1
|
Carosi JM, Denton D, Kumar S, Sargeant TJ. Receptor Recycling by Retromer. Mol Cell Biol 2023; 43:317-334. [PMID: 37350516 PMCID: PMC10348044 DOI: 10.1080/10985549.2023.2222053] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023] Open
Abstract
The highly conserved retromer complex controls the fate of hundreds of receptors that pass through the endolysosomal system and is a central regulatory node for diverse metabolic programs. More than 20 years ago, retromer was discovered as an essential regulator of endosome-to-Golgi transport in yeast; since then, significant progress has been made to characterize how metazoan retromer components assemble to enable its engagement with endosomal membranes, where it sorts cargo receptors from endosomes to the trans-Golgi network or plasma membrane through recognition of sorting motifs in their cytoplasmic tails. In this review, we examine retromer regulation by exploring its assembled structure with an emphasis on how a range of adaptor proteins shape the process of receptor trafficking. Specifically, we focus on how retromer is recruited to endosomes, selects cargoes, and generates tubulovesicular carriers that deliver cargoes to target membranes. We also examine how cells adapt to distinct metabolic states by coordinating retromer expression and function. We contrast similarities and differences between retromer and its related complexes: retriever and commander/CCC, as well as their interplay in receptor trafficking. We elucidate how loss of retromer regulation is central to the pathology of various neurogenerative and metabolic diseases, as well as microbial infections, and highlight both opportunities and cautions for therapeutics that target retromer. Finally, with a focus on understanding the mechanisms that govern retromer regulation, we outline new directions for the field moving forward.
Collapse
Affiliation(s)
- Julian M. Carosi
- Lysosomal Health in Ageing, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Centre for Cancer Biology, University of South Australia (UniSA), Adelaide, South Australia, Australia
- School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia, Australia
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia (UniSA), Adelaide, South Australia, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia (UniSA), Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Timothy J. Sargeant
- Lysosomal Health in Ageing, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Yang Y, Sun Q, Guo J, Liu Z, Wang J, Yao Y, Yu P, Cao J, Zhang Y, Song X. Identification of a lncRNA AC011511.5- Mediated Competitive Endogenous RNA Network Involved in the Pathogenesis of Allergic Rhinitis. Front Genet 2022; 13:811679. [PMID: 35711945 PMCID: PMC9194448 DOI: 10.3389/fgene.2022.811679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
LncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) networks are thought to be involved in regulating the development of various inflammatory diseases. Up to now, the mechanism of such a network in allergic rhinitis (AR) remains unclear. In the study, we investigated the differential expression of lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) by performing a microarray analysis of peripheral blood obtained from AR patients and healthy control subjects. StarBase 2.0 was used to predict miRNAs that might interact with various DElncRNAs and DEmRNAs. We constructed a ceRNA network based on potential lncRNA-miRNA-mRNA interactions. The Cluster Profiler R package was used to perform a functional enrichment analysis of the hub-ceRNA, and Molecular Complex Detection (MCODE) was used for further identification of the hub-ceRNA network. The expression levels of genes contained in the hub-ceRNA network were validated by RT-PCR. In total, 247 DEmRNAs and 18 DelncRNAs were aberrantly expressed in the PBMCs of AR patients. A ceRNA network consisting of 3 lncRNAs, 45 miRNAs, and 75 mRNAs was constructed. A GO analysis showed that negative regulation of immune response, response to interferon-beta, and response to interferon-alpha were important terms. A KEGG pathway analysis showed that 75 mRNAs were significantly enriched in "NOD-like receptor signaling pathway" and "tryptophan metabolism". Ultimately, a hub-ceRNA network was constructed based on 1 lncRNA (AC011511.5), 5 miRNAs (hsa-miR-576-5p, hsa-miR-520c-5p, hsa-miR-519b-5p, hsa-miR-519c-5p, and hsa-miR-518d-5p), and 2 mRNAs (ZFP36L1 and SNX27). Following further verification, we found that overexpression of lncRNA AC011511.5 or inhibitor of miR-576-5p upregulated SNX27 expression. The expression of SNX27 in the lncRNA AC011511.5 overexpression & miR-576-5p inhibitor group was not different from that in the miR-576-5p inhibitor group or lncRNA AC011511.5 overexpression group, indicating that overexpression of lncRNA AC011511.5 could not further upregulate the expression of SNX27 in miR-576-5p inhibitor Jurkat cells. This network may provide new insights to search for biomarkers that can be used for the diagnosis and clinical treatment of AR.
Collapse
Affiliation(s)
- Yujuan Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Qi Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Jing Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Zhen Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Jianwei Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Yao Yao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Pengyi Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Jiayu Cao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Yu Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| |
Collapse
|
3
|
Simonetti B, Guo Q, Giménez-Andrés M, Chen KE, Moody ERR, Evans AJ, Chandra M, Danson CM, Williams TA, Collins BM, Cullen PJ. SNX27-Retromer directly binds ESCPE-1 to transfer cargo proteins during endosomal recycling. PLoS Biol 2022; 20:e3001601. [PMID: 35417450 PMCID: PMC9038204 DOI: 10.1371/journal.pbio.3001601] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/25/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022] Open
Abstract
Coat complexes coordinate cargo recognition through cargo adaptors with biogenesis of transport carriers during integral membrane protein trafficking. Here, we combine biochemical, structural, and cellular analyses to establish the mechanistic basis through which SNX27-Retromer, a major endosomal cargo adaptor, couples to the membrane remodeling endosomal SNX-BAR sorting complex for promoting exit 1 (ESCPE-1). In showing that the SNX27 FERM (4.1/ezrin/radixin/moesin) domain directly binds acidic-Asp-Leu-Phe (aDLF) motifs in the SNX1/SNX2 subunits of ESCPE-1, we propose a handover model where SNX27-Retromer captured cargo proteins are transferred into ESCPE-1 transport carriers to promote endosome-to-plasma membrane recycling. By revealing that assembly of the SNX27:Retromer:ESCPE-1 coat evolved in a stepwise manner during early metazoan evolution, likely reflecting the increasing complexity of endosome-to-plasma membrane recycling from the ancestral opisthokont to modern animals, we provide further evidence of the functional diversification of yeast pentameric Retromer in the recycling of hundreds of integral membrane proteins in metazoans.
Collapse
Affiliation(s)
- Boris Simonetti
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Qian Guo
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Manuel Giménez-Andrés
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Kai-En Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Edmund R. R. Moody
- School of Biological Sciences, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Ashley J. Evans
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Mintu Chandra
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Chris M. Danson
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Tom A. Williams
- School of Biological Sciences, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Brett M. Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Peter J. Cullen
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
4
|
Yang B, Jia Y, Meng Y, Xue Y, Liu K, Li Y, Liu S, Li X, Cui K, Shang L, Cheng T, Zhang Z, Hou Y, Yang X, Yan H, Duan L, Tong Z, Wu C, Liu Z, Gao S, Zhuo S, Huang W, Gao GF, Qi J, Shang G. SNX27 suppresses SARS-CoV-2 infection by inhibiting viral lysosome/late endosome entry. Proc Natl Acad Sci U S A 2022; 119:e2117576119. [PMID: 35022217 PMCID: PMC8794821 DOI: 10.1073/pnas.2117576119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/08/2021] [Indexed: 12/28/2022] Open
Abstract
After binding to its cell surface receptor angiotensin converting enzyme 2 (ACE2), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the host cell through directly fusing with plasma membrane (cell surface pathway) or undergoing endocytosis traveling to lysosome/late endosome for membrane fusion (endocytic pathway). However, the endocytic entry regulation by host cell remains elusive. Recent studies show ACE2 possesses a type I PDZ binding motif (PBM) through which it could interact with a PDZ domain-containing protein such as sorting nexin 27 (SNX27). In this study, we determined the ACE2-PBM/SNX27-PDZ complex structure, and, through a series of functional analyses, we found SNX27 plays an important role in regulating the homeostasis of ACE2 receptor. More importantly, we demonstrated SNX27, together with retromer complex (the core component of the endosomal protein sorting machinery), prevents ACE2/virus complex from entering lysosome/late endosome, resulting in decreased viral entry in cells where the endocytic pathway dominates. The ACE2/virus retrieval mediated by SNX27-retromer could be considered as a countermeasure against invasion of ACE2 receptor-using SARS coronaviruses.
Collapse
Affiliation(s)
- Bo Yang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
- Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Taiyuan 030012, China
| | - Yuanyuan Jia
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Yumin Meng
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Xue
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Kefang Liu
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Li
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shichao Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Xiaoxiong Li
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Kaige Cui
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Lina Shang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Tianyou Cheng
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Zhichao Zhang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Yingxiang Hou
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Xiaozhu Yang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Hong Yan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Liqiang Duan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Zhou Tong
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Changxin Wu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Zhida Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Shan Gao
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Shu Zhuo
- Signet Therapeutics Inc, Shenzhen 518000, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing 102629, China
| | - George Fu Gao
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China;
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Guijun Shang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China;
- Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Taiyuan 030012, China
| |
Collapse
|
5
|
Chen KE, Guo Q, Hill TA, Cui Y, Kendall AK, Yang Z, Hall RJ, Healy MD, Sacharz J, Norwood SJ, Fonseka S, Xie B, Reid RC, Leneva N, Parton RG, Ghai R, Stroud DA, Fairlie DP, Suga H, Jackson LP, Teasdale RD, Passioura T, Collins BM. De novo macrocyclic peptides for inhibiting, stabilizing, and probing the function of the retromer endosomal trafficking complex. SCIENCE ADVANCES 2021; 7:eabg4007. [PMID: 34851660 PMCID: PMC8635440 DOI: 10.1126/sciadv.abg4007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/14/2021] [Indexed: 05/27/2023]
Abstract
The retromer complex (Vps35-Vps26-Vps29) is essential for endosomal membrane trafficking and signaling. Mutation of the retromer subunit Vps35 causes late-onset Parkinson’s disease, while viral and bacterial pathogens can hijack the complex during cellular infection. To modulate and probe its function, we have created a novel series of macrocyclic peptides that bind retromer with high affinity and specificity. Crystal structures show that most of the cyclic peptides bind to Vps29 via a Pro-Leu–containing sequence, structurally mimicking known interactors such as TBC1D5 and blocking their interaction with retromer in vitro and in cells. By contrast, macrocyclic peptide RT-L4 binds retromer at the Vps35-Vps26 interface and is a more effective molecular chaperone than reported small molecules, suggesting a new therapeutic avenue for targeting retromer. Last, tagged peptides can be used to probe the cellular localization of retromer and its functional interactions in cells, providing novel tools for studying retromer function.
Collapse
Affiliation(s)
- Kai-En Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Qian Guo
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Timothy A. Hill
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yi Cui
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Amy K. Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Zhe Yang
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ryan J. Hall
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Michael D. Healy
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Joanna Sacharz
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Suzanne J. Norwood
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Sachini Fonseka
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Boyang Xie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Robert C. Reid
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Natalya Leneva
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Queensland, Australia
| | - Rajesh Ghai
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - David A. Stroud
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, Victoria 3052, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Lauren P. Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Rohan D. Teasdale
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
- Sydney Analytical, School of Life and Environmental Sciences and School of Chemistry, The University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Brett M. Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
6
|
Retromer dependent changes in cellular homeostasis and Parkinson's disease. Essays Biochem 2021; 65:987-998. [PMID: 34528672 PMCID: PMC8709886 DOI: 10.1042/ebc20210023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022]
Abstract
To date, mechanistic treatments targeting the initial cause of Parkinson's disease (PD) are limited due to the underlying biological cause(s) been unclear. Endosomes and their associated cellular homeostasis processes have emerged to have a significant role in the pathophysiology associated with PD. Several variants within retromer complex have been identified and characterised within familial PD patients. The retromer complex represents a key sorting platform within the endosomal system that regulates cargo sorting that maintains cellular homeostasis. In this review, we summarise the current understandings of how PD-associated retromer variants disrupt cellular trafficking and how the retromer complex can interact with other PD-associated genes to contribute to the disease progression.
Collapse
|
7
|
SNX27-FERM-SNX1 complex structure rationalizes divergent trafficking pathways by SNX17 and SNX27. Proc Natl Acad Sci U S A 2021; 118:2105510118. [PMID: 34462354 DOI: 10.1073/pnas.2105510118] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The molecular events that determine the recycling versus degradation fates of internalized membrane proteins remain poorly understood. Two of the three members of the SNX-FERM family, SNX17 and SNX31, utilize their FERM domain to mediate endocytic trafficking of cargo proteins harboring the NPxY/NxxY motif. In contrast, SNX27 does not recycle NPxY/NxxY-containing cargo but instead recycles cargo containing PDZ-binding motifs via its PDZ domain. The underlying mechanism governing this divergence in FERM domain binding is poorly understood. Here, we report that the FERM domain of SNX27 is functionally distinct from SNX17 and interacts with a novel DLF motif localized within the N terminus of SNX1/2 instead of the NPxY/NxxY motif in cargo proteins. The SNX27-FERM-SNX1 complex structure reveals that the DLF motif of SNX1 binds to a hydrophobic cave surrounded by positively charged residues on the surface of SNX27. The interaction between SNX27 and SNX1/2 is critical for efficient SNX27 recruitment to endosomes and endocytic recycling of multiple cargoes. Finally, we show that the interaction between SNX27 and SNX1/2 is critical for brain development in zebrafish. Altogether, our study solves a long-standing puzzle in the field and suggests that SNX27 and SNX17 mediate endocytic recycling through fundamentally distinct mechanisms.
Collapse
|
8
|
Capitani N, Baldari CT. F-Actin Dynamics in the Regulation of Endosomal Recycling and Immune Synapse Assembly. Front Cell Dev Biol 2021; 9:670882. [PMID: 34249926 PMCID: PMC8265274 DOI: 10.3389/fcell.2021.670882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Membrane proteins endocytosed at the cell surface as vesicular cargoes are sorted at early endosomes for delivery to lysosomes for degradation or alternatively recycled to different cellular destinations. Cargo recycling is orchestrated by multimolecular complexes that include the retromer, retriever, and the WASH complex, which promote the polymerization of new actin filaments at early endosomes. These endosomal actin pools play a key role at different steps of the recycling process, from cargo segregation to specific endosomal subdomains to the generation and mobility of tubulo-vesicular transport carriers. Local F-actin pools also participate in the complex redistribution of endomembranes and organelles that leads to the acquisition of cell polarity. Here, we will present an overview of the contribution of endosomal F-actin to T-cell polarization during assembly of the immune synapse, a specialized membrane domain that T cells form at the contact with cognate antigen-presenting cells.
Collapse
Affiliation(s)
- Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
9
|
Chandra M, Kendall AK, Jackson LP. Toward Understanding the Molecular Role of SNX27/Retromer in Human Health and Disease. Front Cell Dev Biol 2021; 9:642378. [PMID: 33937239 PMCID: PMC8083963 DOI: 10.3389/fcell.2021.642378] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/22/2021] [Indexed: 11/30/2022] Open
Abstract
Aberrations in membrane trafficking pathways have profound effects in cellular dynamics of cellular sorting processes and can drive severe physiological outcomes. Sorting nexin 27 (SNX27) is a metazoan-specific sorting nexin protein from the PX-FERM domain family and is required for endosomal recycling of many important transmembrane receptors. Multiple studies have shown SNX27-mediated recycling requires association with retromer, one of the best-known regulators of endosomal trafficking. SNX27/retromer downregulation is strongly linked to Down's Syndrome (DS) via glutamate receptor dysfunction and to Alzheimer's Disease (AD) through increased intracellular production of amyloid peptides from amyloid precursor protein (APP) breakdown. SNX27 is further linked to addiction via its role in potassium channel trafficking, and its over-expression is linked to tumorigenesis, cancer progression, and metastasis. Thus, the correct sorting of multiple receptors by SNX27/retromer is vital for normal cellular function to prevent human diseases. The role of SNX27 in regulating cargo recycling from endosomes to the cell surface is firmly established, but how SNX27 assembles with retromer to generate tubulovesicular carriers remains elusive. Whether SNX27/retromer may be a putative therapeutic target to prevent neurodegenerative disease is now an emerging area of study. This review will provide an update on our molecular understanding of endosomal trafficking events mediated by the SNX27/retromer complex on endosomes.
Collapse
Affiliation(s)
- Mintu Chandra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Amy K. Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Lauren P. Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
10
|
González-Mancha N, Mérida I. Interplay Between SNX27 and DAG Metabolism in the Control of Trafficking and Signaling at the IS. Int J Mol Sci 2020; 21:ijms21124254. [PMID: 32549284 PMCID: PMC7352468 DOI: 10.3390/ijms21124254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
Recognition of antigens displayed on the surface of an antigen-presenting cell (APC) by T-cell receptors (TCR) of a T lymphocyte leads to the formation of a specialized contact between both cells named the immune synapse (IS). This highly organized structure ensures cell–cell communication and sustained T-cell activation. An essential lipid regulating T-cell activation is diacylglycerol (DAG), which accumulates at the cell–cell interface and mediates recruitment and activation of proteins involved in signaling and polarization. Formation of the IS requires rearrangement of the cytoskeleton, translocation of the microtubule-organizing center (MTOC) and vesicular compartments, and reorganization of signaling and adhesion molecules within the cell–cell junction. Among the multiple players involved in this polarized intracellular trafficking, we find sorting nexin 27 (SNX27). This protein translocates to the T cell–APC interface upon TCR activation, and it is suggested to facilitate the transport of cargoes toward this structure. Furthermore, its interaction with diacylglycerol kinase ζ (DGKζ), a negative regulator of DAG, sustains the precise modulation of this lipid and, thus, facilitates IS organization and signaling. Here, we review the role of SNX27, DAG metabolism, and their interplay in the control of T-cell activation and establishment of the IS.
Collapse
|
11
|
Parente DJ, Morris SM, McKinstry RC, Brandt T, Gabau E, Ruiz A, Shinawi M. Sorting nexin 27 (SNX27) variants associated with seizures, developmental delay, behavioral disturbance, and subcortical brain abnormalities. Clin Genet 2019; 97:437-446. [PMID: 31721175 DOI: 10.1111/cge.13675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 11/27/2022]
Abstract
Sorting nexin 27 (SNX27) influences the composition of the cellular membrane via regulation of selective endosomal recycling. Molecular analysis indicates that SNX27 regulates numerous cellular processes through promiscuous interactions with its receptor cargos. SNX27 deficient (Snx27 -/- ) mice exhibit reduced embryonic survival, marked postnatal growth restriction and lethality. Haploinsufficient mice (Snx27 +/- ) show a less severe phenotype, with deficits in learning, memory, synaptic transmission and neuronal plasticity. One family previously reported with a homozygous SNX27 frameshift variant (c.515_516del;p.His172Argfs*6), exhibited infantile intractable myoclonic epilepsy, axial hypotonia, startle-like movements, cardiac septal defects, global developmental delay, failure to thrive, recurrent chest infections, persistent hypoxemia and early death secondary to respiratory failure. Here, we report two additional patients with compound heterozygous SNX27 variants, that are predicted to be damaging: (a) c.510C>G;p.Tyr170* and c.1295G>A;p.Cys432Tyr, and (b) c.782dupT;p.Leu262Profs*6 and c.989G>A;p.Arg330His. They exhibit global developmental delay, behavioral disturbance, epilepsy, some dysmorphic features and subcortical white matter abnormalities. In addition, possible connective tissue involvement was noted. Epilepsy, developmental delays and subcortical white matter abnormalities appear to be core features of SNX27-related disorders. We correlate the observed phenotype with available in vitro, in vivo and proteomic data and suggest additional possible molecular mediators of SNX27-related pathology.
Collapse
Affiliation(s)
- Daniel J Parente
- Department of Family Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Stephanie M Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Robert C McKinstry
- Pediatric Radiology and Pediatric Neuroradiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | | | - Elisabeth Gabau
- Paediatric Unit, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Anna Ruiz
- Genetics Laboratory, UDIAT-Centre Diagnòstic, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
12
|
Chen K, Healy MD, Collins BM. Towards a molecular understanding of endosomal trafficking by Retromer and Retriever. Traffic 2019; 20:465-478. [DOI: 10.1111/tra.12649] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Kai‐En Chen
- Institute for Molecular Bioscience University of Queensland St. Lucia Queensland Australia
| | - Michael D. Healy
- Institute for Molecular Bioscience University of Queensland St. Lucia Queensland Australia
| | - Brett M. Collins
- Institute for Molecular Bioscience University of Queensland St. Lucia Queensland Australia
| |
Collapse
|
13
|
Yang Z, Follett J, Kerr MC, Clairfeuille T, Chandra M, Collins BM, Teasdale RD. Sorting nexin 27 (SNX27) regulates the trafficking and activity of the glutamine transporter ASCT2. J Biol Chem 2018; 293:6802-6811. [PMID: 29563155 DOI: 10.1074/jbc.ra117.000735] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/27/2018] [Indexed: 12/14/2022] Open
Abstract
Alanine-, serine-, cysteine-preferring transporter 2 (ASCT2, SLC1A5) is responsible for the uptake of glutamine into cells, a major source of cellular energy and a key regulator of mammalian target of rapamycin (mTOR) activation. Furthermore, ASCT2 expression has been reported in several human cancers, making it a potential target for both diagnostic and therapeutic purposes. Here we identify ASCT2 as a membrane-trafficked cargo molecule, sorted through a direct interaction with the PDZ domain of sorting nexin 27 (SNX27). Using both membrane fractionation and subcellular localization approaches, we demonstrate that the majority of ASCT2 resides at the plasma membrane. This is significantly reduced within CrispR-mediated SNX27 knockout (KO) cell lines, as it is missorted into the lysosomal degradation pathway. The reduction of ASCT2 levels in SNX27 KO cells leads to decreased glutamine uptake, which, in turn, inhibits cellular proliferation. SNX27 KO cells also present impaired activation of the mTOR complex 1 (mTORC1) pathway and enhanced autophagy. Taken together, our data reveal a role for SNX27 in glutamine uptake and amino acid-stimulated mTORC1 activation via modulation of ASCT2 intracellular trafficking.
Collapse
Affiliation(s)
- Zhe Yang
- From the School of Biomedical Sciences, Faculty of Medicine, and.,Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jordan Follett
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Markus C Kerr
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas Clairfeuille
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mintu Chandra
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rohan D Teasdale
- From the School of Biomedical Sciences, Faculty of Medicine, and .,Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
14
|
Abstract
The phox-homology (PX) domain is a phosphoinositide-binding domain conserved in all eukaryotes and present in 49 human proteins. Proteins containing PX domains, many of which are also known as sorting nexins (SNXs), have a large variety of functions in membrane trafficking, cell signaling, and lipid metabolism in association with membranes of the secretory and endocytic system. In this review we discuss the structural basis for both canonical lipid interactions with the endosome-enriched lipid phosphatidylinositol-3-phosphate (PtdIns3P) as well as non-canonical lipids that promote membrane association. We also describe recent advances in defining the diverse mechanisms by which PX domains interact with other proteins including the retromer trafficking complex and proteins secreted by bacterial pathogens. Like other membrane interacting domains, the attachment of PX domain proteins to specific membranes is often facilitated by additional interactions that contribute to binding avidity, and we discuss this coincidence detection for several known examples.
Collapse
|
15
|
Cui Y, Yang Z, Teasdale RD. The functional roles of retromer in Parkinson's disease. FEBS Lett 2017; 592:1096-1112. [DOI: 10.1002/1873-3468.12931] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Yi Cui
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Brisbane Australia
| | - Zhe Yang
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Brisbane Australia
| | - Rohan D. Teasdale
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Brisbane Australia
| |
Collapse
|
16
|
Xu J, Zhang L, Ye Y, Shan Y, Wan C, Wang J, Pei D, Shu X, Liu J. SNX16 Regulates the Recycling of E-Cadherin through a Unique Mechanism of Coordinated Membrane and Cargo Binding. Structure 2017; 25:1251-1263.e5. [PMID: 28712807 DOI: 10.1016/j.str.2017.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/28/2017] [Accepted: 06/15/2017] [Indexed: 10/19/2022]
Abstract
E-Cadherin is a major component of adherens junctions on cell surfaces. SNX16 is a unique member of sorting nexins that contains a coiled-coil (CC) domain downstream of the PX domain. We report here that SNX16 regulates the recycling trafficking of E-cadherin. We solved the crystal structure of PX-CC unit of SNX16 and revealed a unique shear shaped homodimer. We identified a novel PI3P binding pocket in SNX16 that consists of both the PX and the CC domains. Surprisingly, we showed that the PPII/α2 loop, which is generally regarded as a membrane insertion loop in PX family proteins, is involved in the E-cadherin binding with SNX16. We then proposed a multivalent membrane binding model for SNX16. Our study postulates a new mechanism for coordinated membrane binding and cargo binding for SNX family proteins in general, and provide novel insights into recycling trafficking of E-cadherin.
Collapse
Affiliation(s)
- Jinxin Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Leilei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Medical University Joint School of Biological Sciences, South China Institute of Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yinghua Ye
- CAS Key Laboratory of Regenerative Biology, Guangdong Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Medical University Joint School of Biological Sciences, South China Institute of Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Guangdong Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Medical University Joint School of Biological Sciences, South China Institute of Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Chanjuan Wan
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, Guangdong Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Medical University Joint School of Biological Sciences, South China Institute of Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaodong Shu
- CAS Key Laboratory of Regenerative Biology, Guangdong Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Medical University Joint School of Biological Sciences, South China Institute of Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
17
|
Tello-Lafoz M, Martínez-Martínez G, Rodríguez-Rodríguez C, Albar JP, Huse M, Gharbi S, Merida I. Sorting nexin 27 interactome in T-lymphocytes identifies zona occludens-2 dynamic redistribution at the immune synapse. Traffic 2017; 18:491-504. [PMID: 28477369 DOI: 10.1111/tra.12492] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 12/27/2022]
Abstract
T Lymphocyte recognition of antigens leads to the formation of a highly organized structure termed immune synapse (IS) by analogy with the neuronals synapse. Sorting nexin 27 (SNX27) controls the endosomal traffic of PSD95, Dlg1, ZO-1 (PDZ) domain-interacting proteins, and its alteration is associated with impaired synaptic function and neurological diseases. In T-lymphocytes, SNX27-positive vesicles polarize to the IS, the identity of SNX27 interactors in these conditions nonetheless remains unknown. Here we used proteomics to analyze the SNX27 interactome purified from IS-forming T cells, and confirmed the conserved nature of the SNX27/WASH/retromer association in hematopoietic cells. Furthermore, our comparative interactome analysis of SNX27 wild-type and a mutant-deficient for PDZ cargo recognition identified the epithelial cell-cell junction protein zona occludens-2 (ZO-2) as an IS component. Biochemistry and microscopy approaches in T cells confirmed SNX27/ZO-2 PDZ-dependent interaction, and demonstrated its role controlling the dynamic localization of ZO-2 at the IS. This study broadens our knowledge of SNX27 function in T lymphocytes, and suggests that pathways that delimit polarized structures in nervous and epithelial systems also participate in IS regulation.
Collapse
Affiliation(s)
- María Tello-Lafoz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Gonzalo Martínez-Martínez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Juan Pablo Albar
- Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Morgan Huse
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York City, New York
| | - Severine Gharbi
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Isabel Merida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
18
|
Pavlos NJ, Friedman PA. GPCR Signaling and Trafficking: The Long and Short of It. Trends Endocrinol Metab 2017; 28:213-226. [PMID: 27889227 PMCID: PMC5326587 DOI: 10.1016/j.tem.2016.10.007] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/17/2016] [Accepted: 10/26/2016] [Indexed: 01/24/2023]
Abstract
Emerging findings disclose unexpected components of G protein-coupled receptor (GPCR) signaling and cell biology. Select GPCRs exhibit classical signaling, that is restricted to cell membranes, as well as newly described persistent signaling that depends on internalization of the GPCR bound to β-arrestins. Termination of non-canonical endosomal signaling requires intraluminal acidification and sophisticated protein trafficking machineries. Recent studies reveal the structural determinants of the trafficking chaperones. This review summarizes advances in GPCR signaling and trafficking with a focus on the parathyroid hormone receptor (PTHR) as a prototype, and on the actin-sorting nexin 27 (SNX27)-retromer tubule (ASRT) complex, an endosomal sorting hub responsible for recycling and preservation of cell surface receptors. The findings are integrated into a model of PTHR trafficking with implications for signal transduction, bone growth, and mineral ion metabolism.
Collapse
Affiliation(s)
- Nathan J Pavlos
- Cellular Orthopaedic Laboratory, School of Surgery, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Peter A Friedman
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, Department of Structural Biology University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
19
|
Lucas M, Gershlick DC, Vidaurrazaga A, Rojas AL, Bonifacino JS, Hierro A. Structural Mechanism for Cargo Recognition by the Retromer Complex. Cell 2016; 167:1623-1635.e14. [PMID: 27889239 PMCID: PMC5147500 DOI: 10.1016/j.cell.2016.10.056] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 10/03/2016] [Accepted: 10/28/2016] [Indexed: 01/08/2023]
Abstract
Retromer is a multi-protein complex that recycles transmembrane cargo from endosomes to the trans-Golgi network and the plasma membrane. Defects in retromer impair various cellular processes and underlie some forms of Alzheimer's disease and Parkinson's disease. Although retromer was discovered over 15 years ago, the mechanisms for cargo recognition and recruitment to endosomes have remained elusive. Here, we present an X-ray crystallographic analysis of a four-component complex comprising the VPS26 and VPS35 subunits of retromer, the sorting nexin SNX3, and a recycling signal from the divalent cation transporter DMT1-II. This analysis identifies a binding site for canonical recycling signals at the interface between VPS26 and SNX3. In addition, the structure highlights a network of cooperative interactions among the VPS subunits, SNX3, and cargo that couple signal-recognition to membrane recruitment.
Collapse
Affiliation(s)
- María Lucas
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - David C Gershlick
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ander Vidaurrazaga
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Adriana L Rojas
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Aitor Hierro
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| |
Collapse
|
20
|
A molecular code for endosomal recycling of phosphorylated cargos by the SNX27-retromer complex. Nat Struct Mol Biol 2016; 23:921-932. [PMID: 27595347 DOI: 10.1038/nsmb.3290] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/11/2016] [Indexed: 12/11/2022]
Abstract
Recycling of internalized receptors from endosomal compartments is essential for the receptors' cell-surface homeostasis. Sorting nexin 27 (SNX27) cooperates with the retromer complex in the recycling of proteins containing type I PSD95-Dlg-ZO1 (PDZ)-binding motifs. Here we define specific acidic amino acid sequences upstream of the PDZ-binding motif required for high-affinity engagement of the human SNX27 PDZ domain. However, a subset of SNX27 ligands, such as the β2 adrenergic receptor and N-methyl-D-aspartate (NMDA) receptor, lack these sequence determinants. Instead, we identified conserved sites of phosphorylation that substitute for acidic residues and dramatically enhance SNX27 interactions. This newly identified mechanism suggests a likely regulatory switch for PDZ interaction and protein transport by the SNX27-retromer complex. Defining this SNX27 binding code allowed us to classify more than 400 potential SNX27 ligands with broad functional implications in signal transduction, neuronal plasticity and metabolite transport.
Collapse
|
21
|
Liu JJ. Retromer-Mediated Protein Sorting and Vesicular Trafficking. J Genet Genomics 2016; 43:165-77. [PMID: 27157806 DOI: 10.1016/j.jgg.2016.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/25/2022]
Abstract
Retromer is an evolutionarily conserved multimeric protein complex that mediates intracellular transport of various vesicular cargoes and functions in a wide variety of cellular processes including polarized trafficking, developmental signaling and lysosome biogenesis. Through its interaction with the Rab GTPases and their effectors, membrane lipids, molecular motors, the endocytic machinery and actin nucleation promoting factors, retromer regulates sorting and trafficking of transmembrane proteins from endosomes to the trans-Golgi network (TGN) and the plasma membrane. In this review, I highlight recent progress in the understanding of retromer-mediated protein sorting and vesicle trafficking and discuss how retromer contributes to a diverse set of developmental, physiological and pathological processes.
Collapse
Affiliation(s)
- Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
22
|
Li C, Shah SZA, Zhao D, Yang L. Role of the Retromer Complex in Neurodegenerative Diseases. Front Aging Neurosci 2016; 8:42. [PMID: 26973516 PMCID: PMC4772447 DOI: 10.3389/fnagi.2016.00042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Abstract
The retromer complex is a protein complex that plays a central role in endosomal trafficking. Retromer dysfunction has been linked to a growing number of neurological disorders. The process of intracellular trafficking and recycling is crucial for maintaining normal intracellular homeostasis, which is partly achieved through the activity of the retromer complex. The retromer complex plays a primary role in sorting endosomal cargo back to the cell surface for reuse, to the trans-Golgi network (TGN), or alternatively to specialized endomembrane compartments, in which the cargo is not subjected to lysosomal-mediated degradation. In most cases, the retromer acts as a core that interacts with associated proteins, including sorting nexin family member 27 (SNX27), members of the vacuolar protein sorting 10 (VPS10) receptor family, the major endosomal actin polymerization-promoting complex known as Wiskott-Aldrich syndrome protein and scar homolog (WASH), and other proteins. Some of the molecules carried by the retromer complex are risk factors for neurodegenerative diseases. Defects such as haplo-insufficiency or mutations in one or several units of the retromer complex lead to various pathologies. Here, we summarize the molecular architecture of the retromer complex and the roles of this system in intracellular trafficking related the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chaosi Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University Beijing, China
| | - Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University Beijing, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University Beijing, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University Beijing, China
| |
Collapse
|
23
|
Yang Z, Hong LK, Follett J, Wabitsch M, Hamilton NA, Collins BM, Bugarcic A, Teasdale RD. Functional characterization of retromer in GLUT4 storage vesicle formation and adipocyte differentiation. FASEB J 2015; 30:1037-50. [PMID: 26581601 DOI: 10.1096/fj.15-274704] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/28/2015] [Indexed: 12/26/2022]
Abstract
Insulin-stimulated translocation of glucose transporter 4 (GLUT4) storage vesicles (GSVs), the specialized intracellular compartments within mature adipocytes, to the plasma membrane (PM) is a fundamental cellular process for maintaining glucose homeostasis. Using 2 independent adipocyte cell line models, human primary Simpson-Golabi-Behmel syndrome and mouse 3T3-L1 fibroblast cell lines, we demonstrate that the endosome-associated protein-sorting complex retromer colocalizes with GLUT4 on the GSVs by confocal microscopy in mature adipocytes. By use of both confocal microscopy and differential ultracentrifugation techniques, retromer is redistributed to the PM of mature adipocytes upon insulin stimulation. Furthermore, stable knockdown of the retromer subunit-vacuolar protein-sorting 35, or the retromer-associated protein sorting nexin 27, by lentivirus-delivered small hairpin RNA impaired the adipogenesis process when compared to nonsilence control. The knockdown of retromer decreased peroxisome proliferator activated receptor γ expression during differentiation, generating adipocytes with decreased levels of GSVs, lipid droplet accumulation, and insulin-stimulated glucose uptake. In conclusion, our study demonstrates a role for retromer in the GSV formation and adipogenesis.
Collapse
Affiliation(s)
- Zhe Yang
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Lee Kian Hong
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Jordan Follett
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Martin Wabitsch
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Nicholas A Hamilton
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Brett M Collins
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Andrea Bugarcic
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Rohan D Teasdale
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
24
|
Tello-Lafoz M, Ghai R, Collins B, Mérida I. A role for novel lipid interactions in the dynamic recruitment of SNX27 to the T-cell immune synapse. BIOARCHITECTURE 2015; 4:215-20. [PMID: 25996807 DOI: 10.1080/19490992.2015.1031950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SNX27 is a member of the sorting nexin family that plays an important role in the recycling of receptors from endosomes to the cell surface. In addition to a PX (Phox homology) domain that regulates its endosomal localization, SNX27 has a unique PDZ (Psd-95/Dlg/ZO1) domain and an atypical FERM (4.1, ezrin, radixin, moesin) domain that both function to bind short peptide sequence motifs in the cytoplasmic domains of the cargo receptors. Using the T cell immune synapse (IS) as a model for polarized protein recycling, we recently identified an additional mechanism that enhances SNX27 localization to the endosomal recycling compartment (ERC). Our study defined a phosphoinositide (PI) lipid-binding site within the SNX27 FERM domain, with a clear preference for bi- and triphosphorylated PIs, which may promote SNX27 localization to phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) and/or PtdIns(3,4,5)P3-enriched membrane domains. Using fluorescently tagged lipid-binding probes, we studied the kinetics of distinct PIs in living T cells during IS formation. Our results suggest that PtdIns(3,4,5)P3 accumulates at the contact site simultaneously with early SNX27 recruitment to the plasma membrane (PM), and this is partly controlled by by lipid binding through the FERM domain. These studies define 2 independent binding sites for PtdIns-derived lipids in SNX27, that contribute to the dynamic recruitment of SNX27 to distinct membranes during T cell activation.
Collapse
Affiliation(s)
- María Tello-Lafoz
- a Lipid Signaling Laboratory ; Centro Nacional de Biotecnología (CNB)/CSIC ; Madrid , Spain
| | - Rajesh Ghai
- b Institute for Molecular Bioscience ; The University of Queensland ; St. Lucia , Australia.,c Current address: The School of Biotechnology and Biomolecular Sciences , The University of New South Wales , Sydney , NSW , Australia
| | - Brett Collins
- b Institute for Molecular Bioscience ; The University of Queensland ; St. Lucia , Australia
| | - Isabel Mérida
- a Lipid Signaling Laboratory ; Centro Nacional de Biotecnología (CNB)/CSIC ; Madrid , Spain
| |
Collapse
|
25
|
Clairfeuille T, Norwood SJ, Qi X, Teasdale RD, Collins BM. Structure and Membrane Binding Properties of the Endosomal Tetratricopeptide Repeat (TPR) Domain-containing Sorting Nexins SNX20 and SNX21. J Biol Chem 2015; 290:14504-17. [PMID: 25882846 DOI: 10.1074/jbc.m115.650598] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Indexed: 01/08/2023] Open
Abstract
Sorting nexins (SNX) orchestrate membrane trafficking and signaling events required for the proper distribution of proteins within the endosomal network. Their phox homology (PX) domain acts as a phosphoinositide (PI) recognition module that targets them to specific endocytic membrane domains. The modularity of SNX proteins confers a wide variety of functions from signaling to membrane deformation and cargo binding, and many SNXs are crucial modulators of endosome dynamics and are involved in a myriad of physiological and pathological processes such as neurodegenerative diseases, cancer, and inflammation. Here, we have studied the poorly characterized SNX20 and its paralogue SNX21, which contain an N-terminal PX domain and a C-terminal PX-associated B (PXB) domain of unknown function. The two proteins share similar PI-binding properties and are recruited to early endosomal compartments by their PX domain. The crystal structure of the SNX21 PXB domain reveals a tetratricopeptide repeat (TPR)-fold, a module that typically binds short peptide motifs, with three TPR α-helical repeats. However, the C-terminal capping helix adopts a highly unusual and potentially self-inhibitory topology. SAXS solution structures of SNX20 and SNX21 show that these proteins adopt a compact globular architecture, and membrane interaction analyses indicate the presence of overlapping PI-binding sites that may regulate their intracellular localization. This study provides the first structural analysis of this poorly characterized subfamily of SNX proteins, highlighting a likely role as endosome-associated scaffolds.
Collapse
Affiliation(s)
- Thomas Clairfeuille
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Suzanne J Norwood
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xiaying Qi
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rohan D Teasdale
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Brett M Collins
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|