1
|
Hu L, Wainman A, Andreeva A, Apizi M, Alvarez-Rodrigo I, Wong SS, Saurya S, Sheppard D, Cottee M, Johnson S, Lea SM, Raff JW, van Breugel M, Feng Z. The conserved Spd-2/CEP192 domain adopts a unique protein fold to promote centrosome scaffold assembly. SCIENCE ADVANCES 2025; 11:eadr5744. [PMID: 40106572 PMCID: PMC11922060 DOI: 10.1126/sciadv.adr5744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
Centrosomes form when centrioles assemble pericentriolar material (PCM) around themselves. Spd-2/CEP192 proteins, defined by a conserved "Spd-2 domain" (SP2D) comprising two closely spaced AspM-Spd-2-Hydin (ASH) domains, play a critical role in centrosome assembly. Here, we show that the SP2D does not target Drosophila Spd-2 to centrosomes but rather promotes PCM scaffold assembly. Crystal structures of the human and honeybee SP2D reveal an unusual "extended cradle" structure mediated by a conserved interaction interface between the two ASH domains. Mutations predicted to perturb this interface, including a human mutation associated with male infertility and Mosaic Variegated Aneuploidy, disrupt PCM scaffold assembly in flies. The SP2D is monomeric in solution, but the Drosophila SP2D can form higher-order oligomers upon phosphorylation by PLK1 (Polo-like kinase 1). Crystal-packing interactions and AlphaFold predictions suggest how SP2Ds might self-assemble, and mutations associated with one such potential dimerization interface markedly perturb SP2D oligomerization in vitro and PCM scaffold assembly in vivo.
Collapse
Affiliation(s)
- Liuyi Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Antonina Andreeva
- Medical Research Council—Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Muladili Apizi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Ines Alvarez-Rodrigo
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Francis Crick Institute, London NW1 1AT, UK
| | - Siu-Shing Wong
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Saroj Saurya
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Devon Sheppard
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Francis Crick Institute, London NW1 1AT, UK
| | - Matthew Cottee
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Francis Crick Institute, London NW1 1AT, UK
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Center for Structural Biology, CC R, NCI, Frederick, MD 21702-1201, USA
| | - Susan M. Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Center for Structural Biology, CC R, NCI, Frederick, MD 21702-1201, USA
| | - Jordan W. Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Mark van Breugel
- Medical Research Council—Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Zhe Feng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
2
|
Nagy A, Kovacs L, Rangone H, Fu J, Ladinsky M, Glover DM. Interactions of N- and C-terminal parts of Ana1 permitting centriole duplication but not elongation. Open Biol 2025; 15:240325. [PMID: 39904373 PMCID: PMC11793955 DOI: 10.1098/rsob.240325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 01/09/2025] [Indexed: 02/06/2025] Open
Abstract
The conserved process of centriole duplication requires the establishment of a Sas6-centred cartwheel initiated by Plk4's phosphorylation of Ana1/STIL. Subsequently, the centriole undergoes conversion to a centrosome requiring its radial expansion and elongation, mediated by a network requiring interactions between Cep135, Ana1/Cep295 and Asterless/Cep152. Here, we show that mutant alleles encoding overlapping N- and C-terminal parts of Ana1 are capable of intragenic complementation to rescue radial expansion. This permits the recruitment of Asl and thereby centriole duplication and mechanosensory cilia formation to restore the coordination defects of these mutants. This genetic combination also rescues centriole duplication in the male germ line but does not rescue the elongation of the triplet microtubule-containing centrioles of primary spermatocytes. Consequently, these males are coordinated but sterile. Such centriole elongation is rescued by the continuous, full-length Ana1 sequence. We define a region that when deleted within otherwise intact Ana1 does not permit primary spermatocyte centrioles to elongate but still allows recruitment of Asl. Our findings point to differing demands upon the physical organization of Ana1 for the distinct processes of radial expansion and elongation of centrioles.
Collapse
Affiliation(s)
- Agota Nagy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125, USA
| | - Levente Kovacs
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125, USA
- Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Helene Rangone
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, UK
| | - Jingyan Fu
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, UK
| | - Mark Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125, USA
| | - David M. Glover
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125, USA
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, UK
| |
Collapse
|
3
|
Nagy A, Kovacs L, Rangone H, Fu J, Ladinsky M, Glover DM. Interactions of N- and C-terminal parts of Ana1 permitting centriole duplication but not elongation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620588. [PMID: 39554154 PMCID: PMC11565839 DOI: 10.1101/2024.10.28.620588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The conserved process of centriole duplication requires establishment of a Sas6-centred cartwheel initiated by Plk4's phosphorylation of Ana1/STIL. Subsequently the centriole undergoes conversion to a centrosome requiring its radial expansion and elongation, mediated by a network requiring interactions between Cep135, Ana1/Cep295, and Asterless/Cep152. Here we show that mutant alleles encoding overlapping N- and C-terminal parts of Ana1 are capable of intragenic complementation to rescue radial expansion. This permits recruitment of Asl and thereby centriole duplication and mechanosensory cilia formation to restore the coordination defects of these mutants. This genetic combination also rescues centriole duplication in the male germ line but does not rescue the elongation of the triplet microtubule-containing centrioles of primary spermatocytes and consequently these males are coordinated but sterile. Such centriole elongation is rescued by the continuous, full-length Ana1 sequence. We define a region that when deleted within otherwise intact Ana1 does not permit primary spermatocyte centrioles to elongate but still allows recruitment of Asl. Our findings point to differing demands upon the physical organization of Ana1 for the distinct processes of radial expansion and elongation of centrioles.
Collapse
Affiliation(s)
- Agota Nagy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Levente Kovacs
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
- Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Helene Rangone
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Jingyan Fu
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Present address: College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Mark Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - David M Glover
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
4
|
Panda P, Ladinsky MS, Glover DM. 9-fold symmetry is not essential for centriole elongation and formation of new centriole-like structures. Nat Commun 2024; 15:4467. [PMID: 38796459 PMCID: PMC11127918 DOI: 10.1038/s41467-024-48831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/14/2024] [Indexed: 05/28/2024] Open
Abstract
As daughter centrioles assemble during G2, they recruit conserved Ana3/RTTN followed by its partner Rcd4/PPP1R35. Together, this contributes to the subsequent recruitment of Ana1/CEP295, required for the centriole's conversion to a centrosome. Here, we show that Rcd4/PPP1R35 is also required to maintain 9-fold centriole symmetry in the Drosophila male germline; its absence causes microtubule triplets to disperse into a reduced number of doublet or singlet microtubules. rcd4-null mutant spermatocytes display skinny centrioles that elongate normally and localize centriolar components correctly. Mutant spermatocytes also have centrioles of normal girth that splay at their proximal ends when induced to elongate by Ana1 overexpression. Skinny and splayed spermatid centrioles can still recruit a proximal centriole-like (PCL) structure marking a capability to initiate features of centriole duplication in developing sperm. Thus, stable 9-fold symmetry of microtubule triplets is not essential for centriole growth, correct longitudinal association of centriole components, and aspects of centriole duplication.
Collapse
Affiliation(s)
- Pallavi Panda
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - David M Glover
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
5
|
Wong SS, Wainman A, Saurya S, Raff JW. Regulation of centrosome size by the cell-cycle oscillator in Drosophila embryos. EMBO J 2024; 43:414-436. [PMID: 38233576 PMCID: PMC10898259 DOI: 10.1038/s44318-023-00022-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024] Open
Abstract
Mitotic centrosomes assemble when centrioles recruit large amounts of pericentriolar material (PCM) around themselves. In early C. elegans embryos, mitotic centrosome size appears to be set by the limiting amount of a key component. In Drosophila syncytial embryos, thousands of mitotic centrosomes are assembled as the embryo proceeds through 13 rounds of rapid nuclear division, driven by a core cell cycle oscillator. These divisions slow during nuclear cycles 11-13, and we find that centrosomes respond by reciprocally decreasing their growth rate, but increasing their growth period-so that they grow to a relatively consistent size at each cycle. At the start of each cycle, moderate CCO activity initially promotes centrosome growth, in part by stimulating Polo/PLK1 recruitment to centrosomes. Later in each cycle, high CCO activity inhibits centrosome growth by suppressing the centrosomal recruitment and/or maintenance of centrosome proteins. Thus, in fly embryos, mitotic centrosome size appears to be regulated predominantly by the core cell cycle oscillator, rather than by the depletion of a limiting component.
Collapse
Affiliation(s)
- Siu-Shing Wong
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Saroj Saurya
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| |
Collapse
|
6
|
Arslanhan MD, Cengiz-Emek S, Odabasi E, Steib E, Hamel V, Guichard P, Firat-Karalar EN. CCDC15 localizes to the centriole inner scaffold and controls centriole length and integrity. J Cell Biol 2023; 222:e202305009. [PMID: 37934472 PMCID: PMC10630097 DOI: 10.1083/jcb.202305009] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/23/2023] [Accepted: 09/23/2023] [Indexed: 11/08/2023] Open
Abstract
Centrioles are microtubule-based organelles responsible for forming centrosomes and cilia, which serve as microtubule-organizing, signaling, and motility centers. Biogenesis and maintenance of centrioles with proper number, size, and architecture are vital for their functions during development and physiology. While centriole number control has been well-studied, less is understood about their maintenance as stable structures with conserved size and architecture during cell division and ciliary motility. Here, we identified CCDC15 as a centriole protein that colocalizes with and interacts with the inner scaffold, a crucial centriolar subcompartment for centriole size control and integrity. Using ultrastructure expansion microscopy, we found that CCDC15 depletion affects centriole length and integrity, leading to defective cilium formation, maintenance, and response to Hedgehog signaling. Moreover, loss-of-function experiments showed CCDC15's role in recruiting both the inner scaffold protein POC1B and the distal SFI1/Centrin-2 complex to centrioles. Our findings reveal players and mechanisms of centriole architectural integrity and insights into diseases linked to centriolar defects.
Collapse
Affiliation(s)
- Melis D. Arslanhan
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Seyma Cengiz-Emek
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Ezgi Odabasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Emmanuelle Steib
- Department of Bioengineering, Imperial College London, London, UK
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Paul Guichard
- Department of Molecular and Cellular Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
- Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
7
|
Aydogan MG, Hankins LE, Steinacker TL, Mofatteh M, Saurya S, Wainman A, Wong SS, Lu X, Zhou FY, Raff JW. Centriole distal-end proteins CP110 and Cep97 influence centriole cartwheel growth at the proximal end. J Cell Sci 2022; 135:jcs260015. [PMID: 35707992 PMCID: PMC9450887 DOI: 10.1242/jcs.260015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Centrioles are composed of a central cartwheel tethered to nine-fold symmetric microtubule (MT) blades. The centriole cartwheel and MTs are thought to grow from opposite ends of these organelles, so it is unclear how they coordinate their assembly. We previously showed that in Drosophila embryos an oscillation of Polo-like kinase 4 (Plk4) helps to initiate and time the growth of the cartwheel at the proximal end. Here, in the same model, we show that CP110 and Cep97 form a complex close to the distal-end of the centriole MTs whose levels rise and fall as the new centriole MTs grow, in a manner that appears to be entrained by the core cyclin-dependent kinase (Cdk)-Cyclin oscillator that drives the nuclear divisions in these embryos. These CP110 and Cep97 dynamics, however, do not appear to time the period of centriole MT growth directly. Instead, we find that changing the levels of CP110 and Cep97 appears to alter the Plk4 oscillation and the growth of the cartwheel at the proximal end. These findings reveal an unexpected potential crosstalk between factors normally concentrated at opposite ends of the growing centrioles, which might help to coordinate centriole growth. This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Mustafa G. Aydogan
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Laura E. Hankins
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | - Mohammad Mofatteh
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Saroj Saurya
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Siu-Shing Wong
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Felix Y. Zhou
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Jordan W. Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
8
|
Wong S, Wilmott ZM, Saurya S, Alvarez‐Rodrigo I, Zhou FY, Chau K, Goriely A, Raff JW. Centrioles generate a local pulse of Polo/PLK1 activity to initiate mitotic centrosome assembly. EMBO J 2022; 41:e110891. [PMID: 35505659 PMCID: PMC9156973 DOI: 10.15252/embj.2022110891] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 12/03/2022] Open
Abstract
Mitotic centrosomes are formed when centrioles start to recruit large amounts of pericentriolar material (PCM) around themselves in preparation for mitosis. This centrosome "maturation" requires the centrioles and also Polo/PLK1 protein kinase. The PCM comprises several hundred proteins and, in Drosophila, Polo cooperates with the conserved centrosome proteins Spd-2/CEP192 and Cnn/CDK5RAP2 to assemble a PCM scaffold around the mother centriole that then recruits other PCM client proteins. We show here that in Drosophila syncytial blastoderm embryos, centrosomal Polo levels rise and fall during the assembly process-peaking, and then starting to decline, even as levels of the PCM scaffold continue to rise and plateau. Experiments and mathematical modelling indicate that a centriolar pulse of Polo activity, potentially generated by the interaction between Polo and its centriole receptor Ana1 (CEP295 in humans), could explain these unexpected scaffold assembly dynamics. We propose that centrioles generate a local pulse of Polo activity prior to mitotic entry to initiate centrosome maturation, explaining why centrioles and Polo/PLK1 are normally essential for this process.
Collapse
Affiliation(s)
- Siu‐Shing Wong
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Zachary M Wilmott
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- Mathematical InstituteUniversity of OxfordOxfordUK
| | - Saroj Saurya
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | | | - Felix Y Zhou
- Ludwig Institute for Cancer ResearchNuffield Department of Clinical MedicineUniversity of OxfordOxfordUK
- Present address:
Lyda Hill Department of BioinformaticsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Kwai‐Yin Chau
- Department of Computer ScienceUniversity of BathBathUK
| | | | - Jordan W Raff
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
9
|
Takumi K, Kitagawa D. Experimental and Natural Induction of de novo Centriole Formation. Front Cell Dev Biol 2022; 10:861864. [PMID: 35445021 PMCID: PMC9014216 DOI: 10.3389/fcell.2022.861864] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/14/2022] [Indexed: 01/11/2023] Open
Abstract
In cycling cells, new centrioles are assembled in the vicinity of pre-existing centrioles. Although this canonical centriole duplication is a tightly regulated process in animal cells, centrioles can also form in the absence of pre-existing centrioles; this process is termed de novo centriole formation. De novo centriole formation is triggered by the removal of all pre-existing centrioles in the cell in various manners. Moreover, overexpression of polo-like kinase 4 (Plk4), a master regulatory kinase for centriole biogenesis, can induce de novo centriole formation in some cell types. Under these conditions, structurally and functionally normal centrioles can be formed de novo. While de novo centriole formation is normally suppressed in cells with intact centrioles, depletion of certain suppressor proteins leads to the ectopic formation of centriole-related protein aggregates in the cytoplasm. It has been shown that de novo centriole formation also occurs naturally in some species. For instance, during the multiciliogenesis of vertebrate epithelial cells, massive de novo centriole amplification occurs to form numerous motile cilia. In this review, we summarize the previous findings on de novo centriole formation, particularly under experimental conditions, and discuss its regulatory mechanisms.
Collapse
Affiliation(s)
- Kasuga Takumi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Hoffmann I. Role of Polo-like Kinases Plk1 and Plk4 in the Initiation of Centriole Duplication-Impact on Cancer. Cells 2022; 11:786. [PMID: 35269408 PMCID: PMC8908989 DOI: 10.3390/cells11050786] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Centrosomes nucleate and anchor microtubules and therefore play major roles in spindle formation and chromosome segregation during mitosis. Duplication of the centrosome occurs, similar to DNA, only once during the cell cycle. Aberration of the centrosome number is common in human tumors. At the core of centriole duplication is the conserved polo-like kinase 4, Plk4, and two structural proteins, STIL and Sas-6. In this review, I summarize and discuss developments in our understanding of the first steps of centriole duplication and their regulation.
Collapse
Affiliation(s)
- Ingrid Hoffmann
- F045, Cell Cycle Control and Carcinogenesis, Im Neuenheimer Feld 242, 69115 Heidelberg, Germany
| |
Collapse
|
11
|
Tian Y, Yan Y, Fu J. Nine-fold symmetry of centriole: The joint efforts of its core proteins. Bioessays 2022; 44:e2100262. [PMID: 34997615 DOI: 10.1002/bies.202100262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022]
Abstract
The centriole is a widely conserved organelle required for the assembly of centrosomes, cilia, and flagella. Its striking feature - the nine-fold symmetrical structure, was discovered over 70 years ago by transmission electron microscopy, and since elaborated mostly by cryo-electron microscopy and super-resolution microscopy. Here, we review the discoveries that led to the current understanding of how the nine-fold symmetrical structure is built. We focus on the recent findings of the centriole structure in high resolution, its assembly pathways, and its nine-fold distributed components. We propose a model that the assembly of the nine-fold symmetrical centriole depends on the concerted efforts of its core proteins.
Collapse
Affiliation(s)
- Yuan Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuxuan Yan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jingyan Fu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Alvarez-Rodrigo I, Wainman A, Saurya S, Raff JW. Ana1 helps recruit Polo to centrioles to promote mitotic PCM assembly and centriole elongation. J Cell Sci 2021; 134:jcs258987. [PMID: 34156068 PMCID: PMC8325959 DOI: 10.1242/jcs.258987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 01/12/2023] Open
Abstract
Polo kinase (PLK1 in mammals) is a master cell cycle regulator that is recruited to various subcellular structures, often by its polo-box domain (PBD), which binds to phosphorylated S-pS/pT motifs. Polo/PLK1 kinases have multiple functions at centrioles and centrosomes, and we have previously shown that in Drosophila phosphorylated Sas-4 initiates Polo recruitment to newly formed centrioles, while phosphorylated Spd-2 recruits Polo to the pericentriolar material (PCM) that assembles around mother centrioles in mitosis. Here, we show that Ana1 (Cep295 in humans) also helps to recruit Polo to mother centrioles in Drosophila. If Ana1-dependent Polo recruitment is impaired, mother centrioles can still duplicate, disengage from their daughters and form functional cilia, but they can no longer efficiently assemble mitotic PCM or elongate during G2. We conclude that Ana1 helps recruit Polo to mother centrioles to specifically promote mitotic centrosome assembly and centriole elongation in G2, but not centriole duplication, centriole disengagement or cilia assembly. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | - Jordan W. Raff
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
13
|
Shoda T, Yamazoe K, Tanaka Y, Asano Y, Inoue YH. Orbit/CLASP determines centriole length by antagonising Klp10A in Drosophila spermatocytes. J Cell Sci 2021; 134:jcs251231. [PMID: 33674447 PMCID: PMC8015252 DOI: 10.1242/jcs.251231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
After centrosome duplication, centrioles elongate before M phase. To identify genes required for this process and to understand the regulatory mechanism, we investigated the centrioles in Drosophila premeiotic spermatocytes expressing fluorescently tagged centriolar proteins. We demonstrated that an essential microtubule polymerisation factor, Orbit (the Drosophila CLASP orthologue, encoded by chb), accumulated at the distal end of centrioles and was required for the elongation. Conversely, a microtubule-severing factor, Klp10A, shortened the centrioles. Genetic analyses revealed that these two proteins functioned antagonistically to determine centriole length. Furthermore, Cp110 in the distal tip complex was closely associated with the factors involved in centriolar dynamics at the distal end. We observed loss of centriole integrity, including fragmentation of centrioles and earlier separation of the centriole pairs, in Cp110-null mutant cells either overexpressing Orbit or depleted of Klp10A Excess centriole elongation in the absence of the distal tip complex resulted in the loss of centriole integrity, leading to the formation of multipolar spindle microtubules emanating from centriole fragments, even when they were unpaired. Our findings contribute to understanding the mechanism of centriole integrity, disruption of which leads to chromosome instability in cancer cells.
Collapse
Affiliation(s)
- Tsuyoshi Shoda
- Department of Insect Biomedical Research, Centre for Advanced Insect Research Promotion, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Kanta Yamazoe
- Department of Insect Biomedical Research, Centre for Advanced Insect Research Promotion, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Yuri Tanaka
- Department of Insect Biomedical Research, Centre for Advanced Insect Research Promotion, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Yuki Asano
- Department of Insect Biomedical Research, Centre for Advanced Insect Research Promotion, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Yoshihiro H Inoue
- Department of Insect Biomedical Research, Centre for Advanced Insect Research Promotion, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| |
Collapse
|
14
|
Panda P, Kovacs L, Dzhindzhev N, Fatalska A, Persico V, Geymonat M, Riparbelli MG, Callaini G, Glover DM. Tissue specific requirement of Drosophila Rcd4 for centriole duplication and ciliogenesis. J Cell Biol 2020; 219:151861. [PMID: 32543652 PMCID: PMC7401805 DOI: 10.1083/jcb.201912154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/01/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022] Open
Abstract
Rcd4 is a poorly characterized Drosophila centriole component whose mammalian counterpart, PPP1R35, is suggested to function in centriole elongation and conversion to centrosomes. Here, we show that rcd4 mutants exhibit fewer centrioles, aberrant mitoses, and reduced basal bodies in sensory organs. Rcd4 interacts with the C-terminal part of Ana3, which loads onto the procentriole during interphase, ahead of Rcd4 and before mitosis. Accordingly, depletion of Ana3 prevents Rcd4 recruitment but not vice versa. We find that neither Ana3 nor Rcd4 participates directly in the mitotic conversion of centrioles to centrosomes, but both are required to load Ana1, which is essential for such conversion. Whereas ana3 mutants are male sterile, reflecting a requirement for Ana3 for centriole development in the male germ line, rcd4 mutants are fertile and have male germ line centrioles of normal length. Thus, Rcd4 is essential in somatic cells but is not absolutely required in spermatogenesis, indicating tissue-specific roles in centriole and basal body formation.
Collapse
Affiliation(s)
- Pallavi Panda
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Levente Kovacs
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | - Agnieszka Fatalska
- Department of Genetics, University of Cambridge, Cambridge, UK.,Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Veronica Persico
- Department of Genetics, University of Cambridge, Cambridge, UK.,Department of Life Sciences, University of Siena, Siena, Italy
| | - Marco Geymonat
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | | - David M Glover
- Department of Genetics, University of Cambridge, Cambridge, UK.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
15
|
Gartenmann L, Vicente CC, Wainman A, Novak ZA, Sieber B, Richens JH, Raff JW. Drosophila Sas-6, Ana2 and Sas-4 self-organise into macromolecular structures that can be used to probe centriole and centrosome assembly. J Cell Sci 2020; 133:jcs244574. [PMID: 32409564 PMCID: PMC7328145 DOI: 10.1242/jcs.244574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/24/2020] [Indexed: 01/02/2023] Open
Abstract
Centriole assembly requires a small number of conserved proteins. The precise pathway of centriole assembly has been difficult to study, as the lack of any one of the core assembly proteins [Plk4, Ana2 (the homologue of mammalian STIL), Sas-6, Sas-4 (mammalian CPAP) or Asl (mammalian Cep152)] leads to the absence of centrioles. Here, we use Sas-6 and Ana2 particles (SAPs) as a new model to probe the pathway of centriole and centrosome assembly. SAPs form in Drosophila eggs or embryos when Sas-6 and Ana2 are overexpressed. SAP assembly requires Sas-4, but not Plk4, whereas Asl helps to initiate SAP assembly but is not required for SAP growth. Although not centrioles, SAPs recruit and organise many centriole and centrosome components, nucleate microtubules, organise actin structures and compete with endogenous centrosomes to form mitotic spindle poles. SAPs require Asl to efficiently recruit pericentriolar material (PCM), but Spd-2 (the homologue of mammalian Cep192) can promote some PCM assembly independently of Asl. These observations provide new insights into the pathways of centriole and centrosome assembly.
Collapse
Affiliation(s)
- Lisa Gartenmann
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Catarina C Vicente
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Zsofi A Novak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Boris Sieber
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Jennifer H Richens
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| |
Collapse
|
16
|
Sullenberger C, Vasquez-Limeta A, Kong D, Loncarek J. With Age Comes Maturity: Biochemical and Structural Transformation of a Human Centriole in the Making. Cells 2020; 9:cells9061429. [PMID: 32526902 PMCID: PMC7349492 DOI: 10.3390/cells9061429] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Centrioles are microtubule-based cellular structures present in most human cells that build centrosomes and cilia. Proliferating cells have only two centrosomes and this number is stringently maintained through the temporally and spatially controlled processes of centriole assembly and segregation. The assembly of new centrioles begins in early S phase and ends in the third G1 phase from their initiation. This lengthy process of centriole assembly from their initiation to their maturation is characterized by numerous structural and still poorly understood biochemical changes, which occur in synchrony with the progression of cells through three consecutive cell cycles. As a result, proliferating cells contain three structurally, biochemically, and functionally distinct types of centrioles: procentrioles, daughter centrioles, and mother centrioles. This age difference is critical for proper centrosome and cilia function. Here we discuss the centriole assembly process as it occurs in somatic cycling human cells with a focus on the structural, biochemical, and functional characteristics of centrioles of different ages.
Collapse
|
17
|
Erpf AC, Mikeladze-Dvali T. Tracking of centriole inheritance in C. elegans. MICROPUBLICATION BIOLOGY 2020; 2020. [PMID: 32550519 PMCID: PMC7255964 DOI: 10.17912/micropub.biology.000256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Anna C Erpf
- Department of Cell and Developmental Biology, Ludwig-Maximilians-University Munich, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany.,Current address: Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Tamara Mikeladze-Dvali
- Department of Cell and Developmental Biology, Ludwig-Maximilians-University Munich, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
18
|
CEP44 ensures the formation of bona fide centriole wall, a requirement for the centriole-to-centrosome conversion. Nat Commun 2020; 11:903. [PMID: 32060285 PMCID: PMC7021698 DOI: 10.1038/s41467-020-14767-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 01/30/2020] [Indexed: 12/25/2022] Open
Abstract
Centrosomes are essential organelles with functions in microtubule organization that duplicate once per cell cycle. The first step of centrosome duplication is the daughter centriole formation followed by the pericentriolar material recruitment to this centriole. This maturation step was termed centriole-to-centrosome conversion. It was proposed that CEP295-dependent recruitment of pericentriolar proteins drives centriole conversion. Here we show, based on the analysis of proteins that promote centriole biogenesis, that the developing centriole structure helps drive centriole conversion. Depletion of the luminal centriole protein CEP44 that binds to the A-microtubules and interacts with POC1B affecting centriole structure and centriole conversion, despite CEP295 binding to centrioles. Impairment of POC1B, TUBE1 or TUBD1, which disturbs integrity of centriole microtubules, also prevents centriole-to-centrosome conversion. We propose that the CEP295, CEP44, POC1B, TUBE1 and TUBD1 centriole biogenesis pathway that functions in the centriole lumen and on the cytoplasmic side is essential for the centriole-to-centrosome conversion. During cell division, centrosomes duplicate and newly formed centrioles must undergo centriole-to-centrosome conversion, but the molecular details are unclear. Here, the authors report that the centriole microtubule-triplet 9-fold structure scaffolds pericentriolar proteins and permits the conversion of centrioles to fully functional centrosomes.
Collapse
|
19
|
Abstract
AbstractCentrosome is the main microtubule-organizing center in most animal cells. Its core structure, centriole, also assembles cilia and flagella that have important sensing and motility functions. Centrosome has long been recognized as a highly conserved organelle in eukaryotic species. Through electron microscopy, its ultrastructure was revealed to contain a beautiful nine-symmetrical core 60 years ago, yet its molecular basis has only been unraveled in the past two decades. The emergence of super-resolution microscopy allows us to explore the insides of a centrosome, which is smaller than the diffraction limit of light. Super-resolution microscopy also enables the compartmentation of centrosome proteins into different zones and the identification of their molecular interactions and functions. This paper compiles the centrosome architecture knowledge that has been revealed in recent years and highlights the power of several super-resolution techniques.
Collapse
|
20
|
Jo KH, Jaiswal A, Khanal S, Fishman EL, Curry AN, Avidor-Reiss T. Poc1B and Sas-6 Function Together during the Atypical Centriole Formation in Drosophila melanogaster. Cells 2019; 8:cells8080841. [PMID: 31387336 PMCID: PMC6721650 DOI: 10.3390/cells8080841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
Insects and mammals have atypical centrioles in their sperm. However, it is unclear how these atypical centrioles form. Drosophila melanogaster sperm has one typical centriole called the giant centriole (GC) and one atypical centriole called the proximal centriole-like structure (PCL). During early sperm development, centriole duplication factors such as Ana2 and Sas-6 are recruited to the GC base to initiate PCL formation. The centriolar protein, Poc1B, is also recruited at this initiation stage, but its precise role during PCL formation is unclear. Here, we show that Poc1B recruitment was dependent on Sas-6, that Poc1B had effects on cellular and PCL Sas-6, and that Poc1B and Sas-6 were colocalized in the PCL/centriole core. These findings suggest that Sas-6 and Poc1B interact during PCL formation. Co-overexpression of Ana2 and Sas-6 induced the formation of ectopic particles that contained endogenous Poc1 proteins and were composed of PCL-like structures. These structures were disrupted in Poc1 mutant flies, suggesting that Poc1 proteins stabilize the PCL-like structures. Lastly, Poc1B and Sas-6 co-overexpression also induced the formation of PCL-like structures, suggesting that they can function together during the formation of the PCL. Overall, our findings suggest that Poc1B and Sas-6 function together during PCL formation.
Collapse
Affiliation(s)
- Kyoung H Jo
- Department of Biological Sciences, University of Toledo, Toledo, OH 43607, USA
| | - Ankit Jaiswal
- Department of Biological Sciences, University of Toledo, Toledo, OH 43607, USA
| | - Sushil Khanal
- Department of Biological Sciences, University of Toledo, Toledo, OH 43607, USA
| | - Emily L Fishman
- Department of Biological Sciences, University of Toledo, Toledo, OH 43607, USA
| | - Alaina N Curry
- Department of Biological Sciences, University of Toledo, Toledo, OH 43607, USA
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH 43607, USA.
| |
Collapse
|
21
|
Abstract
The centriole is an ancient microtubule-based organelle with a conserved nine-fold symmetry. Centrioles form the core of centrosomes, which organize the interphase microtubule cytoskeleton of most animal cells and form the poles of the mitotic spindle. Centrioles can also be modified to form basal bodies, which template the formation of cilia and play central roles in cellular signaling, fluid movement, and locomotion. In this review, we discuss developments in our understanding of the biogenesis of centrioles and cilia and the regulatory controls that govern their structure and number. We also discuss how defects in these processes contribute to a spectrum of human diseases and how new technologies have expanded our understanding of centriole and cilium biology, revealing exciting avenues for future exploration.
Collapse
Affiliation(s)
- David K Breslow
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA;
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
22
|
Yoshiba S, Tsuchiya Y, Ohta M, Gupta A, Shiratsuchi G, Nozaki Y, Ashikawa T, Fujiwara T, Natsume T, Kanemaki M, Kitagawa D. HsSAS-6-dependent cartwheel assembly ensures stabilization of centriole intermediates. J Cell Sci 2019; 132:jcs.217521. [DOI: 10.1242/jcs.217521] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/28/2019] [Indexed: 12/23/2022] Open
Abstract
At the onset of procentriole formation, a structure called the cartwheel is formed adjacent to the pre-existing centriole. SAS-6 proteins are thought to constitute the hub of the cartwheel structure. However, the exact function of the cartwheel in the process of centriole formation has not been well characterized. In this study, we focused on the functions of human SAS-6 (HsSAS-6). Using in vitro reconstitution with recombinant HsSAS-6, we first observed its conserved molecular property forming the central part of the cartwheel structure. Furthermore, we uncovered critical functions of HsSAS-6 using a combination of an auxin-inducible SAS-6-degron system and super-resolution microscopy in human cells. Our results demonstrate that the HsSAS-6 is required not only for the initiation of centriole formation, but also for the stabilization of centriole intermediates. Moreover, after procentriole formation, HsSAS-6 is necessary for limiting Plk4 accumulation at the centrioles and thereby suppressing the formation of potential sites for extra procentrioles. Overall, these findings illustrate the conserved and fundamental functions of the cartwheel in centriole duplication.
Collapse
Affiliation(s)
- Satoko Yoshiba
- Division of Centrosome Biology, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Current affiliation: Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Yuki Tsuchiya
- Division of Centrosome Biology, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, School of Life Science, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Midori Ohta
- Division of Centrosome Biology, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Akshari Gupta
- Division of Centrosome Biology, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, School of Life Science, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Gen Shiratsuchi
- Division of Centrosome Biology, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yuka Nozaki
- Division of Centrosome Biology, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Tomoko Ashikawa
- Division of Centrosome Biology, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Takahiro Fujiwara
- Center for Meso-Bio Single-Molecule Imaging (CeMI), Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan
| | - Toyoaki Natsume
- Division of Molecular Cell Engineering, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Masato Kanemaki
- Division of Molecular Cell Engineering, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Daiju Kitagawa
- Division of Centrosome Biology, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, School of Life Science, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
- Current affiliation: Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| |
Collapse
|
23
|
Fong CS, Ozaki K, Tsou MFB. PPP1R35 ensures centriole homeostasis by promoting centriole-to-centrosome conversion. Mol Biol Cell 2018; 29:2801-2808. [PMID: 30230954 PMCID: PMC6249868 DOI: 10.1091/mbc.e18-08-0525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Centriole-to-centrosome conversion (CCC) safeguards centriole homeostasis by coupling centriole duplication with segregation, and is essential for stabilization of mature vertebrate centrioles naturally devoid of the geometric scaffold or the cartwheel. Here we identified PPP1R35, a putative regulator of the protein phosphatase PP1, as a novel centriolar protein required for CCC. We found that PPP1R35 is enriched at newborn daughter centrioles in S or G2 phase. In the absence of PPP1R35, centriole assembly initiates normally in S phase, but none of the nascent centrioles can form active centrosomes or recruit CEP295, an essential factor for CCC. Instead, all PPP1R35-null centrioles, although stable during their birth in interphase, become disintegrated after mitosis upon cartwheel removal. Surprisingly, we found that neither the centriolar localization nor the function of PPP1R35 in CCC requires the putative PP1-interacting motif. PPP1R35 is thus acting upstream of CEP295 to induce CCC for proper centriole maintenance.
Collapse
Affiliation(s)
- Chii Shyang Fong
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Kanako Ozaki
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Meng-Fu Bryan Tsou
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065.,Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065
| |
Collapse
|
24
|
Tillery MML, Blake-Hedges C, Zheng Y, Buchwalter RA, Megraw TL. Centrosomal and Non-Centrosomal Microtubule-Organizing Centers (MTOCs) in Drosophila melanogaster. Cells 2018; 7:E121. [PMID: 30154378 PMCID: PMC6162459 DOI: 10.3390/cells7090121] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022] Open
Abstract
The centrosome is the best-understood microtubule-organizing center (MTOC) and is essential in particular cell types and at specific stages during Drosophila development. The centrosome is not required zygotically for mitosis or to achieve full animal development. Nevertheless, centrosomes are essential maternally during cleavage cycles in the early embryo, for male meiotic divisions, for efficient division of epithelial cells in the imaginal wing disc, and for cilium/flagellum assembly in sensory neurons and spermatozoa. Importantly, asymmetric and polarized division of stem cells is regulated by centrosomes and by the asymmetric regulation of their microtubule (MT) assembly activity. More recently, the components and functions of a variety of non-centrosomal microtubule-organizing centers (ncMTOCs) have begun to be elucidated. Throughout Drosophila development, a wide variety of unique ncMTOCs form in epithelial and non-epithelial cell types at an assortment of subcellular locations. Some of these cell types also utilize the centrosomal MTOC, while others rely exclusively on ncMTOCs. The impressive variety of ncMTOCs being discovered provides novel insight into the diverse functions of MTOCs in cells and tissues. This review highlights our current knowledge of the composition, assembly, and functional roles of centrosomal and non-centrosomal MTOCs in Drosophila.
Collapse
Affiliation(s)
- Marisa M L Tillery
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Caitlyn Blake-Hedges
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Yiming Zheng
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Rebecca A Buchwalter
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| |
Collapse
|
25
|
Gupta A, Fabian L, Brill JA. Phosphatidylinositol 4,5-bisphosphate regulates cilium transition zone maturation in Drosophila melanogaster. J Cell Sci 2018; 131:jcs.218297. [PMID: 30054387 DOI: 10.1242/jcs.218297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/11/2018] [Indexed: 01/06/2023] Open
Abstract
Cilia are cellular antennae that are essential for human development and physiology. A large number of genetic disorders linked to cilium dysfunction are associated with proteins that localize to the ciliary transition zone (TZ), a structure at the base of cilia that regulates trafficking in and out of the cilium. Despite substantial effort to identify TZ proteins and their roles in cilium assembly and function, processes underlying maturation of TZs are not well understood. Here, we report a role for the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) in TZ maturation in the Drosophila melanogaster male germline. We show that reduction of cellular PIP2 levels through ectopic expression of a phosphoinositide phosphatase or mutation of the type I phosphatidylinositol phosphate kinase Skittles induces formation of longer than normal TZs. These hyperelongated TZs exhibit functional defects, including loss of plasma membrane tethering. We also report that the onion rings (onr) allele of DrosophilaExo84 decouples TZ hyperelongation from loss of cilium-plasma membrane tethering. Our results reveal a requirement for PIP2 in supporting ciliogenesis by promoting proper TZ maturation.
Collapse
Affiliation(s)
- Alind Gupta
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Lacramioara Fabian
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Julie A Brill
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada .,Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
26
|
Jana SC, Mendonça S, Machado P, Werner S, Rocha J, Pereira A, Maiato H, Bettencourt-Dias M. Differential regulation of transition zone and centriole proteins contributes to ciliary base diversity. Nat Cell Biol 2018; 20:928-941. [PMID: 30013109 DOI: 10.1038/s41556-018-0132-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 05/25/2018] [Indexed: 01/26/2023]
Abstract
Cilia are evolutionarily conserved structures with many sensory and motility-related functions. The ciliary base, composed of the basal body and the transition zone, is critical for cilia assembly and function, but its contribution to cilia diversity remains unknown. Hence, we generated a high-resolution structural and biochemical atlas of the ciliary base of four functionally distinct neuronal and sperm cilia types within an organism, Drosophila melanogaster. We uncovered a common scaffold and diverse structures associated with different localization of 15 evolutionarily conserved components. Furthermore, CEP290 (also known as NPHP6) is involved in the formation of highly diverse transition zone links. In addition, the cartwheel components SAS6 and ANA2 (also known as STIL) have an underappreciated role in basal body elongation, which depends on BLD10 (also known as CEP135). The differential expression of these cartwheel components contributes to diversity in basal body length. Our results offer a plausible explanation to how mutations in conserved ciliary base components lead to tissue-specific diseases.
Collapse
Affiliation(s)
| | - Susana Mendonça
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Instituto de Patologia e Imunologia Molecular (IPATIMUP), Universidade do Porto, Porto, Portugal.,Portugal and Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| | - Pedro Machado
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,European Molecular Biology Laboratory, Electron Microscopy Core Facility, Heidelberg, Germany
| | - Sascha Werner
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jaqueline Rocha
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Centro de Biotecnologia e Química Fina, Universidade Católica Portuguesa, Porto, Portugal
| | - António Pereira
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| | - Helder Maiato
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal.,Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
27
|
Nigg EA, Holland AJ. Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nat Rev Mol Cell Biol 2018; 19:297-312. [PMID: 29363672 PMCID: PMC5969912 DOI: 10.1038/nrm.2017.127] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Centrioles are conserved microtubule-based organelles that form the core of the centrosome and act as templates for the formation of cilia and flagella. Centrioles have important roles in most microtubule-related processes, including motility, cell division and cell signalling. To coordinate these diverse cellular processes, centriole number must be tightly controlled. In cycling cells, one new centriole is formed next to each pre-existing centriole in every cell cycle. Advances in imaging, proteomics, structural biology and genome editing have revealed new insights into centriole biogenesis, how centriole numbers are controlled and how alterations in these processes contribute to diseases such as cancer and neurodevelopmental disorders. Moreover, recent work has uncovered the existence of surveillance pathways that limit the proliferation of cells with numerical centriole aberrations. Owing to this progress, we now have a better understanding of the molecular mechanisms governing centriole biogenesis, opening up new possibilities for targeting these pathways in the context of human disease.
Collapse
Affiliation(s)
- Erich A. Nigg
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Andrew J. Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
28
|
Riparbelli MG, Persico V, Gottardo M, Callaini G. The developing Drosophila eye - a new model to study centriole reduction. J Cell Sci 2018; 131:jcs.211441. [PMID: 29361550 DOI: 10.1242/jcs.211441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/15/2018] [Indexed: 01/06/2023] Open
Abstract
In the developing Drosophila eye, the centrioles of the differentiating retinal cells are not surrounded by the microtubule-nucleating γ-tubulin, suggesting that they are unable to organize functional microtubule-organizing centers. Consistent with this idea, Cnn and Spd-2, which are involved in γ-tubulin recruitment, and the scaffold protein Plp, which plays a role in the organization of the pericentriolar material, are lost in the third-instar larval stage. However, the centrioles maintain their structural integrity, and both the parent centrioles accumulate Asl and Ana1. Although the loading of Asl points to the acquisition of the motherhood condition, the daughter centrioles fail to recruit Plk4 and do not duplicate. However, it is surprising that the mother centrioles that accumulate Plk4 also never duplicate. This suggests that the loading of Plk4 is not sufficient, in this system, to allow centriole duplication. By halfway through pupal life, the centriole number decreases and structural defects, ranging from being incomplete or lacking B-tubules, are detected. Asl, Ana1 and Sas-4 are still present, suggesting that the centriole integrity does not depend on these proteins.
Collapse
Affiliation(s)
- Maria G Riparbelli
- Department of Life Sciences, Via A. Moro 2, University of Siena, 53100 Siena, Italy
| | - Veronica Persico
- Department of Life Sciences, Via A. Moro 2, University of Siena, 53100 Siena, Italy
| | - Marco Gottardo
- Department of Life Sciences, Via A. Moro 2, University of Siena, 53100 Siena, Italy
| | - Giuliano Callaini
- Department of Life Sciences, Via A. Moro 2, University of Siena, 53100 Siena, Italy
| |
Collapse
|
29
|
Chen HY, Wu CT, Tang CJC, Lin YN, Wang WJ, Tang TK. Human microcephaly protein RTTN interacts with STIL and is required to build full-length centrioles. Nat Commun 2017; 8:247. [PMID: 28811500 PMCID: PMC5558016 DOI: 10.1038/s41467-017-00305-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/21/2017] [Indexed: 11/09/2022] Open
Abstract
Mutations in many centriolar protein-encoding genes cause primary microcephaly. Using super-resolution and electron microscopy, we find that the human microcephaly protein, RTTN, is recruited to the proximal end of the procentriole at early S phase, and is located at the inner luminal walls of centrioles. Further studies demonstrate that RTTN directly interacts with STIL and acts downstream of STIL-mediated centriole assembly. CRISPR/Cas9-mediated RTTN gene knockout in p53-deficient cells induce amplification of primitive procentriole bodies that lack the distal-half centriolar proteins, POC5 and POC1B. Additional analyses show that RTTN serves as an upstream effector of CEP295, which mediates the loading of POC1B and POC5 to the distal-half centrioles. Interestingly, the naturally occurring microcephaly-associated mutant, RTTN (A578P), shows a low affinity for STIL binding and blocks centriole assembly. These findings reveal that RTTN contributes to building full-length centrioles and illuminate the molecular mechanism through which the RTTN (A578P) mutation causes primary microcephaly. Mutations in many centriolar protein-encoding genes cause primary microcephaly. Here the authors show that human microcephaly protein RTTN directly interacts with STIL and acts downstream of STIL-mediated centriole assembly, contributing to building full-length centrioles
Collapse
Affiliation(s)
- Hsin-Yi Chen
- Graduate Institution of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Ting Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Chieh-Ju C Tang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Nan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Won-Jing Wang
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Tang K Tang
- Graduate Institution of Life Sciences, National Defense Medical Center, Taipei, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. .,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
30
|
Novak ZA, Wainman A, Gartenmann L, Raff JW. Cdk1 Phosphorylates Drosophila Sas-4 to Recruit Polo to Daughter Centrioles and Convert Them to Centrosomes. Dev Cell 2017; 37:545-57. [PMID: 27326932 PMCID: PMC4918730 DOI: 10.1016/j.devcel.2016.05.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/04/2016] [Accepted: 05/23/2016] [Indexed: 02/07/2023]
Abstract
Centrosomes and cilia are organized by a centriole pair comprising an older mother and a younger daughter. Centriole numbers are tightly regulated, and daughter centrioles (which assemble in S phase) cannot themselves duplicate or organize centrosomes until they have passed through mitosis. It is unclear how this mitotic “centriole conversion” is regulated, but it requires Plk1/Polo kinase. Here we show that in flies, Cdk1 phosphorylates the conserved centriole protein Sas-4 during mitosis. This creates a Polo-docking site that helps recruit Polo to daughter centrioles and is required for the subsequent recruitment of Asterless (Asl), a protein essential for centriole duplication and mitotic centrosome assembly. Point mutations in Sas-4 that prevent Cdk1 phosphorylation or Polo docking do not block centriole disengagement during mitosis, but block efficient centriole conversion and lead to embryonic lethality. These observations can explain why daughter centrioles have to pass through mitosis before they can duplicate and organize a centrosome. Cdk1 phosphorylates Sas-4 to initiate Polo/Plk1 recruitment to daughter centrioles Polo recruitment promotes Asterless (Asl) incorporation into daughter centrioles Asl incorporation licenses new centrioles to duplicate and organize centrosomes These observations help explain why centriole conversion is tied to mitosis
Collapse
Affiliation(s)
- Zsofia A Novak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Lisa Gartenmann
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
31
|
Lattao R, Kovács L, Glover DM. The Centrioles, Centrosomes, Basal Bodies, and Cilia of Drosophila melanogaster. Genetics 2017; 206:33-53. [PMID: 28476861 PMCID: PMC5419478 DOI: 10.1534/genetics.116.198168] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/24/2017] [Indexed: 12/19/2022] Open
Abstract
Centrioles play a key role in the development of the fly. They are needed for the correct formation of centrosomes, the organelles at the poles of the spindle that can persist as microtubule organizing centers (MTOCs) into interphase. The ability to nucleate cytoplasmic microtubules (MTs) is a property of the surrounding pericentriolar material (PCM). The centriole has a dual life, existing not only as the core of the centrosome but also as the basal body, the structure that templates the formation of cilia and flagellae. Thus the structure and functions of the centriole, the centrosome, and the basal body have an impact upon many aspects of development and physiology that can readily be modeled in Drosophila Centrosomes are essential to give organization to the rapidly increasing numbers of nuclei in the syncytial embryo and for the spatially precise execution of cell division in numerous tissues, particularly during male meiosis. Although mitotic cell cycles can take place in the absence of centrosomes, this is an error-prone process that opens up the fly to developmental defects and the potential of tumor formation. Here, we review the structure and functions of the centriole, the centrosome, and the basal body in different tissues and cultured cells of Drosophila melanogaster, highlighting their contributions to different aspects of development and cell division.
Collapse
Affiliation(s)
- Ramona Lattao
- Department of Genetics, University of Cambridge, CB2 3EH, United Kingdom
| | - Levente Kovács
- Department of Genetics, University of Cambridge, CB2 3EH, United Kingdom
| | - David M Glover
- Department of Genetics, University of Cambridge, CB2 3EH, United Kingdom
| |
Collapse
|
32
|
Tsuchiya Y, Yoshiba S, Gupta A, Watanabe K, Kitagawa D. Cep295 is a conserved scaffold protein required for generation of a bona fide mother centriole. Nat Commun 2016; 7:12567. [PMID: 27562453 PMCID: PMC5007451 DOI: 10.1038/ncomms12567] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/13/2016] [Indexed: 01/05/2023] Open
Abstract
Centrioles surrounded by pericentriolar material (PCM) serve as the core structure of the centrosome. A newly formed daughter centriole grows into a functional mother centriole. However, the underlying mechanisms remain poorly understood. Here we show that Cep295, an evolutionarily conserved protein, is required for generation of a bona fide mother centriole organizing a functional centrosome. We find that Cep295 is recruited to the proximal centriole wall in the early stages of procentriole assembly. Cep295 then acts as a scaffold for the proper assembly of the daughter centriole. We also find that Cep295 binds directly to and recruits Cep192 onto the daughter centriole wall, which presumably endows the function of the new mother centriole for PCM assembly, microtubule-organizing centre activity and the ability for centriole formation. These findings led us to propose that Cep295 acts upstream of the conserved pathway for centriole formation and promotes the daughter-to-mother centriole conversion.
Collapse
Affiliation(s)
- Yuki Tsuchiya
- Department of Molecular Genetics, Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Satoko Yoshiba
- Department of Molecular Genetics, Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Akshari Gupta
- Department of Molecular Genetics, Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Koki Watanabe
- Department of Molecular Genetics, Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Daiju Kitagawa
- Department of Molecular Genetics, Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
33
|
Chang CW, Hsu WB, Tsai JJ, Tang CJC, Tang TK. CEP295 interacts with microtubules and is required for centriole elongation. J Cell Sci 2016; 129:2501-13. [PMID: 27185865 PMCID: PMC4958302 DOI: 10.1242/jcs.186338] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/11/2016] [Indexed: 12/20/2022] Open
Abstract
Centriole duplication is a tightly ordered process during which procentrioles are assembled in G1-S and elongate during S and G2. Here, we show that human CEP295 (Drosophila Ana1) is not essential for initial cartwheel assembly, but is required to build distal half centrioles during S and G2. Using super-resolution and immunogold electron microscopy, we demonstrate that CEP295 is recruited to the proximal end of procentrioles in early S phase, when it is also localized at the centriolar microtubule wall that surrounds the human SAS6 cartwheel hub. Interestingly, depletion of CEP295 not only inhibits the recruitments of POC5 and POC1B to the distal half centrioles in G2, resulting in shorter centrioles, it also blocks the post-translational modification of centriolar microtubules (e.g. acetylation and glutamylation). Importantly, our results indicate that CEP295 directly interacts with microtubules, and that excess CEP295 could induce the assembly of overly long centrioles. Furthermore, exogenous expression of the N-terminal domain of CEP295 exerts a dominant-negative effect on centriole elongation. Collectively, these findings suggest that CEP295 is essential for building the distal half centrioles and for post-translational modification of centriolar microtubules.
Collapse
Affiliation(s)
- Ching-Wen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Wen-Bin Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Jhih-Jie Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chieh-Ju C Tang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Tang K Tang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|