1
|
Ramírez-Salinas G, Shoshani L, Rosas-Trigueros JL, Huerta CS, Martínez-Archundia M. In silico studies provide new structural insights into trans-dimerization of β1 and β2 subunits of the Na+, K+-ATPase. PLoS One 2025; 20:e0321064. [PMID: 40299990 PMCID: PMC12040271 DOI: 10.1371/journal.pone.0321064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/02/2025] [Indexed: 05/01/2025] Open
Abstract
The Na+, K+-ATPase is an electrogenic transmembrane pump located in the plasma membrane of all animal cells. It is a dimeric protein composed of α and β subunits and has a third regulatory subunit (γ) belonging to the FXYD family. This pump plays a key role in maintaining low concentration of sodium and high concentration of potassium intracellularly. The α subunit is the catalytic one while the β subunit is important for the occlusion of the K+ ions and plays an essential role in trafficking of the functional αβ complex of Na+, K+-ATPase to the plasma membrane. Interestingly, the β1 and β2 (AMOG) isoforms of the β subunit, function as cell adhesion molecules in epithelial cells and astrocytes, respectively. Early experiments suggested a heterotypic adhesion for the β2. Recently, we reported a homotypic trans-interaction between β2-subunits expressed in CHO cells. In this work we use In Silico methods to analyze the physicochemical properties of the putative homophilic trans-dimer of β2 subunits and provide insights about the trans-dimerization interface stability. Our structural analysis predicts a molecular recognition mechanism of a trans-dimeric β2 - β2 subunit and permits designing experiments that will shed light upon possible homophilic interactions of β2 subunits in the nervous system.
Collapse
Affiliation(s)
- Gema Ramírez-Salinas
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Liora Shoshani
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Jorge L. Rosas-Trigueros
- Laboratorio Transdisciplinario de Investigación enSistemas Evolutivos, ESCOM, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Christian Sosa Huerta
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Marlet Martínez-Archundia
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
2
|
Mao Y, Hu Y, Meng H, Qin J, An Q, Zhang C, Guo C, Zhao Y, Tan D, Ge X, Shi C. FXYD5 regulates gastric cancer cell metastasis and drug resistance by EMT modulation. Cancer Gene Ther 2025; 32:318-326. [PMID: 39984673 DOI: 10.1038/s41417-025-00878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/19/2025] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related mortality and the fourth most prevalent malignancy globally. The high prevalence and mortality rates of GC are attributed to various factors, including drug resistance, local recurrence, and distant metastases. There is an urgent need to identify novel therapeutic targets for GC. Patient-derived xenografts (PDX) model offers unique advantages in maintaining the molecular heterogeneity and tumor microenvironment of primary tumors, offering significant advantages for the screening of personalized therapeutic targets. In this study, we established GC PDX models with metastatic potential through orthotopic transplantation and investigated the different gene expressions between primary and metastatic tumors using PCR-array analysis. We found that the metastatic tumors displayed elevated levels of FXYD domain-containing ion transport regulator 5 (FXYD5) compared to the primary tumors. Additionally, reducing FXYD5 expression was found to inhibit the invasion, metastasis, and proliferation of GC cells. Silencing FXYD5 also reversed the resistance of GC cells to doxorubicin and vincristine by modulating the epithelial-mesenchymal transition (EMT) process and the expression of multidrug resistance protein 2. This study indicates that FXYD5 is involved in GC progression and regulates chemotherapy resistance, suggesting its potential as a novel therapeutic target for the clinical treatment of GC.
Collapse
Affiliation(s)
- Yuning Mao
- Division of Cancer Biology, Laboratory Animal Center, Air Force Medical University, 710032, Xi'an, Shaanxi, China
- Department of Pathology, Xijing Hospital, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Yaohua Hu
- Division of Cancer Biology, Laboratory Animal Center, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Han Meng
- Division of Cancer Biology, Laboratory Animal Center, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Jing Qin
- Division of Cancer Biology, Laboratory Animal Center, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Qingling An
- Division of Cancer Biology, Laboratory Animal Center, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Caiqin Zhang
- Division of Cancer Biology, Laboratory Animal Center, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Chenbo Guo
- Division of Cancer Biology, Laboratory Animal Center, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Yong Zhao
- Division of Cancer Biology, Laboratory Animal Center, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Dengxu Tan
- Division of Cancer Biology, Laboratory Animal Center, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Xu Ge
- Division of Cancer Biology, Laboratory Animal Center, Air Force Medical University, 710032, Xi'an, Shaanxi, China.
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, Air Force Medical University, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Jin M, Zhang H, Yang J, Zheng Z, Liu K. Expression mode and prognostic value of FXYD family members in colon cancer. Aging (Albany NY) 2021; 13:18404-18422. [PMID: 34270462 PMCID: PMC8351680 DOI: 10.18632/aging.203290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022]
Abstract
The FXYD gene family comprises seven members that encode a class of small-membrane proteins characterized by an FXYD motif and interact with Na+/K+-ATPase. Until now, the expression patterns and prognostic roles of the FXYD family in colon cancer (CC) have not been systematically reported. Gene expression, methylation, clinicopathological features and the prognoses of CC patients were obtained from The Cancer Genome Atlas (TCGA) database. The expression feature and prognostic values of FXYD members were identified. Gene set enrichment analysis (GSEA) was performed to explore the potential mechanism underlying the function of the FXYD family in CC. Tumor Immune Estimation Resource (TIMER) and CIBERSORT analysis were used to assess the correlations between FXYD family members and tumor immune infiltrating cells (TIICs). FXYD family members were differentially expressed in CC except for FXYD2. FXYD2, FXYD3 and FXYD4 were revealed as independent prognostic factors for recurrence, while FXYD3 and FXYD7 were identified as prognostic factors for survival according to univariate and multivariate analyses with Cox regression. GSEA revealed that FXYD family members were involved in complicated biological functions underlying cancer progression. TIMER and CIBERSORT analyses showed significant associations between FXYD family genes and TIICs. The present study comprehensively revealed the expression mode and prognostic value of FXYD members in CC, providing insights for further study of the FXYD family as potential clinical biomarkers in CC.
Collapse
Affiliation(s)
- Ming Jin
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Hui Zhang
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Jun Yang
- Ningbo Diagnostic Pathology Center, Ningbo, China
| | - Zhen Zheng
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Kaitai Liu
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Kryvenko V, Vagin O, Dada LA, Sznajder JI, Vadász I. Maturation of the Na,K-ATPase in the Endoplasmic Reticulum in Health and Disease. J Membr Biol 2021; 254:447-457. [PMID: 34114062 PMCID: PMC8192048 DOI: 10.1007/s00232-021-00184-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/08/2021] [Indexed: 12/11/2022]
Abstract
Abstract The Na,K-ATPase establishes the electrochemical gradient of cells by driving an active exchange of Na+ and K+ ions while consuming ATP. The minimal functional transporter consists of a catalytic α-subunit and a β-subunit with chaperon activity. The Na,K-ATPase also functions as a cell adhesion molecule and participates in various intracellular signaling pathways. The maturation and trafficking of the Na,K-ATPase include co- and post-translational processing of the enzyme in the endoplasmic reticulum (ER) and the Golgi apparatus and subsequent delivery to the plasma membrane (PM). The ER folding of the enzyme is considered as the rate-limiting step in the membrane delivery of the protein. It has been demonstrated that only assembled Na,K-ATPase α:β-complexes may exit the organelle, whereas unassembled, misfolded or unfolded subunits are retained in the ER and are subsequently degraded. Loss of function of the Na,K-ATPase has been associated with lung, heart, kidney and neurological disorders. Recently, it has been shown that ER dysfunction, in particular, alterations in the homeostasis of the organelle, as well as impaired ER-resident chaperone activity may impede folding of Na,K-ATPase subunits, thus decreasing the abundance and function of the enzyme at the PM. Here, we summarize our current understanding on maturation and subsequent processing of the Na,K-ATPase in the ER under physiological and pathophysiological conditions. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Klinikstrasse 33, 35392, Giessen, Germany.,The Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Olga Vagin
- Department of Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.,Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Laura A Dada
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - István Vadász
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Klinikstrasse 33, 35392, Giessen, Germany. .,The Cardio-Pulmonary Institute (CPI), Giessen, Germany.
| |
Collapse
|
5
|
Affiliation(s)
- Michael Habeck
- Danish Research Institute of Translational Neuroscience and the Center for Proteins in Memory, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Hanne Poulsen
- Danish Research Institute of Translational Neuroscience and the Center for Proteins in Memory, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Iakovlev M, Faravelli S, Becskei A. Gene Families With Stochastic Exclusive Gene Choice Underlie Cell Adhesion in Mammalian Cells. Front Cell Dev Biol 2021; 9:642212. [PMID: 33996799 PMCID: PMC8117012 DOI: 10.3389/fcell.2021.642212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Exclusive stochastic gene choice combines precision with diversity. This regulation enables most T-cells to express exactly one T-cell receptor isoform chosen from a large repertoire, and to react precisely against diverse antigens. Some cells express two receptor isoforms, revealing the stochastic nature of this process. A similar regulation of odorant receptors and protocadherins enable cells to recognize odors and confer individuality to cells in neuronal interaction networks, respectively. We explored whether genes in other families are expressed exclusively by analyzing single-cell RNA-seq data with a simple metric. This metric can detect exclusivity independently of the mean value and the monoallelic nature of gene expression. Chromosomal segments and gene families are more likely to express genes concurrently than exclusively, possibly due to the evolutionary and biophysical aspects of shared regulation. Nonetheless, gene families with exclusive gene choice were detected in multiple cell types, most of them are membrane proteins involved in ion transport and cell adhesion, suggesting the coordination of these two functions. Thus, stochastic exclusive expression extends beyond the prototypical families, permitting precision in gene choice to be combined with the diversity of intercellular interactions.
Collapse
|
7
|
Dada LA, Vagin O, Sznajder JI. Dysregulation of ion transport in the lung epithelium infected with SARS-CoV-2. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1183-L1185. [PMID: 33881360 PMCID: PMC8238444 DOI: 10.1152/ajplung.00170.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Laura A Dada
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Olga Vagin
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles and Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California
| | - Jacob I Sznajder
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
8
|
Importance of evaluating protein glycosylation in pluripotent stem cell-derived cardiomyocytes for research and clinical applications. Pflugers Arch 2021; 473:1041-1059. [PMID: 33830329 PMCID: PMC8245383 DOI: 10.1007/s00424-021-02554-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 01/21/2023]
Abstract
Proper protein glycosylation is critical to normal cardiomyocyte physiology. Aberrant glycosylation can alter protein localization, structure, drug interactions, and cellular function. The in vitro differentiation of human pluripotent stem cells into cardiomyocytes (hPSC-CM) has become increasingly important to the study of protein function and to the fields of cardiac disease modeling, drug testing, drug discovery, and regenerative medicine. Here, we offer our perspective on the importance of protein glycosylation in hPSC-CM. Protein glycosylation is dynamic in hPSC-CM, but the timing and extent of glycosylation are still poorly defined. We provide new data highlighting how observed changes in hPSC-CM glycosylation may be caused by underlying differences in the protein or transcript abundance of enzymes involved in building and trimming the glycan structures or glycoprotein gene products. We also provide evidence that alternative splicing results in altered sites of glycosylation within the protein sequence. Our findings suggest the need to precisely define protein glycosylation events that may have a critical impact on the function and maturation state of hPSC-CM. Finally, we provide an overview of analytical strategies available for studying protein glycosylation and identify opportunities for the development of new bioinformatic approaches to integrate diverse protein glycosylation data types. We predict that these tools will promote the accurate assessment of protein glycosylation in future studies of hPSC-CM that will ultimately be of significant experimental and clinical benefit.
Collapse
|
9
|
Bejček J, Spiwok V, Kmoníčková E, Rimpelová S. Na +/K +-ATPase Revisited: On Its Mechanism of Action, Role in Cancer, and Activity Modulation. Molecules 2021; 26:molecules26071905. [PMID: 33800655 PMCID: PMC8061769 DOI: 10.3390/molecules26071905] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023] Open
Abstract
Maintenance of Na+ and K+ gradients across the cell plasma membrane is an essential process for mammalian cell survival. An enzyme responsible for this process, sodium-potassium ATPase (NKA), has been currently extensively studied as a potential anticancer target, especially in lung cancer and glioblastoma. To date, many NKA inhibitors, mainly of natural origin from the family of cardiac steroids (CSs), have been reported and extensively studied. Interestingly, upon CS binding to NKA at nontoxic doses, the role of NKA as a receptor is activated and intracellular signaling is triggered, upon which cancer cell death occurs, which lies in the expression of different NKA isoforms than in healthy cells. Two major CSs, digoxin and digitoxin, originally used for the treatment of cardiac arrhythmias, are also being tested for another indication—cancer. Such drug repositioning has a big advantage in smoother approval processes. Besides this, novel CS derivatives with improved performance are being developed and evaluated in combination therapy. This article deals with the NKA structure, mechanism of action, activity modulation, and its most important inhibitors, some of which could serve not only as a powerful tool to combat cancer, but also help to decipher the so-far poorly understood NKA regulation.
Collapse
Affiliation(s)
- Jiří Bejček
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic; (J.B.); (V.S.)
| | - Vojtěch Spiwok
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic; (J.B.); (V.S.)
| | - Eva Kmoníčková
- Department of Pharmacology, Second Faculty of Medicine, Charles University, Plzeňská 311, 150 00 Prague, Czech Republic;
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic; (J.B.); (V.S.)
- Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
- Correspondence: ; Tel.: +420-220-444-360
| |
Collapse
|
10
|
Marcus EA, Tokhtaeva E, Jimenez JL, Wen Y, Naini BV, Heard AN, Kim S, Capri J, Cohn W, Whitelegge JP, Vagin O. Helicobacter pylori infection impairs chaperone-assisted maturation of Na-K-ATPase in gastric epithelium. Am J Physiol Gastrointest Liver Physiol 2020; 318:G931-G945. [PMID: 32174134 PMCID: PMC7272721 DOI: 10.1152/ajpgi.00266.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 01/31/2023]
Abstract
Helicobacter pylori infection always induces gastritis, which may progress to ulcer disease or cancer. The mechanisms underlying mucosal injury by the bacteria are incompletely understood. Here, we identify a novel pathway for H. pylori-induced gastric injury, the impairment of maturation of the essential transport enzyme and cell adhesion molecule, Na-K-ATPase. Na-K-ATPase comprises α- and β-subunits that assemble in the endoplasmic reticulum (ER) before trafficking to the plasma membrane. Attachment of H. pylori to gastric epithelial cells increased Na-K-ATPase ubiquitylation, decreased its surface and total levels, and impaired ion balance. H. pylori did not alter degradation of plasmalemma-resident Na-K-ATPase subunits or their mRNA levels. Infection decreased association of α- and β-subunits with ER chaperone BiP and impaired assembly of α/β-heterodimers, as was revealed by quantitative mass spectrometry and immunoblotting of immunoprecipitated complexes. The total level of BiP was not altered, and the decrease in interaction with BiP was not observed for other BiP client proteins. The H. pylori-induced decrease in Na-K-ATPase was prevented by BiP overexpression, stopping protein synthesis, or inhibiting proteasomal, but not lysosomal, protein degradation. The results indicate that H. pylori impairs chaperone-assisted maturation of newly made Na-K-ATPase subunits in the ER independently of a generalized ER stress and induces their ubiquitylation and proteasomal degradation. The decrease in Na-K-ATPase levels is also seen in vivo in the stomachs of gerbils and chronically infected children. Further understanding of H. pylori-induced Na-K-ATPase degradation will provide insights for protection against advanced disease.NEW & NOTEWORTHY This work provides evidence that Helicobacter pylori decreases levels of Na-K-ATPase, a vital transport enzyme, in gastric epithelia, both in acutely infected cultured cells and in chronically infected patients and animals. The bacteria interfere with BiP-assisted folding of newly-made Na-K-ATPase subunits in the endoplasmic reticulum, accelerating their ubiquitylation and proteasomal degradation and decreasing efficiency of the assembly of native enzyme. Decreased Na-K-ATPase expression contributes to H. pylori-induced gastric injury.
Collapse
Affiliation(s)
- Elizabeth A Marcus
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, California
- Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California
| | - Elmira Tokhtaeva
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
- Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California
| | - Jossue L Jimenez
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, California
- Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California
| | - Yi Wen
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
- Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California
| | - Bita V Naini
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Ashley N Heard
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, California
- Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California
| | - Samuel Kim
- Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California
| | - Joseph Capri
- Pasarow Mass Spectrometry Laboratory, The Neuropsychiatric Insititute-Semel Institute, University of California, Los Angeles, California
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, The Neuropsychiatric Insititute-Semel Institute, University of California, Los Angeles, California
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, The Neuropsychiatric Insititute-Semel Institute, University of California, Los Angeles, California
| | - Olga Vagin
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
- Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California
| |
Collapse
|
11
|
Kryvenko V, Wessendorf M, Morty RE, Herold S, Seeger W, Vagin O, Dada LA, Sznajder JI, Vadász I. Hypercapnia Impairs Na,K-ATPase Function by Inducing Endoplasmic Reticulum Retention of the β-Subunit of the Enzyme in Alveolar Epithelial Cells. Int J Mol Sci 2020; 21:E1467. [PMID: 32098115 PMCID: PMC7073107 DOI: 10.3390/ijms21041467] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 01/02/2023] Open
Abstract
Alveolar edema, impaired alveolar fluid clearance, and elevated CO2 levels (hypercapnia) are hallmarks of the acute respiratory distress syndrome (ARDS). This study investigated how hypercapnia affects maturation of the Na,K-ATPase (NKA), a key membrane transporter, and a cell adhesion molecule involved in the resolution of alveolar edema in the endoplasmic reticulum (ER). Exposure of human alveolar epithelial cells to elevated CO2 concentrations caused a significant retention of NKA-β in the ER and, thus, decreased levels of the transporter in the Golgi apparatus. These effects were associated with a marked reduction of the plasma membrane (PM) abundance of the NKA-α/β complex as well as a decreased total and ouabain-sensitive ATPase activity. Furthermore, our study revealed that the ER-retained NKA-β subunits were only partially assembled with NKA α-subunits, which suggests that hypercapnia modifies the ER folding environment. Moreover, we observed that elevated CO2 levels decreased intracellular ATP production and increased ER protein and, particularly, NKA-β oxidation. Treatment with α-ketoglutaric acid (α-KG), which is a metabolite that has been shown to increase ATP levels and rescue mitochondrial function in hypercapnia-exposed cells, attenuated the deleterious effects of elevated CO2 concentrations and restored NKA PM abundance and function. Taken together, our findings provide new insights into the regulation of NKA in alveolar epithelial cells by elevated CO2 levels, which may lead to the development of new therapeutic approaches for patients with ARDS and hypercapnia.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany; (V.K.); (M.W.); (R.E.M.); (S.H.); (W.S.)
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
| | - Miriam Wessendorf
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany; (V.K.); (M.W.); (R.E.M.); (S.H.); (W.S.)
| | - Rory E. Morty
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany; (V.K.); (M.W.); (R.E.M.); (S.H.); (W.S.)
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Susanne Herold
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany; (V.K.); (M.W.); (R.E.M.); (S.H.); (W.S.)
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany; (V.K.); (M.W.); (R.E.M.); (S.H.); (W.S.)
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Olga Vagin
- Department of Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA;
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Laura A. Dada
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (L.A.D.); (J.I.S.)
| | - Jacob I. Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (L.A.D.); (J.I.S.)
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany; (V.K.); (M.W.); (R.E.M.); (S.H.); (W.S.)
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
| |
Collapse
|
12
|
A Model for the Homotypic Interaction between Na +,K +-ATPase β 1 Subunits Reveals the Role of Extracellular Residues 221-229 in Its Ig-Like Domain. Int J Mol Sci 2019; 20:ijms20184538. [PMID: 31540261 PMCID: PMC6770782 DOI: 10.3390/ijms20184538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
The Na+, K+-ATPase transports Na+ and K+ across the membrane of all animal cells. In addition to its ion transporting function, the Na+, K+-ATPase acts as a homotypic epithelial cell adhesion molecule via its β1 subunit. The extracellular region of the Na+, K+-ATPase β1 subunit includes a single globular immunoglobulin-like domain. We performed Molecular Dynamics simulations of the ectodomain of the β1 subunit and a refined protein-protein docking prediction. Our results show that the β1 subunit Ig-like domain maintains an independent structure and dimerizes in an antiparallel fashion. Analysis of the putative interface identified segment Lys221-Tyr229. We generated triple mutations on YFP-β1 subunit fusion proteins to assess the contribution of these residues. CHO fibroblasts transfected with mutant β1 subunits showed a significantly decreased cell-cell adhesion. Association of β1 subunits in vitro was also reduced, as determined by pull-down assays. Altogether, we conclude that two Na+, K+-ATPase molecules recognize each other by a large interface spanning residues 221–229 and 198–207 on their β1 subunits.
Collapse
|
13
|
Ouabain Accelerates Collective Cell Migration Through a cSrc and ERK1/2 Sensitive Metalloproteinase Activity. J Membr Biol 2019; 252:549-559. [PMID: 31041466 DOI: 10.1007/s00232-019-00066-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 04/17/2019] [Indexed: 10/26/2022]
Abstract
Studies made in the Madin-Darby canine kidney (MDCK) epithelial cell line showed that ouabain regulates cell adhesion and cell-adhesion-related biological processes, such as migration. Here, we demonstrated that 10 nM ouabain accelerates collective cell migration and heals wounds in cultured MDCK cell monolayers. Ouabain-induced acceleration of cell migration depends on activation of the cSrc-ERK1/2 signaling cascade, as it was inhibited by the kinase inhibitors PP2 and PD98059. Activation of the cSrc-ERK1/2 signaling cascade increased expression and activation of the extracellular matrix metalloproteinase-2 (MMP-2). Inhibition of MMP activity using the generic inhibitor GM6001 or the potent iMMP-2 inhibitor prevented the accelerative effect of ouabain. Likewise, Focal Adhesion Kinase (FAK) inhibition with the transfection of dominant negative peptide FRNK impaired the effect of ouabain. These results suggest that ouabain binding to the Na+,K+-ATPase accelerates collective migration of MDCK cells through activation of the cSrc-ERK1/2-FAK signaling cascade and promoting secretion and MMP activity.
Collapse
|
14
|
Vilchis-Nestor CA, Roldán ML, Leonardi A, Navea JG, Padilla-Benavides T, Shoshani L. Ouabain Enhances Cell-Cell Adhesion Mediated by β 1 Subunits of the Na +,K +-ATPase in CHO Fibroblasts. Int J Mol Sci 2019; 20:E2111. [PMID: 31035668 PMCID: PMC6539428 DOI: 10.3390/ijms20092111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022] Open
Abstract
Adhesion is a crucial characteristic of epithelial cells to form barriers to pathogens and toxic substances from the environment. Epithelial cells attach to each other using intercellular junctions on the lateral membrane, including tight and adherent junctions, as well as the Na+,K+-ATPase. Our group has shown that non-adherent chinese hamster ovary (CHO) cells transfected with the canine β1 subunit become adhesive, and those homotypic interactions amongst β1 subunits of the Na+,K+-ATPase occur between neighboring epithelial cells. Ouabain, a cardiotonic steroid, binds to the α subunit of the Na+,K+-ATPase, inhibits the pump activity and induces the detachment of epithelial cells when used at concentrations above 300 nM. At nanomolar non-inhibiting concentrations, ouabain affects the adhesive properties of epithelial cells by inducing the expression of cell adhesion molecules through the activation of signaling pathways associated with the α subunit. In this study, we investigated whether the adhesion between β1 subunits was also affected by ouabain. We used CHO fibroblasts stably expressing the β1 subunit of the Na+,K+-ATPase (CHO β1), and studied the effect of ouabain on cell adhesion. Aggregation assays showed that ouabain increased the adhesion between CHO β1 cells. Immunofluorescence and biotinylation assays showed that ouabain (50 nM) increases the expression of the β1 subunit of the Na+,K+-ATPase at the cell membrane. We also examined the effect of ouabain on the activation of signaling pathways in CHO β1 cells, and their subsequent effect on cell adhesion. We found that cSrc is activated by ouabain and, therefore, that it likely regulates the adhesive properties of CHO β1 cells. Collectively, our findings suggest that the β1 subunit adhesion is modulated by the expression levels of the Na+,K+-ATPase at the plasma membrane, which is regulated by ouabain.
Collapse
Affiliation(s)
- Claudia Andrea Vilchis-Nestor
- Department of Physiology Biophysics and Neurosciences, Center for Research and Advanced Studies, Cinvestav-Ipn, CDMX 07360, Mexico.
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - María Luisa Roldán
- Department of Physiology Biophysics and Neurosciences, Center for Research and Advanced Studies, Cinvestav-Ipn, CDMX 07360, Mexico.
| | - Angelina Leonardi
- Department of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866, USA.
| | - Juan G Navea
- Department of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866, USA.
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Liora Shoshani
- Department of Physiology Biophysics and Neurosciences, Center for Research and Advanced Studies, Cinvestav-Ipn, CDMX 07360, Mexico.
| |
Collapse
|
15
|
Steentoft C, Fuhrmann M, Battisti F, Van Coillie J, Madsen TD, Campos D, Halim A, Vakhrushev SY, Joshi HJ, Schreiber H, Mandel U, Narimatsu Y. A strategy for generating cancer-specific monoclonal antibodies to aberrant O-glycoproteins: identification of a novel dysadherin-Tn antibody. Glycobiology 2019; 29:307-319. [PMID: 30726901 PMCID: PMC6430981 DOI: 10.1093/glycob/cwz004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/25/2022] Open
Abstract
Successful application of potent antibody-based T-cell engaging immunotherapeutic strategies is currently limited mainly to hematological cancers. One major reason is the lack of well-characterized antigens on solid tumors with sufficient cancer specific expression. Aberrantly O-glycosylated proteins contain promising cancer-specific O-glycopeptide epitopes suitable for immunotherapeutic applications, but currently only few examples of such antibody epitopes have been identified. We previously showed that chimeric antigen receptor T-cells directed towards aberrantly O-glycosylated MUC1 can control malignant growth in a mouse model. Here, we present a discovery platform for the generation of cancer-specific monoclonal antibodies targeting aberrant O-glycoproteins. The strategy is based on cancer cell lines engineered to homogeneously express the truncated Tn O-glycoform, the so-called SimpleCells. We used SimpleCells of different cancer origin to elicit monoclonal antibodies with selectivity for aberrant O-glycoproteins. For validation we selected and characterized one monoclonal antibody (6C5) directed to a Tn-glycopeptide in dysadherin (FXYD5), known to be upregulated in cancer and promote metastasis. While dysadherin is widely expressed also in normal cells, we demonstrated that the 6C5 epitope is specifically expressed in cancer.
Collapse
Affiliation(s)
- Catharina Steentoft
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Max Fuhrmann
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Federico Battisti
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324 Rome, Italy
| | - Julie Van Coillie
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Thomas D Madsen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Diana Campos
- Instituto de Investigação e Inovação e Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45, Porto, Portugal
| | - Adnan Halim
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Hans Schreiber
- Department of Pathology, Committee on Immunology, Committee on Cancer Biology, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL, USA
| | - Ulla Mandel
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| |
Collapse
|
16
|
Plössl K, Royer M, Bernklau S, Tavraz NN, Friedrich T, Wild J, Weber BHF, Friedrich U. Retinoschisin is linked to retinal Na/K-ATPase signaling and localization. Mol Biol Cell 2017; 28:2178-2189. [PMID: 28615319 PMCID: PMC5531734 DOI: 10.1091/mbc.e17-01-0064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 01/30/2023] Open
Abstract
Retinoschisin binds to the extracellular domain of Na/K-ATPase subunit β2. Retinoschisin inhibits Na/K-ATPase–associated signaling cascades and affects Na/K-ATPase localization. The retinoschisin-Na/K-ATPase complex overlaps with signaling mediators. Defective Na/K-ATPase signaling by retinoschisin deficiency may promote retinal dystrophy. Mutations in the RS1 gene cause X-linked juvenile retinoschisis (XLRS), a hereditary retinal dystrophy. We recently showed that retinoschisin, the protein encoded by RS1, regulates ERK signaling and apoptosis in retinal cells. In this study, we explored an influence of retinoschisin on the functionality of the Na/K-ATPase, its interaction partner at retinal plasma membranes. We show that retinoschisin binding requires the β2-subunit of the Na/K-ATPase, whereas the α-subunit is exchangeable. Our investigations revealed no effect of retinoschisin on Na/K-ATPase–mediated ATP hydrolysis and ion transport. However, we identified an influence of retinoschisin on Na/K-ATPase–regulated signaling cascades and Na/K-ATPase localization. In addition to the known ERK deactivation, retinoschisin treatment of retinoschisin-deficient (Rs1h-/Y) murine retinal explants decreased activation of Src, an initial transmitter in Na/K-ATPase signal transduction, and of Ca2+ signaling marker Camk2. Immunohistochemistry on murine retinae revealed an overlap of the retinoschisin–Na/K-ATPase complex with proteins involved in Na/K-ATPase signaling, such as caveolin, phospholipase C, Src, and the IP3 receptor. Finally, retinoschisin treatment altered Na/K-ATPase localization in photoreceptors of Rs1h-/Y retinae. Taken together, our results suggest a regulatory effect of retinoschisin on Na/K-ATPase signaling and localization, whereas Na/K-ATPase-dysregulation caused by retinoschisin deficiency could represent an initial step in XLRS pathogenesis.
Collapse
Affiliation(s)
- Karolina Plössl
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Melanie Royer
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Sarah Bernklau
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Neslihan N Tavraz
- Institute of Chemistry, Technical University of Berlin, 10623 Berlin, Germany
| | - Thomas Friedrich
- Institute of Chemistry, Technical University of Berlin, 10623 Berlin, Germany
| | - Jens Wild
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Ulrike Friedrich
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
17
|
Brazee PL, Soni PN, Tokhtaeva E, Magnani N, Yemelyanov A, Perlman HR, Ridge KM, Sznajder JI, Vagin O, Dada LA. FXYD5 Is an Essential Mediator of the Inflammatory Response during Lung Injury. Front Immunol 2017; 8:623. [PMID: 28620381 PMCID: PMC5451504 DOI: 10.3389/fimmu.2017.00623] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/10/2017] [Indexed: 12/28/2022] Open
Abstract
The alveolar epithelium secretes cytokines and chemokines that recruit immune cells to the lungs, which is essential for fighting infections but in excess can promote lung injury. Overexpression of FXYD5, a tissue-specific regulator of the Na,K-ATPase, in mice, impairs the alveolo-epithelial barrier, and FXYD5 overexpression in renal cells increases C-C chemokine ligand-2 (CCL2) secretion in response to lipopolysaccharide (LPS). The aim of this study was to determine whether FXYD5 contributes to the lung inflammation and injury. Exposure of alveolar epithelial cells (AEC) to LPS increased FXYD5 levels at the plasma membrane, and FXYD5 silencing prevented both the activation of NF-κB and the secretion of cytokines in response to LPS. Intratracheal instillation of LPS into mice increased FXYD5 levels in the lung. FXYD5 overexpression increased the recruitment of interstitial macrophages and classical monocytes to the lung in response to LPS. FXYD5 silencing decreased CCL2 levels, number of cells, and protein concentration in bronchoalveolar lavage fluid (BALF) after LPS treatment, indicating that FXYD5 is required for the NF-κB-stimulated epithelial production of CCL2, the influx of immune cells, and the increase in alveolo-epithelial permeability in response to LPS. Silencing of FXYD5 also prevented the activation of NF-κB and cytokine secretion in response to interferon α and TNF-α, suggesting that pro-inflammatory effects of FXYD5 are not limited to the LPS-induced pathway. Furthermore, in the absence of other stimuli, FXYD5 overexpression in AEC activated NF-κB and increased cytokine production, while FXYD5 overexpression in mice increased cytokine levels in BALF, indicating that FXYD5 is sufficient to induce the NF-κB-stimulated cytokine secretion by the alveolar epithelium. The FXYD5 overexpression also increased cell counts in BALF, which was prevented by silencing the CCL2 receptor (CCR2), or by treating mice with a CCR2-blocking antibody, confirming that FXYD5-induced CCL2 production leads to the recruitment of monocytes to the lung. Taken together, the data demonstrate that FXYD5 is a key contributor to inflammatory lung injury.
Collapse
Affiliation(s)
- Patricia L Brazee
- Pulmonary and Critical Care Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Pritin N Soni
- Pulmonary and Critical Care Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Elmira Tokhtaeva
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States.,Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Natalia Magnani
- Pulmonary and Critical Care Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Alex Yemelyanov
- Pulmonary and Critical Care Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Harris R Perlman
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Karen M Ridge
- Pulmonary and Critical Care Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jacob I Sznajder
- Pulmonary and Critical Care Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Olga Vagin
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States.,Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Laura A Dada
- Pulmonary and Critical Care Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
18
|
Plössl K, Weber BHF, Friedrich U. The X-linked juvenile retinoschisis protein retinoschisin is a novel regulator of mitogen-activated protein kinase signalling and apoptosis in the retina. J Cell Mol Med 2016; 21:768-780. [PMID: 27995734 PMCID: PMC5345684 DOI: 10.1111/jcmm.13019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/26/2016] [Indexed: 02/01/2023] Open
Abstract
X-linked juvenile retinoschisis (XLRS) is a hereditary retinal dystrophy in young males, caused by mutations in the RS1 gene. The function of the encoded protein, termed retinoschisin, and the molecular mechanisms underlying XLRS pathogenesis are still unresolved, although a direct interaction partner of the secreted retinoschisin, the retinal Na/K-ATPase, was recently identified. Earlier gene expression studies in retinoschisin-deficient (Rs1h-/Y ) mice provided a first indication of pathological up-regulation of mitogen-activated protein (MAP) kinase signalling in disease pathogenesis. To further investigate the role for retinoschisin in MAP kinase regulation, we exposed Y-79 cells and murine Rs1h-/Y retinae to recombinant retinoschisin and the XLRS-associated mutant RS1-C59S. Although normal retinoschisin stably bound to retinal cells, RS1-C59S exhibited a strongly reduced binding affinity. Simultaneously, exposure to normal retinoschisin significantly reduced phosphorylation of C-RAF and MAP kinases ERK1/2 in Y-79 cells and murine Rs1h-/Y retinae. Expression of MAP kinase target genes C-FOS and EGR1 was also down-regulated in both model systems. Finally, retinoschisin treatment decreased pro-apoptotic BAX-2 transcript levels in Y-79 cells and Rs1h-/Y retinae. Upon retinoschisin treatment, these cells showed increased resistance against apoptosis, reflected by decreased caspase-3 activity (in Y-79 cells) and increased photoreceptor survival (in Rs1h-/Y retinal explants). RS1-C59S did not influence C-RAF or ERK1/2 activation, C-FOS or EGR1 expression, or apoptosis. Our data imply that retinoschisin is a novel regulator of MAP kinase signalling and exerts an anti-apoptotic effect on retinal cells. We therefore discuss that disturbances of MAP kinase signalling by retinoschisin deficiency could be an initial step in XLRS pathogenesis.
Collapse
Affiliation(s)
- Karolina Plössl
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Ulrike Friedrich
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| |
Collapse
|