1
|
Oger C, Claeys Bouuaert C. In Vitro Reconstitution of SPO11-Mediated DNA Cleavage Sheds New Light on the Initiation of Meiotic Recombination. DNA Cell Biol 2025. [PMID: 40387614 DOI: 10.1089/dna.2025.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025] Open
Abstract
Three recent studies report the first biochemical reconstitution of DNA double-strand break (DSB) formation by SPO11, the topoisomerase-derived transesterase that initiates meiotic recombination in sexually reproducing organisms. A central conclusion of these studies is that SPO11 is sufficient to catalyze DSBs in vitro, but cleavage is limited by the poor propensity of SPO11 to dimerize, thereby providing an effective mechanism to prevent uncontrolled breaks. The studies yield new insights into the mechanism of DNA DSB formation and raise new questions regarding the functions of SPO11 partners, the impact of the DNA substrate, the coordination between cleavage events, and the reversibility of the reaction.
Collapse
Affiliation(s)
- Cédric Oger
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Corentin Claeys Bouuaert
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| |
Collapse
|
2
|
Brekke C, Gjuvsland AB, Berg P, Johnston SE. Independent genetic basis of meiotic crossover positioning and interference in domestic pigs. Sci Rep 2025; 15:9260. [PMID: 40102600 PMCID: PMC11920276 DOI: 10.1038/s41598-025-93003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025] Open
Abstract
Meiotic crossover patterning shows huge variation within and between chromosomes, individuals, and species, yet the molecular and evolutionary causes and consequences of this variation remain poorly understood. A key step is to understand the genetic architecture of the crossover rate, positioning, and interference to determine if these factors are governed by common or distinct genetic processes. Here, we investigate individual variation in autosomal crossover count, crossover position (measured as both intra-chromosomal shuffling and distance to telomere), and crossover interference in a large breeding population of domestic pigs (N = 82,474 gametes). We show that all traits are heritable in females at the gamete (h2 = 0.07-0.11) and individual mean levels (h2 = 0.08-0.41). In females, crossover count, and interference are strongly associated with RNF212, but crossover positioning is associated with SYCP2, MEI4, and PRDM9. Our results show that crossover positioning and rate/interference are driven by distinct genetic processes in female pigs and have the capacity to evolve independently.
Collapse
Affiliation(s)
- Cathrine Brekke
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Oluf Thesens vei 6, Ås, 1433, Norway.
| | - Arne B Gjuvsland
- Norsvin, Storhamargata 44, Hamar, 2317, Norway
- Geno, Storhamargata 44, Hamar, 2317, Norway
| | - Peer Berg
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Oluf Thesens vei 6, Ås, 1433, Norway
| | - Susan E Johnston
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| |
Collapse
|
3
|
Pan Z, Wang W, Wu L, Yao Z, Wang W, Chen Y, Gu H, Dong J, Mu J, Zhang Z, Fu J, Li Q, Wang L, Sun X, Kuang Y, Sang Q, Chen B. Bi-allelic missense variants in MEI4 cause preimplantation embryonic arrest and female infertility. Hum Genet 2024; 143:1049-1060. [PMID: 38252283 DOI: 10.1007/s00439-023-02633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Preimplantation embryonic arrest is an important pathogenesis of female infertility, but little is known about the genetic factors behind this phenotype. MEI4 is an essential protein for DNA double-strand break formation during meiosis, and Mei4 knock-out female mice are viable but sterile, indicating that MEI4 plays a crucial role in reproduction. To date, MEI4 has not been found to be associated with any human reproductive diseases. Here, we identified six compound heterozygous and homozygous MEI4 variants-namely, c.293C > T, p.(Ser98Leu), c.401C > G, p.(Pro134Arg), c.391C > G, p.(Pro131Ala), c.914A > T, p.(Tyr305Phe), c.908C > G, p.(Ala303Gly), and c.899A > T, p.(Gln300Leu)-in four independent families that were responsible for female infertility mainly characterized by preimplantation embryonic arrest. In vitro, we found that these variants reduced the interaction between MEI4 and DNA. In vivo, we generated a knock-in mouse model and demonstrated that female mice were infertile and were characterized by developmental defects during oogenesis. Our findings reveal the important roles of MEI4 in human reproduction and provide a new diagnostic marker for genetic counseling of clinical infertility patients.
Collapse
Affiliation(s)
- Zhiqi Pan
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Weijie Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Ling Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhongyuan Yao
- The Reproductive Medical Center of Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wenjing Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Yao Chen
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Hao Gu
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jie Dong
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jian Mu
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Zhihua Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jing Fu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Qiaoli Li
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200032, China.
| |
Collapse
|
4
|
Dereli I, Telychko V, Papanikos F, Raveendran K, Xu J, Boekhout M, Stanzione M, Neuditschko B, Imjeti NS, Selezneva E, Tuncay H, Demir S, Giannattasio T, Gentzel M, Bondarieva A, Stevense M, Barchi M, Schnittger A, Weir JR, Herzog F, Keeney S, Tóth A. Seeding the meiotic DNA break machinery and initiating recombination on chromosome axes. Nat Commun 2024; 15:2941. [PMID: 38580643 PMCID: PMC10997794 DOI: 10.1038/s41467-024-47020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/15/2024] [Indexed: 04/07/2024] Open
Abstract
Programmed DNA double-strand break (DSB) formation is a crucial feature of meiosis in most organisms. DSBs initiate recombination-mediated linking of homologous chromosomes, which enables correct chromosome segregation in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors. Whereas DNA-driven protein condensation is thought to assemble the DSB-machinery, its targeting to chromosome axes is poorly understood. We uncover in mice that efficient biogenesis of DSB-machinery clusters requires seeding by axial IHO1 platforms. Both IHO1 phosphorylation and formation of axial IHO1 platforms are diminished by chemical inhibition of DBF4-dependent kinase (DDK), suggesting that DDK contributes to the control of the axial DSB-machinery. Furthermore, we show that axial IHO1 platforms are based on an interaction between IHO1 and the chromosomal axis component HORMAD1. IHO1-HORMAD1-mediated seeding of the DSB-machinery on axes ensures sufficiency of DSBs for efficient pairing of homologous chromosomes. Without IHO1-HORMAD1 interaction, residual DSBs depend on ANKRD31, which enhances both the seeding and the growth of DSB-machinery clusters. Thus, recombination initiation is ensured by complementary pathways that differentially support seeding and growth of DSB-machinery clusters, thereby synergistically enabling DSB-machinery condensation on chromosomal axes.
Collapse
Affiliation(s)
- Ihsan Dereli
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Vladyslav Telychko
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Frantzeskos Papanikos
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Kavya Raveendran
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Jiaqi Xu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, USA
| | - Michiel Boekhout
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Marcello Stanzione
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Benjamin Neuditschko
- Institute Krems Bioanalytics, IMC University of Applied Sciences, 3500, Krems, Austria
| | - Naga Sailaja Imjeti
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Elizaveta Selezneva
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Hasibe Tuncay
- Department of Developmental Biology, University of Hamburg, 22609, Hamburg, Germany
| | - Sevgican Demir
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Teresa Giannattasio
- University of Rome "Tor Vergata", Section of Anatomy, Via Montpellier, 1, 00133, Rome, Italy
| | - Marc Gentzel
- Core Facility Mass Spectrometry & Proteomics, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Anastasiia Bondarieva
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Michelle Stevense
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Marco Barchi
- University of Rome "Tor Vergata", Section of Anatomy, Via Montpellier, 1, 00133, Rome, Italy
- Saint Camillus International University of Health Sciences, Rome, Italy
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, 22609, Hamburg, Germany
| | - John R Weir
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Franz Herzog
- Institute Krems Bioanalytics, IMC University of Applied Sciences, 3500, Krems, Austria
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Attila Tóth
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307, Dresden, Germany.
| |
Collapse
|
5
|
Dereli I, Telychko V, Papanikos F, Raveendran K, Xu J, Boekhout M, Stanzione M, Neuditschko B, Imjeti NS, Selezneva E, Erbasi HT, Demir S, Giannattasio T, Gentzel M, Bondarieva A, Stevense M, Barchi M, Schnittger A, Weir JR, Herzog F, Keeney S, Tóth A. Seeding the meiotic DNA break machinery and initiating recombination on chromosome axes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568863. [PMID: 38077023 PMCID: PMC10705248 DOI: 10.1101/2023.11.27.568863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Programmed DNA double-strand break (DSB) formation is a unique meiotic feature that initiates recombination-mediated linking of homologous chromosomes, thereby enabling chromosome number halving in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors. Whereas DNA-driven protein condensation is thought to assemble the DSB-machinery, its targeting to chromosome axes is poorly understood. We discovered in mice that efficient biogenesis of DSB-machinery clusters requires seeding by axial IHO1 platforms, which are based on a DBF4-dependent kinase (DDK)-modulated interaction between IHO1 and the chromosomal axis component HORMAD1. IHO1-HORMAD1-mediated seeding of the DSB-machinery on axes ensures sufficiency of DSBs for efficient pairing of homologous chromosomes. Without IHO1-HORMAD1 interaction, residual DSBs depend on ANKRD31, which enhances both the seeding and the growth of DSB-machinery clusters. Thus, recombination initiation is ensured by complementary pathways that differentially support seeding and growth of DSB-machinery clusters, thereby synergistically enabling DSB-machinery condensation on chromosomal axes.
Collapse
|
6
|
Laroussi H, Juarez‐Martinez AB, Le Roy A, Boeri Erba E, Gabel F, de Massy B, Kadlec J. Characterization of the REC114-MEI4-IHO1 complex regulating meiotic DNA double-strand break formation. EMBO J 2023; 42:e113866. [PMID: 37431931 PMCID: PMC10425845 DOI: 10.15252/embj.2023113866] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023] Open
Abstract
Meiotic recombination is initiated by the formation of DNA double-strand breaks (DSBs), essential for fertility and genetic diversity. In the mouse, DSBs are formed by the catalytic TOPOVIL complex consisting of SPO11 and TOPOVIBL. To preserve genome integrity, the activity of the TOPOVIL complex is finely controlled by several meiotic factors including REC114, MEI4, and IHO1, but the underlying mechanism is poorly understood. Here, we report that mouse REC114 forms homodimers, that it associates with MEI4 as a 2:1 heterotrimer that further dimerizes, and that IHO1 forms coiled-coil-based tetramers. Using AlphaFold2 modeling combined with biochemical characterization, we uncovered the molecular details of these assemblies. Finally, we show that IHO1 directly interacts with the PH domain of REC114 by recognizing the same surface as TOPOVIBL and another meiotic factor ANKRD31. These results provide strong evidence for the existence of a ternary IHO1-REC114-MEI4 complex and suggest that REC114 could act as a potential regulatory platform mediating mutually exclusive interactions with several partners.
Collapse
Affiliation(s)
| | | | - Aline Le Roy
- Université Grenoble Alpes, CNRS, CEA, IBSGrenobleFrance
| | | | - Frank Gabel
- Université Grenoble Alpes, CNRS, CEA, IBSGrenobleFrance
| | - Bernard de Massy
- Institut de Génétique Humaine (IGH), Centre National de la Recherche ScientifiqueUniversity of MontpellierMontpellierFrance
| | - Jan Kadlec
- Université Grenoble Alpes, CNRS, CEA, IBSGrenobleFrance
| |
Collapse
|
7
|
Wang C, Qu S, Zhang J, Fu M, Chen X, Liang W. OsPRD2 is essential for double-strand break formation, but not spindle assembly during rice meiosis. FRONTIERS IN PLANT SCIENCE 2023; 13:1122202. [PMID: 36714725 PMCID: PMC9880466 DOI: 10.3389/fpls.2022.1122202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/27/2022] [Indexed: 06/06/2023]
Abstract
Meiotic recombination starts with the programmed formation of double-strand breaks (DSB) in DNA, which are catalyzed by SPO11, a type II topoisomerase that is evolutionarily conserved, and several other accessary proteins. Homologs of MEIOSIS INHIBITOR 4 (MEI4/REC24/PRD2) are proteins that are also essential for the generation of meiotic DSBs in budding yeast, mice and Arabidopsis thaliana. In Arabidopsis, the protein ARABIDOPSIS THALIANA PUTATIVE RECOMBINATION INITIATION DEFECTS 2/MULTIPOLAR SPINDLE 1 (AtPRD2/MPS1) has been shown to have additional roles in spindle assembly, indicating a functional diversification. Here we characterize the role of the rice MEI4/PRD2 homolog in meiosis. The osprd2 mutant was completely male and female sterile. In male meiocytes of osprd2, no γH2AX foci were detected and twenty-four univalents were produced at diakinesis, suggesting that OsPRD2 is essential for DSB generation. OsPRD2 showed a dynamic localization during meiosis. For instance, OsPRD2 foci first appeared as discrete signals across chromosome at leptotene, and then became confined to the centromeres during zygotene, suggesting that they might be involved in assembly of the spindle. However we did not observe any obvious aberrant morphologies in neither the organization of the bipolar spindle nor in the orientation of the kinetochore in the mutant. These findings suggest that in rice PRD2 might not be required for spindle assembly and organization, as it does in Arabidopsis. Taken together our results indicate that plant MEI4/PRD2 homologs do play a conserved role in the formation of meiotic DSBs in DNA, but that their involvement in bipolar spindle assembly is rather species-specific.
Collapse
Affiliation(s)
- Chong Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Development Center of Plant Germplasm Resources, Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shuying Qu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Fu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofei Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Ito M, Shinohara A. Chromosome architecture and homologous recombination in meiosis. Front Cell Dev Biol 2023; 10:1097446. [PMID: 36684419 PMCID: PMC9853400 DOI: 10.3389/fcell.2022.1097446] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
Meiocytes organize higher-order chromosome structures comprising arrays of chromatin loops organized at their bases by linear axes. As meiotic prophase progresses, the axes of homologous chromosomes align and synapse along their lengths to form ladder-like structures called synaptonemal complexes (SCs). The entire process of meiotic recombination, from initiation via programmed DNA double-strand breaks (DSBs) to completion of DSB repair with crossover or non-crossover outcomes, occurs in the context of chromosome axes and SCs. These meiosis-specific chromosome structures provide specialized environments for the regulation of DSB formation and crossing over. In this review, we summarize insights into the importance of chromosome architecture in the regulation of meiotic recombination, focusing on cohesin-mediated axis formation, DSB regulation via tethered loop-axis complexes, inter-homolog template bias facilitated by axial proteins, and crossover regulation in the context of the SCs. We also discuss emerging evidence that the SUMO and the ubiquitin-proteasome system function in the organization of chromosome structure and regulation of meiotic recombination.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
9
|
Guo H, Stamper EL, Sato-Carlton A, Shimazoe MA, Li X, Zhang L, Stevens L, Tam KCJ, Dernburg AF, Carlton PM. Phosphoregulation of DSB-1 mediates control of meiotic double-strand break activity. eLife 2022; 11:77956. [PMID: 35758641 PMCID: PMC9278955 DOI: 10.7554/elife.77956] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/23/2022] [Indexed: 12/28/2022] Open
Abstract
In the first meiotic cell division, proper segregation of chromosomes in most organisms depends on chiasmata, exchanges of continuity between homologous chromosomes that originate from the repair of programmed double-strand breaks (DSBs) catalyzed by the Spo11 endonuclease. Since DSBs can lead to irreparable damage in germ cells, while chromosomes lacking DSBs also lack chiasmata, the number of DSBs must be carefully regulated to be neither too high nor too low. Here, we show that in Caenorhabditis elegans, meiotic DSB levels are controlled by the phosphoregulation of DSB-1, a homolog of the yeast Spo11 cofactor Rec114, by the opposing activities of PP4PPH-4.1 phosphatase and ATRATL-1 kinase. Increased DSB-1 phosphorylation in pph-4.1 mutants correlates with reduction in DSB formation, while prevention of DSB-1 phosphorylation drastically increases the number of meiotic DSBs both in pph-4.1 mutants and in the wild-type background. C. elegans and its close relatives also possess a diverged paralog of DSB-1, called DSB-2, and loss of dsb-2 is known to reduce DSB formation in oocytes with increasing age. We show that the proportion of the phosphorylated, and thus inactivated, form of DSB-1 increases with age and upon loss of DSB-2, while non-phosphorylatable DSB-1 rescues the age-dependent decrease in DSBs in dsb-2 mutants. These results suggest that DSB-2 evolved in part to compensate for the inactivation of DSB-1 through phosphorylation, to maintain levels of DSBs in older animals. Our work shows that PP4PPH-4.1, ATRATL-1, and DSB-2 act in concert with DSB-1 to promote optimal DSB levels throughout the reproductive lifespan.
Collapse
Affiliation(s)
- Heyun Guo
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan
| | - Ericca L Stamper
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,California Institute for Quantitative Biosciences, Berkeley, United States.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Aya Sato-Carlton
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan
| | - Masa A Shimazoe
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan.,Department of Science, Kyoto University, Kyoto, Japan
| | - Xuan Li
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan
| | - Liangyu Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,California Institute for Quantitative Biosciences, Berkeley, United States.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Lewis Stevens
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - K C Jacky Tam
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,California Institute for Quantitative Biosciences, Berkeley, United States.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Peter M Carlton
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe, Sakyo, Kyoto, Japan.,Radiation Biology Center, Kyoto University, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Hinman AW, Yeh HY, Roelens B, Yamaya K, Woglar A, Bourbon HMG, Chi P, Villeneuve AM. Caenorhabditis elegans DSB-3 reveals conservation and divergence among protein complexes promoting meiotic double-strand breaks. Proc Natl Acad Sci U S A 2021; 118:e2109306118. [PMID: 34389685 PMCID: PMC8379965 DOI: 10.1073/pnas.2109306118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination plays dual roles in the evolution and stable inheritance of genomes: Recombination promotes genetic diversity by reassorting variants, and it establishes temporary connections between pairs of homologous chromosomes that ensure their future segregation. Meiotic recombination is initiated by generation of double-strand DNA breaks (DSBs) by the conserved topoisomerase-like protein Spo11. Despite strong conservation of Spo11 across eukaryotic kingdoms, auxiliary complexes that interact with Spo11 complexes to promote DSB formation are poorly conserved. Here, we identify DSB-3 as a DSB-promoting protein in the nematode Caenorhabditis elegans Mutants lacking DSB-3 are proficient for homolog pairing and synapsis but fail to form crossovers. Lack of crossovers in dsb-3 mutants reflects a requirement for DSB-3 in meiotic DSB formation. DSB-3 concentrates in meiotic nuclei with timing similar to DSB-1 and DSB-2 (predicted homologs of yeast/mammalian Rec114/REC114), and DSB-1, DSB-2, and DSB-3 are interdependent for this localization. Bioinformatics analysis and interactions among the DSB proteins support the identity of DSB-3 as a homolog of MEI4 in conserved DSB-promoting complexes. This identification is reinforced by colocalization of pairwise combinations of DSB-1, DSB-2, and DSB-3 foci in structured illumination microscopy images of spread nuclei. However, unlike yeast Rec114, DSB-1 can interact directly with SPO-11, and in contrast to mouse REC114 and MEI4, DSB-1, DSB-2, and DSB-3 are not concentrated predominantly at meiotic chromosome axes. We speculate that variations in the meiotic program that have coevolved with distinct reproductive strategies in diverse organisms may contribute to and/or enable diversification of essential components of the meiotic machinery.
Collapse
Affiliation(s)
- Albert W Hinman
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Hsin-Yi Yeh
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Baptiste Roelens
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Kei Yamaya
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Alexander Woglar
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Henri-Marc G Bourbon
- Centre de Biologie Intégrative, Molecular, Cellular & Developmental Biology Unit, Université Fédérale de Toulouse, 31000 Toulouse, France
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Anne M Villeneuve
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305;
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
11
|
Grey C, de Massy B. Chromosome Organization in Early Meiotic Prophase. Front Cell Dev Biol 2021; 9:688878. [PMID: 34150782 PMCID: PMC8209517 DOI: 10.3389/fcell.2021.688878] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
One of the most fascinating aspects of meiosis is the extensive reorganization of the genome at the prophase of the first meiotic division (prophase I). The first steps of this reorganization are observed with the establishment of an axis structure, that connects sister chromatids, from which emanate arrays of chromatin loops. This axis structure, called the axial element, consists of various proteins, such as cohesins, HORMA-domain proteins, and axial element proteins. In many organisms, axial elements are required to set the stage for efficient sister chromatid cohesion and meiotic recombination, necessary for the recognition of the homologous chromosomes. Here, we review the different actors involved in axial element formation in Saccharomyces cerevisiae and in mouse. We describe the current knowledge of their localization pattern during prophase I, their functional interdependence, their role in sister chromatid cohesion, loop axis formation, homolog pairing before meiotic recombination, and recombination. We also address further challenges that need to be resolved, to fully understand the interplay between the chromosome structure and the different molecular steps that take place in early prophase I, which lead to the successful outcome of meiosis I.
Collapse
Affiliation(s)
- Corinne Grey
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Bernard de Massy
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| |
Collapse
|
12
|
Mhaskar AN, Koornneef L, Zelensky AN, Houtsmuller AB, Baarends WM. High Resolution View on the Regulation of Recombinase Accumulation in Mammalian Meiosis. Front Cell Dev Biol 2021; 9:672191. [PMID: 34109178 PMCID: PMC8181746 DOI: 10.3389/fcell.2021.672191] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
A distinguishing feature of meiotic DNA double-strand breaks (DSBs), compared to DSBs in somatic cells, is the fact that they are induced in a programmed and specifically orchestrated manner, which includes chromatin remodeling prior to DSB induction. In addition, the meiotic homologous recombination (HR) repair process that follows, is different from HR repair of accidental DSBs in somatic cells. For instance, meiotic HR involves preferred use of the homolog instead of the sister chromatid as a repair template and subsequent formation of crossovers and non-crossovers in a tightly regulated manner. An important outcome of this distinct repair pathway is the pairing of homologous chromosomes. Central to the initial steps in homology recognition during meiotic HR is the cooperation between the strand exchange proteins (recombinases) RAD51 and its meiosis-specific paralog DMC1. Despite our understanding of their enzymatic activity, details on the regulation of their assembly and subsequent molecular organization at meiotic DSBs in mammals have remained largely enigmatic. In this review, we summarize recent mouse data on recombinase regulation via meiosis-specific factors. Also, we reflect on bulk “omics” studies of initial meiotic DSB processing, compare these with studies using super-resolution microscopy in single cells, at single DSB sites, and explore the implications of these findings for our understanding of the molecular mechanisms underlying meiotic HR regulation.
Collapse
Affiliation(s)
- Aditya N Mhaskar
- Department of Developmental Biology, Erasmus MC, Rotterdam, Netherlands
| | - Lieke Koornneef
- Department of Developmental Biology, Erasmus MC, Rotterdam, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Alex N Zelensky
- Department of Molecular Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Adriaan B Houtsmuller
- Erasmus Optical Imaging Centre, Department of Pathology, Erasmus MC, Rotterdam, Netherlands.,Department of Pathology, Erasmus MC, Rotterdam, Netherlands
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
13
|
Wang X, Pepling ME. Regulation of Meiotic Prophase One in Mammalian Oocytes. Front Cell Dev Biol 2021; 9:667306. [PMID: 34095134 PMCID: PMC8172968 DOI: 10.3389/fcell.2021.667306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/28/2021] [Indexed: 11/23/2022] Open
Abstract
In female mammals, meiotic prophase one begins during fetal development. Oocytes transition through the prophase one substages consisting of leptotene, zygotene, and pachytene, and are finally arrested at the diplotene substage, for months in mice and years in humans. After puberty, luteinizing hormone induces ovulation and meiotic resumption in a cohort of oocytes, driving the progression from meiotic prophase one to metaphase two. If fertilization occurs, the oocyte completes meiosis two followed by fusion with the sperm nucleus and preparation for zygotic divisions; otherwise, it is passed into the uterus and degenerates. Specifically in the mouse, oocytes enter meiosis at 13.5 days post coitum. As meiotic prophase one proceeds, chromosomes find their homologous partner, synapse, exchange genetic material between homologs and then begin to separate, remaining connected at recombination sites. At postnatal day 5, most of the oocytes have reached the late diplotene (or dictyate) substage of prophase one where they remain arrested until ovulation. This review focuses on events and mechanisms controlling the progression through meiotic prophase one, which include recombination, synapsis and control by signaling pathways. These events are prerequisites for proper chromosome segregation in meiotic divisions; and if they go awry, chromosomes mis-segregate resulting in aneuploidy. Therefore, elucidating the mechanisms regulating meiotic progression is important to provide a foundation for developing improved treatments of female infertility.
Collapse
|
14
|
Claeys Bouuaert C, Pu S, Wang J, Oger C, Daccache D, Xie W, Patel DJ, Keeney S. DNA-driven condensation assembles the meiotic DNA break machinery. Nature 2021; 592:144-149. [PMID: 33731927 PMCID: PMC8016751 DOI: 10.1038/s41586-021-03374-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
The accurate segregation of chromosomes during meiosis-which is critical for genome stability across sexual cycles-relies on homologous recombination initiated by DNA double-strand breaks (DSBs) made by the Spo11 protein1,2. The formation of DSBs is regulated and tied to the elaboration of large-scale chromosome structures3-5, but the protein assemblies that execute and control DNA breakage are poorly understood. Here we address this through the molecular characterization of Saccharomyces cerevisiae RMM (Rec114, Mei4 and Mer2) proteins-essential, conserved components of the DSB machinery2. Each subcomplex of Rec114-Mei4 (a 2:1 heterotrimer) or Mer2 (a coiled-coil-containing homotetramer) is monodispersed in solution, but they independently condense with DNA into reversible nucleoprotein clusters that share properties with phase-separated systems. Multivalent interactions drive this condensation. Mutations that weaken protein-DNA interactions strongly disrupt both condensate formation and DSBs in vivo, and thus these processes are highly correlated. In vitro, condensates fuse into mixed RMM clusters that further recruit Spo11 complexes. Our data show how the DSB machinery self-assembles on chromosome axes to create centres of DSB activity. We propose that multilayered control of Spo11 arises from the recruitment of regulatory components and modulation of the biophysical properties of the condensates.
Collapse
Affiliation(s)
- Corentin Claeys Bouuaert
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center and Howard Hughes Medical Institute, New York, New York, USA.
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-La-Neuve, Belgium.
| | - Stephen Pu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center and Howard Hughes Medical Institute, New York, New York, USA
| | - Juncheng Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Cédric Oger
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Dima Daccache
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Wei Xie
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center and Howard Hughes Medical Institute, New York, New York, USA.
| |
Collapse
|
15
|
Shi W, Ji J, Xue Z, Zhang F, Miao Y, Yang H, Tang D, Du G, Li Y, Shen Y, Cheng Z. PRD1, a homologous recombination initiation factor, is involved in spindle assembly in rice meiosis. THE NEW PHYTOLOGIST 2021; 230:585-600. [PMID: 33421144 DOI: 10.1111/nph.17178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/23/2020] [Indexed: 05/25/2023]
Abstract
The bipolar spindle structure in meiosis is essential for faithful chromosome segregation. PUTATIVE RECOMBINATION INITIATION DEFECT 1 (PRD1) previously has been shown to participate in the formation of DNA double strand breaks (DSBs). However, the role of PRD1 in meiotic spindle assembly has not been elucidated. Here, we reveal by both genetic analysis and immunostaining technology that PRD1 is involved in spindle assembly in rice (Oryza sativa) meiosis. We show that DSB formation and bipolar spindle assembly are disturbed in prd1 meiocytes. PRD1 signals display a dynamic pattern of localization from covering entire chromosomes at leptotene to congregating at the centromere region after leptotene. Centromeric localization of PRD1 signals depends on the organization of leptotene chromosomes, but not on DSB formation and axis establishment. PRD1 exhibits interaction and co-localization with several kinetochore components. We also find that bi-orientation of sister kinetochores within a univalent induced by mutation of REC8 can restore bipolarity in prd1. Furthermore, PRD1 directly interacts with REC8 and SGO1, suggesting that PRD1 may play a role in regulating the orientation of sister kinetochores. Taken together, we speculate that PRD1 promotes bipolar spindle assembly, presumably by modulating the orientation of sister kinetochores in rice meiosis.
Collapse
Affiliation(s)
- Wenqing Shi
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianhui Ji
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Zhihui Xue
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fanfan Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongjie Miao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Han Yang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ding Tang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guijie Du
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yafei Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhukuan Cheng
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
16
|
Dereli I, Stanzione M, Olmeda F, Papanikos F, Baumann M, Demir S, Carofiglio F, Lange J, de Massy B, Baarends WM, Turner J, Rulands S, Tóth A. Four-pronged negative feedback of DSB machinery in meiotic DNA-break control in mice. Nucleic Acids Res 2021; 49:2609-2628. [PMID: 33619545 PMCID: PMC7969012 DOI: 10.1093/nar/gkab082] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/18/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
In most taxa, halving of chromosome numbers during meiosis requires that homologous chromosomes (homologues) pair and form crossovers. Crossovers emerge from the recombination-mediated repair of programmed DNA double-strand breaks (DSBs). DSBs are generated by SPO11, whose activity requires auxiliary protein complexes, called pre-DSB recombinosomes. To elucidate the spatiotemporal control of the DSB machinery, we focused on an essential SPO11 auxiliary protein, IHO1, which serves as the main anchor for pre-DSB recombinosomes on chromosome cores, called axes. We discovered that DSBs restrict the DSB machinery by at least four distinct pathways in mice. Firstly, by activating the DNA damage response (DDR) kinase ATM, DSBs restrict pre-DSB recombinosome numbers without affecting IHO1. Secondly, in their vicinity, DSBs trigger IHO1 depletion mainly by another DDR kinase, ATR. Thirdly, DSBs enable homologue synapsis, which promotes the depletion of IHO1 and pre-DSB recombinosomes from synapsed axes. Finally, DSBs and three DDR kinases, ATM, ATR and PRKDC, enable stage-specific depletion of IHO1 from all axes. We hypothesize that these four negative feedback pathways protect genome integrity by ensuring that DSBs form without excess, are well-distributed, and are restricted to genomic locations and prophase stages where DSBs are functional for promoting homologue pairing and crossover formation.
Collapse
Affiliation(s)
- Ihsan Dereli
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany
| | - Marcello Stanzione
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany
| | - Fabrizio Olmeda
- Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden, Germany
| | - Frantzeskos Papanikos
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany
| | - Marek Baumann
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany
| | - Sevgican Demir
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany
| | - Fabrizia Carofiglio
- Department of Developmental Biology, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Julian Lange
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bernard de Massy
- Institute of Human Genetics, UMR 9002, CNRS, Université de Montpellier, 34396 Montpellier cedex 5, France
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - James Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Steffen Rulands
- Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden, Germany.,Center for Systems Biology Dresden (CSBD), Pfotenhauer Strasse 108, 01307 Dresden, Germany
| | - Attila Tóth
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany
| |
Collapse
|
17
|
Tian H, Billings T, Petkov PM. EWSR1 affects PRDM9-dependent histone 3 methylation and provides a link between recombination hotspots and the chromosome axis protein REC8. Mol Biol Cell 2021; 32:1-14. [PMID: 33175657 PMCID: PMC8098819 DOI: 10.1091/mbc.e20-09-0604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
Meiotic recombination in most mammals requires recombination hotspot activation through the action of the histone 3 Lys-4 and Lys-36 methyltransferase PRDM9 to ensure successful double-strand-break initiation and repair. Here we show that EWSR1, a protein whose role in meiosis was not previously clarified in detail, binds to both PRDM9 and pREC8, a phosphorylated meiosis-specific cohesin, in male meiotic cells. We created a Ewsr1 conditional knockout mouse model to deplete EWSR1 before the onset of meiosis and found that absence of EWSR1 causes meiotic arrest with decreased histone trimethylation at meiotic hotspots, impaired DNA double-strand-break repair, and reduced crossover number. Our results demonstrate that EWSR1 is essential for promoting PRDM9-dependent histone methylation and normal meiotic progress, possibly by facilitating the linking between PRDM9-bound hotspots and the nascent chromosome axis through its component cohesin pREC8.
Collapse
Affiliation(s)
- Hui Tian
- The Jackson Laboratory, Bar Harbor, ME 04609
| | | | | |
Collapse
|
18
|
Tran TN, Schimenti JC. A segregating human allele of SPO11 modeled in mice disrupts timing and amounts of meiotic recombination, causing oligospermia and a decreased ovarian reserve†. Biol Reprod 2020; 101:347-359. [PMID: 31074776 DOI: 10.1093/biolre/ioz089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 01/27/2023] Open
Abstract
A major challenge in medical genetics is to characterize variants of unknown significance (VUS). Doing so would help delineate underlying causes of disease and the design of customized treatments. Infertility has presented an especially difficult challenge with respect to not only determining if a given patient has a genetic basis, but also to identify the causative genetic factor(s). Though genome sequencing can identify candidate variants, in silico predictions of causation are not always sufficiently reliable so as to be actionable. Thus, experimental validation is crucial. Here, we describe the phenotype of mice containing a non-synonymous (proline-to-threonine at position 306) change in Spo11, corresponding to human SNP rs185545661. SPO11 is a topoisomerase-like protein that is essential for meiosis because it induces DNA double stranded breaks (DSBs) that stimulate pairing and recombination of homologous chromosomes. Although both male and female Spo11P306T/P306T mice were fertile, they had reduced sperm and oocytes, respectively. Spermatocyte chromosomes exhibited synapsis defects (especially between the X and Y chromosomes), elevated apoptotic cells, persistent markers of DSBs, and most importantly, fewer Type 1 crossovers that causes some chromosomes to have none. Spo11P306T/- mice were sterile and made fewer meiotic DSBs than Spo11+/- animals, suggesting that the Spo11P306T allele is a hypomorph and likely is delayed in making sufficient DSBs in a timely fashion. If the consequences are recapitulated in humans, it would predict phenotypes of premature ovarian failure, reduced sperm counts, and possible increased number of aneuploid gametes. These results emphasize the importance of deep phenotyping in order to accurately assess the impact of VUSs in reproduction genes.
Collapse
Affiliation(s)
- Tina N Tran
- Department of Biomedical Sciences and the Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - John C Schimenti
- Department of Biomedical Sciences and the Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
19
|
Fujiwara Y, Horisawa-Takada Y, Inoue E, Tani N, Shibuya H, Fujimura S, Kariyazono R, Sakata T, Ohta K, Araki K, Okada Y, Ishiguro KI. Meiotic cohesins mediate initial loading of HORMAD1 to the chromosomes and coordinate SC formation during meiotic prophase. PLoS Genet 2020; 16:e1009048. [PMID: 32931493 PMCID: PMC7518614 DOI: 10.1371/journal.pgen.1009048] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/25/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
During meiotic prophase, sister chromatids are organized into axial element (AE), which underlies the structural framework for the meiotic events such as meiotic recombination and homolog synapsis. HORMA domain-containing proteins (HORMADs) localize along AE and play critical roles in the regulation of those meiotic events. Organization of AE is attributed to two groups of proteins: meiotic cohesins REC8 and RAD21L; and AE components SYCP2 and SYCP3. It has been elusive how these chromosome structural proteins contribute to the chromatin loading of HORMADs prior to AE formation. Here we newly generated Sycp2 null mice and showed that initial chromatin loading of HORMAD1 was mediated by meiotic cohesins prior to AE formation. HORMAD1 interacted not only with the AE components SYCP2 and SYCP3 but also with meiotic cohesins. Notably, HORMAD1 interacted with meiotic cohesins even in Sycp2-KO, and localized along cohesin axial cores independently of the AE components SYCP2 and SYCP3. Hormad1/Rad21L-double knockout (dKO) showed more severe defects in the formation of synaptonemal complex (SC) compared to Hormad1-KO or Rad21L-KO. Intriguingly, Hormad1/Rec8-dKO but not Hormad1/Rad21L-dKO showed precocious separation of sister chromatid axis. These findings suggest that meiotic cohesins REC8 and RAD21L mediate chromatin loading and the mode of action of HORMAD1 for synapsis during early meiotic prophase.
Collapse
Affiliation(s)
- Yasuhiro Fujiwara
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuki Horisawa-Takada
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Erina Inoue
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Naoki Tani
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, Japan
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Sayoko Fujimura
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, Japan
| | - Ryo Kariyazono
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Toyonori Sakata
- Laboratory of Genome Structure and Function, the Institute for Quantitative Biosciences, University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis & Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Yuki Okada
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kei-ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto, Japan
| |
Collapse
|
20
|
Ensuring meiotic DNA break formation in the mouse pseudoautosomal region. Nature 2020; 582:426-431. [PMID: 32461690 PMCID: PMC7337327 DOI: 10.1038/s41586-020-2327-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/24/2020] [Indexed: 11/09/2022]
Abstract
Sex chromosomes in males of most eutherian species share only a diminutive homologous segment, the pseudoautosomal region (PAR), wherein double-strand break (DSB) formation, pairing, and crossing over must occur for correct meiotic segregation1,2. How cells ensure PAR recombination is unknown. Here we delineate an unexpected dynamic ultrastructure of the PAR and identify controlling cis- and trans-acting factors that make this the hottest area of DSB formation in the male mouse genome. Before break formation, multiple DSB-promoting factors hyper-accumulate in the PAR, its chromosome axes elongate, and the sister chromatids separate. These phenomena are linked to heterochromatic mo-2 minisatellite arrays and require MEI4 and ANKRD31 proteins but not axis components REC8 or HORMAD1. We propose that the repetitive PAR sequence confers unique chromatin and higher order structures crucial for recombination. Chromosome synapsis triggers collapse of the elongated PAR structure and, remarkably, oocytes can be reprogrammed to display spermatocyte-like PAR DSB levels simply by delaying or preventing synapsis. Thus, sexually dimorphic behavior of the PAR rests in part on kinetic differences between the sexes for a race between maturation of PAR structure, DSB formation, and completion of pairing and synapsis. Our findings establish a mechanistic paradigm of sex chromosome recombination during meiosis.
Collapse
|
21
|
Wang W, Dong J, Chen B, Du J, Kuang Y, Sun X, Fu J, Li B, Mu J, Zhang Z, Zhou Z, Lin Z, Wu L, Yan Z, Mao X, Li Q, He L, Wang L, Sang Q. Homozygous mutations in REC114 cause female infertility characterised by multiple pronuclei formation and early embryonic arrest. J Med Genet 2020; 57:187-194. [PMID: 31704776 DOI: 10.1136/jmedgenet-2019-106379] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/22/2019] [Accepted: 09/15/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND Abnormal pronuclear formation during fertilisation and subsequent early embryonic arrest results in female infertility. In recent years, with the prevalence of assisted reproductive technology, a few genes have been identified that are involved in female infertility caused by abnormalities in oocyte development, fertilisation and embryonic development. However, the genetic factors responsible for multiple pronuclei formation during fertilisation and early embryonic arrest remain largely unknown. OBJECTIVE We aim to identify genetic factors responsible for multiple pronuclei formation during fertilisation or early embryonic arrest. METHODS Whole-exome sequencing was performed in a cohort of 580 patients with abnormal fertilisation and early embryonic arrest. Effects of mutations were investigated in HEK293T cells by western blotting and immunoprecipitation, as well as minigene assay. RESULTS We identified a novel homozygous missense mutation (c.397T>G, p.C133G) and a novel homozygous donor splice-site mutation (c.546+5G>A) in the meiotic gene REC114. REC114 is involved in the formation of double strand breaks (DSBs), which initiate homologous chromosome recombination. We demonstrated that the splice-site mutation affected the normal alternative splicing of REC114, while the missense mutation reduced the protein level of REC114 in vitro and resulted in the loss of its function to protect its partner protein MEI4 from degradation. CONCLUSIONS Our study has identified mutations in REC114 responsible for human multiple pronuclei formation and early embryonic arrest, and these findings expand our knowledge of genetic factors that are responsible for normal human female meiosis and fertility.
Collapse
Affiliation(s)
- Wenjing Wang
- Children's Hospital and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China
| | - Jie Dong
- Children's Hospital and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China
- Zhuhai Fudan Innovation Institute, Zhuhai, China
| | - Biaobang Chen
- Children's Hospital and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai, China
| | - Jing Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai, China
| | - Yanping Kuang
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, Shanghai, China
| | - Jing Fu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, Shanghai, China
| | - Bin Li
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Mu
- Children's Hospital and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China
| | - Zhihua Zhang
- Children's Hospital and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China
| | - Zhou Zhou
- Children's Hospital and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China
| | - Zhao Lin
- Children's Hospital and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China
| | - Ling Wu
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Yan
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Mao
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qiaoli Li
- Children's Hospital and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China
| | - Lin He
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- Children's Hospital and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China
- Zhuhai Fudan Innovation Institute, Zhuhai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Qing Sang
- Children's Hospital and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China
- Zhuhai Fudan Innovation Institute, Zhuhai, China
| |
Collapse
|
22
|
Dapper AL, Payseur BA. Molecular evolution of the meiotic recombination pathway in mammals. Evolution 2019; 73:2368-2389. [PMID: 31579931 DOI: 10.1111/evo.13850] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/07/2019] [Indexed: 02/06/2023]
Abstract
Meiotic recombination shapes evolution and helps to ensure proper chromosome segregation in most species that reproduce sexually. Recombination itself evolves, with species showing considerable divergence in the rate of crossing-over. However, the genetic basis of this divergence is poorly understood. Recombination events are produced via a complicated, but increasingly well-described, cellular pathway. We apply a phylogenetic comparative approach to a carefully selected panel of genes involved in the processes leading to crossovers-spanning double-strand break formation, strand invasion, the crossover/non-crossover decision, and resolution-to reconstruct the evolution of the recombination pathway in eutherian mammals and identify components of the pathway likely to contribute to divergence between species. Eleven recombination genes, predominantly involved in the stabilization of homologous pairing and the crossover/non-crossover decision, show evidence of rapid evolution and positive selection across mammals. We highlight TEX11 and associated genes involved in the synaptonemal complex and the early stages of the crossover/non-crossover decision as candidates for the evolution of recombination rate. Evolutionary comparisons to MLH1 count, a surrogate for the number of crossovers, reveal a positive correlation between genome-wide recombination rate and the rate of evolution at TEX11 across the mammalian phylogeny. Our results illustrate the power of viewing the evolution of recombination from a pathway perspective.
Collapse
Affiliation(s)
- Amy L Dapper
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, 53706.,Department of Biological Sciences, Mississippi State University, Mississippi, 39762
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, 53706
| |
Collapse
|
23
|
Advances Towards How Meiotic Recombination Is Initiated: A Comparative View and Perspectives for Plant Meiosis Research. Int J Mol Sci 2019; 20:ijms20194718. [PMID: 31547623 PMCID: PMC6801837 DOI: 10.3390/ijms20194718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
Meiosis is an essential cell-division process for ensuring genetic diversity across generations. Meiotic recombination ensures the accuracy of genetic interchange between homolous chromosomes and segregation of parental alleles. Programmed DNA double-strand breaks (DSBs), catalyzed by the evolutionarily conserved topoisomerase VIA (a subunit of the archaeal type II DNA topoisomerase)-like enzyme Spo11 and several other factors, is a distinctive feature of meiotic recombination initiation. The meiotic DSB formation and its regulatory mechanisms are similar among species, but certain aspects are distinct. In this review, we introduced the cumulative knowledge of the plant proteins crucial for meiotic DSB formation and technical advances in DSB detection. We also summarized the genome-wide DSB hotspot profiles for different model organisms. Moreover, we highlighted the classical views and recent advances in our knowledge of the regulatory mechanisms that ensure the fidelity of DSB formation, such as multifaceted kinase-mediated phosphorylation and the consequent high-dimensional changes in chromosome structure. We provided an overview of recent findings concerning DSB formation, distribution and regulation, all of which will help us to determine whether meiotic DSB formation is evolutionarily conserved or varies between plants and other organisms.
Collapse
|
24
|
Tian M, Loidl J. A chromatin-associated protein required for inducing and limiting meiotic DNA double-strand break formation. Nucleic Acids Res 2019; 46:11822-11834. [PMID: 30357385 PMCID: PMC6294514 DOI: 10.1093/nar/gky968] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/05/2018] [Indexed: 11/13/2022] Open
Abstract
Programmed DNA double-strand breaks (DSBs) are required for meiotic recombination, but the number is strictly controlled because they are potentially harmful. Here we report a novel protein, Pars11, which is required for Spo11-dependent DSB formation in the protist Tetrahymena. Pars11 localizes to chromatin early in meiotic prophase in a Spo11-independent manner and is removed before the end of prophase. Pars11 removal depends on DSB formation and ATR-dependent phosphorylation. In the absence of the DNA damage sensor kinase ATR, Pars11 is retained on chromatin and excess DSBs are generated. Similar levels of Pars11 persistence and DSB overproduction occur in a non-phosphorylatable pars11 mutant. We conclude that Pars11 supports DSB formation by Spo11 until enough DSBs are formed; thereafter, DSB production stops in response to ATR-dependent degradation of Pars11 or its removal from chromatin. A similar DSB control mechanism involving a Rec114-Tel1/ATM-dependent negative feedback loop regulates DSB formation in budding yeast. However, there is no detectable sequence homology between Pars11 and Rec114, and DSB numbers are more tightly controlled by Pars11 than by Rec114. The discovery of this mechanism for DSB regulation in the evolutionarily distant protist and fungal lineages suggests that it is conserved across eukaryotes.
Collapse
Affiliation(s)
- Miao Tian
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
25
|
Papanikos F, Clément JAJ, Testa E, Ravindranathan R, Grey C, Dereli I, Bondarieva A, Valerio-Cabrera S, Stanzione M, Schleiffer A, Jansa P, Lustyk D, Fei JF, Adams IR, Forejt J, Barchi M, de Massy B, Toth A. Mouse ANKRD31 Regulates Spatiotemporal Patterning of Meiotic Recombination Initiation and Ensures Recombination between X and Y Sex Chromosomes. Mol Cell 2019; 74:1069-1085.e11. [PMID: 31000436 DOI: 10.1016/j.molcel.2019.03.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/01/2019] [Accepted: 03/20/2019] [Indexed: 12/31/2022]
Abstract
Orderly segregation of chromosomes during meiosis requires that crossovers form between homologous chromosomes by recombination. Programmed DNA double-strand breaks (DSBs) initiate meiotic recombination. We identify ANKRD31 as a key component of complexes of DSB-promoting proteins that assemble on meiotic chromosome axes. Genome-wide, ANKRD31 deficiency causes delayed recombination initiation. In addition, loss of ANKRD31 alters DSB distribution because of reduced selectivity for sites that normally attract DSBs. Strikingly, ANKRD31 deficiency also abolishes uniquely high rates of recombination that normally characterize pseudoautosomal regions (PARs) of X and Y chromosomes. Consequently, sex chromosomes do not form crossovers, leading to chromosome segregation failure in ANKRD31-deficient spermatocytes. These defects co-occur with a genome-wide delay in assembling DSB-promoting proteins on autosome axes and loss of a specialized PAR-axis domain that is highly enriched for DSB-promoting proteins in wild type. Thus, we propose a model for spatiotemporal patterning of recombination by ANKRD31-dependent control of axis-associated DSB-promoting proteins.
Collapse
Affiliation(s)
- Frantzeskos Papanikos
- Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Julie A J Clément
- Institute of Human Genetics, UMR 9002, CNRS, Université de Montpellier, 34396 Montpellier Cedex 5, France
| | - Erika Testa
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, Via Montpellier n.1, 00133 Rome, Italy
| | - Ramya Ravindranathan
- Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Corinne Grey
- Institute of Human Genetics, UMR 9002, CNRS, Université de Montpellier, 34396 Montpellier Cedex 5, France
| | - Ihsan Dereli
- Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Anastasiia Bondarieva
- Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Sarai Valerio-Cabrera
- Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Marcello Stanzione
- Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Campus Vienna BioCenter 1, Vienna BioCenter (VBC), 1030 Vienna, Austria; Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Petr Jansa
- Institute of Molecular Genetics, Division BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic
| | - Diana Lustyk
- Institute of Molecular Genetics, Division BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic
| | - Ji-Feng Fei
- Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China
| | - Ian R Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Jiri Forejt
- Institute of Molecular Genetics, Division BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic
| | - Marco Barchi
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, Via Montpellier n.1, 00133 Rome, Italy
| | - Bernard de Massy
- Institute of Human Genetics, UMR 9002, CNRS, Université de Montpellier, 34396 Montpellier Cedex 5, France.
| | - Attila Toth
- Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| |
Collapse
|
26
|
Bhattacharyya T, Walker M, Powers NR, Brunton C, Fine AD, Petkov PM, Handel MA. Prdm9 and Meiotic Cohesin Proteins Cooperatively Promote DNA Double-Strand Break Formation in Mammalian Spermatocytes. Curr Biol 2019; 29:1002-1018.e7. [PMID: 30853435 PMCID: PMC6544150 DOI: 10.1016/j.cub.2019.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/20/2018] [Accepted: 02/01/2019] [Indexed: 11/19/2022]
Abstract
Meiotic recombination is required for correct segregation of chromosomes to gametes and to generate genetic diversity. In mice and humans, DNA double-strand breaks (DSBs) are initiated by SPO11 at recombination hotspots activated by PRDM9-catalyzed histone modifications on open chromatin. However, the DSB-initiating and repair proteins are associated with a linear proteinaceous scaffold called the chromosome axis, the core of which is composed of cohesin proteins. STAG3 is a stromalin subunit common to all meiosis-specific cohesin complexes. Mutations of meiotic cohesin proteins, especially STAG3, perturb both axis formation and recombination in the mouse, prompting determination of how the processes are mechanistically related. Protein interaction and genetic analyses revealed that PRDM9 interacts with STAG3 and REC8 in cooperative relationships that promote normal levels of meiotic DSBs at recombination hotspots in spermatocytes. The efficacy of the Prdm9-Stag3 genetic interaction in promoting DSB formation depends on PRDM9-mediated histone methyltransferase activity. Moreover, STAG3 deficiency has a major effect on DSB number even in the absence of PRDM9, showing that its role is not restricted to canonical PRDM9-activated hotspots. STAG3 and REC8 promote axis localization of the DSB-promoting proteins HORMAD1, IHO1, and MEI4, as well as SPO11 activity. These results establish that PRDM9 and axis-associated cohesin complexes together coordinate and facilitate meiotic recombination by recruiting key proteins for initiation of DSBs, thereby associating activated hotspots with DSB-initiating complexes on the axis.
Collapse
Affiliation(s)
| | | | | | | | - Alexander D Fine
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | | | - Mary Ann Handel
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
27
|
Transition from a meiotic to a somatic-like DNA damage response during the pachytene stage in mouse meiosis. PLoS Genet 2019; 15:e1007439. [PMID: 30668564 PMCID: PMC6358097 DOI: 10.1371/journal.pgen.1007439] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 02/01/2019] [Accepted: 11/28/2018] [Indexed: 11/24/2022] Open
Abstract
Homologous recombination (HR) is the principal mechanism of DNA repair acting during meiosis and is fundamental for the segregation of chromosomes and the increase of genetic diversity. Nevertheless, non-homologous end joining (NHEJ) mechanisms can also act during meiosis, mainly in response to exogenously-induced DNA damage in late stages of first meiotic prophase. In order to better understand the relationship between these two repair pathways, we studied the response to DNA damage during male mouse meiosis after gamma radiation. We clearly discerned two types of responses immediately after treatment. From leptotene to early pachytene, exogenous damage triggered the massive presence of γH2AX throughout the nucleus, which was associated with DNA repair mediated by HR components (DMC1 and RAD51). This early pathway finished with the sequential removal of DMC1 and RAD51 and was no longer inducible at mid pachytene. However, from mid-pachytene to diplotene, γH2AX appeared as large discrete foci. This late repair pattern was mediated initially by NHEJ, involving Ku70 and XRCC4, which were constitutively present, and 53BP1, which appeared at sites of damage soon after irradiation. Nevertheless, 24 hours after irradiation, a HR pathway involving RAD51 but not DMC1 mostly replaced NHEJ. Additionally, we observed the occurrence of synaptonemal complex bridges between bivalents, most likely representing chromosome translocation events that may involve DMC1, RAD51 or 53BP1. Our results reinforce the idea that the early “meiotic” repair pathway that acts by default at the beginning of meiosis is replaced from mid-pachytene onwards by a “somatic-like” repair pattern. This shift might be important to resolve DNA damage (either endogenous or exogenous) that could not be repaired by the early meiotic mechanisms, for instance those in the sex chromosomes, which lack a homologous chromosome to repair with. This transition represents another layer of functional changes that occur in meiotic cells during mid pachytene, in addition to epigenetic reprograming, reactivation of transcription, changes in the gene expression profile and acquisition of competence to proceed to metaphase. DNA repair is critical for both somatic and meiotic cells. During meiosis, hundreds of DNA double strand breaks (DSBs) are introduced endogenously. To repair this damage, meiotic cells use a specialized version of the homologous recombination (HR) pathway that uses specific meiotic recombinases, such as DMC1, to promote repair with the homologous chromosome instead of the sister chromatid. This process is important to ensure chromosome segregation during meiosis and, as a side consequence, increases the genetic diversity of offspring. Nevertheless, under specific circumstances, meiotic cells can use other DNA repair mechanisms such as non-homologous end joining (NHEJ), which is error-prone. We investigated the response of mouse spermatocytes to increased DNA damage caused by gamma radiation, which is commonly used in cancer therapy. We found that the excess of DSBs produced by irradiation is processed by the meiotic HR recombination pathway in spermatocytes at the early stages of first meiotic prophase. However, this response is not inducible from the mid-pachytene stage onwards. From this point on, spermatocytes rely on a response that shares many features with that of somatic cells. In this response, the NHEJ pathway is first used to repair DNA damage but is subsequently replaced by a HR mechanism that does not use DMC1. Instead, it relies only on RAD51, which is known to function in both somatic and meiosis cells and, contrary to DMC1, has a preference for the sister chromatid. This switch from a meiotic to a somatic-like response is accompanied by a conspicuous change in the epigenetic response to DNA damage, reinforcing the idea that a functional transition occurs in meiotic cells during the mid-pachytene stage.
Collapse
|
28
|
Jeon Y, Park MK, Kim SM, Bae JS, Lee CW, Lee H. TopBP1 deficiency impairs the localization of proteins involved in early recombination and results in meiotic chromosome defects during spermatogenesis. Biochem Biophys Res Commun 2019; 508:722-728. [PMID: 30528234 DOI: 10.1016/j.bbrc.2018.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 12/01/2018] [Indexed: 12/24/2022]
Abstract
Topoisomerase IIβ-binding protein 1 (TopBP1) is BRCT domain-containing protein that is required for DNA double-strand break (DSB) repair and DNA damage responses; however, its function during the early stage of spermatogenesis is still unclear. To investigate the physiological role of TopBP1, we have generated germ cell-specific TopBP1-depleted mouse model. TopBP1-deleted mice were infertile, showed a loss of germ cells and had meiotic defects. Conditional TopBP1 deletion resulted in reduced testis size, reduced number of epididymal sperm, increased apoptosis, and severely compromised fertility. TopBP1 deficiency caused defects in DMC1 and Rad51 foci formation, abnormal synaptonemal complexes and meiotic chromosome defects. Collectively, these results suggest that TopBP1 deficiency during spermatogenesis impairs the localization of proteins involved in early recombination at DSBs, results in meiotic chromosome defects and leads to infertility.
Collapse
Affiliation(s)
- Yoon Jeon
- Carcinogenesis and Metastasis Research Branch, National Cancer Center, Gyeonggi, Republic of Korea; Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Mi Kyung Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi, Republic of Korea
| | - Sun Mi Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi, Republic of Korea
| | - June Sung Bae
- Carcinogenesis and Metastasis Research Branch, National Cancer Center, Gyeonggi, Republic of Korea
| | - Chang Woo Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ho Lee
- Carcinogenesis and Metastasis Research Branch, National Cancer Center, Gyeonggi, Republic of Korea; Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi, Republic of Korea.
| |
Collapse
|
29
|
Ishiguro K. The cohesin complex in mammalian meiosis. Genes Cells 2019; 24:6-30. [PMID: 30479058 PMCID: PMC7379579 DOI: 10.1111/gtc.12652] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022]
Abstract
Cohesin is an evolutionary conserved multi-protein complex that plays a pivotal role in chromosome dynamics. It plays a role both in sister chromatid cohesion and in establishing higher order chromosome architecture, in somatic and germ cells. Notably, the cohesin complex in meiosis differs from that in mitosis. In mammalian meiosis, distinct types of cohesin complexes are produced by altering the combination of meiosis-specific subunits. The meiosis-specific subunits endow the cohesin complex with specific functions for numerous meiosis-associated chromosomal events, such as chromosome axis formation, homologue association, meiotic recombination and centromeric cohesion for sister kinetochore geometry. This review mainly focuses on the cohesin complex in mammalian meiosis, pointing out the differences in its roles from those in mitosis. Further, common and divergent aspects of the meiosis-specific cohesin complex between mammals and other organisms are discussed.
Collapse
Affiliation(s)
- Kei‐ichiro Ishiguro
- Institute of Molecular Embryology and GeneticsKumamoto UniversityKumamotoJapan
| |
Collapse
|
30
|
Tian H, Billings T, Petkov PM. CXXC1 is not essential for normal DNA double-strand break formation and meiotic recombination in mouse. PLoS Genet 2018; 14:e1007657. [PMID: 30365547 PMCID: PMC6221362 DOI: 10.1371/journal.pgen.1007657] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 11/07/2018] [Accepted: 08/24/2018] [Indexed: 12/28/2022] Open
Abstract
In most mammals, including mice and humans, meiotic recombination is determined by the meiosis specific histone methytransferase PRDM9, which binds to specific DNA sequences and trimethylates histone 3 at lysine-4 and lysine-36 at the adjacent nucleosomes. These actions ensure successful DNA double strand break formation and repair that occur on the proteinaceous structure forming the chromosome axis. The process of hotspot association with the axis after their activation by PRDM9 is poorly understood. Previously, we and others have identified CXXC1, an ortholog of S. cerevisiae Spp1 in mammals, as a PRDM9 interactor. In yeast, Spp1 is a histone methyl reader that links H3K4me3 sites with the recombination machinery, promoting DSB formation. Here, we investigated whether CXXC1 has a similar function in mouse meiosis. We created two Cxxc1 conditional knockout mouse models to deplete CXXC1 generally in germ cells, and before the onset of meiosis. Surprisingly, male knockout mice were fertile, and the loss of CXXC1 in spermatocytes had no effect on PRDM9 hotspot trimethylation, double strand break formation or repair. Our results demonstrate that CXXC1 is not an essential link between PRDM9-activated recombination hotspot sites and DSB machinery and that the hotspot recognition pathway in mouse is independent of CXXC1. Meiotic recombination increases genetic diversity by ensuring novel combination of alleles passing correctly to the next generation. In most mammals, the meiotic recombination sites are determined by histone methyltransferase PRDM9. These sites are proposed to become associated with the chromosome axis with the participation of additional proteins and undergo double strand breaks, which are repaired by homologous recombination. In budding yeast, Spp1 (ortholog of CXXC1) binds to methylated H3K4 and connects these sites with the chromosome axis promoting DSB formation. However, our data suggest that even though CXXC1 interacts with PRDM9 in male germ cells, it does not play a crucial role in mouse meiotic recombination. These results indicate that, unlike in yeast, a recombination initiation pathway that includes CXXC1 could only serve as a non-essential pathway in mouse meiosis.
Collapse
Affiliation(s)
- Hui Tian
- The Jackson Laboratory, Bar Harbor, ME 04609, United States of America
| | - Timothy Billings
- The Jackson Laboratory, Bar Harbor, ME 04609, United States of America
| | - Petko M. Petkov
- The Jackson Laboratory, Bar Harbor, ME 04609, United States of America
- * E-mail:
| |
Collapse
|
31
|
Abstract
During meiosis, maternal and paternal chromosomes undergo exchanges by homologous recombination. This is essential for fertility and contributes to genome evolution. In many eukaryotes, sites of meiotic recombination, also called hotspots, are regions of accessible chromatin, but in many vertebrates, their location follows a distinct pattern and is specified by PR domain-containing protein 9 (PRDM9). The specification of meiotic recombination hotspots is achieved by the different activities of PRDM9: DNA binding, histone methyltransferase, and interaction with other proteins. Remarkably, PRDM9 activity leads to the erosion of its own binding sites and the rapid evolution of its DNA-binding domain. PRDM9 may also contribute to reproductive isolation, as it is involved in hybrid sterility potentially due to a reduction of its activity in specific heterozygous contexts.
Collapse
Affiliation(s)
- Corinne Grey
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | - Frédéric Baudat
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | - Bernard de Massy
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| |
Collapse
|
32
|
Lukaszewicz A, Lange J, Keeney S, Jasin M. Control of meiotic double-strand-break formation by ATM: local and global views. Cell Cycle 2018; 17:1155-1172. [PMID: 29963942 PMCID: PMC6110601 DOI: 10.1080/15384101.2018.1464847] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/19/2018] [Accepted: 04/08/2018] [Indexed: 10/28/2022] Open
Abstract
DNA double-strand breaks (DSBs) generated by the SPO11 protein initiate meiotic recombination, an essential process for successful chromosome segregation during gametogenesis. The activity of SPO11 is controlled by multiple factors and regulatory mechanisms, such that the number of DSBs is limited and DSBs form at distinct positions in the genome and at the right time. Loss of this control can affect genome integrity or cause meiotic arrest by mechanisms that are not fully understood. Here we focus on the DSB-responsive kinase ATM and its functions in regulating meiotic DSB numbers and distribution. We review the recently discovered roles of ATM in this context, discuss their evolutionary conservation, and examine future research perspectives.
Collapse
Affiliation(s)
- Agnieszka Lukaszewicz
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julian Lange
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
33
|
Choi K, Zhao X, Tock AJ, Lambing C, Underwood CJ, Hardcastle TJ, Serra H, Kim J, Cho HS, Kim J, Ziolkowski PA, Yelina NE, Hwang I, Martienssen RA, Henderson IR. Nucleosomes and DNA methylation shape meiotic DSB frequency in Arabidopsis thaliana transposons and gene regulatory regions. Genome Res 2018; 28:532-546. [PMID: 29530928 PMCID: PMC5880243 DOI: 10.1101/gr.225599.117] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 02/08/2018] [Indexed: 02/02/2023]
Abstract
Meiotic recombination initiates from DNA double-strand breaks (DSBs) generated by SPO11 topoisomerase-like complexes. Meiotic DSB frequency varies extensively along eukaryotic chromosomes, with hotspots controlled by chromatin and DNA sequence. To map meiotic DSBs throughout a plant genome, we purified and sequenced Arabidopsis thaliana SPO11-1-oligonucleotides. SPO11-1-oligos are elevated in gene promoters, terminators, and introns, which is driven by AT-sequence richness that excludes nucleosomes and allows SPO11-1 access. A positive relationship was observed between SPO11-1-oligos and crossovers genome-wide, although fine-scale correlations were weaker. This may reflect the influence of interhomolog polymorphism on crossover formation, downstream from DSB formation. Although H3K4me3 is enriched in proximity to SPO11-1-oligo hotspots at gene 5' ends, H3K4me3 levels do not correlate with DSBs. Repetitive transposons are thought to be recombination silenced during meiosis, to prevent nonallelic interactions and genome instability. Unexpectedly, we found high SPO11-1-oligo levels in nucleosome-depleted Helitron/Pogo/Tc1/Mariner DNA transposons, whereas retrotransposons were coldspots. High SPO11-1-oligo transposons are enriched within gene regulatory regions and in proximity to immunity genes, suggesting a role as recombination enhancers. As transposon mobility in plant genomes is restricted by DNA methylation, we used the met1 DNA methyltransferase mutant to investigate the role of heterochromatin in SPO11-1-oligo distributions. Epigenetic activation of meiotic DSBs in proximity to centromeres and transposons occurred in met1 mutants, coincident with reduced nucleosome occupancy, gain of transcription, and H3K4me3. Together, our work reveals a complex relationship between chromatin and meiotic DSBs within A. thaliana genes and transposons, with significance for the diversity and evolution of plant genomes.
Collapse
Affiliation(s)
- Kyuha Choi
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom;,Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Xiaohui Zhao
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Andrew J. Tock
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Charles J. Underwood
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom;,Howard Hughes Medical Institute–Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Thomas J. Hardcastle
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Heïdi Serra
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Juhyun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hyun Seob Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jaeil Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Piotr A. Ziolkowski
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Nataliya E. Yelina
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Ildoo Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Robert A. Martienssen
- Howard Hughes Medical Institute–Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Ian R. Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| |
Collapse
|
34
|
Choi K, Zhao X, Tock AJ, Lambing C, Underwood CJ, Hardcastle TJ, Serra H, Kim J, Cho HS, Kim J, Ziolkowski PA, Yelina NE, Hwang I, Martienssen RA, Henderson IR. Nucleosomes and DNA methylation shape meiotic DSB frequency in Arabidopsis thaliana transposons and gene regulatory regions. Genome Res 2018. [PMID: 29530928 DOI: 10.1101/gr.225599.117.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Meiotic recombination initiates from DNA double-strand breaks (DSBs) generated by SPO11 topoisomerase-like complexes. Meiotic DSB frequency varies extensively along eukaryotic chromosomes, with hotspots controlled by chromatin and DNA sequence. To map meiotic DSBs throughout a plant genome, we purified and sequenced Arabidopsis thaliana SPO11-1-oligonucleotides. SPO11-1-oligos are elevated in gene promoters, terminators, and introns, which is driven by AT-sequence richness that excludes nucleosomes and allows SPO11-1 access. A positive relationship was observed between SPO11-1-oligos and crossovers genome-wide, although fine-scale correlations were weaker. This may reflect the influence of interhomolog polymorphism on crossover formation, downstream from DSB formation. Although H3K4me3 is enriched in proximity to SPO11-1-oligo hotspots at gene 5' ends, H3K4me3 levels do not correlate with DSBs. Repetitive transposons are thought to be recombination silenced during meiosis, to prevent nonallelic interactions and genome instability. Unexpectedly, we found high SPO11-1-oligo levels in nucleosome-depleted Helitron/Pogo/Tc1/Mariner DNA transposons, whereas retrotransposons were coldspots. High SPO11-1-oligo transposons are enriched within gene regulatory regions and in proximity to immunity genes, suggesting a role as recombination enhancers. As transposon mobility in plant genomes is restricted by DNA methylation, we used the met1 DNA methyltransferase mutant to investigate the role of heterochromatin in SPO11-1-oligo distributions. Epigenetic activation of meiotic DSBs in proximity to centromeres and transposons occurred in met1 mutants, coincident with reduced nucleosome occupancy, gain of transcription, and H3K4me3. Together, our work reveals a complex relationship between chromatin and meiotic DSBs within A. thaliana genes and transposons, with significance for the diversity and evolution of plant genomes.
Collapse
Affiliation(s)
- Kyuha Choi
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Xiaohui Zhao
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Andrew J Tock
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Charles J Underwood
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Thomas J Hardcastle
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Heïdi Serra
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Juhyun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hyun Seob Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jaeil Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Piotr A Ziolkowski
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Nataliya E Yelina
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Ildoo Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Robert A Martienssen
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| |
Collapse
|
35
|
Paigen K, Petkov PM. PRDM9 and Its Role in Genetic Recombination. Trends Genet 2018; 34:291-300. [PMID: 29366606 DOI: 10.1016/j.tig.2017.12.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 12/22/2022]
Abstract
PRDM9 is a zinc finger protein that binds DNA at specific locations in the genome where it trimethylates histone H3 at lysines 4 and 36 at surrounding nucleosomes. During meiosis in many species, including humans and mice where PRDM9 has been most intensely studied, these actions determine the location of recombination hotspots, where genetic recombination occurs. In addition, PRDM9 facilitates the association of hotspots with the chromosome axis, the site of the programmed DNA double-strand breaks (DSBs) that give rise to genetic exchange between chromosomes. In the absence of PRDM9 DSBs are not properly repaired. Collectively, these actions determine patterns of genetic linkage and the possibilities for chromosome reorganization over successive generations.
Collapse
|
36
|
MTOPVIB interacts with AtPRD1 and plays important roles in formation of meiotic DNA double-strand breaks in Arabidopsis. Sci Rep 2017; 7:10007. [PMID: 28855712 PMCID: PMC5577129 DOI: 10.1038/s41598-017-10270-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/28/2017] [Indexed: 12/19/2022] Open
Abstract
Meiotic recombination is initiated from the formation of DNA double-strand breaks (DSBs). In Arabidopsis, several proteins, such as AtPRD1, AtPRD2, AtPRD3, AtDFO and topoisomerase (Topo) VI-like complex, have been identified as playing important roles in DSB formation. Topo VI-like complex in Arabidopsis may consist of subunit A (Topo VIA: AtSPO11-1 and AtSPO11-2) and subunit B (Topo VIB: MTOPVIB). Little is known about their roles in Arabidopsis DSB formation. Here, we report on the characterization of the MTOPVIB gene using the Arabidopsis mutant alleles mtopVIB-2 and mtopVIB-3, which were defective in DSB formation. mtopVIB-3 exhibited abortion in embryo sac and pollen development, leading to a significant reduction in fertility. The mtopVIB mutations affected the homologous chromosome synapsis and recombination. MTOPVIB could interact with Topo VIA proteins AtSPO11-1 and AtSPO11-2. AtPRD1 interacted directly with Topo VI–like proteins. AtPRD1 also could interact with AtPRD3 and AtDFO. The results indicated that AtPRD1 may act as a bridge protein to interact with AtPRD3 and AtDFO, and interact directly with the Topo VI-like proteins MTOPVIB, AtSPO11-1 and AtSPO11-2 to take part in DSB formation in Arabidopsis.
Collapse
|
37
|
Grey C, Clément JAJ, Buard J, Leblanc B, Gut I, Gut M, Duret L, de Massy B. In vivo binding of PRDM9 reveals interactions with noncanonical genomic sites. Genome Res 2017; 27:580-590. [PMID: 28336543 PMCID: PMC5378176 DOI: 10.1101/gr.217240.116] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/23/2017] [Indexed: 02/02/2023]
Abstract
In mouse and human meiosis, DNA double-strand breaks (DSBs) initiate homologous recombination and occur at specific sites called hotspots. The localization of these sites is determined by the sequence-specific DNA binding domain of the PRDM9 histone methyl transferase. Here, we performed an extensive analysis of PRDM9 binding in mouse spermatocytes. Unexpectedly, we identified a noncanonical recruitment of PRDM9 to sites that lack recombination activity and the PRDM9 binding consensus motif. These sites include gene promoters, where PRDM9 is recruited in a DSB-dependent manner. Another subset reveals DSB-independent interactions between PRDM9 and genomic sites, such as the binding sites for the insulator protein CTCF. We propose that these DSB-independent sites result from interactions between hotspot-bound PRDM9 and genomic sequences located on the chromosome axis.
Collapse
Affiliation(s)
- Corinne Grey
- Institut de Génétique Humaine UMR9002 CNRS-Université de Montpellier, 34396 Montpellier Cedex 05, France
| | - Julie A J Clément
- Institut de Génétique Humaine UMR9002 CNRS-Université de Montpellier, 34396 Montpellier Cedex 05, France
| | - Jérôme Buard
- Institut de Génétique Humaine UMR9002 CNRS-Université de Montpellier, 34396 Montpellier Cedex 05, France
| | - Benjamin Leblanc
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Laurent Duret
- Université de Lyon, Université Claude Bernard, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69100, Villeurbanne, France
| | - Bernard de Massy
- Institut de Génétique Humaine UMR9002 CNRS-Université de Montpellier, 34396 Montpellier Cedex 05, France
| |
Collapse
|
38
|
Parvanov ED, Tian H, Billings T, Saxl RL, Spruce C, Aithal R, Krejci L, Paigen K, Petkov PM. PRDM9 interactions with other proteins provide a link between recombination hotspots and the chromosomal axis in meiosis. Mol Biol Cell 2016; 28:488-499. [PMID: 27932493 PMCID: PMC5341731 DOI: 10.1091/mbc.e16-09-0686] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 11/11/2022] Open
Abstract
In mammals, meiotic recombination occurs at 1- to 2-kb genomic regions termed hotspots, whose positions and activities are determined by PRDM9, a DNA-binding histone methyltransferase. We show that the KRAB domain of PRDM9 forms complexes with additional proteins to allow hotspots to proceed into the next phase of recombination. By a combination of yeast-two hybrid assay, in vitro binding, and coimmunoprecipitation from mouse spermatocytes, we identified four proteins that directly interact with PRDM9's KRAB domain, namely CXXC1, EWSR1, EHMT2, and CDYL. These proteins are coexpressed in spermatocytes at the early stages of meiotic prophase I, the limited period when PRDM9 is expressed. We also detected association of PRDM9-bound complexes with the meiotic cohesin REC8 and the synaptonemal complex proteins SYCP3 and SYCP1. Our results suggest a model in which PRDM9-bound hotspot DNA is brought to the chromosomal axis by the action of these proteins, ensuring the proper chromatin and spatial environment for subsequent recombination events.
Collapse
Affiliation(s)
- Emil D Parvanov
- Center for Genome Dynamics, Jackson Laboratory, Bar Harbor, ME 04609.,Department of Biology, Masaryk University, Brno, Czech Republic 625 00
| | - Hui Tian
- Center for Genome Dynamics, Jackson Laboratory, Bar Harbor, ME 04609
| | - Timothy Billings
- Center for Genome Dynamics, Jackson Laboratory, Bar Harbor, ME 04609
| | - Ruth L Saxl
- Center for Genome Dynamics, Jackson Laboratory, Bar Harbor, ME 04609
| | - Catrina Spruce
- Center for Genome Dynamics, Jackson Laboratory, Bar Harbor, ME 04609
| | - Rakesh Aithal
- Department of Biology, Masaryk University, Brno, Czech Republic 625 00
| | - Lumir Krejci
- Department of Biology, Masaryk University, Brno, Czech Republic 625 00 .,National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic 625 00
| | - Kenneth Paigen
- Center for Genome Dynamics, Jackson Laboratory, Bar Harbor, ME 04609
| | - Petko M Petkov
- Center for Genome Dynamics, Jackson Laboratory, Bar Harbor, ME 04609
| |
Collapse
|
39
|
Meiotic DNA break formation requires the unsynapsed chromosome axis-binding protein IHO1 (CCDC36) in mice. Nat Cell Biol 2016; 18:1208-1220. [PMID: 27723721 DOI: 10.1038/ncb3417] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 09/06/2016] [Indexed: 12/15/2022]
Abstract
DNA double-strand breaks (DSBs) are induced by SPO11 during meiosis to initiate recombination-mediated pairing and synapsis of homologous chromosomes. Germline genome integrity requires spatiotemporal control of DSB formation, which involves the proteinaceous chromosome axis along the core of each meiotic chromosome. In particular, a component of unsynapsed axes, HORMAD1, promotes DSB formation in unsynapsed regions where DSB formation must occur to ensure completion of synapsis. Despite its importance, the underlying mechanism has remained elusive. We identify CCDC36 as a direct interactor of HORMAD1 (IHO1) that is essential for DSB formation. Underpinning this function, IHO1 and conserved SPO11-auxiliary proteins MEI4 and REC114 assemble chromatin-bound recombinosomes that are predicted activators of DSB formation. HORMAD1 is needed for robust recruitment of IHO1 to unsynapsed axes and efficient formation and/or stabilization of these recombinosomes. Thus, we propose that HORMAD1-IHO1 interaction provides a mechanism for the selective promotion of DSB formation along unsynapsed chromosome axes.
Collapse
|
40
|
Robert T, Nore A, Brun C, Maffre C, Crimi B, Bourbon HM, de Massy B. The TopoVIB-Like protein family is required for meiotic DNA double-strand break formation. Science 2016; 351:943-9. [PMID: 26917764 DOI: 10.1126/science.aad5309] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Meiotic recombination is induced by the formation of DNA double-strand breaks (DSBs) catalyzed by SPO11, the ortholog of subunit A of TopoVI DNA topoisomerase (TopoVIA). TopoVI activity requires the interaction between A and B subunits. We identified a conserved family of plant and animal proteins [the TOPOVIB-Like (TOPOVIBL) family] that share strong structural similarity to the TopoVIB subunit of TopoVI DNA topoisomerase. We further characterize the meiotic recombination proteins Rec102 (Saccharomyces cerevisiae), Rec6 (Schizosaccharomyces pombe), and MEI-P22 (Drosophila melanogaster) as homologs to the transducer domain of TopoVIB. We demonstrate that the mouse TOPOVIBL protein interacts and forms a complex with SPO11 and is required for meiotic DSB formation. We conclude that meiotic DSBs are catalyzed by a complex involving SPO11 and TOPOVIBL.
Collapse
Affiliation(s)
- T Robert
- Institute of Human Genetics, UPR 1142 CNRS, 141 Rue de la Cardonille, 34396 Montpellier cedex 05, France
| | - A Nore
- Institute of Human Genetics, UPR 1142 CNRS, 141 Rue de la Cardonille, 34396 Montpellier cedex 05, France
| | - C Brun
- Institute of Human Genetics, UPR 1142 CNRS, 141 Rue de la Cardonille, 34396 Montpellier cedex 05, France
| | - C Maffre
- Institute of Human Genetics, UPR 1142 CNRS, 141 Rue de la Cardonille, 34396 Montpellier cedex 05, France
| | - B Crimi
- Institute of Human Genetics, UPR 1142 CNRS, 141 Rue de la Cardonille, 34396 Montpellier cedex 05, France
| | - H-M Bourbon
- Centre de Biologie du Développement, Université Fédérale de Toulouse, Paul Sabatier Campus, 118 Route de Narbonne, 31062 Toulouse, France.
| | - B de Massy
- Institute of Human Genetics, UPR 1142 CNRS, 141 Rue de la Cardonille, 34396 Montpellier cedex 05, France.
| |
Collapse
|