1
|
Deguchi E, Lin S, Hirayama D, Matsuda K, Tanave A, Sumiyama K, Tsukiji S, Otani T, Furuse M, Sorkin A, Matsuda M, Terai K. Low-affinity ligands of the epidermal growth factor receptor are long-range signal transmitters during collective cell migration of epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614853. [PMID: 39399773 PMCID: PMC11468830 DOI: 10.1101/2024.09.25.614853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Epidermal growth factor receptor ligands (EGFRLs) consist of seven proteins. In stark contrast to the amassed knowledge concerning the epidermal growth factor receptors themselves, the extracellular dynamics of individual EGFRLs remain elusive. Here, employing fluorescent probes and a tool for triggering ectodomain shedding of EGFRLs, we show that EREG, a low-affinity EGFRL, exhibits the most rapid and efficient activation of EGFR in confluent epithelial cells and mouse epidermis. In Madin-Darby canine kidney (MDCK) renal epithelial cells, EGFR- and ERK-activation waves propagate during collective cell migration in an ADAM17 sheddase- and EGFRL-dependent manner. Upon induction of EGFRL shedding, radial ERK activation waves were observed in the surrounding receiver cells. Notably, the low-affinity ligands EREG and AREG mediated faster and broader ERK waves than the high-affinity ligands. The integrity of tight/adherens junctions was essential for the propagation of ERK activation, implying that the tight intercellular spaces prefer the low-affinity EGFRL to the high-affinity ligands for efficient signal transmission. To validate this observation in vivo , we generated EREG-deficient mice expressing the ERK biosensor and found that ERK wave propagation and cell migration were impaired during skin wound repair. In conclusion, we have quantitatively demonstrated the distinctions among EGFRLs in shedding, diffusion, and target cell activation in physiological contexts. Our findings underscore the pivotal role of low-affinity EGFRLs in rapid intercellular signal transmission.
Collapse
|
2
|
Chou CL, Limbutara K, Kao AR, Clark JZ, Nein EH, Raghuram V, Knepper MA. Collecting duct water permeability inhibition by EGF is associated with decreased cAMP, PKA activity, and AQP2 phosphorylation at Ser 269. Am J Physiol Renal Physiol 2024; 326:F545-F559. [PMID: 38205543 PMCID: PMC11208025 DOI: 10.1152/ajprenal.00197.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Prior studies showed that epidermal growth factor (EGF) inhibits vasopressin-stimulated osmotic water permeability in the renal collecting duct. Here, we investigated the underlying mechanism. Using isolated perfused rat inner medullary collecting ducts (IMCDs), we found that the addition of EGF to the peritubular bath significantly decreased 1-deamino-8-d-arginine vasopressin (dDAVP)-stimulated water permeability, confirming prior observations. The inhibitory effect of EGF on water permeability was associated with a reduction in intracellular cAMP levels and protein kinase A (PKA) activity. Using phospho-specific antibodies and immunoblotting in IMCD suspensions, we showed that EGF significantly reduces phosphorylation of AQP2 at Ser264 and Ser269. This effect was absent when 8-cpt-cAMP was used to induce AQP2 phosphorylation, suggesting that EGF's inhibitory effect was at a pre-cAMP step. Immunofluorescence labeling of microdissected IMCDs showed that EGF significantly reduced apical AQP2 abundance in the presence of dDAVP. To address what protein kinase might be responsible for Ser269 phosphorylation, we used Bayesian analysis to integrate multiple-omic datasets. Thirteen top-ranked protein kinases were subsequently tested by in vitro phosphorylation experiments for their ability to phosphorylate AQP2 peptides using a mass spectrometry readout. The results show that the PKA catalytic-α subunit increased phosphorylation at Ser256, Ser264, and Ser269. None of the other kinases tested phosphorylated Ser269. In addition, H-89 and PKI strongly inhibited dDAVP-stimulated AQP2 phosphorylation at Ser269. These results indicate that EGF decreases the water permeability of the IMCD by inhibiting cAMP production, thereby inhibiting PKA and decreasing AQP2 phosphorylation at Ser269, a site previously shown to regulate AQP2 endocytosis.NEW & NOTEWORTHY The authors used native rat collecting ducts to show that inhibition of vasopressin-stimulated water permeability by epidermal growth factor involves a reduction of aquaporin 2 phosphorylation at Ser269, a consequence of reduced cAMP production and PKA activity.
Collapse
Affiliation(s)
- Chung-Lin Chou
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Kavee Limbutara
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Anika R Kao
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jevin Z Clark
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Ellen H Nein
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
3
|
Harmych SJ, Tydings CW, Meiler J, Singh B. Sequence and structural insights of monoleucine-based sorting motifs contained within the cytoplasmic domains of basolateral proteins. Front Cell Dev Biol 2024; 12:1379224. [PMID: 38495621 PMCID: PMC10940456 DOI: 10.3389/fcell.2024.1379224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Delivery to the correct membrane domain in polarized epithelial cells is a critical regulatory mechanism for transmembrane proteins. The trafficking of these proteins is directed by short amino acid sequences known as sorting motifs. In six basolaterally-localized proteins lacking the canonical tyrosine- and dileucine-based basolateral sorting motifs, a monoleucine-based sorting motif has been identified. This review will discuss these proteins with an identified monoleucine-based sorting motif, their conserved structural features, as well as the future directions of study for this non-canonical basolateral sorting motif.
Collapse
Affiliation(s)
- Sarah J. Harmych
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Claiborne W. Tydings
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Jens Meiler
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
4
|
Qualls-Histed SJ, Nielsen CP, MacGurn JA. Lysosomal trafficking of the glucose transporter GLUT1 requires sequential regulation by TXNIP and ubiquitin. iScience 2023; 26:106150. [PMID: 36890792 PMCID: PMC9986520 DOI: 10.1016/j.isci.2023.106150] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/04/2022] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Glucose transporters are gatekeepers of cellular glucose metabolism. Understanding how their activity is regulated can provide insight into mechanisms of glucose homeostasis and diseases arising from dysregulation of glucose transport. Glucose stimulates endocytosis of the human glucose transporter GLUT1, but several important questions remain surrounding the intracellular trafficking itinerary of GLUT1. Here, we report that increased glucose availability triggers lysosomal trafficking of GLUT1 in HeLa cells, with a subpopulation of GLUT1 routed through ESCRT-associated late endosomes. This itinerary requires the arrestin-like protein TXNIP, which interacts with both clathrin and E3 ubiquitin ligases to promote GLUT1 lysosomal trafficking. We also find that glucose stimulates GLUT1 ubiquitylation, which promotes its lysosomal trafficking. Our results suggest that excess glucose first triggers TXNIP-mediated endocytosis of GLUT1 and, subsequently, ubiquitylation to promote lysosomal trafficking. Our findings underscore how complex coordination of multiple regulators is required for fine-tuning of GLUT1 stability at the cell surface.
Collapse
Affiliation(s)
- Susan J. Qualls-Histed
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240 USA
| | - Casey P. Nielsen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240 USA
| | - Jason A. MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240 USA
| |
Collapse
|
5
|
Singh B, Bogatcheva G, Krystofiak E, McKinley ET, Hill S, Rose KL, Higginbotham JN, Coffey RJ. Induction of apically mistrafficked epiregulin disrupts epithelial polarity via aberrant EGFR signaling. J Cell Sci 2021; 134:271860. [PMID: 34406412 DOI: 10.1242/jcs.255927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 08/09/2021] [Indexed: 12/27/2022] Open
Abstract
In polarized MDCK cells, disruption of the tyrosine-based YXXΦ basolateral trafficking motif (Y156A) in the epidermal growth factor receptor (EGFR) ligand epiregulin (EREG), results in its apical mistrafficking and transformation in vivo. However, the mechanisms underlying these dramatic effects are unknown. Using a doxycycline-inducible system in 3D Matrigel cultures, we now show that induction of Y156A EREG in fully formed MDCK cysts results in direct and complete delivery of mutant EREG to the apical cell surface. Within 3 days of induction, ectopic lumens were detected in mutant, but not wild-type, EREG-expressing cysts. Of note, these structures resembled histological features found in subcutaneous xenografts of mutant EREG-expressing MDCK cells. These ectopic lumens formed de novo rather than budding from the central lumen and depended on metalloprotease-mediated cleavage of EREG and subsequent EGFR activity. Moreover, the most frequent EREG mutation in human cancer (R147stop) resulted in its apical mistrafficking in engineered MDCK cells. Thus, induction of EREG apical mistrafficking is sufficient to disrupt selective aspects of polarity of a preformed polarized epithelium. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Epithelial Biology Center , Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Galina Bogatcheva
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Evan Krystofiak
- Cell Imaging Shared Resource, Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Eliot T McKinley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Epithelial Biology Center , Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Salisha Hill
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | | | - James N Higginbotham
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Epithelial Biology Center , Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Tseng CC, Jia B, Barndt RB, Dai YH, Chen YH, Du PWA, Wang JK, Tang HJ, Lin CY, Johnson MD. The intracellular seven amino acid motif EEGEVFL is required for matriptase vesicle sorting and translocation to the basolateral plasma membrane. PLoS One 2020; 15:e0228874. [PMID: 32049977 PMCID: PMC7015431 DOI: 10.1371/journal.pone.0228874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/24/2020] [Indexed: 12/21/2022] Open
Abstract
Matriptase plays important roles in epithelial integrity and function, which depend on its sorting to the basolateral surface of cells, where matriptase zymogen is converted to an active enzyme in order to act on its substrates. After activation, matriptase undergoes HAI-1-mediated inhibition, internalization, transcytosis, and secretion from the apical surface into the lumen. Matriptase is a mosaic protein with several distinct protein domains and motifs, which are a reflection of matriptase’s complex cellular itinerary, life cycle, and the tight control of its enzymatic activity. While the molecular determinants for various matriptase regulatory events have been identified, the motif(s) required for translocation of human matriptase to the basolateral plasma membrane is unknown. The motif previously identified in rat matriptase is not conserved between the rodent and the primate. We, here, revisit the question for human matriptase through the use of a fusion protein containing a green fluorescent protein linked to the matriptase N-terminal fragment ending at Gly-149. A conserved seven amino acid motif EEGEVFL, which is similar to the monoleucine C-terminal to an acidic cluster motif involved in the basolateral targeting for some growth factors, has been shown to be required for matriptase translocation to the basolateral plasma membrane of polarized MDCK cells. Furthermore, time-lapse video microscopy showed that the motif appears to be required for entry into the correct transport vesicles, by which matriptase can undergo rapid trafficking and translocate to the plasma membrane. Our study reveals that the EEGEVFL motif is necessary, but may not be sufficient, for matriptase basolateral membrane targeting and serves as the basis for further research on its pathophysiological roles.
Collapse
Affiliation(s)
- Chun-Che Tseng
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC, United States of America
| | - Bailing Jia
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC, United States of America
- Department of Gastroenterology and Hepatology, Henan Provincial People’s Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Robert B. Barndt
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC, United States of America
| | - Yang-Hong Dai
- Department of Radiation Oncology, Tri-Service General Hospital, Taipei, Taiwan
| | - Yu Hsin Chen
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Po-Wen A. Du
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC, United States of America
- National Defense Medical Center, Department of Biochemistry, Taipei, Taiwan
| | - Jehng-Kang Wang
- National Defense Medical Center, Department of Biochemistry, Taipei, Taiwan
| | - Hung-Jen Tang
- Section of Infectious Diseases, Chi-Mei Medical Center, Tainan, Taiwan
- * E-mail: (HJT); (CYL); (MDJ)
| | - Chen-Yong Lin
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC, United States of America
- * E-mail: (HJT); (CYL); (MDJ)
| | - Michael D. Johnson
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC, United States of America
- * E-mail: (HJT); (CYL); (MDJ)
| |
Collapse
|
7
|
Graves-Deal R, Bogatcheva G, Rehman S, Lu Y, Higginbotham JN, Singh B. Broad-spectrum receptor tyrosine kinase inhibitors overcome de novo and acquired modes of resistance to EGFR-targeted therapies in colorectal cancer. Oncotarget 2019; 10:1320-1333. [PMID: 30863492 PMCID: PMC6407678 DOI: 10.18632/oncotarget.26663] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/28/2019] [Indexed: 12/15/2022] Open
Abstract
It is increasingly appreciated that 3D cultures are more predictive of in vivo therapeutic efficacy than 2D cultures. Using in vitro 3D type I collagen cultures of human colorectal cancer (CRC) cell line HCA-7 derivatives CC, SC, and CC-CR, we previously identified that activation of receptor tyrosine kinases (RTKs) MET and RON contributed to resistance to the EGF receptor (EGFR)-directed therapeutic antibody cetuximab. The de novo mode of cetuximab resistance in SC cells could be overcome by crizotinib, a multi-RTK inhibitor that also targets MET and RON. We now show that crizotinib also overcomes acquired cetuximab resistance in CC-CR cells. Phospho-RTK array analysis showed increased phosphorylation of several RTKs, including MET and RON, in SC and CC-CR cells compared to cetuximab-sensitive CC counterparts. Furthermore, other multi-RTK inhibitors cabozantinib and BMS-777607 helped overcome cetuximab resistance, as measured by 3D colony growth and activation state of key signaling molecules. Conversely, addition of RTK ligands HGF and NRG1 induced cetuximab resistance in CC cells, which could be blocked by addition of crizotinib. We further determined the mechanism of the cooperative effect of cetuximab and crizotinib by FACS analysis and observed increased cell cycle arrest in G1 phase in cetuximab-resistant CRC 3D cultures. Finally, we show that crizotinib overcomes cetuximab resistance in vivo in SC nude mice xenografts. Thus, our work shows that multi-RTK inhibition strategy is a potent, broadly applicable strategy to overcome resistance to EGFR-targeted therapeutics in CRC and highlights the relevance of 3D cultures in these studies. Statement of implication: Using in vitro 3D CRC cultures and in vivo CRC xenografts, we show that parallel inhibition of multiple RTKs with small molecule inhibitors overcomes de novo and acquired resistance to EGFR-directed therapies in CRC.
Collapse
Affiliation(s)
- Ramona Graves-Deal
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Galina Bogatcheva
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Saba Rehman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuanyuan Lu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James N Higginbotham
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
8
|
Martín M, Modenutti CP, Peyret V, Geysels RC, Darrouzet E, Pourcher T, Masini-Repiso AM, Martí MA, Carrasco N, Nicola JP. A Carboxy-Terminal Monoleucine-Based Motif Participates in the Basolateral Targeting of the Na+/I- Symporter. Endocrinology 2019; 160:156-168. [PMID: 30496374 PMCID: PMC6936561 DOI: 10.1210/en.2018-00603] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/20/2018] [Indexed: 12/26/2022]
Abstract
The Na+/iodide (I-) symporter (NIS), a glycoprotein expressed at the basolateral plasma membrane of thyroid follicular cells, mediates I- accumulation for thyroid hormonogenesis and radioiodide therapy for differentiated thyroid carcinoma. However, differentiated thyroid tumors often exhibit lower I- transport than normal thyroid tissue (or even undetectable I- transport). Paradoxically, the majority of differentiated thyroid cancers show intracellular NIS expression, suggesting abnormal targeting to the plasma membrane. Therefore, a thorough understanding of the mechanisms that regulate NIS plasma membrane transport would have multiple implications for radioiodide therapy. In this study, we show that the intracellularly facing carboxy-terminus of NIS is required for the transport of the protein to the plasma membrane. Moreover, the carboxy-terminus contains dominant basolateral information. Using internal deletions and site-directed mutagenesis at the carboxy-terminus, we identified a highly conserved monoleucine-based sorting motif that determines NIS basolateral expression. Furthermore, in clathrin adaptor protein (AP)-1B-deficient cells, NIS sorting to the basolateral plasma membrane is compromised, causing the protein to also be expressed at the apical plasma membrane. Computer simulations suggest that the AP-1B subunit σ1 recognizes the monoleucine-based sorting motif in NIS carboxy-terminus. Although the mechanisms by which NIS is intracellularly retained in thyroid cancer remain elusive, our findings may open up avenues for identifying molecular targets that can be used to treat radioiodide-refractory thyroid tumors that express NIS intracellularly.
Collapse
Affiliation(s)
- Mariano Martín
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología–Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI–CONICET), Córdoba, Argentina
| | - Carlos Pablo Modenutti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales–Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN–CONICET), Buenos Aires, Argentina
- Correspondence: Juan Pablo Nicola, PhD, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología–Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI–CONICET), Haya de la Torre y Medina Allende, Córdoba X5000HUA, Argentina. E-mail:
| | - Victoria Peyret
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología–Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI–CONICET), Córdoba, Argentina
| | - Romina Celeste Geysels
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología–Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI–CONICET), Córdoba, Argentina
| | - Elisabeth Darrouzet
- Laboratoire Transporteurs en Imagerie et Radiothérapie en Oncologie, Faculté de Médecine, Université de Nice Sophia Antipolis–Université Côte d’Azur, Nice, France
- Laboratoire Transporteurs en Imagerie et Radiothérapie en Oncologie, Faculté de Médecine, Commissariat à l’Energie Atomique, Nice, France
| | - Thierry Pourcher
- Laboratoire Transporteurs en Imagerie et Radiothérapie en Oncologie, Faculté de Médecine, Université de Nice Sophia Antipolis–Université Côte d’Azur, Nice, France
- Laboratoire Transporteurs en Imagerie et Radiothérapie en Oncologie, Faculté de Médecine, Commissariat à l’Energie Atomique, Nice, France
| | - Ana María Masini-Repiso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología–Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI–CONICET), Córdoba, Argentina
| | - Marcelo Adrián Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales–Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN–CONICET), Buenos Aires, Argentina
| | - Nancy Carrasco
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Juan Pablo Nicola
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología–Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI–CONICET), Córdoba, Argentina
| |
Collapse
|
9
|
Chiasson-MacKenzie C, McClatchey AI. Cell-Cell Contact and Receptor Tyrosine Kinase Signaling. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029215. [PMID: 28716887 DOI: 10.1101/cshperspect.a029215] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The behavior of cells within tissues is governed by the activities of adhesion receptors that provide spatial cues and transmit forces through intercellular junctions, and by growth-factor receptors, particularly receptor tyrosine kinases (RTKs), that respond to biochemical signals from the environment. Coordination of these two activities is essential for the patterning and polarized migration of cells during morphogenesis and for homeostasis in mature tissues; loss of this coordination is a hallmark of developing cancer and driver of metastatic progression. Although much is known about the individual functions of adhesion and growth factor receptors, we have a surprisingly superficial understanding of the mechanisms by which their activities are coordinated.
Collapse
Affiliation(s)
- Christine Chiasson-MacKenzie
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Departments of Pathology, Charlestown, Massachusetts 02129
| | - Andrea I McClatchey
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Departments of Pathology, Charlestown, Massachusetts 02129
| |
Collapse
|
10
|
Chean J, Chen CJ, Shively JE. ETS transcription factor ELF5 induces lumen formation in a 3D model of mammary morphogenesis and its expression is inhibited by Jak2 inhibitor TG101348. Exp Cell Res 2017; 359:62-75. [PMID: 28800960 DOI: 10.1016/j.yexcr.2017.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/02/2017] [Accepted: 08/05/2017] [Indexed: 02/06/2023]
Abstract
The loss of expression of a single gene can revert normal tissue to a malignant phenotype. For example, while normal breast has high lumenal expression of CEACAM1, the majority of breast cancers exhibit the early loss of this gene with the concurrent loss of their lumenal phenotype. MCF7 cells that lack CEACAM1 expression and fail to form lumena in 3D culture, regain the normal phenotype when transfected with CEACAM1. In order to probe the mechanism of this gain of function, we treated these cells with the clinically relevant Jak2 inhibitor TG101348 (TG), expecting that disruption of the prolactin receptor signaling pathway would interfere with the positive effects of transfection of MCF7 cells with CEACAM1. Indeed, lumen formation was inhibited, resulting in the down regulation of a set of genes, likely involved in the complex process of lumen formation. As expected, inhibition of the expression of many of these genes also inhibited lumen formation, confirming their involvement in a single pathway. Among the genes identified by the inhibition assay, ETS transcription factor ELF5 stood out, since it has been identified as a master regulator of mammary morphogenesis, and is associated with prolactin receptor signaling. When ELF5 was transfected into the parental MCF7 cells that lack CEACAM1, lumen formation was restored, indicating that ELF5 can replace CEACAM1 in this model system of lumenogenesis. We conclude that the event(s) that led to the loss of expression of CEACAM1 is epistatic in that multiple genes associated with a critical pathway were affected, but that restoration of the normal phenotype can be achieved with reactivation of certain genes at various nodal points in tissue morphogenesis.
Collapse
Affiliation(s)
- Jennifer Chean
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, 1450 E. Duarte Road, Duarte, CA 91010, USA
| | - Charng-Jui Chen
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, 1450 E. Duarte Road, Duarte, CA 91010, USA
| | - John E Shively
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, 1450 E. Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
11
|
Abstract
Seven ligands bind to and activate the mammalian epidermal growth factor (EGF) receptor (EGFR/ERBB1/HER1): EGF, transforming growth factor-alpha (TGFA), heparin-binding EGF-like growth factor (HBEGF), betacellulin (BTC), amphiregulin (AREG), epiregulin (EREG), and epigen (EPGN). Of these, EGF, TGFA, HBEGF, and BTC are thought to be high-affinity ligands, whereas AREG, EREG, and EPGN constitute low-affinity ligands. This focused review is meant to highlight recent studies related to actions of the individual EGFR ligands, the interesting biology that has been uncovered, and relevant advances related to ligand interactions with the EGFR.
Collapse
Affiliation(s)
- Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Graham Carpenter
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Veterans Health Administration, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
| |
Collapse
|