 10.3390/cells9051306] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Mechanotransduction translates forces into biological responses and regulates cell functionalities. It is implicated in several diseases, including laminopathies which are pathologies associated with mutations in lamins and lamin-associated proteins. These pathologies affect muscle, adipose, bone, nerve, and skin cells and range from muscular dystrophies to accelerated aging. Although the exact mechanisms governing laminopathies and gene expression are still not clear, a strong correlation has been found between cell functionality and nuclear behavior. New theories base on the direct effect of external force on the genome, which is indeed sensitive to the force transduced by the nuclear lamina. Nuclear lamina performs two essential functions in mechanotransduction pathway modulating the nuclear stiffness and governing the chromatin remodeling. Indeed, A-type lamin mutation and deregulation has been found to affect the nuclear response, altering several downstream cellular processes such as mitosis, chromatin organization, DNA replication-transcription, and nuclear structural integrity. In this review, we summarize the recent findings on the molecular composition and architecture of the nuclear lamina, its role in healthy cells and disease regulation. We focus on A-type lamins since this protein family is the most involved in mechanotransduction and laminopathies.
Collapse
|
24
|
Martins F, Sousa J, Pereira CD, Cruz e Silva OAB, Rebelo S. Nuclear envelope dysfunction and its contribution to the aging process. Aging Cell 2020; 19:e13143. [PMID: 32291910 PMCID: PMC7253059 DOI: 10.1111/acel.13143] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 12/25/2022] Open
Abstract
The nuclear envelope (NE) is the central organizing unit of the eukaryotic cell serving as a genome protective barrier and mechanotransduction interface between the cytoplasm and the nucleus. The NE is mainly composed of a nuclear lamina and a double membrane connected at specific points where the nuclear pore complexes (NPCs) form. Physiological aging might be generically defined as a functional decline across lifespan observed from the cellular to organismal level. Therefore, during aging and premature aging, several cellular alterations occur, including nuclear‐specific changes, particularly, altered nuclear transport, increased genomic instability induced by DNA damage, and telomere attrition. Here, we highlight and discuss proteins associated with nuclear transport dysfunction induced by aging, particularly nucleoporins, nuclear transport factors, and lamins. Moreover, changes in the structure of chromatin and consequent heterochromatin rearrangement upon aging are discussed. These alterations correlate with NE dysfunction, particularly lamins’ alterations. Finally, telomere attrition is addressed and correlated with altered levels of nuclear lamins and nuclear lamina‐associated proteins. Overall, the identification of molecular mechanisms underlying NE dysfunction, including upstream and downstream events, which have yet to be unraveled, will be determinant not only to our understanding of several pathologies, but as here discussed, in the aging process.
Collapse
Affiliation(s)
- Filipa Martins
- Neuroscience and Signaling Laboratory Institute of Biomedicine (iBiMED) Department of Medical Sciences University of Aveiro Aveiro Portugal
| | - Jéssica Sousa
- Neuroscience and Signaling Laboratory Institute of Biomedicine (iBiMED) Department of Medical Sciences University of Aveiro Aveiro Portugal
| | - Cátia D. Pereira
- Neuroscience and Signaling Laboratory Institute of Biomedicine (iBiMED) Department of Medical Sciences University of Aveiro Aveiro Portugal
| | - Odete A. B. Cruz e Silva
- Neuroscience and Signaling Laboratory Institute of Biomedicine (iBiMED) Department of Medical Sciences University of Aveiro Aveiro Portugal
- The Discoveries CTR Aveiro Portugal
| | - Sandra Rebelo
- Neuroscience and Signaling Laboratory Institute of Biomedicine (iBiMED) Department of Medical Sciences University of Aveiro Aveiro Portugal
| |
Collapse
|
25
|
Saxena S, Kumar S. Pharmacotherapy to gene editing: potential therapeutic approaches for Hutchinson-Gilford progeria syndrome. GeroScience 2020; 42:467-494. [PMID: 32048129 PMCID: PMC7205988 DOI: 10.1007/s11357-020-00167-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS), commonly called progeria, is an extremely rare disorder that affects only one child per four million births. It is characterized by accelerated aging in affected individuals leading to premature death at an average age of 14.5 years due to cardiovascular complications. The main cause of HGPS is a sporadic autosomal dominant point mutation in LMNA gene resulting in differently spliced lamin A protein known as progerin. Accumulation of progerin under nuclear lamina and activation of its downstream effectors cause perturbation in cellular morphology and physiology which leads to a systemic disorder that mainly impairs the cardiovascular system, bones, skin, and overall growth. Till now, no cure has been found for this catastrophic disorder; however, several therapeutic strategies are under development. The current review focuses on the overall progress in the field of therapeutic approaches for the management/cure of HGPS. We have also discussed the new disease models that have been developed for the study of this rare disorder. Moreover, we have highlighted the therapeutic application of extracellular vesicles derived from stem cells against aging and aging-related disorders and, therefore, suggest the same for the treatment of HGPS.
Collapse
Affiliation(s)
- Saurabh Saxena
- Department of Medical Laboratory Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India.
| | - Sanjeev Kumar
- Faculty of Technology and Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India
| |
Collapse
|
26
|
Wang W, Wang J, Lin W, Kao C, Hung M, Teng Y, Tsai T, Chi Y. Progerin in muscle leads to thermogenic and metabolic defects via impaired calcium homeostasis. Aging Cell 2020; 19:e13090. [PMID: 31833196 PMCID: PMC6996945 DOI: 10.1111/acel.13090] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/26/2019] [Accepted: 11/21/2019] [Indexed: 12/19/2022] Open
Abstract
Mutations in lamin A (LMNA) are responsible for a variety of human dystrophic and metabolic diseases. Here, we created a mouse model in which progerin, the lamin A mutant protein that causes Hutchinson–Gilford progeria syndrome (HGPS), can be inducibly overexpressed. Muscle‐specific overexpression of progerin was sufficient to induce muscular dystrophy and alter whole‐body energy expenditure, leading to premature death. Intriguingly, sarcolipin (Sln), an endoplasmic reticulum (ER)‐associated protein involved in heat production, is upregulated in progerin‐expressing and Lmna knockout (Lmna−/−) skeletal muscle. The depletion of Sln accelerated the early death of Lmna−/− mice. An examination at the molecular level revealed that progerin recruits Sln and Calnexin to the nuclear periphery. Furthermore, progerin‐expressing myoblasts presented enhanced store‐operated Ca2+ entry, as well as increased co‐localization of STIM1 and ORAI1. These findings suggest that progerin dysregulates calcium homeostasis through an interaction with a subset of ER‐associated proteins, resulting in thermogenic and metabolic abnormalities.
Collapse
Affiliation(s)
- Wan‐Ping Wang
- Institute of Biotechnology and Pharmaceutical Research National Health Research Institutes Zhunan Taiwan
| | - Jing‐Ya Wang
- Institute of Biotechnology and Pharmaceutical Research National Health Research Institutes Zhunan Taiwan
| | - Wen‐Hsin Lin
- Institute of Biotechnology and Pharmaceutical Research National Health Research Institutes Zhunan Taiwan
| | - Cheng‐Heng Kao
- Center of General Education Chang Gung University Taoyuan Taiwan
| | - Ming‐Chun Hung
- Institute of Biotechnology and Pharmaceutical Research National Health Research Institutes Zhunan Taiwan
| | - Yuan‐Chi Teng
- Department of Life Sciences and Institute of Genome Sciences National Yang‐Ming University Taipei Taiwan
| | - Ting‐Fen Tsai
- Institute of Biotechnology and Pharmaceutical Research National Health Research Institutes Zhunan Taiwan
- Department of Life Sciences and Institute of Genome Sciences National Yang‐Ming University Taipei Taiwan
| | - Ya‐Hui Chi
- Institute of Biotechnology and Pharmaceutical Research National Health Research Institutes Zhunan Taiwan
- Graduate Institute of Biomedical Sciences China Medical University Taichung Taiwan
| |
Collapse
|
27
|
Shahin V, Kouzel IU, Rosso G, Liashkovich I. Nuclear Envelope Permeability Barrier as a Fast-Response Intracellular Mechanostat. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900709. [PMID: 31728274 PMCID: PMC6839651 DOI: 10.1002/advs.201900709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/26/2019] [Indexed: 05/23/2023]
Abstract
The nuclear envelope is an undisputed component of the intracellular mechanotransduction cascades which collect, process, and respond to mechanical stimuli from the environment. At the same time, the nuclear envelope performs the function of a selective barrier between the nuclear and cytoplasmic compartments. Although the mechanosensing and the barrier functions of the nuclear envelope have both been subjects of intense research, a possible reciprocal relationship between them is only beginning to emerge. In this report, the role of the nucleocytoplasmic permeability barrier is evaluated in nuclear mechanics. Using a combination of atomic force and confocal microscopy, the functional state of the nucleocytoplasmic permeability barrier and the nuclear mechanics is monitored. By modulating the stringency of the barrier and simulating the active transport imbalance across the nuclear envelope, the decisive impact of these parameters on nuclear mechanics is demonstrated. It is concluded that the nucleocytoplasmic barrier is the second essential component of the intracellular mechanostat function performed by the nuclear envelope.
Collapse
Affiliation(s)
- Victor Shahin
- Institute of Physiology IIUniversity of MünsterRobert‐Koch‐Str. 27b48149MünsterGermany
| | - Ivan U. Kouzel
- Sars International Centre for Marine Molecular BiologyUniversity of BergenThormøhlensgt. 55N‐5006BergenNorway
| | - Gonzalo Rosso
- Institute of Physiology IIUniversity of MünsterRobert‐Koch‐Str. 27b48149MünsterGermany
- Biotechnology CenterTechnical University DresdenTatzberg 47/4901307DresdenGermany
| | - Ivan Liashkovich
- Institute of Physiology IIUniversity of MünsterRobert‐Koch‐Str. 27b48149MünsterGermany
| |
Collapse
|
28
|
Donnaloja F, Jacchetti E, Soncini M, Raimondi MT. Mechanosensing at the Nuclear Envelope by Nuclear Pore Complex Stretch Activation and Its Effect in Physiology and Pathology. Front Physiol 2019; 10:896. [PMID: 31354529 PMCID: PMC6640030 DOI: 10.3389/fphys.2019.00896] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/27/2019] [Indexed: 02/03/2023] Open
Abstract
Cell fate is correlated to mechanotransduction, in which forces transmitted by the cytoskeleton filaments alter the nuclear shape, affecting transcription factor import/export, cells transcription activity and chromatin distribution. There is in fact evidence that stem cells cultured in 3D environments mimicking the native niche are able to maintain their stemness or modulate their cellular function. However, the molecular and biophysical mechanisms underlying cellular mechanosensing are still largely unclear. The propagation of mechanical stimuli via a direct pathway from cell membrane integrins to SUN proteins residing in the nuclear envelop has been demonstrated, but we suggest that the cells’ fate is mainly affected by the force distribution at the nuclear envelope level, where the SUN protein transmits the stimuli via its mechanical connection to several cell structures such as chromatin, lamina and the nuclear pore complex (NPC). In this review, we analyze the NPC structure and organization, which have not as yet been fully investigated, and its plausible involvement in cell fate. NPC is a multiprotein complex that spans the nuclear envelope, and is involved in several key cellular processes such as bidirectional nucleocytoplasmic exchange, cell cycle regulation, kinetochore organization, and regulation of gene expression. As several connections between the NPC and the nuclear envelope, chromatin and other transmembrane proteins have been identified, it is reasonable to suppose that nuclear deformations can alter the NPC structure. We provide evidence that the transmission of mechanical forces may significantly affects the basket conformation via the Nup153-SUN1 connection, both altering the passage of molecules through it and influencing the state of chromatin packing. Finally, we review the known correlations between a pathological NPC structure and diseases such as cancer, autoimmune disease, aging and laminopathies.
Collapse
Affiliation(s)
- F Donnaloja
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milan, Italy
| | - E Jacchetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milan, Italy
| | - M Soncini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - M T Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milan, Italy
| |
Collapse
|
29
|
You MS, Wang WP, Wang JY, Jiang YJ, Chi YH. Sun1 Mediates Interkinetic Nuclear Migration and Notch Signaling in the Neurogenesis of Zebrafish. Stem Cells Dev 2019; 28:1116-1127. [PMID: 31140357 DOI: 10.1089/scd.2019.0063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Interkinetic nuclear migration (INM) is a process by which nuclei oscillate between the basal and apical surfaces of epithelial cells in coordination with the cell cycle. The cytoskeletal machinery including microtubules and actin has been reported to drive apical INM; however, the role of nuclear proteins in this process has yet to be fully elucidated. Here, we investigated the function of a SUN-domain protein, Sun1, in zebrafish. We found that zebrafish sun1 is highly expressed in the ventricular zone of the brain. Knocking down sun1 with antisense morpholino oligonucleotides reduced the abundance of nestin- and gfap-expressing neural stem cells and progenitor cells. The live-cell imaging results showed that sun1 morphant cells migrated toward the basal side during the S phase but failed to migrate apically during the G2 phase. On the contrary, the passive stochastic movement during the G2 phase was unaffected. Furthermore, down regulation of sun1 was shown to reduce the expression of genes associated with the Notch pathway, whereas the expression of genes in the Wnt pathway was less perturbed. Findings from this research suggest that the Sun1-mediated nucleo-cytoskeletal interaction contributes to apical nuclear migration, and may thus affect exposure to Notch signal, thereby altering the composition of the progenitor pool in the embryonic neurogenesis of zebrafish.
Collapse
Affiliation(s)
- May-Su You
- 1Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Wan-Ping Wang
- 2Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Jing-Ya Wang
- 2Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yun-Jin Jiang
- 1Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Ya-Hui Chi
- 2Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan.,3Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
30
|
Guo J, Han S, Lu X, Guo Z, Zeng S, Zheng X, Zheng B. κ-Carrageenan hexamer have significant anti-inflammatory activity and protect RAW264.7 Macrophages by inhibiting CD14. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
31
|
Sola-Carvajal A, Revêchon G, Helgadottir HT, Whisenant D, Hagblom R, Döhla J, Katajisto P, Brodin D, Fagerström-Billai F, Viceconte N, Eriksson M. Accumulation of Progerin Affects the Symmetry of Cell Division and Is Associated with Impaired Wnt Signaling and the Mislocalization of Nuclear Envelope Proteins. J Invest Dermatol 2019; 139:2272-2280.e12. [PMID: 31128203 DOI: 10.1016/j.jid.2019.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is the result of a defective form of the lamin A protein called progerin. While progerin is known to disrupt the properties of the nuclear lamina, the underlying mechanisms responsible for the pathophysiology of HGPS remain less clear. Previous studies in our laboratory have shown that progerin expression in murine epidermal basal cells results in impaired stratification and halted development of the skin. Stratification and differentiation of the epidermis is regulated by asymmetric stem cell division. Here, we show that expression of progerin impairs the ability of stem cells to maintain tissue homeostasis as a result of altered cell division. Quantification of basal skin cells showed an increase in symmetric cell division that correlated with progerin accumulation in HGPS mice. Investigation of the mechanisms underlying this phenomenon revealed a putative role of Wnt/β-catenin signaling. Further analysis suggested an alteration in the nuclear translocation of β-catenin involving the inner and outer nuclear membrane proteins, emerin and nesprin-2. Taken together, our results suggest a direct involvement of progerin in the transmission of Wnt signaling and normal stem cell division. These insights into the molecular mechanisms of progerin may help develop new treatment strategies for HGPS.
Collapse
Affiliation(s)
- Agustín Sola-Carvajal
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden.
| | - Gwladys Revêchon
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Hafdis T Helgadottir
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Daniel Whisenant
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Robin Hagblom
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Julia Döhla
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden; Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pekka Katajisto
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden; Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - David Brodin
- Bioinformatics and Expression Core Facility, Karolinska Institutet, Huddinge, Sweden
| | | | - Nikenza Viceconte
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Maria Eriksson
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
32
|
Imbalanced nucleocytoskeletal connections create common polarity defects in progeria and physiological aging. Proc Natl Acad Sci U S A 2019; 116:3578-3583. [PMID: 30808750 DOI: 10.1073/pnas.1809683116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Studies of the accelerated aging disorder Hutchinson-Gilford progeria syndrome (HGPS) can potentially reveal cellular defects associated with physiological aging. HGPS results from expression and abnormal nuclear envelope association of a farnesylated, truncated variant of prelamin A called "progerin." We surveyed the diffusional mobilities of nuclear membrane proteins to identify proximal effects of progerin expression. The mobilities of three proteins-SUN2, nesprin-2G, and emerin-were reduced in fibroblasts from children with HGPS compared with those in normal fibroblasts. These proteins function together in nuclear movement and centrosome orientation in fibroblasts polarizing for migration. Both processes were impaired in fibroblasts from children with HGPS and in NIH 3T3 fibroblasts expressing progerin, but were restored by inhibiting protein farnesylation. Progerin affected both the coupling of the nucleus to actin cables and the oriented flow of the cables necessary for nuclear movement and centrosome orientation. Progerin overexpression increased levels of SUN1, which couples the nucleus to microtubules through nesprin-2G and dynein, and microtubule association with the nucleus. Reducing microtubule-nuclear connections through SUN1 depletion or dynein inhibition rescued the polarity defects. Nuclear movement and centrosome orientation were also defective in fibroblasts from normal individuals over 60 y, and both defects were rescued by reducing the increased level of SUN1 in these cells or inhibiting dynein. Our results identify imbalanced nuclear engagement of the cytoskeleton (microtubules: high; actin filaments: low) as the basis for intrinsic cell polarity defects in HGPS and physiological aging and suggest that rebalancing the connections can ameliorate the defects.
Collapse
|
33
|
Osmanagic-Myers S, Kiss A, Manakanatas C, Hamza O, Sedlmayer F, Szabo PL, Fischer I, Fichtinger P, Podesser BK, Eriksson M, Foisner R. Endothelial progerin expression causes cardiovascular pathology through an impaired mechanoresponse. J Clin Invest 2019; 129:531-545. [PMID: 30422822 PMCID: PMC6355303 DOI: 10.1172/jci121297] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 11/06/2018] [Indexed: 01/09/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder characterized by accelerated cardiovascular disease with extensive fibrosis. It is caused by a mutation in LMNA leading to expression of truncated prelamin A (progerin) in the nucleus. To investigate the contribution of the endothelium to cardiovascular HGPS pathology, we generated an endothelium-specific HGPS mouse model with selective endothelial progerin expression. Transgenic mice develop interstitial myocardial and perivascular fibrosis and left ventricular hypertrophy associated with diastolic dysfunction and premature death. Endothelial cells show impaired shear stress response and reduced levels of endothelial nitric oxide synthase (eNOS) and NO. On the molecular level, progerin impairs nucleocytoskeletal coupling in endothelial cells through changes in mechanoresponsive components at the nuclear envelope, increased F-actin/G-actin ratios, and deregulation of mechanoresponsive myocardin-related transcription factor-A (MRTFA). MRTFA binds to the Nos3 promoter and reduces eNOS expression, thereby mediating a profibrotic paracrine response in fibroblasts. MRTFA inhibition rescues eNOS levels and ameliorates the profibrotic effect of endothelial cells in vitro. Although this murine model lacks the key anatomical feature of vascular smooth muscle cell loss seen in HGPS patients, our data show that progerin-induced impairment of mechanosignaling in endothelial cells contributes to excessive fibrosis and cardiovascular disease in HGPS patients.
Collapse
Affiliation(s)
- Selma Osmanagic-Myers
- Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry, Medical University of Vienna and University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Christina Manakanatas
- Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry, Medical University of Vienna and University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Ouafa Hamza
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Franziska Sedlmayer
- Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry, Medical University of Vienna and University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Petra L. Szabo
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Irmgard Fischer
- Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry, Medical University of Vienna and University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Petra Fichtinger
- Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry, Medical University of Vienna and University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Bruno K. Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Maria Eriksson
- Department of Biosciences and Nutrition, Karolinska Institutet, NEO, Huddinge, Sweden
| | - Roland Foisner
- Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry, Medical University of Vienna and University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
34
|
Bikkul MU, Faragher RGA, Worthington G, Meinke P, Kerr ARW, Sammy A, Riyahi K, Horton D, Schirmer EC, Hubank M, Kill IR, Anderson RM, Slijepcevic P, Makarov E, Bridger JM. Telomere elongation through hTERT immortalization leads to chromosome repositioning in control cells and genomic instability in Hutchinson-Gilford progeria syndrome fibroblasts, expressing a novel SUN1 isoform. Genes Chromosomes Cancer 2019; 58:341-356. [PMID: 30474255 PMCID: PMC6590296 DOI: 10.1002/gcc.22711] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 11/06/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023] Open
Abstract
Immortalizing primary cells with human telomerase reverse transcriptase (hTERT) has been common practice to enable primary cells to be of extended use in the laboratory because they avoid replicative senescence. Studying exogenously expressed hTERT in cells also affords scientists models of early carcinogenesis and telomere behavior. Control and the premature ageing disease—Hutchinson‐Gilford progeria syndrome (HGPS) primary dermal fibroblasts, with and without the classical G608G mutation have been immortalized with exogenous hTERT. However, hTERT immortalization surprisingly elicits genome reorganization not only in disease cells but also in the normal control cells, such that whole chromosome territories normally located at the nuclear periphery in proliferating fibroblasts become mislocalized in the nuclear interior. This includes chromosome 18 in the control fibroblasts and both chromosomes 18 and X in HGPS cells, which physically express an isoform of the LINC complex protein SUN1 that has previously only been theoretical. Additionally, this HGPS cell line has also become genomically unstable and has a tetraploid karyotype, which could be due to the novel SUN1 isoform. Long‐term treatment with the hTERT inhibitor BIBR1532 enabled the reduction of telomere length in the immortalized cells and resulted that these mislocalized internal chromosomes to be located at the nuclear periphery, as assessed in actively proliferating cells. Taken together, these findings reveal that elongated telomeres lead to dramatic chromosome mislocalization, which can be restored with a drug treatment that results in telomere reshortening and that a novel SUN1 isoform combined with elongated telomeres leads to genomic instability. Thus, care should be taken when interpreting data from genomic studies in hTERT‐immortalized cell lines.
Collapse
Affiliation(s)
- Mehmet U. Bikkul
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | | | - Gemma Worthington
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Peter Meinke
- Friedrich‐Baur‐InstitutKlinikum der Universität MünchenMünchenGermany
- The Wellcome Trust Centre for Cell BiologyInstitute of Cell Biology, and Centre for Translational and Chemical Biology, University of EdinburghEdinburghEngland
| | - Alastair R. W. Kerr
- The Wellcome Trust Centre for Cell BiologyInstitute of Cell Biology, and Centre for Translational and Chemical Biology, University of EdinburghEdinburghEngland
| | - Aakila Sammy
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Kumars Riyahi
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Daniel Horton
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Eric C. Schirmer
- The Wellcome Trust Centre for Cell BiologyInstitute of Cell Biology, and Centre for Translational and Chemical Biology, University of EdinburghEdinburghEngland
| | - Michael Hubank
- Centre for Molecular PathologyThe Royal Marsden HospitalLondonEngland
| | - Ian R. Kill
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Rhona M. Anderson
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Predrag Slijepcevic
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Evgeny Makarov
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Joanna M. Bridger
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| |
Collapse
|
35
|
Arbach HE, Harland-Dunaway M, Chang JK, Wills AE. Extreme nuclear branching in healthy epidermal cells of the Xenopus tail fin. J Cell Sci 2018; 131:jcs.217513. [PMID: 30131443 DOI: 10.1242/jcs.217513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/10/2018] [Indexed: 01/09/2023] Open
Abstract
Changes in nuclear morphology contribute to the regulation of complex cell properties, including differentiation and tissue elasticity. Perturbations of nuclear morphology are associated with pathologies that include progeria, cancer and muscular dystrophy. The mechanisms governing nuclear shape changes in healthy cells remain poorly understood, partially because there are few models of nuclear shape variation in healthy cells. Here, we introduce nuclear branching in epidermal fin cells of Xenopus tropicalis as a model for extreme variation of nuclear morphology in a diverse population of healthy cells. We found that nuclear branching arises within these cells and becomes more elaborate during embryonic development. These cells contain broadly distributed marks of transcriptionally active chromatin and heterochromatin, and have active cell cycles. We found that nuclear branches are disrupted by loss of filamentous actin and depend on epidermal expression of the nuclear lamina protein Lamin B1. Inhibition of nuclear branching disrupts fin morphology, suggesting that nuclear branching may be involved in fin development. This study introduces the nuclei of the Xenopus fin as a powerful new model for extreme nuclear morphology in healthy cells to complement studies of nuclear shape variation in pathological contexts.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Hannah E Arbach
- Department of Biochemistry, University of Washington, Seattle, WA 98195-3750, USA
| | | | - Jessica K Chang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Andrea E Wills
- Department of Biochemistry, University of Washington, Seattle, WA 98195-3750, USA
| |
Collapse
|
36
|
Rivera-Mulia JC, Schwerer H, Besnard E, Desprat R, Trevilla-Garcia C, Sima J, Bensadoun P, Zouaoui A, Gilbert DM, Lemaitre JM. Cellular senescence induces replication stress with almost no affect on DNA replication timing. Cell Cycle 2018; 17:1667-1681. [PMID: 29963964 DOI: 10.1080/15384101.2018.1491235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Organismal aging entails a gradual decline of normal physiological functions and a major contributor to this decline is withdrawal of the cell cycle, known as senescence. Senescence can result from telomere diminution leading to a finite number of population doublings, known as replicative senescence (RS), or from oncogene overexpression, as a protective mechanism against cancer. Senescence is associated with large-scale chromatin re-organization and changes in gene expression. Replication stress is a complex phenomenon, defined as the slowing or stalling of replication fork progression and/or DNA synthesis, which has serious implications for genome stability, and consequently in human diseases. Aberrant replication fork structures activate the replication stress response leading to the activation of dormant origins, which is thought to be a safeguard mechanism to complete DNA replication on time. However, the relationship between replicative stress and the changes in the spatiotemporal program of DNA replication in senescence progression remains unclear. Here, we studied the DNA replication program during senescence progression in proliferative and pre-senescent cells from donors of various ages by single DNA fiber combing of replicated DNA, origin mapping by sequencing short nascent strands and genome-wide profiling of replication timing (TRT). We demonstrate that, progression into RS leads to reduced replication fork rates and activation of dormant origins, which are the hallmarks of replication stress. However, with the exception of a delay in RT of the CREB5 gene in all pre-senescent cells, RT was globally unaffected by replication stress during entry into either oncogene-induced or RS. Consequently, we conclude that RT alterations associated with physiological and accelerated aging, do not result from senescence progression. Our results clarify the interplay between senescence, aging and replication programs and demonstrate that RT is largely resistant to replication stress.
Collapse
Affiliation(s)
| | - Hélène Schwerer
- b Laboratory of Genome and Stem Cell Plasticity in Development and Aging , Institute of Regenerative Medicine, U1183, Université de Montpellier , Montpellier Cedex , France
| | - Emilie Besnard
- b Laboratory of Genome and Stem Cell Plasticity in Development and Aging , Institute of Regenerative Medicine, U1183, Université de Montpellier , Montpellier Cedex , France
| | - Romain Desprat
- c Stem cell Core Facility SAFE-iPS INGESTEM , CHU Montpellier, Saint Eloi Hospital , Montpellier Cedex , France
| | | | - Jiao Sima
- a Department of Biological Science , Florida State University , Tallahassee , FL , USA
| | - Paul Bensadoun
- b Laboratory of Genome and Stem Cell Plasticity in Development and Aging , Institute of Regenerative Medicine, U1183, Université de Montpellier , Montpellier Cedex , France
| | - Anissa Zouaoui
- c Stem cell Core Facility SAFE-iPS INGESTEM , CHU Montpellier, Saint Eloi Hospital , Montpellier Cedex , France
| | - David M Gilbert
- a Department of Biological Science , Florida State University , Tallahassee , FL , USA.,d Center for Genomics and Personalized Medicine , Florida State University , Tallahassee , FL , USA
| | - Jean-Marc Lemaitre
- b Laboratory of Genome and Stem Cell Plasticity in Development and Aging , Institute of Regenerative Medicine, U1183, Université de Montpellier , Montpellier Cedex , France.,c Stem cell Core Facility SAFE-iPS INGESTEM , CHU Montpellier, Saint Eloi Hospital , Montpellier Cedex , France
| |
Collapse
|
37
|
Pałka M, Tomczak A, Grabowska K, Machowska M, Piekarowicz K, Rzepecka D, Rzepecki R. Laminopathies: what can humans learn from fruit flies. Cell Mol Biol Lett 2018; 23:32. [PMID: 30002683 PMCID: PMC6034310 DOI: 10.1186/s11658-018-0093-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/05/2018] [Indexed: 01/01/2023] Open
Abstract
Lamin proteins are type V intermediate filament proteins (IFs) located inside the cell nucleus. They are evolutionarily conserved and have similar domain organization and properties to cytoplasmic IFs. Lamins provide a skeletal network for chromatin, the nuclear envelope, nuclear pore complexes and the entire nucleus. They are also responsible for proper connections between the karyoskeleton and structural elements in the cytoplasm: actin and the microtubule and cytoplasmic IF networks. Lamins affect transcription and splicing either directly or indirectly. Translocation of active genes into the close proximity of nuclear lamina is thought to result in their transcriptional silencing. Mutations in genes coding for lamins and interacting proteins in humans result in various genetic disorders, called laminopathies. Human genes coding for A-type lamin (LMNA) are the most frequently mutated. The resulting phenotypes include muscle, cardiac, neuronal, lipodystrophic and metabolic pathologies, early aging phenotypes, and combined complex phenotypes. The Drosophila melanogaster genome codes for lamin B-type (lamin Dm), lamin A-type (lamin C), and for LEM-domain proteins, BAF, LINC-complex proteins and all typical nuclear proteins. The fruit fly system is simpler than the vertebrate one since in flies there is only single lamin B-type and single lamin A-type protein, as opposed to the complex system of B- and A-type lamins in Danio, Xenopus and Mus musculus. This offers a unique opportunity to study laminopathies. Applying genetic tools based on Gal4 and in vitro nuclear assembly system to the fruit fly model may successfully advance knowledge of laminopathies. Here, we review studies of the laminopathies in the fly model system.
Collapse
Affiliation(s)
- Marta Pałka
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Aleksandra Tomczak
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Katarzyna Grabowska
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Magdalena Machowska
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Katarzyna Piekarowicz
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Dorota Rzepecka
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Ryszard Rzepecki
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland
| |
Collapse
|
38
|
Martino F, Perestrelo AR, Vinarský V, Pagliari S, Forte G. Cellular Mechanotransduction: From Tension to Function. Front Physiol 2018; 9:824. [PMID: 30026699 PMCID: PMC6041413 DOI: 10.3389/fphys.2018.00824] [Citation(s) in RCA: 596] [Impact Index Per Article: 85.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/12/2018] [Indexed: 12/15/2022] Open
Abstract
Living cells are constantly exposed to mechanical stimuli arising from the surrounding extracellular matrix (ECM) or from neighboring cells. The intracellular molecular processes through which such physical cues are transformed into a biological response are collectively dubbed as mechanotransduction and are of fundamental importance to help the cell timely adapt to the continuous dynamic modifications of the microenvironment. Local changes in ECM composition and mechanics are driven by a feed forward interplay between the cell and the matrix itself, with the first depositing ECM proteins that in turn will impact on the surrounding cells. As such, these changes occur regularly during tissue development and are a hallmark of the pathologies of aging. Only lately, though, the importance of mechanical cues in controlling cell function (e.g., proliferation, differentiation, migration) has been acknowledged. Here we provide a critical review of the recent insights into the molecular basis of cellular mechanotransduction, by analyzing how mechanical stimuli get transformed into a given biological response through the activation of a peculiar genetic program. Specifically, by recapitulating the processes involved in the interpretation of ECM remodeling by Focal Adhesions at cell-matrix interphase, we revise the role of cytoskeleton tension as the second messenger of the mechanotransduction process and the action of mechano-responsive shuttling proteins converging on stage and cell-specific transcription factors. Finally, we give few paradigmatic examples highlighting the emerging role of malfunctions in cell mechanosensing apparatus in the onset and progression of pathologies.
Collapse
Affiliation(s)
- Fabiana Martino
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czechia
| | - Ana R. Perestrelo
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Vladimír Vinarský
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czechia
| | - Stefania Pagliari
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Giancarlo Forte
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czechia
- Department of Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
39
|
Pradhan R, Ranade D, Sengupta K. Emerin modulates spatial organization of chromosome territories in cells on softer matrices. Nucleic Acids Res 2018; 46:5561-5586. [PMID: 29684168 PMCID: PMC6009696 DOI: 10.1093/nar/gky288] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 02/06/2023] Open
Abstract
Cells perceive and relay external mechanical forces into the nucleus through the nuclear envelope. Here we examined the effect of lowering substrate stiffness as a paradigm to address the impact of altered mechanical forces on nuclear structure-function relationships. RNA sequencing of cells on softer matrices revealed significant transcriptional imbalances, predominantly in chromatin associated processes and transcriptional deregulation of human Chromosome 1. Furthermore, 3-Dimensional fluorescence in situ hybridization (3D-FISH) analyses showed a significant mislocalization of Chromosome 1 and 19 Territories (CT) into the nuclear interior, consistent with their transcriptional deregulation. However, CT18 with relatively lower transcriptional dysregulation, also mislocalized into the nuclear interior. Furthermore, nuclear Lamins that regulate chromosome positioning, were mislocalized into the nuclear interior in response to lowered matrix stiffness. Notably, Lamin B2 overexpression retained CT18 near the nuclear periphery in cells on softer matrices. While, cells on softer matrices also activated emerin phosphorylation at a novel Tyr99 residue, the inhibition of which in a phospho-deficient mutant (emerinY99F), selectively retained chromosome 18 and 19 but not chromosome 1 territories at their conserved nuclear locations. Taken together, emerin functions as a key mechanosensor, that modulates the spatial organization of chromosome territories in the interphase nucleus.
Collapse
Affiliation(s)
- Roopali Pradhan
- Biology, Main Building, First Floor, Room#B-216, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Devika Ranade
- Biology, Main Building, First Floor, Room#B-216, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Kundan Sengupta
- Biology, Main Building, First Floor, Room#B-216, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
40
|
Smith ED, Garza-Gongora AG, MacQuarrie KL, Kosak ST. Interstitial telomeric loops and implications of the interaction between TRF2 and lamin A/C. Differentiation 2018; 102:19-26. [PMID: 29979997 DOI: 10.1016/j.diff.2018.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 11/19/2022]
Abstract
The protein-DNA complexes that compose the end of mammalian chromosomes-telomeres-serve to stabilize linear genomic DNA and are involved in cellular and organismal aging. One mechanism that protects telomeres from premature degradation is the formation of structures called t-loops, in which the single-stranded 3' overhang present at the terminal end of telomeres loops back and invades medial double-stranded telomeric DNA. We identified looped structures formed between terminal chromosome ends and interstitial telomeric sequences (ITSs), which are found throughout the human genome, that we have termed interstitial telomeric loops (ITLs). While they form in a TRF2-dependent manner similar to t-loops, ITLs further require the physical interaction of TRF2 with the nuclear intermediate filament protein lamin A/C. Our findings suggest that interactions between telomeres and the nucleoskeleton broadly impact genomic integrity, including telomere stability, chromosome structure, and chromosome fragility. Here, we review the roles of TRF2 and lamin A/C in telomere biology and consider how their interaction may relate telomere homeostasis to cellular and organismal aging.
Collapse
Affiliation(s)
- Erica D Smith
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Arturo G Garza-Gongora
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kyle L MacQuarrie
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Division of Hematology, Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, USA
| | - Steven T Kosak
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
41
|
SUN1 Regulates HIV-1 Nuclear Import in a Manner Dependent on the Interaction between the Viral Capsid and Cellular Cyclophilin A. J Virol 2018; 92:JVI.00229-18. [PMID: 29643244 DOI: 10.1128/jvi.00229-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/04/2018] [Indexed: 12/24/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) can infect nondividing cells via passing through the nuclear pore complex. The nuclear membrane-imbedded protein SUN2 was recently reported to be involved in the nuclear import of HIV-1. Whether SUN1, which shares many functional similarities with SUN2, is involved in this process remained to be explored. Here we report that overexpression of SUN1 specifically inhibited infection by HIV-1 but not that by simian immunodeficiency virus (SIV) or murine leukemia virus (MLV). Overexpression of SUN1 did not affect reverse transcription but led to reduced accumulation of the 2-long-terminal-repeat (2-LTR) circular DNA and integrated viral DNA, suggesting a block in the process of nuclear import. HIV-1 CA was mapped as a determinant for viral sensitivity to SUN1. Treatment of SUN1-expressing cells with cyclosporine (CsA) significantly reduced the sensitivity of the virus to SUN1, and an HIV-1 mutant containing CA-G89A, which does not interact with cyclophilin A (CypA), was resistant to SUN1 overexpression. Downregulation of endogenous SUN1 inhibited the nuclear entry of the wild-type virus but not that of the G89A mutant. These results indicate that SUN1 participates in the HIV-1 nuclear entry process in a manner dependent on the interaction of CA with CypA.IMPORTANCE HIV-1 infects both dividing and nondividing cells. The viral preintegration complex (PIC) can enter the nucleus through the nuclear pore complex. It has been well known that the viral protein CA plays an important role in determining the pathways by which the PIC enters the nucleus. In addition, the interaction between CA and the cellular protein CypA has been reported to be important in the selection of nuclear entry pathways, though the underlying mechanisms are not very clear. Here we show that both SUN1 overexpression and downregulation inhibited HIV-1 nuclear entry. CA played an important role in determining the sensitivity of the virus to SUN1: the regulatory activity of SUN1 toward HIV-1 relied on the interaction between CA and CypA. These results help to explain how SUN1 is involved in the HIV-1 nuclear entry process.
Collapse
|
42
|
Autophagic Removal of Farnesylated Carboxy-Terminal Lamin Peptides. Cells 2018; 7:cells7040033. [PMID: 29690642 PMCID: PMC5946110 DOI: 10.3390/cells7040033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/11/2018] [Accepted: 04/19/2018] [Indexed: 11/21/2022] Open
Abstract
The mammalian nuclear lamina proteins—prelamin A- and B-type lamins—are post-translationally modified by farnesylation, endoproteolysis, and carboxymethylation at a carboxy-terminal CAAX (C, cysteine; a, aliphatic amino acid; X, any amino acid) motif. However, prelamin A processing into mature lamin A is a unique process because it results in the production of farnesylated and carboxymethylated peptides. In cells from patients with Hutchinson–Gilford progeria syndrome, the mutant prelamin A protein, progerin, cannot release its prenylated carboxyl-terminal moiety and therefore remains permanently associated with the nuclear envelope (NE), causing severe nuclear alterations and a dysmorphic morphology. To obtain a better understanding of the abnormal interaction and retention of progerin in the NE, we analyzed the spatiotemporal distribution of the EGFP fusion proteins with or without a nuclear localization signal (NLS) and a functional CAAX motif in HeLa cells transfected with a series of plasmids that encode the carboxy-terminal ends of progerin and prelamin A. The farnesylated carboxy-terminal fusion peptides bind to the NE and induce the formation of abnormally shaped nuclei. In contrast, the unfarnesylated counterparts exhibit a diffuse localization in the nucleoplasm, without obvious NE deformation. High levels of farnesylated prelamin A and progerin carboxy-terminal peptides induce nucleophagic degradation of the toxic protein, including several nuclear components and chromatin. However, SUN1, a constituent of the linker of nucleoskeleton and cytoskeleton (LINC) complex, is excluded from these autophagic NE protrusions. Thus, nucleophagy requires NE flexibility, as indicated by SUN1 delocalization from the elongated NE–autophagosome complex.
Collapse
|
43
|
Eisch V, Lu X, Gabriel D, Djabali K. Progerin impairs chromosome maintenance by depleting CENP-F from metaphase kinetochores in Hutchinson-Gilford progeria fibroblasts. Oncotarget 2017; 7:24700-18. [PMID: 27015553 PMCID: PMC5029735 DOI: 10.18632/oncotarget.8267] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/04/2016] [Indexed: 01/26/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS, OMIM 176670) is a rare premature aging disorder that leads to death at an average age of 14.7 years due to myocardial infarction or stroke. The most common mutation in HGPS is at position G608G (GGC>GGT) within exon 11 of the LMNA gene. This mutation results in the deletion of 50 amino acids at the carboxyl-terminal tail of prelamin A, producing a truncated farnesylated protein called progerin. Lamins play important roles in the organization and structure of the nucleus. The nuclear build-up of progerin causes severe morphological and functional changes in interphase HGPS cells. In this study, we investigated whether progerin elicits spatiotemporal deviations in mitotic processes in HGPS fibroblasts. We analyzed the nuclear distribution of endogenous progerin during mitosis in relation to components of the nuclear lamina, nuclear envelope (NE) and nuclear pores. We found that progerin caused defects in chromosome segregation as early as metaphase, delayed NE reformation and trapped lamina components and inner NE proteins in the endoplasmic reticulum at the end of mitosis. Progerin displaced the centromere protein F (CENP-F) from metaphase chromosome kinetochores, which caused increased chromatin lagging, binucleated cells and genomic instability. This accumulation of progerin-dependent defects with each round of mitosis predisposes cells to premature senescence.
Collapse
Affiliation(s)
- Veronika Eisch
- Epigenetics of Aging, Department of Dermatology, TUM School of Medicine, Technical University Munich (TUM), Garching-Munich, Germany
| | - Xiang Lu
- Epigenetics of Aging, Department of Dermatology, TUM School of Medicine, Technical University Munich (TUM), Garching-Munich, Germany
| | - Diana Gabriel
- Epigenetics of Aging, Department of Dermatology, TUM School of Medicine, Technical University Munich (TUM), Garching-Munich, Germany
| | - Karima Djabali
- Epigenetics of Aging, Department of Dermatology, TUM School of Medicine, Technical University Munich (TUM), Garching-Munich, Germany
| |
Collapse
|
44
|
Barrier-to-autointegration factor (BAF) involvement in prelamin A-related chromatin organization changes. Oncotarget 2017; 7:15662-77. [PMID: 26701887 PMCID: PMC4941268 DOI: 10.18632/oncotarget.6697] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/21/2015] [Indexed: 11/25/2022] Open
Abstract
Chromatin disorganization is one of the major alterations linked to prelamin A processing impairment. In this study we demonstrate that BAF is necessary to modulate prelamin A effects on chromatin structure. We show that when prelamin A and BAF cannot properly interact no prelamin A-dependent effects on chromatin occur; similar to what is observed in human Nestor Guillermo Progeria Syndrome cells harboring a BAF mutation, in HEK293 cells expressing a BAF mutant unable to bind prelamin A, or in siRNA mediated BAF-depleted HEK293 cells expressing prelamin A. BAF is necessary to induce histone trimethyl-H3K9 as well as HP1-alpha and LAP2-alpha nuclear relocalization in response to prelamin A accumulation. These findings are enforced by electron microscopy evaluations showing how the prelamin A-BAF interaction governs overall chromatin organization. Finally, we demonstrate that the LAP2-alpha nuclear localization defect observed in HGPS cells involves the progerin-BAF interaction, thus establishing a functional link between BAF and prelamin A pathological forms.
Collapse
|
45
|
Hieda M. Implications for Diverse Functions of the LINC Complexes Based on the Structure. Cells 2017; 6:cells6010003. [PMID: 28134781 PMCID: PMC5371868 DOI: 10.3390/cells6010003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/15/2017] [Accepted: 01/17/2017] [Indexed: 12/18/2022] Open
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex is composed of the outer and inner nuclear membrane protein families Klarsicht, Anc-1, and Syne homology (KASH), and Sad1 and UNC-84 (SUN) homology domain proteins. Increasing evidence has pointed to diverse functions of the LINC complex, such as in nuclear migration, nuclear integrity, chromosome movement and pairing during meiosis, and mechanotransduction to the genome. In metazoan cells, the nuclear envelope possesses the nuclear lamina, which is a thin meshwork of intermediate filaments known as A-type and B-type lamins and lamin binding proteins. Both of lamins physically interact with the inner nuclear membrane spanning SUN proteins. The nuclear lamina has also been implicated in various functions, including maintenance of nuclear integrity, mechanotransduction, cellular signalling, and heterochromatin dynamics. Thus, it is clear that the LINC complex and nuclear lamins perform diverse but related functions. However, it is unknown whether the LINC complex-lamins interactions are involved in these diverse functions, and their regulation mechanism has thus far been elusive. Recent structural analysis suggested a dynamic nature of the LINC complex component, thus providing an explanation for LINC complex organization. This review, elaborating on the integration of crystallographic and biochemical data, helps to integrate this research to gain a better understanding of the diverse functions of the LINC complex.
Collapse
Affiliation(s)
- Miki Hieda
- Department of Medical Technology, Ehime Prefectural University of Health Sciences, Ehime 791-2101, Japan.
| |
Collapse
|
46
|
Implications and Assessment of the Elastic Behavior of Lamins in Laminopathies. Cells 2016; 5:cells5040037. [PMID: 27754432 PMCID: PMC5187521 DOI: 10.3390/cells5040037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 01/17/2023] Open
Abstract
Lamins are mechanosensitive and elastic components of the nuclear lamina that respond to external mechanical cues by altering gene regulation in a feedback mechanism. Numerous mutations in A-type lamins cause a plethora of diverse diseases collectively termed as laminopathies, the majority of which are characterized by irregularly shaped, fragile, and plastic nuclei. These nuclei are challenged to normal mechanotransduction and lead to disease phenotypes. Here, we review our current understanding of the nucleocytoskeleton coupling in mechanotransduction mediated by lamins. We also present an up-to-date understanding of the methods used to determine laminar elasticity both at the bulk and single molecule level.
Collapse
|
47
|
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare premature aging disease presenting many features resembling the normal aging process. HGPS patients die before the age of 20 years due to cardiovascular problems and heart failure. HGPS is linked to mutations in the LMNA gene encoding the intermediate filament protein lamin A. Lamin A is a major component of the nuclear lamina, a scaffold structure at the nuclear envelope that defines mechanochemical properties of the nucleus and is involved in chromatin organization and epigenetic regulation. Lamin A is also present in the nuclear interior where it fulfills lamina-independent functions in cell signaling and gene regulation. The most common LMNA mutation linked to HGPS leads to mis-splicing of the LMNA mRNA and produces a mutant lamin A protein called progerin that tightly associates with the inner nuclear membrane and affects the dynamic properties of lamins. Progerin expression impairs many important cellular processes providing insight into potential disease mechanisms. These include changes in mechanosignaling, altered chromatin organization and impaired genome stability, and changes in signaling pathways, leading to impaired regulation of adult stem cells, defective extracellular matrix production and premature cell senescence. In this review, we discuss these pathways and their potential contribution to the disease pathologies as well as therapeutic approaches used in preclinical and clinical tests.
Collapse
Affiliation(s)
- Sandra Vidak
- Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry, Vienna Biocenter (VBC), Medical University Vienna, Dr. Bohr-Gasse 9/3, 1030, Vienna, Austria
| | - Roland Foisner
- Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry, Vienna Biocenter (VBC), Medical University Vienna, Dr. Bohr-Gasse 9/3, 1030, Vienna, Austria.
| |
Collapse
|
48
|
SUN2 Overexpression Deforms Nuclear Shape and Inhibits HIV. J Virol 2016; 90:4199-4214. [PMID: 26865710 DOI: 10.1128/jvi.03202-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/03/2016] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED In a previous screen of putative interferon-stimulated genes, SUN2 was shown to inhibit HIV-1 infection in an uncharacterized manner. SUN2 is an inner nuclear membrane protein belonging to the linker of nucleoskeleton and cytoskeleton complex. We have analyzed here the role of SUN2 in HIV infection. We report that in contrast to what was initially thought, SUN2 is not induced by type I interferon, and that SUN2 silencing does not modulate HIV infection. However, SUN2 overexpression in cell lines and in primary monocyte-derived dendritic cells inhibits the replication of HIV but not murine leukemia virus or chikungunya virus. We identified HIV-1 and HIV-2 strains that are unaffected by SUN2, suggesting that the effect is specific to particular viral components or cofactors. Intriguingly, SUN2 overexpression induces a multilobular flower-like nuclear shape that does not impact cell viability and is similar to that of cells isolated from patients with HTLV-I-associated adult T-cell leukemia or with progeria. Nuclear shape changes and HIV inhibition both mapped to the nucleoplasmic domain of SUN2 that interacts with the nuclear lamina. This block to HIV replication occurs between reverse transcription and nuclear entry, and passaging experiments selected for a single-amino-acid change in capsid (CA) that leads to resistance to overexpressed SUN2. Furthermore, using chemical inhibition or silencing of cyclophilin A (CypA), as well as CA mutant viruses, we implicated CypA in the SUN2-imposed block to HIV infection. Our results demonstrate that SUN2 overexpression perturbs both nuclear shape and early events of HIV infection. IMPORTANCE Cells encode proteins that interfere with viral replication, a number of which have been identified in overexpression screens. SUN2 is a nuclear membrane protein that was shown to inhibit HIV infection in such a screen, but how it blocked HIV infection was not known. We show that SUN2 overexpression blocks the infection of certain strains of HIV before nuclear entry. Mutation of the viral capsid protein yielded SUN2-resistant HIV. Additionally, the inhibition of HIV infection by SUN2 involves cyclophilin A, a protein that binds the HIV capsid and directs subsequent steps of infection. We also found that SUN2 overexpression substantially changes the shape of the cell's nucleus, resulting in many flower-like nuclei. Both HIV inhibition and deformation of nuclear shape required the domain of SUN2 that interacts with the nuclear lamina. Our results demonstrate that SUN2 interferes with HIV infection and highlight novel links between nuclear shape and viral infection.
Collapse
|
49
|
Uzer G, Fuchs RK, Rubin J, Thompson WR. Concise Review: Plasma and Nuclear Membranes Convey Mechanical Information to Regulate Mesenchymal Stem Cell Lineage. Stem Cells 2016; 34:1455-63. [PMID: 26891206 DOI: 10.1002/stem.2342] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/14/2015] [Accepted: 12/29/2015] [Indexed: 12/21/2022]
Abstract
Numerous factors including chemical, hormonal, spatial, and physical cues determine stem cell fate. While the regulation of stem cell differentiation by soluble factors is well-characterized, the role of mechanical force in the determination of lineage fate is just beginning to be understood. Investigation of the role of force on cell function has largely focused on "outside-in" signaling, initiated at the plasma membrane. When interfaced with the extracellular matrix, the cell uses integral membrane proteins, such as those found in focal adhesion complexes to translate force into biochemical signals. Akin to these outside-in connections, the internal cytoskeleton is physically linked to the nucleus, via proteins that span the nuclear membrane. Although structurally and biochemically distinct, these two forms of mechanical coupling influence stem cell lineage fate and, when disrupted, often lead to disease. Here we provide an overview of how mechanical coupling occurs at the plasma and nuclear membranes. We also discuss the role of force on stem cell differentiation, with focus on the biochemical signals generated at the cell membrane and the nucleus, and how those signals influence various diseases. While the interaction of stem cells with their physical environment and how they respond to force is complex, an understanding of the mechanical regulation of these cells is critical in the design of novel therapeutics to combat diseases associated with aging, cancer, and osteoporosis. Stem Cells 2016;34:1455-1463.
Collapse
Affiliation(s)
- Gunes Uzer
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Robyn K Fuchs
- School of Health and Rehabilitation Sciences, Department of Physical Therapy, Indiana University, Indianapolis, Indiana, USA
| | - Janet Rubin
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - William R Thompson
- School of Health and Rehabilitation Sciences, Department of Physical Therapy, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
50
|
Lo Cicero A, Nissan X. Pluripotent stem cells to model Hutchinson-Gilford progeria syndrome (HGPS): Current trends and future perspectives for drug discovery. Ageing Res Rev 2015; 24:343-8. [PMID: 26474742 DOI: 10.1016/j.arr.2015.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/02/2015] [Accepted: 10/07/2015] [Indexed: 12/27/2022]
Abstract
Progeria, or Hutchinson-Gilford progeria syndrome (HGPS), is a rare, fatal genetic disease characterized by an appearance of accelerated aging in children. This syndrome is typically caused by mutations in codon 608 (p.G608G) of the LMNA, leading to the production of a mutated form of lamin A precursor called progerin. In HGPS, progerin accumulates in cells causing progressive molecular defects, including nuclear shape abnormalities, chromatin disorganization, damage to DNA and delays in cell proliferation. Here we report how, over the past five years, pluripotent stem cells have provided new insights into the study of HGPS and opened new original therapeutic perspectives to treat the disease.
Collapse
|