1
|
Murakami M. Extracellular vesicles as a hydrolytic platform of secreted phospholipase A 2. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159536. [PMID: 39032626 DOI: 10.1016/j.bbalip.2024.159536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Extracellular vesicles (EVs) represent small vesicles secreted from cells, including exosomes (40-150 nm in diameter), which are released via the multivesicular endosomal pathway, and microvesicles and ectosomes (100-1000 nm), which are produced by plasma membrane budding. Broadly, EVs also include vesicles generated from dying cells, such as apoptotic bodies (5-10 μm), as well as exomeres (< 50 nm), which are very small, non-membranous nanoparticles. EVs play important roles in cell-to-cell signaling in various aspects of cancer, immunity, metabolism, and so on by transferring proteins, microRNAs (miRNAs), and metabolites as cargos from donor cells to recipient cells. Although lipids are one of the major components of EVs, they have long been recognized as merely the "wall" that partitions the lumen of the vesicle from the outside. However, it has recently become obvious that lipid composition of EVs influences their properties and functions, that EVs act as a carrier of a variety of lipid mediators, and that lipid mediators are produced in EV membranes by the hydrolytic action of secreted phospholipase A2s (sPLA2s). In this article, we will make an overview of the roles of lipids in EVs, with a particular focus on sPLA2-driven mobilization of lipid mediators from EVs and its biological significance.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
2
|
Di Niro L, Linders AC, Glynn T, Pegtel DM, Siderius M, Crudden C, Smit MJ. G protein-coupled receptors: a gateway to targeting oncogenic EVs? EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:233-248. [PMID: 39698539 PMCID: PMC11648488 DOI: 10.20517/evcna.2024.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 12/20/2024]
Abstract
Dysregulated intercellular communication is a key feature driving cancer progression. Recently, extracellular vesicles (EVs) have added a new channel to this dense communication network. Despite solid evidence that EVs are central mediators of dysregulated signaling in onco-pathological settings, this has yet to be translated into clinically actionable strategies. The heterogeneity of EV cargo molecules, plasticity of biogenesis routes, and large overlap with their role in physiological communication, complicate a potential targeting strategy. However, recent work has linked EV biology to perhaps the "most druggable" proteins - G protein-coupled receptors (GPCRs). GPCR targeting accounts for ~60% of drugs in development and more than a third of all currently approved drugs, spanning almost all areas of medicine. Although several GPCRs have been linked to cancer initiation and progression, relatively few agents have made it into oncological regimes, suggesting that their potential is underexploited. Herein, we examine the molecular mechanisms linking GPCRs to EV communication in cancer settings. We propose that GPCRs hold potential in the search for EV-targeting in oncology.
Collapse
Affiliation(s)
- Lotte Di Niro
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Amber C. Linders
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Thomas Glynn
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - D. Michiel Pegtel
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Marco Siderius
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Caitrin Crudden
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Martine J. Smit
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
3
|
Drosouni A, Panagopoulou M, Aidinis V, Chatzaki E. Autotaxin in Breast Cancer: Role, Epigenetic Regulation and Clinical Implications. Cancers (Basel) 2022; 14:5437. [PMID: 36358855 PMCID: PMC9658281 DOI: 10.3390/cancers14215437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 08/02/2023] Open
Abstract
Autotaxin (ATX), the protein product of Ectonucleotide Pyrophosphatase Phosphodiesterase 2 (ENPP2), is a secreted lysophospholipase D (lysoPLD) responsible for the extracellular production of lysophosphatidic acid (LPA). ATX-LPA pathway signaling participates in several normal biological functions, but it has also been connected to cancer progression, metastasis and inflammatory processes. Significant research has established a role in breast cancer and it has been suggested as a therapeutic target and/or a clinically relevant biomarker. Recently, ENPP2 methylation was described, revealing a potential for clinical exploitation in liquid biopsy. The current review aims to gather the latest findings about aberrant signaling through ATX-LPA in breast cancer and discusses the role of ENPP2 expression and epigenetic modification, giving insights with translational value.
Collapse
Affiliation(s)
- Andrianna Drosouni
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Maria Panagopoulou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| | - Vassilis Aidinis
- Institute of BioInnovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| |
Collapse
|
4
|
Krishna Deepak RNV, Verma RK, Hartono YD, Yew WS, Fan H. Recent Advances in Structure, Function, and Pharmacology of Class A Lipid GPCRs: Opportunities and Challenges for Drug Discovery. Pharmaceuticals (Basel) 2021; 15:12. [PMID: 35056070 PMCID: PMC8779880 DOI: 10.3390/ph15010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 01/01/2023] Open
Abstract
Great progress has been made over the past decade in understanding the structural, functional, and pharmacological diversity of lipid GPCRs. From the first determination of the crystal structure of bovine rhodopsin in 2000, much progress has been made in the field of GPCR structural biology. The extraordinary progress in structural biology and pharmacology of GPCRs, coupled with rapid advances in computational approaches to study receptor dynamics and receptor-ligand interactions, has broadened our comprehension of the structural and functional facets of the receptor family members and has helped usher in a modern age of structure-based drug design and development. First, we provide a primer on lipid mediators and lipid GPCRs and their role in physiology and diseases as well as their value as drug targets. Second, we summarize the current advancements in the understanding of structural features of lipid GPCRs, such as the structural variation of their extracellular domains, diversity of their orthosteric and allosteric ligand binding sites, and molecular mechanisms of ligand binding. Third, we close by collating the emerging paradigms and opportunities in targeting lipid GPCRs, including a brief discussion on current strategies, challenges, and the future outlook.
Collapse
Affiliation(s)
- R. N. V. Krishna Deepak
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
| | - Ravi Kumar Verma
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
| | - Yossa Dwi Hartono
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Wen Shan Yew
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Hao Fan
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
| |
Collapse
|
5
|
Lobasso S, Tanzarella P, Mannavola F, Tucci M, Silvestris F, Felici C, Ingrosso C, Corcelli A, Lopalco P. A Lipidomic Approach to Identify Potential Biomarkers in Exosomes From Melanoma Cells With Different Metastatic Potential. Front Physiol 2021; 12:748895. [PMID: 34867454 PMCID: PMC8637280 DOI: 10.3389/fphys.2021.748895] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Melanoma, one of the most lethal cutaneous cancers, is characterized by its ability to metastasize to other distant sites, such as the bone. Melanoma cells revealed a variable in vitro propensity to be attracted toward bone fragments, and melanoma-derived exosomes play a role in regulating the osteotropism of these cells. We have here investigated the lipid profiles of melanoma cell lines (LCP and SK-Mel28) characterized by different metastatic propensities to colonize the bone. We have purified exosomes from cell supernatants by ultracentrifugation, and their lipid composition has been compared to identify potential lipid biomarkers for different migration and invasiveness of melanoma cells. Matrix-assisted laser desorption ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS) lipid analysis has been performed on very small amounts of intact parental cells and exosomes by skipping lipid extraction and separation steps. Statistical analysis has been applied to MALDI mass spectra in order to discover significant differences in lipid profiles. Our results clearly show more saturated and shorter fatty acid tails in poorly metastatic (LCP) cells compared with highly metastatic (SK-Mel28) cells, particularly for some species of phosphatidylinositol. Sphingomyelin, lysophosphatidylcholine, and phosphatidic acid were enriched in exosome membranes compared to parental cells. In addition, we have clearly detected a peculiar phospholipid bis(monoacylglycero)phosphate as a specific lipid marker of exosomes. MALDI-TOF/MS lipid profiles of exosomes derived from the poorly and highly metastatic cells were not significantly different.
Collapse
Affiliation(s)
- Simona Lobasso
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Paola Tanzarella
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Mannavola
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.,Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Marco Tucci
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.,Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Francesco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.,Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Claudia Felici
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.,Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy.,Centre of Omic Sciences, IRCCS San Raffaele Hospital, Milan, Italy
| | - Chiara Ingrosso
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Bari, Italy
| | - Angela Corcelli
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Patrizia Lopalco
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
6
|
Phospholipase A1 Member A Activates Fibroblast-like Synoviocytes through the Autotaxin-Lysophosphatidic Acid Receptor Axis. Int J Mol Sci 2021; 22:ijms222312685. [PMID: 34884486 PMCID: PMC8657932 DOI: 10.3390/ijms222312685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023] Open
Abstract
Lysophosphatidylserine (lysoPS) is known to regulate immune cell functions. Phospholipase A1 member A (PLA1A) can generate this bioactive lipid through hydrolysis of sn-1 fatty acids on phosphatidylserine (PS). PLA1A has been associated with cancer metastasis, asthma, as well as acute coronary syndrome. However, the functions of PLA1A in the development of systemic autoimmune rheumatic diseases remain elusive. To investigate the possible implication of PLA1A during rheumatic diseases, we monitored PLA1A in synovial fluids from patients with rheumatoid arthritis and plasma of early-diagnosed arthritis (EA) patients and clinically stable systemic lupus erythematosus (SLE) patients. We used human primary fibroblast-like synoviocytes (FLSs) to evaluate the PLA1A-induced biological responses. Our results highlighted that the plasma concentrations of PLA1A in EA and SLE patients were elevated compared to healthy donors. High concentrations of PLA1A were also detected in synovial fluids from rheumatoid arthritis patients compared to those from osteoarthritis (OA) and gout patients. The origin of PLA1A in FLSs and the arthritic joints remained unknown, as healthy human primary FLSs does not express the PLA1A transcript. Besides, the addition of recombinant PLA1A stimulated cultured human primary FLSs to secrete IL-8. Preincubation with heparin, autotaxin (ATX) inhibitor HA130 or lysophosphatidic acid (LPA) receptor antagonist Ki16425 reduced PLA1A-induced-secretion of IL-8. Our data suggested that FLS-associated PLA1A cleaves membrane-exposed PS into lysoPS, which is subsequently converted to LPA by ATX. Since primary FLSs do not express any lysoPS receptors, the data suggested PLA1A-mediated pro-inflammatory responses through the ATX-LPA receptor signaling axis.
Collapse
|
7
|
Jia Y, Li Y, Xu XD, Tian Y, Shang H. Design and Development of Autotaxin Inhibitors. Pharmaceuticals (Basel) 2021; 14:ph14111203. [PMID: 34832985 PMCID: PMC8622848 DOI: 10.3390/ph14111203] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022] Open
Abstract
Autotaxin (ATX) is the only enzyme of the ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP2) family with lysophospholipase D (lysoPLD) activity, which is mainly responsible for the hydrolysis of extracellular lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA). LPA can induce various responses, such as cell proliferation, migration, and cytokine production, through six G protein-coupled receptors (LPA1-6). This signaling pathway is associated with metabolic and inflammatory disorder, and inhibiting this pathway has a positive effect on the treatment of related diseases, while ATX, as an important role in the production of LPA, has been shown to be associated with the occurrence and metastasis of tumors, fibrosis and cardiovascular diseases. From mimics of ATX natural lipid substrates to the rational design of small molecule inhibitors, ATX inhibitors have made rapid progress in structural diversity and design over the past 20 years, and three drugs, GLPG1690, BBT-877, and BLD-0409, have entered clinical trials. In this paper, we will review the structure of ATX inhibitors from the perspective of the transformation of design ideas, discuss the advantages and disadvantages of each inhibitor type, and put forward prospects for the development of ATX inhibitors in the future.
Collapse
Affiliation(s)
| | | | | | - Yu Tian
- Correspondence: (Y.T.); (H.S.)
| | | |
Collapse
|
8
|
Li Q, Wong W, Birnberg A, Chakrabarti A, Yang X, Choy DF, Olsson J, Verschueren E, Neighbors M, Sandoval W, Rosenberger CM, Grimbaldeston MA, Tew GW. Lysophosphatidic acid species are associated with exacerbation in chronic obstructive pulmonary disease. BMC Pulm Med 2021; 21:301. [PMID: 34556083 PMCID: PMC8461999 DOI: 10.1186/s12890-021-01670-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) exacerbations are heterogenous and profoundly impact the disease trajectory. Bioactive lipid lysophosphatidic acid (LPA) has been implicated in airway inflammation but the significance of LPA in COPD exacerbation is not known. The aim of the study was to investigate the utility of serum LPA species (LPA16:0, 18:0, 18:1, 18:2, 20:4) as biomarkers of COPD exacerbation. PATIENTS AND METHODS LPA species were measured in the baseline placebo sera of a COPD randomized controlled trial. Tertile levels of each LPA were used to assign patients into biomarker high, medium, and low subgroups. Exacerbation rate and risk were compared among the LPA subgroups. RESULTS The levels of LPA species were intercorrelated (rho 0.29-0.91). Patients with low and medium levels of LPA (LPA16:0, 20:4) had significantly higher exacerbation rate compared to the respective LPA-high patients [estimated rate per patient per year (95% CI)]: LPA16:0-low = 1.2 (0.8-1.9) (p = 0.019), LPA16:0-medium = 1.3 (0.8-2.0) (p = 0.013), LPA16:0-high = 0.5 (0.2-0.9); LPA20:4-low = 1.4 (0.9-2.1) (p = 0.0033), LPA20:4-medium = 1.2 (0.8-1.8) (p = 0.0089), LPA20:4-high = 0.4 (0.2-0.8). These patients also had earlier time to first exacerbation (hazard ratio (95% CI): LPA16:0-low = 2.6 (1.1-6.0) (p = 0.028), LPA16:0-medium = 2.7 (1.2-6.3) (p = 0.020); LPA20.4-low = 2.8 (1.2-6.6) (p = 0.017), LPA20:4-medium = 2.7 (1.2-6.4) (p = 0.021). Accordingly, these patients had a significant increased exacerbation risk compared to the respective LPA-high subgroups [odd ratio (95% CI)]: LPA16:0-low = 3.1 (1.1-8.8) (p = 0.030), LPA16:0-medium = 3.0 (1.1-8.3) (p = 0.031); LPA20:4-low = 3.8 (1.3-10.9) (p = 0.012), LPA20:4-medium = 3.3 (1.2-9.5) (p = 0.025). For the other LPA species (LPA18:0, 18:1, 18:2), the results were mixed; patients with low and medium levels of LPA18:0 and 18:2 had increased exacerbation rate, but only LPA18:0-low patients had significant increase in exacerbation risk and earlier time to first exacerbation compared to the LPA18:0-high subgroup. CONCLUSIONS The study provided evidence of association between systemic LPA levels and exacerbation in COPD. Patients with low and medium levels of specific LPA species (LPA16:0, 20:4) had increased exacerbation rate, risk, and earlier time to first exacerbation. These non-invasive biomarkers may aid in identifying high risk patients with dysregulated LPA pathway to inform risk management and drug development.
Collapse
Affiliation(s)
- Qingling Li
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | - Weng Wong
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | - Andrew Birnberg
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | - Arindam Chakrabarti
- Department of Biomarker Discovery OMNI, Genentech, Inc., South San Francisco, CA, USA
| | - Xiaoying Yang
- Department of Biostatistics, Genentech, Inc., South San Francisco, CA, USA
| | - David F Choy
- Department of Biomarker Discovery OMNI, Genentech, Inc., South San Francisco, CA, USA
| | - Julie Olsson
- Product Development Immunology, Infectious Disease and Ophthalmology, Genentech, Inc., South San Francisco, CA, USA
| | - Erik Verschueren
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | - Margaret Neighbors
- OMNI Biomarker Development, Genentech Inc., South San Francisco, CA, USA
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | - Carrie M Rosenberger
- Department of Biomarker Discovery OMNI, Genentech, Inc., South San Francisco, CA, USA
| | | | - Gaik W Tew
- Product Development Immunology, Infectious Disease and Ophthalmology, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
9
|
Boehm T, Ristl R, Joseph S, Petroczi K, Klavins K, Valent P, Jilma B. Metabolome and lipidome derangements during a severe mast cell activation event in a patient with indolent systemic mastocytosis. J Allergy Clin Immunol 2021; 148:1533-1544. [PMID: 33864889 DOI: 10.1016/j.jaci.2021.03.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/02/2021] [Accepted: 03/30/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND The number of mast cells in various organs is elevated manifold in individuals with systemic mastocytosis. Degranulation can lead to life-threatening symptomatology. No data about the alterations of the metabolome and lipidome during an attack have been published. OBJECTIVE Our aim was to analyze changes in metabolomics and lipidomics during the acute phase of a severe mast cell activation event. METHODS A total of 43 metabolites and 11 lipid classes comprising 200 subvariants from multiple plasma samples in duplicate, covering 72 hours of a severe mast cell activation attack with nausea and vomiting, were compared with 2 baseline samples by using quantitative liquid chromatography-mass spectrometry. RESULTS A strong enterocyte dysfunction reflected in an almost 20-fold reduction in the functional small bowel length was extrapolated from strongly reduced ornithine and citrulline concentrations and was very likely secondary to severe endothelial cell dysfunction with hypoperfusion and extensive vascular leakage. Highly increased histamine and lactate concentrations accompanied the peak in clinical symptoms. Elevated asymmetric and symmetric dimethylarginine levels combined with reduced arginine levels compromised endothelial nitric oxide synthase activity and nitric oxide signaling. Specific and extensive depletion of many lysophosphatidylcholine variants indicates localized autotaxin activation and lysophosphatidic acid release. A strong correlation of clinical parameters with histamine concentrations and symptom reduction after 100-fold elevated plasma diamine oxidase concentrations implies that histamine is the key driver of the acute phase. CONCLUSIONS Rapid elimination of elevated histamine concentrations through use of recombinant human diamine oxidase, supplementation of lysophosphatidylcholine for immunomodulation, inhibition of autotaxin activity, and/or blockade of lysophosphatidic acid receptors might represent new treatment options for life-threatening mast cell activation events.
Collapse
Affiliation(s)
- Thomas Boehm
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.
| | - Robin Ristl
- Section for Medical Statistics, Center of Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Saijo Joseph
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Karin Petroczi
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Kristaps Klavins
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Wang Y, Zhao M, Li W, Yang Y, Zhang Z, Ma R, Wu M. BMSC-Derived Small Extracellular Vesicles Induce Cartilage Reconstruction of Temporomandibular Joint Osteoarthritis via Autotaxin-YAP Signaling Axis. Front Cell Dev Biol 2021; 9:656153. [PMID: 33869221 PMCID: PMC8047210 DOI: 10.3389/fcell.2021.656153] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/03/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Temporomandibular joint osteoarthritis (TMJOA) seriously affects the health of patients, and the current treatments are invasive and only used for advanced cases. Bone marrow mesenchymal stem cell (BMSC)-derived small extracellular vesicles (BMSC-sEVs) may represent a safer and more effective treatment, but their role in TMJOA has not been elucidated. This study attempted to analyze the cartilage reconstruction effect of BMSC-sEVs on TMJOA and the mechanism underlying this effect. Methods: BMSC-sEVs were isolated and purified by microfiltration and ultrafiltration and were subsequently characterized by nanoparticle tracking analysis, electron microscopy, and immunoblotting. TMJOA models were established in vivo and in vitro, and hematoxylin–eosin staining, immunohistochemistry, and histological scoring were performed to analyze the histological changes in TMJOA cartilage tissues treated with BMSC-sEVs. The proliferation, migratory capacity, and cell cycle distribution of TMJOA cartilage cells treated with BMSC-sEVs were detected. Furthermore, the related mechanisms were studied by bioinformatic analysis, immunoblotting, and quantitative PCR, and they were further analyzed by knockdown and inhibitor techniques. Results: The acquisition and identification of BMSC-sEVs were efficient and satisfactory. Compared with the osteoarthritis (OA) group, the condylar tissue of the OA group treated with BMSC-sEV (OAsEV) showed an increase in cartilage lacuna and hypertrophic cartilage cells in the deep area of the bone under the cartilage. Significantly upregulated expression of proliferating cell nuclear antigen and cartilage-forming factors and downregulated expression of cartilage inflammation-related factors in OAsEV were observed. In addition, we found higher rates of cell proliferation and migratory activity and alleviated G1 stagnation of the cell cycle of OAsEV. Autotaxin was found in the BMSC-sEVs, and key factors of the Hippo pathway, Yes-associated protein (YAP), phosphorylated Yes-associated protein (p-YAP), etc. were upregulated in the OAsEV group. Treatment with BMSC-sEVs after autotaxin knockdown or inhibition no longer resulted in expression changes in cartilage-forming and inflammation-related factors and key factors of the Hippo pathway. Conclusions: These results suggest that the autotaxin–YAP signaling axis plays an important role in the mechanism by which BMSC-sEVs promote cartilage reconstruction in TMJOA, which may provide guidance regarding their therapeutic applications as early and minimally invasive therapies for TMJOA, and provide insight into the internal mechanisms of TMJOA.
Collapse
Affiliation(s)
- Yingnan Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Miaomiao Zhao
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Wen Li
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Yuzhi Yang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Zhenliang Zhang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Ruijie Ma
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Mengjie Wu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
11
|
Buratta S, Shimanaka Y, Costanzi E, Ni S, Urbanelli L, Kono N, Morena F, Sagini K, Giovagnoli S, Romani R, Gargaro M, Arai H, Emiliani C. Lipotoxic stress alters the membrane lipid profile of extracellular vesicles released by Huh-7 hepatocarcinoma cells. Sci Rep 2021; 11:4613. [PMID: 33633289 PMCID: PMC7907093 DOI: 10.1038/s41598-021-84268-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are well-known mediators in intercellular communication playing pivotal roles in promoting liver inflammation and fibrosis, events associated to hepatic lipotoxicity caused by saturated free fatty acid overloading. However, despite the importance of lipids in EV membrane architecture which, in turn, affects EV biophysical and biological properties, little is known about the lipid asset of EVs released under these conditions. Here, we analyzed phospholipid profile alterations of EVs released by hepatocarcinoma Huh-7 cells under increased membrane lipid saturation induced by supplementation with saturated fatty acid palmitate or Δ9 desaturase inhibition, using oleate, a nontoxic monounsaturated fatty acid, as control. As an increase of membrane lipid saturation induces endoplasmic reticulum (ER) stress, we also analyzed phospholipid rearrangements in EVs released by Huh-7 cells treated with thapsigargin, a conventional ER stress inducer. Results demonstrate that lipotoxic and/or ER stress conditions induced rearrangements not only into cell membrane phospholipids but also into the released EVs. Thus, cell membrane saturation level and/or ER stress are crucial to determine which lipids are discarded via EVs and EV lipid cargos might be useful to discriminate hepatic lipid overloading and ER stress.
Collapse
Affiliation(s)
- Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.
| | - Y Shimanaka
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - E Costanzi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - S Ni
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - L Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - N Kono
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - F Morena
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - K Sagini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - S Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - R Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - M Gargaro
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - H Arai
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - C Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
12
|
Shi W, Zhang C, Ning Z, Hua Y, Li Y, Chen L, Liu L, Chen Z, Meng Z. CMTM8 as an LPA1-associated partner mediates lysophosphatidic acid-induced pancreatic cancer metastasis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:42. [PMID: 33553335 PMCID: PMC7859753 DOI: 10.21037/atm-20-1013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Lysophosphatidic acid (LPA) is known to promote cancer cell invasiveness through LPA1, but the downstream signaling cascades are still not fully clarified. The CKLF-like MARVEL transmembrane domain-containing (CMTM) family regulates aggressive phenotype in many cancers. Methods We performed LPA1 co-immunoprecipitation combined with mass spectrometry to search for LPA1-associated proteins. The role of CMTM8 in mediating the pro-invasive activity of LPA was investigated in pancreatic cancer. Results We identified CMTM8 as an LPA1-interacting protein. LPA1 and CMTM8 were co-localized in pancreatic cancer cells. LPA treatment led to stabilization of CMTM8 protein, which was impaired by knockdown of LPA1. Depletion of CMTM8 significantly suppressed the migration and invasion of pancreatic cancer cells. Conversely, ectopic expression of CMTM8 enhanced the migratory and invasive capacity of pancreatic cancer cells. CMTM8 depletion blocked the formation of metastatic lesions in the lung. Knockdown of CMTM8 attenuated LPA-induced migration and invasion in pancreatic cancer cells. CMTM8 overexpression stimulated β-catenin activation through reduction of GSK3β. In addition, knockdown of β-catenin dramatically antagonized CMTM8-mediated migration and invasion in pancreatic cancer cells. Conclusions CMTM8 serves as a key mediator of LPA-induced invasiveness in pancreatic cancer. The interaction between CMTM8 and LPA1 leads to activation of oncogenic β-catenin signaling. CMTM8 represents a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Weidong Shi
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chenyue Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhouyu Ning
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yongqiang Hua
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ye Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lianyu Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Luming Liu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
13
|
Zheng L, Su J, Zhang Z, Jiang L, Wei J, Xu X, Lv S. Salidroside regulates inflammatory pathway of alveolar macrophages by influencing the secretion of miRNA-146a exosomes by lung epithelial cells. Sci Rep 2020; 10:20750. [PMID: 33247202 PMCID: PMC7695860 DOI: 10.1038/s41598-020-77448-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022] Open
Abstract
The purpose of this study was to explore the investigative mechanism of salidroside (SAL) on LPS-induced acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). The exosomes from RLE-6TN are extracted and identified by transmission electron microscopy, particle size analysis and protein marker detection, and co-cultured with NR8383 cells. The ALI/ARDS model of SD rats was established by LPS (10 mg/kg) intratracheal instillation. Following a four-hour intratracheal instillation of LPS, 50 μl of RLE-6TN exosomes were injected through the tail vein. After that, SAL and miR-146a antagomir were injected into the tail vein for 72 h, respectively. As the changes of HE stain, body weight and ALI score are observed. The expression of miR-146a, TLR4, NF-kB, IRAK1, TRAF6 and their related proteins were detected by RT-PCR and Western blot, respectively. TNF-α, IL-6, IL-8 and IL-1 β inflammatory factors were detected by ELISA. The expression of miR-146a, NF-kB, IRAK, TRAF6 and related inflammatory factors in LPS-induced NR8383 was significantly higher than that in the control group, while SAL has greatly reduced the expression of TLR4 mediated NF-kB inflammatory pathway and related inflammatory factors. SAL can significantly improve the LPS-induced lung morphological abnormalities, slowed down the rate of weight loss in rats, and reducing the ALI score. The expression trend of NF-kB, IRAK, TRAF6 and related inflammatory factors in rats’ lung tissues was consistent with that in NR8383 cells. SAL has a protective effect on ALI/ARDS caused by sepsis, which is likely to be developed to a potential treatment for the disease. To sum up, this study provides a new theoretical basis for the treatment of ALI/ARDS with SAL.
Collapse
Affiliation(s)
- Lanzhi Zheng
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006, Zhejiang Province, China
| | - Jianming Su
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006, Zhejiang Province, China
| | - Zhuoyi Zhang
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006, Zhejiang Province, China
| | - Lu Jiang
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006, Zhejiang Province, China
| | - Jinling Wei
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006, Zhejiang Province, China
| | - Xiaoyang Xu
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006, Zhejiang Province, China
| | - Shumin Lv
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006, Zhejiang Province, China.
| |
Collapse
|
14
|
Vismara M, Zarà M, Negri S, Canino J, Canobbio I, Barbieri SS, Moccia F, Torti M, Guidetti GF. Platelet-derived extracellular vesicles regulate cell cycle progression and cell migration in breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118886. [PMID: 33039555 DOI: 10.1016/j.bbamcr.2020.118886] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Platelets have been extensively implicated in the progression of cancer and platelet-derived extracellular vesicles (PEVs) are gaining growing attention as potential mediators of the platelet-cancer interplay. PEVs are shed from platelet membrane in response to extracellular stimuli and carry important biological signals for intercellular communication. In this study we demonstrate that PEVs specifically bind to different breast cancer cells and elicit cell-specific functional responses. PEVs were massively internalized by the metastatic cell lines MDA-MB-231 and SKBR3 and the ductal carcinoma cell line BT474, but not by the MCF-7 cell line. In SKBR3 cells, PEVs decreased mitochondrial dehydrogenase activities and altered cell cycle progression without affecting cell viability. Conversely, PEVs potently stimulated migration and invasion of MDA-MB-231, without affecting the distribution in the different phases of the cell cycle. In all the analyzed breast cancer cells, PEVs triggered a sustained increase of intracellular Ca2+, but only in MDA-MB-231 cells, this was associated to the stimulation of selected signaling proteins implicated in migration, including p38MAPK and myosin light chain. Importantly, inhibition of myosin light chain phosphorylation by a Rho kinase inhibitor prevented PEVs-stimulated migration of MDA-MB-231 cells. Our results demonstrate that PEVs are versatile regulators of cancer cell behavior and elicit a variety of different responses depending on the specific breast cancer cell subtype.
Collapse
Affiliation(s)
- Mauro Vismara
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marta Zarà
- Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Sharon Negri
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Jessica Canino
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Francesco Moccia
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Mauro Torti
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | |
Collapse
|
15
|
Jakubec M, Maple-Grødem J, Akbari S, Nesse S, Halskau Ø, Mork-Jansson AE. Plasma-derived exosome-like vesicles are enriched in lyso-phospholipids and pass the blood-brain barrier. PLoS One 2020; 15:e0232442. [PMID: 32956358 PMCID: PMC7505448 DOI: 10.1371/journal.pone.0232442] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes are vesicles involved in intercellular communication. Their membrane structure and core content is largely dependent on the cell of origin. Exosomes have been investigated both for their biological roles and their possible use as disease biomarkers and drug carriers. These potential technological applications require the rigorous characterization of exosomal blood brain barrier permeability and a description of their lipid bilayer composition. To achieve these goals, we have established a 3D static blood brain barrier system based on existing systems for liposomes and a complementary LC-MS/MS and 31P nuclear magnetic resonance methodology for the analysis of purified human plasma-derived exosome-like vesicles. Results show that the isolated vesicles pass the blood brain barrier and are taken up in endothelial cells. The compositional analysis revealed that the isolated vesicles are enriched in lyso phospholipids and do not contain phosphatidylserine. These findings deviate significantly from the composition of exosomes originating from cell culture, and may reflect active removal by macrophages that respond to exposed phosphahtidylserine.
Collapse
Affiliation(s)
- Martin Jakubec
- Department of Biological Sciences, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway
| | - Jodi Maple-Grødem
- Faculty of Science and Technology, Department of Chemistry, Biochemistry and Environmental Technology, University of Stavanger, Stavanger, Norway
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
| | - Saleha Akbari
- Faculty of Science and Technology, Department of Chemistry, Biochemistry and Environmental Technology, University of Stavanger, Stavanger, Norway
| | - Susanne Nesse
- Faculty of Science and Technology, Department of Chemistry, Biochemistry and Environmental Technology, University of Stavanger, Stavanger, Norway
| | - Øyvind Halskau
- Department of Biological Sciences, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway
| | - Astrid Elisabeth Mork-Jansson
- Faculty of Science and Technology, Department of Chemistry, Biochemistry and Environmental Technology, University of Stavanger, Stavanger, Norway
- * E-mail:
| |
Collapse
|
16
|
Guerreiro EM, Øvstebø R, Thiede B, Costea DE, Søland TM, Kanli Galtung H. Cancer cell line-specific protein profiles in extracellular vesicles identified by proteomics. PLoS One 2020; 15:e0238591. [PMID: 32886718 PMCID: PMC7473518 DOI: 10.1371/journal.pone.0238591] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs), are important for intercellular communication in both physiological and pathological processes. To explore the potential of cancer derived EVs as disease biomarkers for diagnosis, monitoring, and treatment decision, it is necessary to thoroughly characterize their biomolecular content. The aim of the study was to characterize and compare the protein content of EVs derived from three different cancer cell lines in search of a specific molecular signature, with emphasis on proteins related to the carcinogenic process. Oral squamous cell carcinoma (OSCC), pancreatic ductal adenocarcinoma (PDAC) and melanoma brain metastasis cell lines were cultured in CELLine AD1000 flasks. EVs were isolated by ultrafiltration and size-exclusion chromatography and characterized. Next, the isolated EVs underwent liquid chromatography-mass spectrometry (LC-MS) analysis for protein identification. Functional enrichment analysis was performed for a more general overview of the biological processes involved. More than 600 different proteins were identified in EVs from each particular cell line. Here, 14%, 10%, and 24% of the identified proteins were unique in OSCC, PDAC, and melanoma vesicles, respectively. A specific protein profile was discovered for each cell line, e.g., EGFR in OSCC, Muc5AC in PDAC, and FN1 in melanoma vesicles. Nevertheless, 25% of all the identified proteins were common to all cell lines. Functional enrichment analysis linked the proteins in each data set to biological processes such as "biological adhesion", "cell motility", and "cellular component biogenesis". EV proteomics discovered cancer-specific protein profiles, with proteins involved in processes promoting tumor progression. In addition, the biological processes associated to the melanoma-derived EVs were distinct from the ones linked to the EVs isolated from OSCC and PDAC. The malignancy specific biomolecular cues in EVs may have potential applications as diagnostic biomarkers and in therapy.
Collapse
Affiliation(s)
- Eduarda M. Guerreiro
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Reidun Øvstebø
- Department of Medical Biochemistry, Blood Cell Research Group, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Daniela Elena Costea
- Centre for Cancer Biomarkers CCBio and Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Tine M. Søland
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Hilde Kanli Galtung
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Furmanik M, Chatrou M, van Gorp R, Akbulut A, Willems B, Schmidt H, van Eys G, Bochaton-Piallat ML, Proudfoot D, Biessen E, Hedin U, Perisic L, Mees B, Shanahan C, Reutelingsperger C, Schurgers L. Reactive Oxygen-Forming Nox5 Links Vascular Smooth Muscle Cell Phenotypic Switching and Extracellular Vesicle-Mediated Vascular Calcification. Circ Res 2020; 127:911-927. [PMID: 32564697 DOI: 10.1161/circresaha.119.316159] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RATIONALE Vascular calcification, the formation of calcium phosphate crystals in the vessel wall, is mediated by vascular smooth muscle cells (VSMCs). However, the underlying molecular mechanisms remain elusive, precluding mechanism-based therapies. OBJECTIVE Phenotypic switching denotes a loss of contractile proteins and an increase in migration and proliferation, whereby VSMCs are termed synthetic. We examined how VSMC phenotypic switching influences vascular calcification and the possible role of the uniquely calcium-dependent reactive oxygen species (ROS)-forming Nox5 (NADPH oxidase 5). METHODS AND RESULTS In vitro cultures of synthetic VSMCs showed decreased expression of contractile markers CNN-1 (calponin 1), α-SMA (α-smooth muscle actin), and SM22-α (smooth muscle protein 22α) and an increase in synthetic marker S100A4 (S100 calcium binding protein A4) compared with contractile VSMCs. This was associated with increased calcification of synthetic cells in response to high extracellular Ca2+. Phenotypic switching was accompanied by increased levels of ROS and Ca2+-dependent Nox5 in synthetic VSMCs. Nox5 itself regulated VSMC phenotype as siRNA knockdown of Nox5 increased contractile marker expression and decreased calcification, while overexpression of Nox5 decreased contractile marker expression. ROS production in synthetic VSMCs was cytosolic Ca2+-dependent, in line with it being mediated by Nox5. Treatment of VSMCs with Ca2+ loaded extracellular vesicles (EVs) lead to an increase in cytosolic Ca2+. Inhibiting EV endocytosis with dynasore blocked the increase in cytosolic Ca2+ and VSMC calcification. Increased ROS production resulted in increased EV release and decreased phagocytosis by VSMCs. CONCLUSIONS We show here that contractile VSMCs are resistant to calcification and identify Nox5 as a key regulator of VSMC phenotypic switching. Additionally, we describe a new mechanism of Ca2+ uptake via EVs and show that Ca2+ induces ROS production in VSMCs via Nox5. ROS production is required for release of EVs, which promote calcification. Identifying molecular pathways that control Nox5 and VSMC-derived EVs provides potential targets to modulate vascular remodeling and calcification in the context of mineral imbalance. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Malgorzata Furmanik
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Martijn Chatrou
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Rick van Gorp
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Asim Akbulut
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Brecht Willems
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Harald Schmidt
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Guillaume van Eys
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Marie-Luce Bochaton-Piallat
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Diane Proudfoot
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Erik Biessen
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Ulf Hedin
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Ljubica Perisic
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Barend Mees
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Catherine Shanahan
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Chris Reutelingsperger
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| | - Leon Schurgers
- From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery Division, Karolinska Institute, Stockholm, Sweden (U.H., L.P.M.); Vascular Surgery, Maastricht University Medical Centre, The Netherlands (B.M.); and British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (C.S.)
| |
Collapse
|
18
|
Tang X, Benesch MGK, Brindley DN. Role of the autotaxin-lysophosphatidate axis in the development of resistance to cancer therapy. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158716. [PMID: 32305571 DOI: 10.1016/j.bbalip.2020.158716] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022]
Abstract
Autotaxin (ATX) is a secreted enzyme that hydrolyzes lysophosphatidylcholine to produce lysophosphatidate (LPA), which signals through six G-protein coupled receptors (GPCRs). Signaling through LPA is terminated by its degradation by a family of three lipid phosphate phosphatases (LPPs). LPP1 also attenuates signaling downstream of the activation of LPA receptors and some other GPCRs. The ATX-LPA axis mediates a plethora of activities such as cell proliferation, survival, migration, angiogenesis and inflammation, which perform an important role in facilitating wound healing. This wound healing response is hijacked by cancers where there is decreased expression of LPP1 and LPP3 and increased expression of ATX. This maladaptive regulation of LPA signaling also causes chronic inflammation, which has been recognized as one of the hallmarks in cancer. The increased LPA signaling promotes cell survival and migration and attenuates apoptosis, which stimulates tumor growth and metastasis. The wound healing functions of increased LPA signaling also protect cancer cells from effects of chemotherapy and radiotherapy. In this review, we will summarize knowledge of the ATX-LPA axis and its role in the development of resistance to chemotherapy and radiotherapy. We will also offer insights for developing strategies of targeting ATX-LPA axis as a novel part of cancer treatment. This article is part of a Special Issue entitled Lysophospholipids and their receptors: New data and new insights into their function edited by Susan Smyth, Viswanathan Natarajan and Colleen McMullen.
Collapse
Affiliation(s)
- Xiaoyun Tang
- Department of Biochemistry, University of Alberta, Edmonton T6G 2S2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2S2, Canada
| | - Matthew G K Benesch
- Department of Biochemistry, University of Alberta, Edmonton T6G 2S2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2S2, Canada; Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - David N Brindley
- Department of Biochemistry, University of Alberta, Edmonton T6G 2S2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2S2, Canada.
| |
Collapse
|
19
|
Peyruchaud O, Saier L, Leblanc R. Autotaxin Implication in Cancer Metastasis and Autoimunne Disorders: Functional Implication of Binding Autotaxin to the Cell Surface. Cancers (Basel) 2019; 12:cancers12010105. [PMID: 31906151 PMCID: PMC7016970 DOI: 10.3390/cancers12010105] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 12/29/2019] [Indexed: 12/18/2022] Open
Abstract
Autotaxin (ATX) is an exoenzyme which, due to its unique lysophospholipase D activity, is responsible for the synthesis of lysophosphatidic acid (LPA). ATX activity is responsible for the concentration of LPA in the blood. ATX expression is increased in various types of cancers, including breast cancer, where it promotes metastasis. The expression of ATX is also remarkably increased under inflammatory conditions, particularly in the osteoarticular compartment, where it controls bone erosion. Biological actions of ATX are mediated by LPA. However, the phosphate head group of LPA is highly sensitive to degradation by the action of lipid phosphate phosphatases, resulting in LPA inactivation. This suggests that for efficient action, LPA requires protection, which is potentially achieved through docking to a carrier protein. Interestingly, recent reports suggest that ATX might act as a docking molecule for LPA and also support the concept that binding of ATX to the cell surface through its interaction with adhesive molecules (integrins, heparan sulfate proteoglycans) could facilitate a rapid route of delivering active LPA to its cell surface receptors. This new mechanism offers a new vision of how ATX/LPA works in cancer metastasis and inflammatory bone diseases, paving the way for new therapeutic developments.
Collapse
Affiliation(s)
- Olivier Peyruchaud
- INSERM, Unit 1033, Université Claude Bernard Lyon 1, 69372 Lyon, France;
- Correspondence: ; Tel.: +3-34-78-77-86-72
| | - Lou Saier
- INSERM, Unit 1033, Université Claude Bernard Lyon 1, 69372 Lyon, France;
| | - Raphaël Leblanc
- Centre de Recherche en Cancérologie de Marseille, Institut Poli-Calmettes, INSERM, Unit 1068, University Aix/Marseille, 13009 Marseille, France;
| |
Collapse
|
20
|
The Structural Binding Mode of the Four Autotaxin Inhibitor Types that Differentially Affect Catalytic and Non-Catalytic Functions. Cancers (Basel) 2019; 11:cancers11101577. [PMID: 31623219 PMCID: PMC6826961 DOI: 10.3390/cancers11101577] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
Autotaxin (ATX) is a secreted lysophospholipase D, catalysing the conversion of lysophosphatidylcholine (LPC) to bioactive lysophosphatidic acid (LPA). LPA acts through two families of G protein-coupled receptors (GPCRs) controlling key cellular responses, and it is implicated in many physiological processes and pathologies. ATX, therefore, has been established as an important drug target in the pharmaceutical industry. Structural and biochemical studies of ATX have shown that it has a bimetallic nucleophilic catalytic site, a substrate-binding (orthosteric) hydrophobic pocket that accommodates the lipid alkyl chain, and an allosteric tunnel that can accommodate various steroids and LPA. In this review, first, we revisit what is known about ATX-mediated catalysis, crucially in light of allosteric regulation. Then, we present the known ATX catalysis-independent functions, including binding to cell surface integrins and proteoglycans. Next, we analyse all crystal structures of ATX bound to inhibitors and present them based on the four inhibitor types that are established based on the binding to the orthosteric and/or the allosteric site. Finally, in light of these data we discuss how mechanistic differences might differentially modulate the activity of the ATX-LPA signalling axis, and clinical applications including cancer.
Collapse
|
21
|
Abstract
Calcification is a regulated physiological process occurring in bones and teeth. However, calcification is commonly found in soft tissues in association with aging and in a variety of diseases. Over the last two decades, it has emerged that calcification occurring in diseased arteries is not simply an inevitable build-up of insoluble precipitates of calcium phosphate. In some cases, it is an active process in which transcription factors drive conversion of vascular cells to an osteoblast or chondrocyte-like phenotype, with the subsequent production of mineralizing "matrix vesicles." Early studies of bone and cartilage calcification suggested roles for cellular calcium signaling in several of the processes involved in the regulation of bone calcification. Similarly, calcium signaling has recently been highlighted as an important component in the mechanisms regulating pathological calcification. The emerging hypothesis is that ectopic/pathological calcification occurs in tissues in which there is an imbalance in the regulatory mechanisms that actively prevent calcification. This review highlights the various ways that calcium signaling regulates tissue calcification, with a particular focus on pathological vascular calcification.
Collapse
Affiliation(s)
- Diane Proudfoot
- Signalling Division, Babraham Institute, Babraham, Cambridge CB22 3AT, United Kingdom
| |
Collapse
|
22
|
Kraemer MP, Mao G, Hammill C, Yan B, Li Y, Onono F, Smyth SS, Morris AJ. Effects of diet and hyperlipidemia on levels and distribution of circulating lysophosphatidic acid. J Lipid Res 2019; 60:1818-1828. [PMID: 31484695 DOI: 10.1194/jlr.m093096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Lysophosphatidic acids (LPAs) are bioactive radyl hydrocarbon-substituted derivatives of glycerol 3-phosphate. LPA metabolism and signaling are implicated in heritable risk of coronary artery disease. Genetic and pharmacological inhibition of these processes attenuate experimental atherosclerosis. LPA accumulates in atheromas, which may be a consequence of association with LDLs. The source, regulation, and biological activity of LDL-associated LPA are unknown. We examined the effects of experimental hyperlipidemia on the levels and distribution of circulating LPA in mice. The majority of plasma LPA was associated with albumin in plasma from wild-type mice fed normal chow. LDL-associated LPA was increased in plasma from high-fat Western diet-fed mice that are genetically prone to hyperlipidemia (LDL receptor knockout or activated proprotein convertase subtilisin/kexin type 9-overexpressing C57Bl6). Adipose-specific deficiency of the ENPP2 gene encoding the LPA-generating secreted lysophospholipase D, autotaxin (ATX), attenuated these Western diet-dependent increases in LPA. ATX-dependent increases in LDL-associated LPA were observed in isolated incubated plasma. ATX acted directly on LDL-associated lysophospholipid substrates in vitro. LDL from all human subjects examined contained LPA and was decreased by lipid-lowering drug therapies. Human and mouse plasma therefore contains a diet-sensitive LDL-associated LPA pool that might contribute to the cardiovascular disease-promoting effects of LPA.
Collapse
Affiliation(s)
- Maria P Kraemer
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY.,Lexington Veterans Affairs Medical Center, Lexington, KY
| | - Guogen Mao
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY.,Lexington Veterans Affairs Medical Center, Lexington, KY
| | - Courtney Hammill
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY.,Lexington Veterans Affairs Medical Center, Lexington, KY
| | - Baoxiang Yan
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY
| | - Yu Li
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY
| | - Fredrick Onono
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY
| | - Susan S Smyth
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY.,Lexington Veterans Affairs Medical Center, Lexington, KY
| | - Andrew J Morris
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY .,Lexington Veterans Affairs Medical Center, Lexington, KY
| |
Collapse
|
23
|
Coakley G, Wright MD, Borger JG. Schistosoma mansoni-Derived Lipids in Extracellular Vesicles: Potential Agonists for Eosinophillic Tissue Repair. Front Immunol 2019; 10:1010. [PMID: 31134080 PMCID: PMC6514238 DOI: 10.3389/fimmu.2019.01010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/23/2019] [Indexed: 01/09/2023] Open
Affiliation(s)
- Gillian Coakley
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Mark D Wright
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jessica G Borger
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Zhao Y, Hasse S, Zhao C, Bourgoin SG. Targeting the autotaxin - Lysophosphatidic acid receptor axis in cardiovascular diseases. Biochem Pharmacol 2019; 164:74-81. [PMID: 30928673 DOI: 10.1016/j.bcp.2019.03.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
Lysophosphatidic acid (LPA) is a well-characterized bioactive lipid mediator, which is involved in development, physiology, and pathological processes of the cardiovascular system. LPA can be produced both inside cells and in biological fluids. The majority of extracellularLPAis produced locally by the secreted lysophospholipase D, autotaxin (ATX), through its binding to various β integrins or heparin sulfate on cell surface and hydrolyzing various lysophospholipids. LPA initiates cellular signalling pathways upon binding to and activation of its G protein-coupled receptors (LPA1-6). LPA has potent effects on various blood cells and vascular cells involved in the development of cardiovascular diseases such as atherosclerosis and aortic valve sclerosis. LPA signalling drives cell migration and proliferation, cytokine production, thrombosis, fibrosis, as well as angiogenesis. For instance, LPA promotes activation and aggregation of platelets through LPA5, increases expression of adhesion molecules in endothelial cells, and enhances expression of tissue factor in vascular smooth muscle cells. Furthermore, LPA induces differentiation of monocytes into macrophages and stimulates oxidized low-density lipoproteins (oxLDLs) uptake by macrophages to form foam cells during formation of atherosclerotic lesions through LPA1-3. This review summarizes recent findings of the roles played by ATX, LPA and LPA receptors (LPARs) in atherosclerosis and calcific aortic valve disease. Targeting the ATX-LPAR axis may have potential applications for treatment of patients suffering from various cardiovascular diseases.
Collapse
Affiliation(s)
- Yang Zhao
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V4G2, Canada
| | - Stephan Hasse
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V4G2, Canada
| | - Chenqi Zhao
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Canada
| | - Sylvain G Bourgoin
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V4G2, Canada.
| |
Collapse
|
25
|
Audet M, Stevens RC. Emerging structural biology of lipid G protein-coupled receptors. Protein Sci 2019; 28:292-304. [PMID: 30239054 PMCID: PMC6319753 DOI: 10.1002/pro.3509] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 01/14/2023]
Abstract
The first crystal structure of a G protein-coupled receptor (GPCR) was that of the bovine rhodopsin, solved in 2000, and is a light receptor within retina rode cells that enables vision by transducing a conformational signal from the light-induced isomerization of retinal covalently bound to the receptor. More than 7 years after this initial discovery and following more than 20 years of technological developments in GPCR expression, stabilization, and crystallography, the high-resolution structure of the adrenaline binding β2 -adrenergic receptor, a ligand diffusible receptor, was discovered. Since then, high-resolution structures of more than 53 unique GPCRs have been determined leading to a significant improvement in our understanding of the basic mechanisms of ligand-binding and ligand-mediated receptor activation that revolutionized the field of structural molecular pharmacology of GPCRs. Recently, several structures of eight unique lipid-binding receptors, one of the most difficult GPCR families to study, have been reported. This review presents the outstanding structural and pharmacological features that have emerged from these new lipid receptor structures. The impact of these findings goes beyond mechanistic insights, providing evidence of the fundamental role of GPCRs in the physiological integration of the lipid signaling system, and highlighting the importance of sustained research into the structural biology of GPCRs for the development of new therapeutics targeting lipid receptors.
Collapse
Affiliation(s)
- Martin Audet
- Departments of Biological Sciences and ChemistryBridge Institute, Michelson Center for Convergent Bioscience, University of Southern CaliforniaLos AngelesCalifornia90089
| | - Raymond C. Stevens
- Departments of Biological Sciences and ChemistryBridge Institute, Michelson Center for Convergent Bioscience, University of Southern CaliforniaLos AngelesCalifornia90089
| |
Collapse
|
26
|
Fendl B, Eichhorn T, Weiss R, Tripisciano C, Spittler A, Fischer MB, Weber V. Differential Interaction of Platelet-Derived Extracellular Vesicles With Circulating Immune Cells: Roles of TAM Receptors, CD11b, and Phosphatidylserine. Front Immunol 2018; 9:2797. [PMID: 30619243 PMCID: PMC6297748 DOI: 10.3389/fimmu.2018.02797] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
Secretion and exchange of biomolecules by extracellular vesicles (EVs) are crucial in intercellular communication and enable cells to adapt to alterations in their microenvironment. EVs are involved in a variety of cellular processes under physiological conditions as well as in pathological settings. In particular, they exert profound effects on the innate immune system, and thereby are also capable of modulating adaptive immunity. The mechanisms underlying their interaction with their recipient cells, particularly their preferential association with monocytes and granulocytes in the circulation, however, remain to be further clarified. Surface molecules exposed on EVs are likely to mediate immune recognition and EV uptake by their recipient cells. Here, we investigated the involvement of Tyro3, Axl, and Mer (TAM) tyrosine kinase receptors and of integrin CD11b in the binding of platelet-derived EVs, constituting the large majority of circulating EVs, to immune cells in the circulation. Flow cytometry and Western Blotting demonstrated a differential expression of TAM receptors and CD11b on monocytes, granulocytes, and lymphocytes, as well as on monocyte subsets. Of the TAM receptors, only Axl and Mer were detected at low levels on monocytes and granulocytes, but not on lymphocytes. Likewise, CD11b was present on circulating monocytes and granulocytes, but remained undetectable on lymphocytes. Differentiation of monocytes into classical, intermediate, and non-classical monocyte subsets revealed distinct expression patterns of Mer and activated CD11b. Co-incubation of isolated monocytes and granulocytes with platelet-derived EVs showed that the binding of EVs to immune cells was dependent on Ca++. Our data do not support a particular role for TAM receptors or for activated CD11b in the association of platelet-derived EVs with monocytes and granulocytes in the circulation, as anti-TAM antibodies did not interfere with EV binding to isolated immune cells, as binding was not dependent on the presence of TIM4 acting synergistically with TAM receptors, and as neither low levels of Gas6, required as a linker between phosphatidylserine (PS) on the EV surface and TAM receptors on immune cells, nor masking of PS on the EV surface did interfere with EV binding.
Collapse
Affiliation(s)
- Birgit Fendl
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - Tanja Eichhorn
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - René Weiss
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - Carla Tripisciano
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - Andreas Spittler
- Core Facility Flow Cytometry & Surgical Research Laboratories, Medical University of Vienna, Vienna, Austria
| | - Michael B Fischer
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - Viktoria Weber
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| |
Collapse
|
27
|
Blaho VA, Chun J. 'Crystal' Clear? Lysophospholipid Receptor Structure Insights and Controversies. Trends Pharmacol Sci 2018; 39:953-966. [PMID: 30343728 PMCID: PMC6201317 DOI: 10.1016/j.tips.2018.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/11/2018] [Accepted: 08/27/2018] [Indexed: 12/29/2022]
Abstract
Lysophospholipids (LPLs), particularly sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA), are bioactive lipid modulators of cellular homeostasis and pathology. The discovery and characterization of five S1P- and six LPA-specific G protein-coupled receptors (GPCRs), S1P1-5 and LPA1-6, have expanded their known involvement in all mammalian physiological systems. Resolution of the S1P1, LPA1, and LPA6 crystal structures has fueled the growing interest in these receptors and their ligands as targets for pharmacological manipulation. In this review, we have attempted to provide an integrated overview of the three crystallized LPL GPCRs with biochemical and physiological structure-function data. Finally, we provide a novel discussion of how chaperones for LPLs may be considered when extrapolating crystallographic and computational data toward understanding actual biological interactions and phenotypes.
Collapse
Affiliation(s)
- Victoria A Blaho
- Sanford Burnham Prebys Medical Discovery Institute, Degenerative Diseases Program, La Jolla, CA 92037, USA.
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, Degenerative Diseases Program, La Jolla, CA 92037, USA.
| |
Collapse
|
28
|
Record M, Silvente-Poirot S, Poirot M, Wakelam MJO. Extracellular vesicles: lipids as key components of their biogenesis and functions. J Lipid Res 2018; 59:1316-1324. [PMID: 29764923 PMCID: PMC6071772 DOI: 10.1194/jlr.e086173] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Indexed: 12/15/2022] Open
Abstract
Intercellular communication has been known for decades to involve either direct contact between cells or to operate via circulating molecules, such as cytokines, growth factors, or lipid mediators. During the last decade, we have begun to appreciate the increasing importance of intercellular communication mediated by extracellular vesicles released by viable cells either from plasma membrane shedding (microvesicles, also named microparticles) or from an intracellular compartment (exosomes). Exosomes and microvesicles circulate in all biological fluids and can trigger biological responses at a distance. Their effects include a large variety of biological processes, such as immune surveillance, modification of tumor microenvironment, or regulation of inflammation. Extracellular vesicles can carry a large array of active molecules, including lipid mediators, such as eicosanoids, proteins, and nucleic acids, able to modify the phenotype of receiving cells. This review will highlight the role of the various lipidic pathways involved in the biogenesis and functions of microvesicles and exosomes.
Collapse
Affiliation(s)
- Michel Record
- UMR INSERM 1037-CRCT (Cancer Research Center of Toulouse), University of Toulouse III Paul Sabatier, Team "Cholesterol Metabolism and Therapeutic Innovations," Toulouse, France
| | - Sandrine Silvente-Poirot
- UMR INSERM 1037-CRCT (Cancer Research Center of Toulouse), University of Toulouse III Paul Sabatier, Team "Cholesterol Metabolism and Therapeutic Innovations," Toulouse, France
| | - Marc Poirot
- UMR INSERM 1037-CRCT (Cancer Research Center of Toulouse), University of Toulouse III Paul Sabatier, Team "Cholesterol Metabolism and Therapeutic Innovations," Toulouse, France
| | | |
Collapse
|
29
|
Ninou I, Magkrioti C, Aidinis V. Autotaxin in Pathophysiology and Pulmonary Fibrosis. Front Med (Lausanne) 2018; 5:180. [PMID: 29951481 PMCID: PMC6008954 DOI: 10.3389/fmed.2018.00180] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/25/2018] [Indexed: 12/17/2022] Open
Abstract
Lysophospholipid signaling is emerging as a druggable regulator of pathophysiological responses, and especially fibrosis, exemplified by the relative ongoing clinical trials in idiopathic pulmonary fibrosis (IPF) patients. In this review, we focus on ectonucleotide pyrophosphatase-phosphodiesterase 2 (ENPP2), or as more widely known Autotaxin (ATX), a secreted lysophospholipase D (lysoPLD) largely responsible for extracellular lysophosphatidic acid (LPA) production. In turn, LPA is a bioactive phospholipid autacoid, forming locally upon increased ATX levels and acting also locally through its receptors, likely guided by ATX's structural conformation and cell surface associations. Increased ATX activity levels have been detected in many inflammatory and fibroproliferative conditions, while genetic and pharmacologic studies have confirmed a pleiotropic participation of ATX/LPA in different processes and disorders. In pulmonary fibrosis, ATX levels rise in the broncheoalveolar fluid (BALF) and stimulate LPA production. LPA engagement of its receptors activate multiple G-protein mediated signal transduction pathways leading to different responses from pulmonary cells including the production of pro-inflammatory signals from stressed epithelial cells, the modulation of endothelial physiology, the activation of TGF signaling and the stimulation of fibroblast accumulation. Genetic or pharmacologic targeting of the ATX/LPA axis attenuated disease development in animal models, thus providing the proof of principle for therapeutic interventions.
Collapse
Affiliation(s)
- Ioanna Ninou
- Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Athens, Greece
| | - Christiana Magkrioti
- Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Athens, Greece
| | - Vassilis Aidinis
- Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Athens, Greece
| |
Collapse
|
30
|
Sagini K, Costanzi E, Emiliani C, Buratta S, Urbanelli L. Extracellular Vesicles as Conveyors of Membrane-Derived Bioactive Lipids in Immune System. Int J Mol Sci 2018; 19:ijms19041227. [PMID: 29670015 PMCID: PMC5979532 DOI: 10.3390/ijms19041227] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/06/2018] [Accepted: 04/14/2018] [Indexed: 12/11/2022] Open
Abstract
Over the last 20 years, extracellular vesicles (EVs) have been established as an additional way to transmit signals outside the cell. They are membrane-surrounded structures of nanometric size that can either originate from the membrane invagination of multivesicular bodies of the late endosomal compartment (exosomes) or bud from the plasma membrane (microvesicles). They contain proteins, lipids, and nucleic acids—namely miRNA, but also mRNA and lncRNA—which are derived from the parental cell, and have been retrieved in every fluid of the body. As carriers of antigens, either alone or in association with major histocompatibility complex (MHC) class II and class I molecules, their immunomodulatory properties have been extensively investigated. Moreover, recent studies have shown that EVs may carry and deliver membrane-derived bioactive lipids that play an important function in the immune system and related pathologies, such as prostaglandins, leukotrienes, specialized pro-resolving mediators, and lysophospholipids. EVs protect bioactive lipids from degradation and play a role in the transcellular synthesis of prostaglandins and leukotrienes. Here, we summarized the role of EVs in the regulation of immune response, specifically focusing our attention on the emerging role of EVs as carriers of bioactive lipids, which is important for immune system function.
Collapse
Affiliation(s)
- Krizia Sagini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| | - Eva Costanzi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| |
Collapse
|
31
|
D'Souza K, Paramel GV, Kienesberger PC. Lysophosphatidic Acid Signaling in Obesity and Insulin Resistance. Nutrients 2018; 10:nu10040399. [PMID: 29570618 PMCID: PMC5946184 DOI: 10.3390/nu10040399] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 12/21/2022] Open
Abstract
Although simple in structure, lysophosphatidic acid (LPA) is a potent bioactive lipid that profoundly influences cellular signaling and function upon binding to G protein-coupled receptors (LPA1-6). The majority of circulating LPA is produced by the secreted enzyme autotaxin (ATX). Alterations in LPA signaling, in conjunction with changes in autotaxin (ATX) expression and activity, have been implicated in metabolic and inflammatory disorders including obesity, insulin resistance, and cardiovascular disease. This review summarizes our current understanding of the sources and metabolism of LPA with focus on the influence of diet on circulating LPA. Furthermore, we explore how the ATX-LPA pathway impacts obesity and obesity-associated disorders, including impaired glucose homeostasis, insulin resistance, and cardiovascular disease.
Collapse
Affiliation(s)
- Kenneth D'Souza
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, E2L 4L5 Canada.
| | - Geena V Paramel
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, E2L 4L5 Canada.
| | - Petra C Kienesberger
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, E2L 4L5 Canada.
| |
Collapse
|
32
|
Berenguer J, Lagerweij T, Zhao XW, Dusoswa S, van der Stoop P, Westerman B, de Gooijer MC, Zoetemelk M, Zomer A, Crommentuijn MHW, Wedekind LE, López-López À, Giovanazzi A, Bruch-Oms M, van der Meulen-Muileman IH, Reijmers RM, van Kuppevelt TH, García-Vallejo JJ, van Kooyk Y, Tannous BA, Wesseling P, Koppers-Lalic D, Vandertop WP, Noske DP, van Beusechem VW, van Rheenen J, Pegtel DM, van Tellingen O, Wurdinger T. Glycosylated extracellular vesicles released by glioblastoma cells are decorated by CCL18 allowing for cellular uptake via chemokine receptor CCR8. J Extracell Vesicles 2018; 7:1446660. [PMID: 29696074 PMCID: PMC5912193 DOI: 10.1080/20013078.2018.1446660] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/23/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer cells release extracellular vesicles (EVs) that contain functional biomolecules such as RNA and proteins. EVs are transferred to recipient cancer cells and can promote tumour progression and therapy resistance. Through RNAi screening, we identified a novel EV uptake mechanism involving a triple interaction between the chemokine receptor CCR8 on the cells, glycans exposed on EVs and the soluble ligand CCL18. This ligand acts as bridging molecule, connecting EVs to cancer cells. We show that glioblastoma EVs promote cell proliferation and resistance to the alkylating agent temozolomide (TMZ). Using in vitro and in vivo stem-like glioblastoma models, we demonstrate that EV-induced phenotypes are neutralised by a small molecule CCR8 inhibitor, R243. Interference with chemokine receptors may offer therapeutic opportunities against EV-mediated cross-talk in glioblastoma.
Collapse
Affiliation(s)
- Jordi Berenguer
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Tonny Lagerweij
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Xi Wen Zhao
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Sophie Dusoswa
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Petra van der Stoop
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Bart Westerman
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Mark C de Gooijer
- Department of Bio-Pharmacy/Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marloes Zoetemelk
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Anoek Zomer
- Cancer Genomics Netherlands, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Matheus H W Crommentuijn
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands.,Department of Bio-Pharmacy/Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Laurine E Wedekind
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Àlan López-López
- Department of Physiological Sciences I, University of Barcelona, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
| | - Alberta Giovanazzi
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Marina Bruch-Oms
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Rogier M Reijmers
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Toin H van Kuppevelt
- Department of Matrix Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Juan-Jesús García-Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Bakhos A Tannous
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Princess Máxima Center for Pediatric Oncology and University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - W Peter Vandertop
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - David P Noske
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Victor W van Beusechem
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jacco van Rheenen
- Cancer Genomics Netherlands, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - D Michiel Pegtel
- Department of Matrix Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Olaf van Tellingen
- Department of Bio-Pharmacy/Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Buratta S, Urbanelli L, Sagini K, Giovagnoli S, Caponi S, Fioretto D, Mitro N, Caruso D, Emiliani C. Extracellular vesicles released by fibroblasts undergoing H-Ras induced senescence show changes in lipid profile. PLoS One 2017; 12:e0188840. [PMID: 29182668 PMCID: PMC5705128 DOI: 10.1371/journal.pone.0188840] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022] Open
Abstract
Cells release extracellular vesicles (EVs) in their environment and cellular lipids play an important role in their formation, secretion and uptake. Besides, there is also evidence that EV transferred lipids impact on recipient’s cell signaling. Cellular senescence is characterized by a state of permanent proliferation arrest and represents a barrier towards the development of neoplastic lesions. A peculiar feature of senescence is the release of many soluble factors, the so-called Senescence-Associated Secretory Phenotype, which play a key role in triggering paracrine senescence signals. Recently, evidences have suggested that this phenotype includes not only soluble factors, but also EVs. To identify lipid signatures associated with H-Ras-induced senescence in EVs, we expressed active H-Ras (H-RasV12) in human fibroblasts and investigated how it affects EV release and lipid composition. An enrichment of hydroxylated sphingomyelin, lyso- and ether-linked phospholipids and specific H-Ras-induced senescence signatures, e.g. sphingomyelin, lysophosphatidic acid and sulfatides, were found in EVs compared to cells. Furthermore, H-RasV12 expression in fibroblasts was associated with higher levels of tetraspanins involved in vesicle formation.
Collapse
Affiliation(s)
- Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
- * E-mail: (SB); (LU)
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
- * E-mail: (SB); (LU)
| | - Krizia Sagini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Silvia Caponi
- Istituto Officina dei Materiali del CNR (CNR-IOM) - Unità di Perugia, c/o Department of Physics and Geology, University of Perugia, Perugia, Italy
| | - Daniele Fioretto
- Department of Physics and Geology, University of Perugia, Perugia, Italy
- CEMIN-Center of Excellence for Innovative Nanostructured Material, Perugia, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
- CEMIN-Center of Excellence for Innovative Nanostructured Material, Perugia, Italy
| |
Collapse
|