1
|
Yousefi Z, Nourbakhsh M, Sahebghadam Lotfi A. Pirfenidone Downregulates eIF6, P311, and TGF-β Expression and Improves Liver Fibrosis Induced by Bile Duct Ligation in Wistar Rats: Evidence for Liver Regeneration. DNA Cell Biol 2025; 44:109-124. [PMID: 39681345 DOI: 10.1089/dna.2024.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Liver fibrosis (LF) is a clinical disorder characterized by inflammation and excessive accumulation of extracellular matrix (ECM). This study investigates the effects of the antifibrotic compound pirfenidone (PFD) on improving LF through histological changes and modulation of eukaryotic translation initiation factor 6 (eIF6), P311, and transforming growth factor beta (TGF-β) in rats with bile duct ligation (BDL)-induced LF. Rats received daily doses of PFD (200 and 500 mg/kg) for 4 weeks. The study encompassed biochemical, pathological, and immunohistochemical (IHC) analyses. mRNA levels of eIF6, P311, TGF-β, ECM deposition, hepatic stellate cell (HSC) activation, and inflammatory mediator genes were measured by RT-qPCR. Protein levels of eIF6, P311, and TGF-β were detected by western blotting. Compared with the BDL group, PFD dose-dependently reduced hydroxyproline content, liver index, biochemical parameters, fibrosis score, and fibrosis area. PFD also modulated BDL-induced hepatic inflammation, ECM accumulation, and HSC activation. IHC staining of Ki-67 and hepatocyte paraffin-1 revealed that PFD enhanced liver regeneration. The research confirmed that PFD gradually downregulated elevated eIF6, P311, and TGF-β levels in BDL-induced LF. These findings suggest that PFD could be a potential treatment for LF, as it may help attenuate fibrosis and enhance liver regeneration, possibly through the modulation of these specific markers.
Collapse
Affiliation(s)
- Zeynab Yousefi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Sahebghadam Lotfi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Wen ZH, Wu ZS, Cheng HJ, Huang SY, Tang SH, Teng WN, Su FW, Chen NF, Sung CS. Intrathecal Fumagillin Alleviates Chronic Neuropathy-Induced Nociceptive Sensitization and Modulates Spinal Astrocyte-Neuronal Glycolytic and Angiogenic Proteins. Mol Neurobiol 2025; 62:246-263. [PMID: 38837104 DOI: 10.1007/s12035-024-04254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Nociceptive sensitization is accompanied by the upregulation of glycolysis in the central nervous system in neuropathic pain. Growing evidence has demonstrated glycolysis and angiogenesis to be related to the inflammatory processes. This study investigated whether fumagillin inhibits neuropathic pain by regulating glycolysis and angiogenesis. Fumagillin was administered through an intrathecal catheter implanted in rats with chronic constriction injury (CCI) of the sciatic nerve. Nociceptive, behavioral, and immunohistochemical analyses were performed to evaluate the effects of the inhibition of spinal glycolysis-related enzymes and angiogenic factors on CCI-induced neuropathic pain. Fumagillin reduced CCI-induced thermal hyperalgesia and mechanical allodynia from postoperative days (POD) 7 to 14. The expression of angiogenic factors, vascular endothelial growth factor (VEGF) and angiopoietin 2 (ANG2), increased in the ipsilateral lumbar spinal cord dorsal horn (SCDH) following CCI. The glycolysis-related enzymes, pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA) significantly increased in the ipsilateral lumbar SCDH following CCI on POD 7 and 14 compared to those in the control rats. Double immunofluorescence staining indicated that VEGF and PKM2 were predominantly expressed in the astrocytes, whereas ANG2 and LDHA were predominantly expressed in the neurons. Intrathecal infusion of fumagillin significantly reduced the expression of angiogenic factors and glycolytic enzymes upregulated by CCI. The expression of hypoxia-inducible factor-1α (HIF-1α), a crucial transcription factor that regulates angiogenesis and glycolysis, was also upregulated after CCI and inhibited by fumagillin. We concluded that intrathecal fumagillin may reduce the expression of ANG2 and LDHA in neurons and VEGF and PKM2 in the astrocytes of the SCDH, further attenuating spinal angiogenesis in neuropathy-induced nociceptive sensitization. Hence, fumagillin may play a role in the inhibition of peripheral neuropathy-induced neuropathic pain by modulating glycolysis and angiogenesis.
Collapse
Affiliation(s)
- Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804201, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Zong-Sheng Wu
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Hao-Jung Cheng
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Shi-Ying Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Shih-Hsuan Tang
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Wei-Nung Teng
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Fu-Wei Su
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, 80284, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 804201, Taiwan
| | - Chun-Sung Sung
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan.
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan.
| |
Collapse
|
3
|
Wang X, Xu G, Zhang F, Wei Y, Deng J, Mu L, He J, He D, Yin M, Dal Pra I, Liu X, Cai W, Yang L, Han C, Huang G, Wu J. eIF6 modulates skin wound healing by upregulating keratin 6B. Stem Cells Transl Med 2024; 13:1101-1112. [PMID: 39406496 PMCID: PMC11555475 DOI: 10.1093/stcltm/szae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/08/2024] [Indexed: 11/13/2024] Open
Abstract
Eukaryotic translation initiation factor 6 (eIF6) plays a crucial role in 60S ribosome biogenesis and protein translation, as well as in hypertrophic scar formation, but its potential role in epithelialization is still poorly understood. Herein, we found that eIF6 negatively correlated with the wound healing process. Mice with genetically knockdown eIF6 (eIF6+/-) showed faster re-epithelization as shown by the longer tongue of the newly formed epidermis. Furthermore, eIF6 ablation accelerated the wound healing process by targeting basal keratinocytes in the eIF6 keratinocyte-conditional knockout (eIF6f/+; Krt5-Cre+) mice. Mechanistically, keratin 6B, an important wound-activated protein, was significantly upregulated in eIF6f/+; Krt5-Cre+ mice skin as proved by RNA-seq, western immunoblots, and immunofluorescence staining. Moreover, an elevated level of KRT6B and accelerated proliferative capacity were also observed in stable knockdown eIF6 HaCaT cells. Taken together, eIF6 downregulation could accelerate epithelialization by upregulating KRT6B expression and promoting keratinocyte proliferation. Our results for the first time indicate that eIF6 might be a novel target to regulate re-epithelialization.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
- Department of Burn and Wound Repair Surgery, Guangdong Provincial People’s Hospital, Guangzhou 510080, People’s Republic of China
| | - Guangchao Xu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People’s Republic of China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, People’s Republic of China
| | - Fangyingnan Zhang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Yating Wei
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Jiawen Deng
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Lan Mu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Jinqing He
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Dehua He
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Meifang Yin
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Ilaria Dal Pra
- Section of Human Histology & Embryology, Department of Surgery, Dentistry, Paediatrics & Obstetrics, University of Verona, Verona, Venetia, Italy
| | - Xiaofang Liu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Weichao Cai
- Department of Plastic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 317000, People’s Republic of China
| | - Linjing Yang
- Department of Plastic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 317000, People’s Republic of China
| | - Chunmao Han
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, People’s Republic of China
| | - Guangtao Huang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
| | - Jun Wu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People’s Republic of China
- Section of Human Histology & Embryology, Department of Surgery, Dentistry, Paediatrics & Obstetrics, University of Verona, Verona, Venetia, Italy
| |
Collapse
|
4
|
Wang W, Dai R, Cheng M, Chen Y, Gao Y, Hong X, Zhang W, Wang Y, Zhang L. Metabolic reprogramming and renal fibrosis: what role might Chinese medicine play? Chin Med 2024; 19:148. [PMID: 39465434 PMCID: PMC11514863 DOI: 10.1186/s13020-024-01004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/15/2024] [Indexed: 10/29/2024] Open
Abstract
Metabolic reprogramming is a pivotal biological process in which cellular metabolic patterns change to meet the energy demands of increased cell growth and proliferation. In this review, we explore metabolic reprogramming and its impact on fibrotic diseases, providing a detailed overview of the key processes involved in the metabolic reprogramming of renal fibrosis, including fatty acid decomposition and synthesis, glycolysis, and amino acid catabolism. In addition, we report that Chinese medicine ameliorates renal inflammation, oxidative stress, and apoptosis in chronic kidney disease by regulating metabolic processes, thereby inhibiting renal fibrosis. Furthermore, we reveal that multiple targets and signaling pathways contribute to the metabolic regulatory effects of Chinese medicine. In summary, this review aims to elucidate the mechanisms by which Chinese medicine inhibits renal fibrosis through the remodeling of renal cell metabolic processes, with the goal of discovering new therapeutic drugs for treating renal fibrosis.
Collapse
Affiliation(s)
- Weili Wang
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Rong Dai
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Meishan Road 117, Shushang District, Hefei, 230031, China
| | - Meng Cheng
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Meishan Road 117, Shushang District, Hefei, 230031, China
| | - Yizhen Chen
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Yilin Gao
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Xin Hong
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Wei Zhang
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Yiping Wang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Meishan Road 117, Shushang District, Hefei, 230031, China.
| | - Lei Zhang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Meishan Road 117, Shushang District, Hefei, 230031, China.
| |
Collapse
|
5
|
Teng Y, Zou M, Zhou X, Wu J, Liu S, Yuan Z, Jia Y, Zhang K, Li X, Ye J, Yuan F. Novel prospects for scarless wound healing: The roles of myofibroblasts and adipocytes. J Cell Mol Med 2022; 26:5113-5121. [PMID: 36106529 PMCID: PMC9575100 DOI: 10.1111/jcmm.17535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 08/14/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
Disturbances or defects in the process of wound repair can disrupt the delicate balance of cells and molecules necessary for complete wound healing, thus leading to chronic wounds or fibrotic scars. Myofibroblasts are one of the most important cells involved in fibrotic scars, and reprogramming provides a potential avenue to increase myofibroblast clearance. Although myofibroblasts have long been recognized as terminally differentiated cells, recent studies have shown that myofibroblasts have the capacity to be reprogrammed into adipocytes. This review intends to summarize the potential of reprogramming myofibroblasts into adipocytes. We will discuss myofibroblast lineage tracing, as well as the known mechanisms underlying adipocyte regeneration from myofibroblasts. In addition, we investigated different changes in myofibroblast gene expression, transcriptional regulators, signalling pathways and epigenetic regulators during skin wound healing. In the future, myofibroblast reprogramming in wound healing will be better understood and appreciated, which may provide new ideas for the treatment of scarless wound healing.
Collapse
Affiliation(s)
- Ying‐Ying Teng
- Institute of Integrated Chinese and Western Medicine The Hospital Affiliated to Jiangnan University Wuxi China
| | - Ming‐Li Zou
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine Nanjing University of Chinese Medicine Wuxi China
| | - Xiao‐Jin Zhou
- Institute of Integrated Chinese and Western Medicine The Hospital Affiliated to Jiangnan University Wuxi China
| | - Jun‐Jie Wu
- Institute of Integrated Chinese and Western Medicine The Hospital Affiliated to Jiangnan University Wuxi China
| | - Si‐Yu Liu
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine Nanjing University of Chinese Medicine Wuxi China
| | - Zheng‐Dong Yuan
- Institute of Integrated Chinese and Western Medicine The Hospital Affiliated to Jiangnan University Wuxi China
| | - Yuan Jia
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine Nanjing University of Chinese Medicine Wuxi China
| | - Kai‐Wen Zhang
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine Nanjing University of Chinese Medicine Wuxi China
| | - Xia Li
- Institute of Integrated Chinese and Western Medicine The Hospital Affiliated to Jiangnan University Wuxi China
| | - Jun‐Xing Ye
- Institute of Integrated Chinese and Western Medicine The Hospital Affiliated to Jiangnan University Wuxi China
| | - Feng‐Lai Yuan
- Institute of Integrated Chinese and Western Medicine The Hospital Affiliated to Jiangnan University Wuxi China
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine Nanjing University of Chinese Medicine Wuxi China
| |
Collapse
|
6
|
Esteves de Lima J, Relaix F. Epigenetic Regulation of Myogenesis: Focus on the Histone Variants. Int J Mol Sci 2021; 22:ijms222312727. [PMID: 34884532 PMCID: PMC8657657 DOI: 10.3390/ijms222312727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 01/04/2023] Open
Abstract
Skeletal muscle development and regeneration rely on the successive activation of specific transcription factors that engage cellular fate, promote commitment, and drive differentiation. Emerging evidence demonstrates that epigenetic regulation of gene expression is crucial for the maintenance of the cell differentiation status upon division and, therefore, to preserve a specific cellular identity. This depends in part on the regulation of chromatin structure and its level of condensation. Chromatin architecture undergoes remodeling through changes in nucleosome composition, such as alterations in histone post-translational modifications or exchange in the type of histone variants. The mechanisms that link histone post-translational modifications and transcriptional regulation have been extensively evaluated in the context of cell fate and differentiation, whereas histone variants have attracted less attention in the field. In this review, we discuss the studies that have provided insights into the role of histone variants in the regulation of myogenic gene expression, myoblast differentiation, and maintenance of muscle cell identity.
Collapse
|
7
|
Gibb AA, Lazaropoulos MP, Elrod JW. Myofibroblasts and Fibrosis: Mitochondrial and Metabolic Control of Cellular Differentiation. Circ Res 2020; 127:427-447. [PMID: 32673537 DOI: 10.1161/circresaha.120.316958] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiac fibrosis is mediated by the activation of resident cardiac fibroblasts, which differentiate into myofibroblasts in response to injury or stress. Although myofibroblast formation is a physiological response to acute injury, such as myocardial infarction, myofibroblast persistence, as occurs in heart failure, contributes to maladaptive remodeling and progressive functional decline. Although traditional pathways of activation, such as TGFβ (transforming growth factor β) and AngII (angiotensin II), have been well characterized, less understood are the alterations in mitochondrial function and cellular metabolism that are necessary to initiate and sustain myofibroblast formation and function. In this review, we highlight recent reports detailing the mitochondrial and metabolic mechanisms that contribute to myofibroblast differentiation, persistence, and function with the hope of identifying novel therapeutic targets to treat, and potentially reverse, tissue organ fibrosis.
Collapse
Affiliation(s)
- Andrew A Gibb
- From the Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Michael P Lazaropoulos
- From the Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - John W Elrod
- From the Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| |
Collapse
|
8
|
Lung myofibroblast transition and fibrosis is regulated by circ0044226. Int J Biochem Cell Biol 2019; 118:105660. [PMID: 31786325 DOI: 10.1016/j.biocel.2019.105660] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND PURPOSE Idiopathic pulmonary fibrosis (IPF) is a life-threatening progressive disease characterized by aberrant fibroblast activation. This study aims to explore the role of the circ0044226 on fibroblast-to-myofibroblast transition (FMT). METHODS Bleomycin and TGF-β1 were respectively used to induce the IPF mice model and human lung fibroblasts to myofibroblast differentiation. The mRNA and protein levels were examined by qRT-PCR and western blot. Localization of α-SMA was evaluated by immunofluorescence staining. Cell viability and proliferation were evaluated by CCK8 and EDU test. Dual-luciferase reporter assay was used to analyze the interaction between miR-7 and circ0044226 or sp1. Fluorescence in situ hybridization (FISH) assay was used for the identification of sub-location of circ0044226 and miR-7 in cells. The IPF model mice received intratracheal injection of AAV-sh-NC and AAV-sh- circ0044226, and lung fibrosis was detected by HE staining, Masson staining and immunohistochemistry assay. RESULTS The circ0044226 was upregulated while miR-7 was downregulated in IPF mice model and FMT-derived myofibroblasts. miR-7 was a target of circ0044226 and sp1 was a target of miR-7. circ0044226 was distributed mostly in the cytoplasm and functioned as a miR-7 sponge to positively regulate the expression of sp1. Intervention of circ0044226 could ameliorate FMT and suppress fibroblast viability and proliferation by functioning as an endogenous miR-7 sponge. CONCLUSION Circ0044226 knockdown alleviates fibroblast proliferation and FMT by functioning as a competing endogenous RNA, which may represent a promising therapy for pulmonary fibrosis.
Collapse
|
9
|
Shen T, Ji F, Wang Y, Lei X, Zhang D, Jiao J. Brain-specific deletion of histone variant H2A.z results in cortical neurogenesis defects and neurodevelopmental disorder. Nucleic Acids Res 2019; 46:2290-2307. [PMID: 29294103 PMCID: PMC5861433 DOI: 10.1093/nar/gkx1295] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022] Open
Abstract
Defects in neurogenesis alter brain circuit formations and may lead to neurodevelopmental disorders such as autism and schizophrenia. Histone H2A.z, a variant of histone H2A, plays critical roles in chromatin structure and epigenetic regulation, but its function and mechanism in brain development remain largely unknown. Here, we find that the deletion of H2A.z results in enhanced proliferation of neural progenitors but reduced neuronal differentiation. In addition, neurons in H2A.z knockout mice exhibit abnormal dendrites during brain development. Furthermore, H2A.zcKO mice exhibit serial behavioral deficits, such as decreased exploratory activity and impaired learning and memory. Mechanistically, H2A.z regulates embryonic neurogenesis by targeting Nkx2–4 through interaction with Setd2, thereby promoting H3K36me3 modification to activate the transcription of Nkx2–4. Furthermore, enforced expression of Nkx2–4 can rescue the defective neurogenesis in the H2A.z-knockdown embryonic brain. Together, our findings implicate the epigenetic regulation by H2A.z in embryonic neurogenesis and provide a framework for understanding how disruption in the H2A.z gene may contribute to neurological disorders.
Collapse
Affiliation(s)
- Tianjin Shen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fen Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuepei Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongming Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Wang S, Zhang X, Hao F, Li Y, Sun C, Zhan R, Wang Y, He W, Li H, Luo G. Reconstruction and Functional Annotation of P311 Protein-Protein Interaction Network Reveals Its New Functions. Front Genet 2019; 10:109. [PMID: 30838032 PMCID: PMC6390203 DOI: 10.3389/fgene.2019.00109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/30/2019] [Indexed: 12/24/2022] Open
Abstract
P311 is a highly conserved multifunctional protein. However, it does not belong to any established family of proteins, and its biological function has not been entirely determined. This study aims to reveal the unknown molecular and cellular function of P311. OCG (Overlapping Cluster Generator) is a clustering method used to partition a protein-protein network into overlapping clusters. Multifunctional proteins are at the intersection of relevant clusters. DAVID is an analytic tool used to extract biological meaning from a large protein list. Here we presented OD2 (OCG + DAVID + 2 human PPI datasets), a novel strategy to increase the likelihood to identify biological functions most pertinent to the multifunctional proteins. The principle of OD2 is that OCG prepares the protein lists from multifunctional protein relevant overlapping clusters, for a functional enrichment analysis by DAVID, and the similar functional enrichments, which occurs simultaneously when analyzing two human PPI datasets, are supposed to be the predicted functions. By applying OD2 to two reconstructed human PPI datasets, we supposed the function of the P311 in inflammatory responses, cell proliferation and coagulation, which were confirmed by the following biological experiments. Collectively, our study preliminarily found that P311 could play a role in inflammatory responses, cell proliferation and coagulation. Further studies are required to validate and elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Song Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaorong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fen Hao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yan Li
- Laboratory Center of Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chao Sun
- The Sixth Resignation Cadre Sanatorium of Shandong Province Military Region, Qingdao, China
| | - Rixing Zhan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ying Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Haisheng Li
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China.,The 324th Hospital of Chinese People's Liberation Army, Chongqing, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
11
|
Wang K, Wang C, Zhu CJ, Li G, Li Y, Feng YB, Ruan JJ, Zhu F, Meng Y, Zhou RP, Chen FH. 4-Amino-2-Trifluoromethyl-Phenyl Retinate induced leukemia cell differentiation by decreasing eIF6. Biochem Biophys Res Commun 2018; 503:2033-2039. [PMID: 30078681 DOI: 10.1016/j.bbrc.2018.07.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 11/30/2022]
Abstract
4-Amino-2-Trifluoromethyl-Phenyl Retinate (ATPR), an all-trans retinoic acid (ATRA) derivative, possesses the ability to relief several carcinoma. Here, we explored the potential molecular mechanism of eukaryotic translation initiation factor 6 (eIF6) in ATPR-induced leukemia cell differentiation. Our research showed that ATPR could inhibit cell proliferation and promote cell differentiation in several leukemia cell lines. Besides, ATPR remarkably reduced the expression of eIF6 in vitro. Interestingly, the reduction of eIF6 contributed to restraining proliferation of K562 cells by inhibiting CyclinD1, C-myc and blocking cell cycle, as well as promoting differentiation of K562 cells by increasing the expression of C/EBPε, cell surface antigen CD11b and inducing renal-shrinkage of nuclear. Furthermore, the over-expression of eIF6 restrained the effects of ATPR on cell proliferation and maturation in K562 cells. In Addition, Notch1/CBF-1 signal activated by Chrysin could increase expression of eIF6 and restrain the differentiation in ATPR-induced K562 cells. Taken together, all above results indicated that ATPR induced differentiation of leukemia cells by decreasing eIF6 through Notch1/CBF-1 signal, which might exert an innovative treatment for leukemia.
Collapse
Affiliation(s)
- Ke Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, China
| | - Cong Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, China
| | - Chuan-Jun Zhu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, China
| | - Ge Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, China
| | - Yue Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, China
| | - Yu-Bin Feng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, China
| | - Jing-Jing Ruan
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, China
| | - Fei Zhu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, China
| | - Yao Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, China
| | - Ren-Peng Zhou
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, China
| | - Fei-Hu Chen
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, China.
| |
Collapse
|
12
|
Translational control by mTOR-independent routes: how eIF6 organizes metabolism. Biochem Soc Trans 2017; 44:1667-1673. [PMID: 27913676 DOI: 10.1042/bst20160179] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/26/2016] [Accepted: 08/05/2016] [Indexed: 11/17/2022]
Abstract
Over the past few years, there has been a growing interest in the interconnection between translation and metabolism. Important oncogenic pathways, like those elicited by c-Myc transcription factor and mTOR kinase, couple the activation of the translational machinery with glycolysis and fatty acid synthesis. Eukaryotic initiation factor 6 (eIF6) is a factor necessary for 60S ribosome maturation. eIF6 acts also as a cytoplasmic translation initiation factor, downstream of growth factor stimulation. eIF6 is up-regulated in several tumor types. Data on mice models have demonstrated that eIF6 cytoplasmic activity is rate-limiting for Myc-induced lymphomagenesis. In spite of this, eIF6 is neither transcriptionally regulated by Myc, nor post-transcriptionally regulated by mTOR. eIF6 stimulates a glycolytic and fatty acid synthesis program necessary for tumor growth. eIF6 increases the translation of transcription factors necessary for lipogenesis, such as CEBP/β, ATF4 and CEBP/δ. Insulin stimulation leads to an increase in translation and fat synthesis blunted by eIF6 deficiency. Paradoxycally, long-term inhibition of eIF6 activity increases insulin sensitivity, suggesting that the translational activation observed upon insulin and growth factors stimulation acts as a feed-forward mechanism regulating lipid synthesis. The data on the role that eIF6 plays in cancer and in insulin sensitivity make it a tempting pharmacological target for cancers and metabolic diseases. We speculate that eIF6 inhibition will be particularly effective especially when mTOR sensitivity to rapamycin is abrogated by RAS mutations.
Collapse
|
13
|
Tan J, Wu J. Current progress in understanding the molecular pathogenesis of burn scar contracture. BURNS & TRAUMA 2017; 5:14. [PMID: 28546987 PMCID: PMC5441009 DOI: 10.1186/s41038-017-0080-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/17/2017] [Indexed: 01/17/2023]
Abstract
Abnormal wound healing is likely to induce scar formation, leading to dysfunction, deformity, and psychological trauma in burn patients. Despite the advancement of medical care treatment, scar contracture in burn patients remains a challenge. Myofibroblasts play a key role in scar contracture. It has been demonstrated that myofibroblasts, as well as inflammatory cells, fibroblasts, endothelial cells, and epithelial cells, secrete transforming growth factor-β1 (TGF-β1) and other cytokines, which can promote persistent myofibroblast activation via a positive regulation loop. In addition to the cellular contribution, the microenvironments, including the mechanical tension and integrin family, are also involved in scar contracture. Most recently, eukaryotic initiation factor 6 (eIF6), an upstream regulator of TGF-β1, has been demonstrated to be involved in myofibroblast differentiation and contraction in both in vitro fibroblast-populated collagen lattice (FPCL) and in vivo external mechanical stretch models. Moreover, the data showed that P311 could induce the transdifferentiation of epidermal stem cells to myofibroblasts by upregulating TGF-β1 expression, which mediated myofibroblast contraction. In this review, we briefly described the most current progress on the biological function of myofibroblasts in scar contracture and subsequently summarized the molecular events that initiated contracture. This would help us better understand the molecular basis of scar contracture as well as to find a comprehensive strategy for preventing/managing scar contracture.
Collapse
Affiliation(s)
- Jianglin Tan
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injuries, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| | - Jun Wu
- Department of Burns, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| |
Collapse
|
14
|
Li H, Yao Z, He W, Gao H, Bai Y, Yang S, Zhang L, Zhan R, Tan J, Zhou J, Takata M, Wu J, Luo G. P311 induces the transdifferentiation of epidermal stem cells to myofibroblast-like cells by stimulating transforming growth factor β1 expression. Stem Cell Res Ther 2016; 7:175. [PMID: 27906099 PMCID: PMC5131552 DOI: 10.1186/s13287-016-0421-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/11/2016] [Indexed: 11/10/2022] Open
Abstract
Background Epithelial to mesenchymal transition, especially to myofibroblasts, plays an important role in wound healing, fibrosis, and carcinogenesis. Epidermal stem cells (EpSCs) are responsible for epidermal renewal and wound re-epithelialization. However, it remains unclear whether and how EpSCs transdifferentiate into myofibroblasts or myofibroblast-like cells (MFLCs). Here, we provide the first evidence showing that P311 induces EpSC to MFLC transdifferentiation (EpMyT) via TGFβ1/Smad signaling. Methods Wound healing and mesenchymal features were observed in the P311 KO and P311 WT mouse model of superficial second-degree burns. After the primary human or mouse EpSCs were forced to highly express P311 using an adenoviral vector, EpMyT was observed by immunofluorescence, real-time PCR, and western blot. The activity of TGFβ1 and Smad2/3 in EpSCs with different P311 levels was observed by western blot. The TβRI/II inhibitor LY2109761 and Smad3 siRNA were applied to block the EpMyT in P311-overexpressing EpSCs and exogenous TGFβ1 was to restore the EpMyT in P311 KO EpSCs. Furthermore, the mechanism of P311 regulating TGFβ1 was investigated by bisulfite sequencing PCR, luciferase activity assay, and real-time PCR. Results P311 KO mouse wounds showed delayed re-epithelialization and reduced mesenchymal features. The human or mouse EpSCs with overexpressed P311 exhibited fusiform morphological changes, upregulated expression of myofibroblast markers (α-SMA and vimentin), and downregulated expression of EpSC markers (β1-integrin and E-cadherin). P311-expressing EpSCs showed decreased TGFβ1 mRNA and increased TGFβ1 protein, TβRI/II mRNA, and activated Smad2/3. Moreover, LY2109761 and Smad3 siRNA reversed P311-induced EpMyT. Under the stimulation of exogenous TGFβ1, the phosphorylation of Smad2 and Smad3 in P311 KO EpSCs was significantly lower than that in P311 WT EpSCs and the EpMyT in P311 KO EpSCs was restored. Furthermore, P311 enhanced the methylation of TGFβ1 promoter and increased activities of TGFβ1 5′/3′ untranslated regions (UTRs) to stimulate TGFβ1 expression. P311+α-SMA+ cells and P311+vimentin+ cells were observed in the epidermis of human burn wounds. Also, P311 was upregulated by IL-1β, IL-6, TNFα, and hypoxia. Conclusions P311 is a novel TGFβ1/Smad signaling-mediated regulator of transdifferentiation in EpSCs during cutaneous wound healing. Furthermore, P311 might stimulate TGFβ1 expression by promoting TGFβ1 promoter methylation and by activating the TGFβ1 5′/3′ UTR. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0421-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haisheng Li
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhihui Yao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China.,People's Liberation Army Hospital 59, Kaiyuan, Yunnan Province, China
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hongyan Gao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yang Bai
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Sisi Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lu Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Rixing Zhan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianglin Tan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Junyi Zhou
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Masao Takata
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Jun Wu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
15
|
Involvement of eIF6 in external mechanical stretch-mediated murine dermal fibroblast function via TGF-β1 pathway. Sci Rep 2016; 6:36075. [PMID: 27824055 PMCID: PMC5099925 DOI: 10.1038/srep36075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/10/2016] [Indexed: 01/02/2023] Open
Abstract
External mechanical loading on a wound commonly increases fibrosis. Transforming growth factor-β1 (TGF-β1) has been implicated in fibrosis in various models, including the mechanical force model. However, the underlying mechanism is unclear. Our previous experiments suggested that eukaryotic initiation factor 6 (eIF6) acted as a regulator of TGF-β1 expression, and negatively impact on collagen synthesis. Our current results showed that external mechanical stretching significantly increased COL1A1, TGF-β1 and eIF6 expression as well as dermal fibroblasts proliferation, both in vitro and in vivo. eIF6 –deficient (eIF6+/−) cells exhibited significantly higher levels of COL1A1, and these levels increased further with external mechanical stretching, suggesting that mechanical stretching plays a synergistic role in promoting COL1A1 expression in eIF6+/− cells. Inhibition of TGFβR I/II by LY2109761 decreased COL1A1 protein expression in eIF6+/− dermal fibroblasts in a cell stretching model, and attenuated granulation tissue formation in partial thickness wounds of eIF6+/− mice. These data suggest that mechanical stretching has a synergistic role in the expression of COL1A1 in eIF6+/− cells, and is mediated by activation of TGFβRI/II. Taken together, our results indicate that eIF6 may be involved in external mechanical force-mediated murine dermal fibroblast function at least partly through the TGF-β1 pathway.
Collapse
|
16
|
Alves-Filho JC, Pålsson-McDermott EM. Pyruvate Kinase M2: A Potential Target for Regulating Inflammation. Front Immunol 2016; 7:145. [PMID: 27148264 PMCID: PMC4838608 DOI: 10.3389/fimmu.2016.00145] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/04/2016] [Indexed: 01/02/2023] Open
Abstract
Pyruvate kinase (PK) is the enzyme responsible for catalyzing the last step of glycolysis. Of the four PK isoforms expressed in mammalian cells, PKM2 has generated the most interest due to its impact on changes in cellular metabolism observed in cancer as well as in activated immune cells. As our understanding of dysregulated metabolism in cancer develops, and in light of the growing field of immunometabolism, intense efforts are in place to define the mechanism by which PKM2 regulates the metabolic profile of cancer as well as of immune cells. The enzymatic activity of PKM2 is heavily regulated by endogenous allosteric effectors as well as by intracellular signaling pathways, affecting both the enzymatic activity of PKM2 as a PK and the regulation of the recently described non-canonical nuclear functions of PKM2. We here review the current literature on PKM2 and its regulation, and discuss the potential for this protein as a therapeutic target in inflammatory disorders.
Collapse
Affiliation(s)
- Jose C Alves-Filho
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo , Ribeirao Preto , Brazil
| | - Eva M Pålsson-McDermott
- Biomedical Science Institute, School of Biochemistry and Immunology, Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
17
|
Yang SS, Tan JL, Liu DS, Loreni F, Peng X, Yang QQ, He WF, Yao ZH, Zhang XR, Prà ID, Luo GX, Wu J. Eukaryotic initiation factor 6 modulates myofibroblast differentiation at transforming growth factor-β1 transcription level via H2A.Z occupancy and Sp1 recruitment. Development 2015. [DOI: 10.1242/dev.132597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|