1
|
Philipp‐Dormston WG, Joseph JH, Carruthers JDA, Fezza JP, Mukherjee M, Yasin A, Musumeci M. Why Dosing Matters: A Closer Look at the Dose-Response Relationship With OnabotulinumtoxinA. J Cosmet Dermatol 2025; 24:e70170. [PMID: 40285447 PMCID: PMC12032540 DOI: 10.1111/jocd.70170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/10/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND OnabotulinumtoxinA is licensed in many countries for simultaneous treatment of three areas of the upper face: glabellar lines, 20 U; lateral canthal lines, 24 U; and forehead lines, 20 U. AIMS To assess the onabotulinumtoxinA dosing science and dose-response relationship in the treatment of upper facial lines (UFL). METHODS Key practical questions are addressed using available data. RESULTS OnabotulinumtoxinA doses were selected for Phase 3 registrational trials based on rigorous dose-ranging studies. In clinical practice, it is important to consider the relationship between dose and efficacy outcomes, duration, and safety. Interstudy comparison of duration analyses is complicated by the lack of a single comprehensive definition, but trial data with standard onabotulinumtoxinA dosing in the glabella suggest a median effect duration of ~4 months. Treatment of UFL at below the approved dose is associated with a shorter duration, inferior response rates, and lower patient satisfaction; there is no evidence that underdosing reduces adverse event risk. It may therefore be advisable to avoid going below the licensed dose unless there is a clear clinical rationale. By contrast, there is growing evidence that treatment outcomes can be further improved using doses above those currently licensed, without adversely affecting safety-as demonstrated in the glabella. Further studies are needed to assess this in lateral canthal and forehead lines. Additional work is also required to examine potential ceiling doses and better understand the dose-response relationship in patient subgroups. CONCLUSIONS Appropriate dosing of onabotulinumtoxinA is essential for maximizing benefit and ensuring patient satisfaction.
Collapse
Affiliation(s)
| | - John H. Joseph
- Clinical Testing of Beverly HillsBeverly HillsCaliforniaUSA
| | - Jean D. A. Carruthers
- Department of OphthalmologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | | | | - Ahmed Yasin
- Global Aesthetics Medical AffairsAllergan Aesthetics, an AbbVie CompanyDubaiUAE
| | - Maria Musumeci
- Global Aesthetics Medical AffairsAllergan Aesthetics, an AbbVie CompanyRomeItaly
| |
Collapse
|
2
|
Bijjam R, Shorter S, Bratt AM, O'Leary VB, Ntziachristos V, Ovsepian SV. Neurotoxin-Derived Optical Probes for Elucidating Molecular and Developmental Biology of Neurons and Synaptic Connections : Toxin-Derived Optical Probes for Neuroimaging. Mol Imaging Biol 2024; 26:912-925. [PMID: 39348040 PMCID: PMC11634926 DOI: 10.1007/s11307-024-01954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/21/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
Botulinum neurotoxins (BoNTs) and tetanus toxin (TeTX) are the deadliest biological substances that cause botulism and tetanus, respectively. Their astonishing potency and capacity to enter neurons and interfere with neurotransmitter release at presynaptic terminals have attracted much interest in experimental neurobiology and clinical research. Fused with reporter proteins or labelled with fluorophores, BoNTs and TeTX and their non-toxic fragments also offer remarkable opportunities to visualize cellular processes and functions in neurons and synaptic connections. This study presents the state-of-the-art optical probes derived from BoNTs and TeTX and discusses their applications in molecular and synaptic biology and neurodevelopmental research. It reviews the principles of the design and production of probes, revisits their applications with advantages and limitations and considers prospects for future improvements. The versatile characteristics of discussed probes and reporters make them an integral part of the expanding toolkit for molecular neuroimaging, promoting the discovery process in neurobiology and translational neurosciences.
Collapse
Affiliation(s)
- Rohini Bijjam
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK
| | - Alison M Bratt
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, 10000, Prague, Czech Republic
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675, Munich, Germany
- Institute of Biological and Medical Imaging and Healthcare, Helmholtz Zentrum München (GmbH), 85764, Neuherberg, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, 80992, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Saak Victor Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK.
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, 0159, Tbilisi, Georgia.
| |
Collapse
|
3
|
Tsai YC, Kozar L, Mawi ZP, Ichtchenko K, Shoemaker CB, McNutt PM, Weissman AM. The Degradation of Botulinum Neurotoxin Light Chains Using PROTACs. Int J Mol Sci 2024; 25:7472. [PMID: 39000579 PMCID: PMC11242356 DOI: 10.3390/ijms25137472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Botulinum neurotoxins are some of the most potent natural toxins known; they cause flaccid paralysis by inhibiting synaptic vesicle release. Some serotypes, notably serotype A and B, can cause persistent paralysis lasting for several months. Because of their potency and persistence, botulinum neurotoxins are now used to manage several clinical conditions, and there is interest in expanding their clinical applications using engineered toxins with novel substrate specificities. It will also be beneficial to engineer toxins with tunable persistence. We have investigated the potential use of small-molecule proteolysis-targeting chimeras (PROTACs) to vary the persistence of modified recombinant botulinum neurotoxins. We also describe a complementary approach that has potential relevance for botulism treatment. This second approach uses a camelid heavy chain antibody directed against botulinum neurotoxin that is modified to bind the PROTAC. These strategies provide proof of principle for the use of two different approaches to fine tune the persistence of botulinum neurotoxins by selectively targeting their catalytic light chains for proteasomal degradation.
Collapse
Affiliation(s)
- Yien Che Tsai
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA (A.M.W.)
| | - Loren Kozar
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA (A.M.W.)
| | - Zo P. Mawi
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA (A.M.W.)
| | - Konstantin Ichtchenko
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Charles B. Shoemaker
- Department of Infectious Diseases and Global Health, Tufts University Cummings School of Veterinary Medicine, Grafton, MA 01536, USA;
| | - Patrick M. McNutt
- Wake Forest Research Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA;
| | - Allan M. Weissman
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA (A.M.W.)
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Signorini M, Piero Fundarò S, Bertossi D, Cavallini M, Cirillo P, Natuzzi G, Quartucci S, Sciuto C, Patalano M, Trocchi G. OnabotulinumtoxinA from lines to facial reshaping: A new Italian consensus report. J Cosmet Dermatol 2022; 21:550-563. [DOI: 10.1111/jocd.14728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Dario Bertossi
- Section of Oral and Maxillofacial Surgery Department of Surgical Sciences University of Verona Verona Italy
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Lam KH, Tremblay JM, Perry K, Ichtchenko K, Shoemaker CB, Jin R. Probing the structure and function of the protease domain of botulinum neurotoxins using single-domain antibodies. PLoS Pathog 2022; 18:e1010169. [PMID: 34990480 PMCID: PMC8769338 DOI: 10.1371/journal.ppat.1010169] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/19/2022] [Accepted: 12/04/2021] [Indexed: 12/03/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are among the deadliest of bacterial toxins. BoNT serotype A and B in particular pose the most serious threat to humans because of their high potency and persistence. To date, there is no effective treatment for late post-exposure therapy of botulism patients. Here, we aim to develop single-domain variable heavy-chain (VHH) antibodies targeting the protease domains (also known as the light chain, LC) of BoNT/A and BoNT/B as antidotes for post-intoxication treatments. Using a combination of X-ray crystallography and biochemical assays, we investigated the structures and inhibition mechanisms of a dozen unique VHHs that recognize four and three non-overlapping epitopes on the LC of BoNT/A and BoNT/B, respectively. We show that the VHHs that inhibit the LC activity occupy the extended substrate-recognition exosites or the cleavage pocket of LC/A or LC/B and thus block substrate binding. Notably, we identified several VHHs that recognize highly conserved epitopes across BoNT/A or BoNT/B subtypes, suggesting that these VHHs exhibit broad subtype efficacy. Further, we identify two novel conformations of the full-length LC/A, that could aid future development of inhibitors against BoNT/A. Our studies lay the foundation for structure-based engineering of protein- or peptide-based BoNT inhibitors with enhanced potencies and cross-subtypes properties.
Collapse
Affiliation(s)
- Kwok-ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
| | - Jacqueline M. Tremblay
- Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Kay Perry
- NE-CAT, Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Konstantin Ichtchenko
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Charles B. Shoemaker
- Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
| |
Collapse
|
6
|
Cai S, Kumar R, Singh BR. Clostridial Neurotoxins: Structure, Function and Implications to Other Bacterial Toxins. Microorganisms 2021; 9:2206. [PMID: 34835332 PMCID: PMC8618262 DOI: 10.3390/microorganisms9112206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 01/20/2023] Open
Abstract
Gram-positive bacteria are ancient organisms. Many bacteria, including Gram-positive bacteria, produce toxins to manipulate the host, leading to various diseases. While the targets of Gram-positive bacterial toxins are diverse, many of those toxins use a similar mechanism to invade host cells and exert their functions. Clostridial neurotoxins produced by Clostridial tetani and Clostridial botulinum provide a classical example to illustrate the structure-function relationship of bacterial toxins. Here, we critically review the recent progress of the structure-function relationship of clostridial neurotoxins, including the diversity of the clostridial neurotoxins, the mode of actions, and the flexible structures required for the activation of toxins. The mechanism clostridial neurotoxins use for triggering their activity is shared with many other Gram-positive bacterial toxins, especially molten globule-type structures. This review also summarizes the implications of the molten globule-type flexible structures to other Gram-positive bacterial toxins. Understanding these highly dynamic flexible structures in solution and their role in the function of bacterial toxins not only fills in the missing link of the high-resolution structures from X-ray crystallography but also provides vital information for better designing antidotes against those toxins.
Collapse
Affiliation(s)
- Shuowei Cai
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | - Raj Kumar
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA; (R.K.); (B.R.S.)
| | - Bal Ram Singh
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA; (R.K.); (B.R.S.)
| |
Collapse
|
7
|
Kumar R, Maksudov F, Kononova O, Marx KA, Barsegov V, Singh BR. Botulinum Endopeptidase: SAXS Experiments and MD Simulations Reveal Extended Solution Structures That Account for Its Biochemical Properties. J Phys Chem B 2020; 124:5801-5812. [PMID: 32543194 DOI: 10.1021/acs.jpcb.0c02817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Development of antidotes against botulism requires understanding of the enzymatically active conformations of Botulinum neurotoxin serotype A (BoNT/A) light chain (LCA). We performed small angle X-ray scattering (SAXS) to characterize the solution structures of truncated light chain (tLCA). The 34-37 Å radius of gyration of tLCA was 1.5-times greater than the averaged 22-23-Å radius from the crystal structures. The bimodal distribution of interatomic distances P(r) indicated the two-domain tLCA structure with 129-133 Å size, and Kratky plots indicated the tLCA partial unfolding in the 25-37 °C temperature range. To interpret these data, we employed molecular dynamics simulations and machine learning. Excellent agreement between experimental and theoretical P(r) profiles helped to resolve conformational subpopulations of tLCA in solution. Partial unfolding of the C-terminal portion of tLCA (residues 339-425) results in formation of extended conformations with the larger globular domain (residues 2-298) and the smaller unstructured domain (339-425). The catalytic domain, buried 20 Å-deep inside the crystal structure, becomes accessible in extended solution conformations (8-9 Å deep). The C- and N-termini containing different functional sequence motifs are maximally separated in the extended conformations. Our results offer physical insights into the molecular basis of BoNT/A function and stress the importance of reversible unfolding-refolding transitions and hydrophobic interactions.
Collapse
Affiliation(s)
- Raj Kumar
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, Massachusetts 02747, United States
| | - Farkhad Maksudov
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Olga Kononova
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Kenneth A Marx
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Valeri Barsegov
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Bal Ram Singh
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, Massachusetts 02747, United States
| |
Collapse
|
8
|
Burstein R, Blumenfeld AM, Silberstein SD, Manack Adams A, Brin MF. Mechanism of Action of OnabotulinumtoxinA in Chronic Migraine: A Narrative Review. Headache 2020; 60:1259-1272. [PMID: 32602955 PMCID: PMC7496564 DOI: 10.1111/head.13849] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
Objective To review the literature on the mechanism of action of onabotulinumtoxinA in chronic migraine. Background OnabotulinumtoxinA is a chronic migraine preventive treatment that significantly reduces headache frequency. The traditional mechanism described for onabotulinumtoxinA – reducing muscle contractions – is insufficient to explain its efficacy in migraine, which is primarily a sensory neurological disease. Methods A narrative literature review on the mechanism of action of onabotulinumtoxinA in chronic migraine. Results Following injection into tissues, onabotulinumtoxinA inhibits soluble N‐ethylmaleimide‐sensitive fusion attachment protein receptor (SNARE)‐mediated vesicle trafficking by cleaving one of its essential proteins, soluble N‐ethylmaleimide‐sensitive fusion attachment protein (SNAP‐25), which occurs in both motor and sensory nerves. OnabotulinumtoxinA inhibits regulated exocytosis of motor and sensory neurochemicals and proteins, as well as membrane insertion of peripheral receptors that convey pain from the periphery to the brain, because both processes are SNARE dependent. OnabotulinumtoxinA can decrease exocytosis of pro‐inflammatory and excitatory neurotransmitters and neuropeptides such as substance P, calcitonin gene‐related peptide, and glutamate from primary afferent fibers that transmit nociceptive pain and participate in the development of peripheral and central sensitization. OnabotulinumtoxinA also decreases the insertion of pain‐sensitive ion channels such as transient receptor potential cation channel subfamily V member 1 (TRPV1) into the membranes of nociceptive neurons; this is likely enhanced in the sensitized neuron. For chronic migraine prevention, onabotulinumtoxinA is injected into 31‐39 sites in 7 muscles of the head and neck. Sensory nerve endings of neurons whose cell bodies are located in trigeminal and cervical ganglia are distributed throughout the injected muscles, and are overactive in people with migraine. Through inhibition of these sensory nerve endings, onabotulinumtoxinA reduces the number of pain signals that reach the brain and consequently prevents activation and sensitization of central neurons postulated to be involved in migraine chronification. Conclusion OnabotulinumtoxinA likely acts via sensory mechanisms to treat chronic migraine.
Collapse
Affiliation(s)
- Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Andrew M Blumenfeld
- The Headache Center of Southern California, The Neurology Center, Carlsbad, CA, USA
| | - Stephen D Silberstein
- Department of Neurology Jefferson Headache Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Mitchell F Brin
- Allergan, Inc., Irvine, CA, USA.,University of California, Irvine, CA, USA
| |
Collapse
|
9
|
Grigoryev PN, Khisamieva GA, Zefirov AL. Septin Polymerization Slows Synaptic Vesicle Recycling in Motor Nerve Endings. Acta Naturae 2019; 11:54-62. [PMID: 31413880 PMCID: PMC6643342 DOI: 10.32607/20758251-2019-11-2-54-62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Indexed: 11/20/2022] Open
Abstract
Septins are GTP-binding proteins recognized as a component of the cytoskeleton. Despite the fact that septins are highly expressed by neurons and can interact with the proteins that participate in synaptic vesicle exocytosis and endocytosis, the role of septins in synaptic transmission and the synaptic vesicle recycling mechanisms is poorly understood. In this study, neurotransmitter release and synaptic vesicle exocytosis and endocytosis were investigated by microelectrode intracellular recording of end-plate potentials and fluorescent confocal microscopy in mouse diaphragm motor nerve endings during septin polymerization induced by forchlorfenuron application. It was shown that forchlorfenuron application reduces neurotransmission during prolonged high-frequency (20 and 50 pulses/s) stimulation. Application of pairs of short high-frequency stimulation trains showed that forchlorfenuron slows the replenishment of the readily releasable pool. Forchlorfenuron enhanced FM 1-43 fluorescent dye loading by synaptic vesicle endocytosis but decreased dye unloading from the preliminarily stained nerve endings by synaptic vesicle exocytosis. It was concluded that the septin polymerization induced by forchlorfenuron application slows the rate of synaptic vesicle recycling in motor nerve endings due to the impairment of synaptic vesicle transport.
Collapse
Affiliation(s)
- P. N. Grigoryev
- Kazan State Medical University, Butlerova Str. 49, Kazan, 420012, Russia
| | - G. A. Khisamieva
- Kazan State Medical University, Butlerova Str. 49, Kazan, 420012, Russia
| | - A. L. Zefirov
- Kazan State Medical University, Butlerova Str. 49, Kazan, 420012, Russia
| |
Collapse
|
10
|
Reorganization of Septins Modulates Synaptic Transmission at Neuromuscular Junctions. Neuroscience 2019; 404:91-101. [PMID: 30738855 DOI: 10.1016/j.neuroscience.2019.01.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 12/24/2022]
Abstract
Septins (Sept) are highly conserved Guanosine-5'-triphosphate (GTP)-binding cytoskeletal proteins involved in neuronal signaling in the central nervous system but their involvement in signal transmission in peripheral synapses remains unclear. Sept5 and Sept9 proteins were detected in mouse peripheral neuromuscular junctions by immunofluorescence with a greater degree of co-localization with presynaptic than postsynaptic membranes. Preincubation of neuromuscular junction preparations with the inhibitor of Sept dynamics, forchlorfenuron (FCF), decreased co-localization of Sept with presynaptic membranes. FCF introduced ex vivo or in vivo had no effect on the amplitude of the spontaneous endplate currents (EPCs), indicating the absence of postsynaptic effects of FCF. However, FCF decreased acetylcholine (ACh) quantal release in response to nerve stimulation, reduced the amplitude of evoked quantal currents and decreased the number of quanta with long synaptic delays, demonstrating the presynaptic action of FCF. Nevertheless, FCF had no effect on the amplitude of calcium transient in nerve terminals, as detected by calcium-sensitive dye, and slightly decreased the ratio of the second response amplitude to the first one in paired-pulse experiments. These results suggest that FCF-induced decrease in ACh quantal secretion is not due to a decrease in Ca2+ influx but is likely related to the impairment of later stages occurring after Ca2+ entry, such as trafficking, docking or membrane fusion of synaptic vesicles. Therefore, Sept9 and Sept5 are abundantly expressed in presynaptic membranes, and disruption of Sept dynamics suppresses the evoked synchronous and delayed asynchronous quantal release of ACh, strongly suggesting an important role of Sept in the regulation of neurotransmission in peripheral synapses.
Collapse
|
11
|
Kumar R, Feltrup TM, Kukreja RV, Patel KB, Cai S, Singh BR. Evolutionary Features in the Structure and Function of Bacterial Toxins. Toxins (Basel) 2019; 11:toxins11010015. [PMID: 30609803 PMCID: PMC6356308 DOI: 10.3390/toxins11010015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/24/2018] [Accepted: 12/25/2018] [Indexed: 12/21/2022] Open
Abstract
Toxins can function both as a harmful and therapeutic molecule, depending on their concentrations. The diversity in their function allows us to ask some very pertinent questions related to their origin and roles: (a) What makes them such effective molecules? (b) Are there evolutionary features encoded within the structures of the toxins for their function? (c) Is structural hierarchy in the toxins important for maintaining their structure and function? (d) Do protein dynamics play a role in the function of toxins? and (e) Do the evolutionary connections to these unique features and functions provide the fundamental points in driving evolution? In light of the growing evidence in structural biology, it would be appropriate to suggest that protein dynamics and flexibility play a much bigger role in the function of the toxin than the structure itself. Discovery of IDPs (intrinsically disorder proteins), multifunctionality, and the concept of native aggregation are shaking the paradigm of the requirement of a fixed three-dimensional structure for the protein’s function. Growing evidence supporting the above concepts allow us to redesign the structure-function aspects of the protein molecules. An evolutionary model is necessary and needs to be developed to study these important aspects. The criteria for a well-defined model would be: (a) diversity in structure and function, (b) unique functionality, and (c) must belong to a family to define the evolutionary relationships. All these characteristics are largely fulfilled by bacterial toxins. Bacterial toxins are diverse and widely distributed in all three forms of life (Bacteria, Archaea and Eukaryotes). Some of the unique characteristics include structural folding, sequence and functional combination of domains, targeting a cellular process to execute their function, and most importantly their flexibility and dynamics. In this work, we summarize certain unique aspects of bacterial toxins, including role of structure in defining toxin function, uniqueness in their enzymatic function, and interaction with their substrates and other proteins. Finally, we have discussed the evolutionary aspects of toxins in detail, which will help us rethink the current evolutionary theories. A careful study, and appropriate interpretations, will provide answers to several questions related to the structure-function relationship of proteins, in general. Additionally, this will also allow us to refine the current evolution theories.
Collapse
Affiliation(s)
- Raj Kumar
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
| | - Thomas M Feltrup
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
| | - Roshan V Kukreja
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
| | - Kruti B Patel
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
| | - Shuowei Cai
- Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, MA 02747, USA.
| | - Bal Ram Singh
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
| |
Collapse
|
12
|
Abstract
Botulinum neurotoxins (BoNTs) are a family of bacterial protein toxins produced by various Clostridium species. They are traditionally classified into seven major serotypes (BoNT/A-G). Recent progress in sequencing microbial genomes has led to an ever-growing number of subtypes, chimeric toxins, BoNT-like toxins, and remotely related BoNT homologs, constituting an expanding BoNT superfamily. Recent structural studies of BoNTs, BoNT progenitor toxin complexes, tetanus neurotoxin (TeNT), toxin-receptor complexes, and toxin-substrate complexes have provided mechanistic understandings of toxin functions and the molecular basis for their variations. The growing BoNT superfamily of toxins present a natural repertoire that can be explored to develop novel therapeutic toxins, and the structural understanding of their variations provides a knowledge basis for engineering toxins to improve therapeutic efficacy and expand their clinical applications.
Collapse
Affiliation(s)
- Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
13
|
Abstract
Botulinum neurotoxins (BoNTs) and tetanus neurotoxin (TeNT) are the most potent toxins known and cause botulism and tetanus, respectively. BoNTs are also widely utilized as therapeutic toxins. They contain three functional domains responsible for receptor-binding, membrane translocation, and proteolytic cleavage of host proteins required for synaptic vesicle exocytosis. These toxins also have distinct features: BoNTs exist within a progenitor toxin complex (PTC), which protects the toxin and facilitates its absorption in the gastrointestinal tract, whereas TeNT is uniquely transported retrogradely within motor neurons. Our increasing knowledge of these toxins has allowed the development of engineered toxins for medical uses. The discovery of new BoNTs and BoNT-like proteins provides additional tools to understand the evolution of the toxins and to engineer toxin-based therapeutics. This review summarizes the progress on our understanding of BoNTs and TeNT, focusing on the PTC, receptor recognition, new BoNT-like toxins, and therapeutic toxin engineering.
Collapse
Affiliation(s)
- Min Dong
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden;
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden; .,Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
14
|
Scheps D, López de la Paz M, Jurk M, Hofmann F, Frevert J. Design of modified botulinum neurotoxin A1 variants with a shorter persistence of paralysis and duration of action. Toxicon 2017; 139:101-108. [PMID: 28918229 DOI: 10.1016/j.toxicon.2017.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/24/2017] [Accepted: 09/09/2017] [Indexed: 01/08/2023]
Abstract
Botulinum neurotoxins (BoNTs) are classified by their antigenic properties into seven serotypes (A-G) and in addition by their corresponding subtypes. They are further characterized by divergent onset and duration of effect. Injections of low doses of botulinum neurotoxins cause localized muscle paralysis that is beneficial for the treatment of several medical disorders and aesthetic indications. Optimizing the therapeutic properties could offer new treatment opportunities. This report describes a rational design approach to modify the pharmacological properties by mutations in the C-terminus of BoNT/A1 light chain (LC). Toxins with C-terminal modified LC's displayed an altered onset and duration of the paralytic effect in vivo. The level of effect was dependent on the kind of the mutation in the sequence of the C-terminus. A mutant with three mutations (T420E F423M Y426F) revealed a faster onset and a shorter duration than BoNT/A1 wild type (WT). It could be shown that the C-terminus of BoNT/A1-Lc controls both onset and duration of effect. Thus, it is possible to create a mutated BoNT/A1 with different pharmacological properties which might be useful in the therapy of new indications. This strategy opens the way to design BoNT variants with novel and useful properties.
Collapse
Affiliation(s)
- Daniel Scheps
- Merz Pharmaceuticals GmbH, Hermannswerder Haus 15, 14473, Potsdam, Germany
| | | | - Marcel Jurk
- Merz Pharmaceuticals GmbH, Hermannswerder Haus 15, 14473, Potsdam, Germany
| | - Fred Hofmann
- Merz Pharmaceuticals GmbH, Hermannswerder Haus 15, 14473, Potsdam, Germany
| | - Jürgen Frevert
- Merz Pharmaceuticals GmbH, Hermannswerder Haus 15, 14473, Potsdam, Germany.
| |
Collapse
|
15
|
Liu F, Ma Q, Dang X, Wang Y, Song Y, Meng X, Bao J, Chen J, Pan G, Zhou Z. Identification of a new subtilisin-like protease NbSLP2 interacting with cytoskeletal protein septin in Microsporidia Nosema bombycis. J Invertebr Pathol 2017. [DOI: 10.1016/j.jip.2017.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Menon MB, Gaestel M. Editorial: Emerging Functions of Septins. Front Cell Dev Biol 2017; 5:73. [PMID: 28971094 PMCID: PMC5609633 DOI: 10.3389/fcell.2017.00073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/04/2017] [Indexed: 12/24/2022] Open
Affiliation(s)
- Manoj B Menon
- Institute for Cell Biochemistry, Hannover Medical SchoolHannover, Germany
| | - Matthias Gaestel
- Institute for Cell Biochemistry, Hannover Medical SchoolHannover, Germany
| |
Collapse
|
17
|
Pirazzini M, Rossetto O, Eleopra R, Montecucco C. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharmacol Rev 2017; 69:200-235. [PMID: 28356439 PMCID: PMC5394922 DOI: 10.1124/pr.116.012658] [Citation(s) in RCA: 464] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The study of botulinum neurotoxins (BoNT) is rapidly progressing in many aspects. Novel BoNTs are being discovered owing to next generation sequencing, but their biologic and pharmacological properties remain largely unknown. The molecular structure of the large protein complexes that the toxin forms with accessory proteins, which are included in some BoNT type A1 and B1 pharmacological preparations, have been determined. By far the largest effort has been dedicated to the testing and validation of BoNTs as therapeutic agents in an ever increasing number of applications, including pain therapy. BoNT type A1 has been also exploited in a variety of cosmetic treatments, alone or in combination with other agents, and this specific market has reached the size of the one dedicated to the treatment of medical syndromes. The pharmacological properties and mode of action of BoNTs have shed light on general principles of neuronal transport and protein-protein interactions and are stimulating basic science studies. Moreover, the wide array of BoNTs discovered and to be discovered and the production of recombinant BoNTs endowed with specific properties suggest novel uses in therapeutics with increasing disease/symptom specifity. These recent developments are reviewed here to provide an updated picture of the biologic mechanism of action of BoNTs, of their increasing use in pharmacology and in cosmetics, and of their toxicology.
Collapse
Affiliation(s)
- Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Roberto Eleopra
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| |
Collapse
|
18
|
Vagin O, Beenhouwer DO. Septins: Regulators of Protein Stability. Front Cell Dev Biol 2016; 4:143. [PMID: 28066764 PMCID: PMC5168428 DOI: 10.3389/fcell.2016.00143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/02/2016] [Indexed: 12/31/2022] Open
Abstract
Septins are small GTPases that play a role in several important cellular processes. In this review, we focus on the roles of septins in protein stabilization. Septins may regulate protein stability by: (1) interacting with proteins involved in degradation pathways, (2) regulating the interaction between transmembrane proteins and cytoskeletal proteins, (3) affecting the mobility of transmembrane proteins in lipid bilayers, and (4) modulating the interaction of proteins with their adaptor or signaling proteins. In this context, we discuss the role of septins in protecting four different proteins from degradation. First we consider botulinum neurotoxin serotype A (BoNT/A) and the contribution of septins to its extraordinarily long intracellular persistence. Next, we discuss the role of septins in stabilizing the receptor tyrosine kinases EGFR and ErbB2. Finally, we consider the contribution of septins in protecting hypoxia-inducible factor 1α (HIF-1α) from degradation.
Collapse
Affiliation(s)
- Olga Vagin
- Department of Physiology, Geffen School of Medicine at UCLALos Angeles, CA, USA; VA Greater Los Angeles Healthcare SystemLos Angeles, CA, USA
| | - David O Beenhouwer
- Department of Medicine, Geffen School of Medicine at UCLALos Angeles, CA, USA; Division of Infectious Diseases, VA Greater Los Angeles Health Care SystemLos Angeles, CA, USA
| |
Collapse
|
19
|
Septin oligomerization regulates persistent expression of ErbB2/HER2 in gastric cancer cells. Biochem J 2016; 473:1703-18. [PMID: 27048593 DOI: 10.1042/bcj20160203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/05/2016] [Indexed: 12/19/2022]
Abstract
Septins are a family of cytoskeletal GTP-binding proteins that assemble into membrane-associated hetero-oligomers and organize scaffolds for recruitment of cytosolic proteins or stabilization of membrane proteins. Septins have been implicated in a diverse range of cancers, including gastric cancer, but the underlying mechanisms remain unclear. The hypothesis tested here is that septins contribute to cancer by stabilizing the receptor tyrosine kinase ErbB2, an important target for cancer treatment. Septins and ErbB2 were highly over-expressed in gastric cancer cells. Immunoprecipitation followed by MS analysis identified ErbB2 as a septin-interacting protein. Knockdown of septin-2 or cell exposure to forchlorfenuron (FCF), a well-established inhibitor of septin oligomerization, decreased surface and total levels of ErbB2. These treatments had no effect on epidermal growth factor receptor (EGFR), emphasizing the specificity and functionality of the septin-ErbB2 interaction. The level of ubiquitylated ErbB2 at the plasma membrane was elevated in cells treated with FCF, which was accompanied by a decrease in co-localization of ErbB2 with septins at the membrane. Cathepsin B inhibitor, but not bafilomycin or lactacystin, prevented FCF-induced decrease in total ErbB2 by increasing accumulation of ubiquitylated ErbB2 in lysosomes. Therefore, septins protect ErbB2 from ubiquitylation, endocytosis and lysosomal degradation. The FCF-induced degradation pathway is distinct from and additive with the degradation induced by inhibiting ErbB2 chaperone Hsp90. These results identify septins as novel regulators of ErbB2 expression that contribute to the remarkable stabilization of the receptor at the plasma membrane of cancer cells and may provide a basis for the development of new ErbB2-targeting anti-cancer therapies.
Collapse
|
20
|
High CO2 Leads to Na,K-ATPase Endocytosis via c-Jun Amino-Terminal Kinase-Induced LMO7b Phosphorylation. Mol Cell Biol 2015; 35:3962-73. [PMID: 26370512 DOI: 10.1128/mcb.00813-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/09/2015] [Indexed: 01/04/2023] Open
Abstract
The c-Jun amino-terminal kinase (JNK) plays a role in inflammation, proliferation, apoptosis, and cell adhesion and cell migration by phosphorylating paxillin and β-catenin. JNK phosphorylation downstream of AMP-activated protein kinase (AMPK) activation is required for high CO2 (hypercapnia)-induced Na,K-ATPase endocytosis in alveolar epithelial cells. Here, we provide evidence that during hypercapnia, JNK promotes the phosphorylation of LMO7b, a scaffolding protein, in vitro and in intact cells. LMO7b phosphorylation was blocked by exposing the cells to the JNK inhibitor SP600125 and by infecting cells with dominant-negative JNK or AMPK adenovirus. The knockdown of the endogenous LMO7b or overexpression of mutated LMO7b with alanine substitutions of five potential JNK phosphorylation sites (LMO7b-5SA) or only Ser-1295 rescued both LMO7b phosphorylation and the hypercapnia-induced Na,K-ATPase endocytosis. Moreover, high CO2 promoted the colocalization and interaction of LMO7b and the Na,K-ATPase α1 subunit at the plasma membrane, which were prevented by SP600125 or by transfecting cells with LMO7b-5SA. Collectively, our data suggest that hypercapnia leads to JNK-induced LMO7b phosphorylation at Ser-1295, which facilitates the interaction of LMO7b with Na,K-ATPase at the plasma membrane promoting the endocytosis of Na,K-ATPase in alveolar epithelial cells.
Collapse
|
21
|
Matak I, Lacković Z. Botulinum neurotoxin type A: Actions beyond SNAP-25? Toxicology 2015; 335:79-84. [PMID: 26169827 DOI: 10.1016/j.tox.2015.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/01/2015] [Accepted: 07/04/2015] [Indexed: 01/29/2023]
Abstract
Botulinum neurotoxin type A (BoNT/A), the most potent toxin known in nature which causes botulism, is a commonly used therapeutic protein. It prevents synaptic vesicle neuroexocytosis by proteolytic cleavage of synaptosomal-associated protein of 25 kDa (SNAP-25). It is widely believed that BoNT/A therapeutic or toxic actions are exclusively mediated by SNAP-25 cleavage. On the other hand, in vitro and in vivo findings suggest that several BoNT/A actions related to neuroexocytosis, cell cycle and apoptosis, neuritogenesis and gene expression are not necessarily mediated by this widely accepted mechanism of action. In present review we summarize the literature evidence which point to the existence of unknown BoNT/A molecular target(s) and modulation of unknown signaling pathways. The effects of BoNT/A apparently independent of SNAP-25 occur at similar doses/concentrations known to induce SNAP-25 cleavage and prevention of neurotransmitter release. Accordingly, these effects might be pharmacologically significant. Potentially the most interesting are observations of antimitotic and antitumor activity of BoNT/A. However, the exact mechanisms require further studies.
Collapse
Affiliation(s)
- Ivica Matak
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Brain Research Institute, University of Zagreb School of Medicine, Šalata 11, 10000 Zagreb, Croatia
| | - Zdravko Lacković
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Brain Research Institute, University of Zagreb School of Medicine, Šalata 11, 10000 Zagreb, Croatia.
| |
Collapse
|
22
|
Tokhtaeva E, Capri J, Marcus EA, Whitelegge JP, Khuzakhmetova V, Bukharaeva E, Deiss-Yehiely N, Dada LA, Sachs G, Fernandez-Salas E, Vagin O. Septin dynamics are essential for exocytosis. J Biol Chem 2015; 290:5280-97. [PMID: 25575596 DOI: 10.1074/jbc.m114.616201] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Septins are a family of 14 cytoskeletal proteins that dynamically form hetero-oligomers and organize membrane microdomains for protein complexes. The previously reported interactions with SNARE proteins suggested the involvement of septins in exocytosis. However, the contradictory results of up- or down-regulation of septin-5 in various cells and mouse models or septin-4 in mice suggested either an inhibitory or a stimulatory role for these septins in exocytosis. The involvement of the ubiquitously expressed septin-2 or general septin polymerization in exocytosis has not been explored to date. Here, by nano-LC with tandem MS and immunoblot analyses of the septin-2 interactome in mouse brain, we identified not only SNARE proteins but also Munc-18-1 (stabilizes assembled SNARE complexes), N-ethylmaleimide-sensitive factor (NSF) (disassembles SNARE complexes after each membrane fusion event), and the chaperones Hsc70 and synucleins (maintain functional conformation of SNARE proteins after complex disassembly). Importantly, α-soluble NSF attachment protein (SNAP), the adaptor protein that mediates NSF binding to the SNARE complex, did not interact with septin-2, indicating that septins undergo reorganization during each exocytosis cycle. Partial depletion of septin-2 by siRNA or impairment of septin dynamics by forchlorfenuron inhibited constitutive and stimulated exocytosis of secreted and transmembrane proteins in various cell types. Forchlorfenuron impaired the interaction between SNAP-25 and its chaperone Hsc70, decreasing SNAP-25 levels in cultured neuroendocrine cells, and inhibited both spontaneous and stimulated acetylcholine secretion in mouse motor neurons. The results demonstrate a stimulatory role of septin-2 and the dynamic reorganization of septin oligomers in exocytosis.
Collapse
Affiliation(s)
- Elmira Tokhtaeva
- From the Departments of Physiology and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073
| | - Joe Capri
- The Neuropsychiatric Institute-Semel Institute, Pasarow Mass Spectrometry Laboratory, UCLA, Los Angeles, California 90024
| | - Elizabeth A Marcus
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073, Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Julian P Whitelegge
- The Neuropsychiatric Institute-Semel Institute, Pasarow Mass Spectrometry Laboratory, UCLA, Los Angeles, California 90024
| | - Venera Khuzakhmetova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of Sciences, Kazan 420111, Russia, Kazan Federal University, Kazan 420008, Russia
| | - Ellya Bukharaeva
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of Sciences, Kazan 420111, Russia, Kazan Federal University, Kazan 420008, Russia
| | - Nimrod Deiss-Yehiely
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, and
| | - Laura A Dada
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, and
| | - George Sachs
- From the Departments of Physiology and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073
| | - Ester Fernandez-Salas
- Department of Pathology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Olga Vagin
- From the Departments of Physiology and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073,
| |
Collapse
|
23
|
Off-target effects of the septin drug forchlorfenuron on nonplant eukaryotes. EUKARYOTIC CELL 2014; 13:1411-20. [PMID: 25217460 DOI: 10.1128/ec.00191-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The septins are a family of GTP-binding proteins that form cytoskeletal filaments. Septins are highly conserved and evolutionarily ancient but are absent from land plants. The synthetic plant cytokinin forchlorfenuron (FCF) was shown previously to inhibit budding yeast cell division and induce ectopic septin structures (M. Iwase, S. Okada, T. Oguchi, and A. Toh-e, Genes Genet. Syst. 79:199-206, 2004, http://dx.doi.org/10.1266/ggs.79.199). Subsequent studies in a wide range of eukaryotes have concluded that FCF exclusively inhibits septin function, yet the mechanism of FCF action in nonplant cells remains poorly understood. Here, we report that the cellular effects of FCF are far more complex than previously described. The reported growth arrest of budding yeast cells treated with 1 mM FCF partly reflects sensitization caused by a bud4 mutation present in the W303 strain background. In wild-type (BUD4(+)) budding yeast, growth was inhibited at FCF concentrations that had no detectable effect on septin structure or function. Moreover, FCF severely inhibited the proliferation of fission yeast cells, in which septin function is nonessential. FCF induced fragmentation of budding yeast mitochondrial reticula and the loss of mitochondrial membrane potential. Mitochondria also fragmented in cultured mammalian cells treated with concentrations of FCF that previously were assumed to target septins only. Finally, FCF potently inhibited ciliation and motility and induced mitochondrial disorganization in Tetrahymena thermophila without apparent alterations in septin structure. None of these effects was consistent with the inhibition of septin function. Our findings point to nonseptin targets as major concerns when using FCF.
Collapse
|