1
|
Yu Z, Dong C, Yang Y, Zheng Z, Ge X. USP21 stabilizes immune checkpoint of CD276 and serves as an immunological and tumor prognostic biomarker. Biochem Biophys Res Commun 2025; 745:151221. [PMID: 39736236 DOI: 10.1016/j.bbrc.2024.151221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/01/2025]
Abstract
Ubiquitin-specific protease 21 (USP21) belongs to the ubiquitin-specific protease family and is a member of the deubiquitinating enzyme (DUB) family. Previous research has shown that USP21 promotes cancer initiation and progression. However, there have been few pan-cancer analysis on USP21. We analyzed the expression levels of USP21 mRNA and protein in various human tumor tissues using several public databases such as The Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), and Human Protein Atlas (HPA). Kaplan-Meier survival analyses were utilized to test the effect of USP21 on overall survival (OS) and progression-free interval (PFS) of these tumor patients. Our study demonstrated that USP21 was differentially expressed between normal and malignant tissues, conferring a notable value in evaluation of prognosis and diagnosis. In addition, enrichment and correlation analyses linking USP21 with immune features such as immune-cell-infiltration rate and immune-checkpoint-gene expression indicated that USP21 is an applicable immunotherapeutic marker for liver cancer. To further elucidate the role of USP21, we downregulated its expression in hepatocellular carcinoma cells and identified a remarkable decrease in expression of the immune checkpoint CD276, which contributes to the immune escape of tumor cells by suppressing the immune system. Together, our results indicated a promising potential of USP21 for future tumor prevention.
Collapse
Affiliation(s)
- Zhu Yu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Chengyuan Dong
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Yanrong Yang
- Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China
| | - Zening Zheng
- Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China
| | - Xin Ge
- Department of Clinical Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Wang L, Cheng H, Wang X, Zhu F, Tian N, Xu Z, Yin H, Liang M, Yang X, Liu X, Shan H, Fu R, Cao B, Li D, Xiao L, Lu L, Dai SM, Wang Q, Lv L, Zou H, Li B. Deubiquitination of aryl hydrocarbon receptor by USP21 negatively regulates T helper 17 cell differentiation. J Leukoc Biol 2024; 117:qiae148. [PMID: 38952265 DOI: 10.1093/jleuko/qiae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 07/03/2024] Open
Abstract
Aryl hydrocarbon receptor (AhR) is a key transcription factor that modulates the differentiation of T helper 17 (Th17) cells. How AhR is regulated at the post-translational level in Th17 cells remains largely unclear. Here, we identify USP21 as a newly defined deubiquitinase of AhR. We demonstrate that USP21 interacts with and stabilizes AhR by removing the K48-linked polyubiquitin chains from AhR. Interestingly, USP21 inhibits the transcriptional activity of AhR in a deubiquitinating-dependent manner. USP21 deubiquitinates AhR at the K432 residue, and the maintenance of ubiquitination on this site is required for the intact transcriptional activity of AhR. Moreover, the deficiency of USP21 promotes the differentiation of Th17 cells both in vitro and in vivo. Consistently, adoptive transfer of USP21-deficient naïve CD4+ T cells elicits more severe colitis in Rag1-/- recipients. Therefore, our study reveals a novel mechanism in which USP21 deubiquitinates AhR and negatively regulates the differentiation of Th17 cells.
Collapse
Affiliation(s)
- Lingbiao Wang
- Division of Rheumatology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Hao Cheng
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, 280 South Chongqing Road, Shanghai 200025, China
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen 518036, China
- The Key Laboratory of Immunology and Inflammatory Diseases of Shenzhen, 1120 Lianhua Road, Shenzhen 518036, China
| | - Xiaoxia Wang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, 280 South Chongqing Road, Shanghai 200025, China
| | - Fangming Zhu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, 280 South Chongqing Road, Shanghai 200025, China
| | - Na Tian
- Department of Rheumatology and Immunology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Zhan Xu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, 280 South Chongqing Road, Shanghai 200025, China
| | - Hanlin Yin
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, Shanghai 200001, China
| | - Minrui Liang
- Division of Rheumatology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Xue Yang
- Division of Rheumatology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Xinnan Liu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, 280 South Chongqing Road, Shanghai 200025, China
| | - Hongying Shan
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen 518036, China
- The Key Laboratory of Immunology and Inflammatory Diseases of Shenzhen, 1120 Lianhua Road, Shenzhen 518036, China
| | - Rong Fu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Boran Cao
- Department of Orthopedics, Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, 540 Xinhua Road, Shanghai 200052, China
| | - Dan Li
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, 280 South Chongqing Road, Shanghai 200025, China
| | - Lianbo Xiao
- Department of Orthopedics, Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, 540 Xinhua Road, Shanghai 200052, China
| | - Liangjing Lu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, Shanghai 200001, China
| | - Sheng-Ming Dai
- Department of Rheumatology and Immunology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen 518036, China
- The Key Laboratory of Immunology and Inflammatory Diseases of Shenzhen, 1120 Lianhua Road, Shenzhen 518036, China
| | - Ling Lv
- Division of Rheumatology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Hejian Zou
- Division of Rheumatology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Bin Li
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, 280 South Chongqing Road, Shanghai 200025, China
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen 518036, China
- The Key Laboratory of Immunology and Inflammatory Diseases of Shenzhen, 1120 Lianhua Road, Shenzhen 518036, China
- Department of Orthopedics, Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, 540 Xinhua Road, Shanghai 200052, China
| |
Collapse
|
3
|
Roy A, Sharma S, Paul I, Ray S. Molecular hybridization assisted multi-technique approach for designing USP21 inhibitors to halt catalytic triad-mediated nucleophilic attack and suppress pancreatic ductal adenocarcinoma progression: A molecular dynamics study. Comput Biol Med 2024; 182:109096. [PMID: 39270458 DOI: 10.1016/j.compbiomed.2024.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/20/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
AIMS Pancreatic cancer, the 12th-most common cancer, globally, is highly challenging to treat due to its complex epigenetic, metabolic, and genomic characteristics. In pancreatic ductal adenocarcinoma, USP21 acts as an oncogene by stabilizing the long isoform of Transcription Factor 7, thereby activating the Wnt signaling pathway. This study aims to inhibit activation of this pathway through computer-aided drug discovery. Accordingly, four libraries of compounds were designed to target the USP21's catalytic domain (Cys221, His518, Asp534), responsible for its deubiquitinating activity. MAIN METHODS Utilizing an array of computer-aided drug design methodologies, such as molecular docking, virtual screening, principal component analysis, molecular dynamics simulation, and dynamic cross-correlation matrix, the structural and functional characteristics of the USP21-inhibitor complex were examined. Following the evaluation of the binding affinities, 20 potential ligands were selected, and the best ligand was subjected to additional molecular dynamics simulation study. KEY FINDINGS The results indicated that the ligand-bound USP21 exhibited reduced structural fluctuations compared to the unbound form, as evident from RMSD, RMSF, Rg, and SASA graphs. ADMET analysis of the top ligand showed promising pharmacokinetic and pharmacodynamic profiles, good bioavailability, and low toxicity. The stable conformations of the proposed drug when bound to their target cavities indicate a robust binding affinity of -9.3 kcal/mol. The drug exhibits an elevated pKi value of 6.82, a noteworthy pIC50 value of 5.972, and a pKd value of 6.023 proving its high affinity and inhibitory potential towards the target. SIGNIFICANCE In-vitro testing of the top compound (MOLHYB-0436) could lead to its use as a potential treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Alankar Roy
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sayan Sharma
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Ishani Paul
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India.
| |
Collapse
|
4
|
Cheng J, Xu L, Xuan Y, Zhou F, Huang A, Zeng S, Wang H, Wang Y, Zhan Y, Yan X, Luo S, Liu Y, Cheng M. Linear polyubiquitylation of Gli protein regulates its protein stability and facilitates tumor growth in colorectal cancer. Cell Death Discov 2024; 10:369. [PMID: 39164252 PMCID: PMC11335874 DOI: 10.1038/s41420-024-02147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
The linear ubiquitin chain assembly complex (LUBAC) mediates the linear ubiquitination of various proteins and is involved in NF-κB signaling and immune regulation. However, the function and mechanism of linear ubiquitination in regulating oncogenic signaling and tumor growth have remained poorly understood. Herein, we identified Gli proteins, key transcription factors in the Hedgehog (Hh) signaling pathway, as novel substrates of LUBAC. Linear ubiquitination stabilizes Gli proteins, leading to the noncanonical activation of Hh signaling in CRC cells. Furthermore, LUBAC facilitates tumor growth in CRC cells. Additionally, elevated expression of LUBAC components in CRC tissues was observed, and higher expression levels of these components correlated with poor prognosis in CRC patients. Interestingly, inhibition of LUBAC using either a small molecule agonist or RNA silencing specifically suppressed cell growth in CRC cells but had no effect on normal intestinal cells. Taken together, aberrant expression of LUBAC components activates Hh signaling noncanonically by mediating linear ubiquitination, promoting tumor growth in CRC, demonstrating the novel function of linear ubiquitination in regulating the protein stability of its substrates and highlighting the potential of targeting LUBAC as a therapeutic strategy in CRC.
Collapse
Affiliation(s)
- Junyao Cheng
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Linlin Xu
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Pathology and Institute of Molecular Pathology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yanlu Xuan
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Feifei Zhou
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Aidi Huang
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Pathology and Institute of Molecular Pathology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shaopeng Zeng
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hailong Wang
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Centre, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yiting Wang
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuan Zhan
- Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Pathology and Institute of Molecular Pathology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaohua Yan
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shiwen Luo
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Pathology and Institute of Molecular Pathology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Minzhang Cheng
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
5
|
Luo L, Zeng Z, Li T, Liu X, Cui Y, Tao Y, Li Y, Chen Y. TET2 stabilized by deubiquitinase USP21 ameliorates cigarette smoke-induced apoptosis in airway epithelial cells. iScience 2024; 27:109252. [PMID: 38439981 PMCID: PMC10910280 DOI: 10.1016/j.isci.2024.109252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/29/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
DNA demethylase TET2 was related with lung function. However, the precise role of TET2 in cigarette smoke (CS)-induced apoptosis of airway epithelium cells, and the mechanisms involved, have yet to be elucidated. Here, we showed that CS decreased TET2 protein levels but had no significant effect on its mRNA levels in lung tissues of chronic obstructive pulmonary disease (COPD) patients and CS-induced COPD mice model and even in airway epithelial cell lines. TET2 could inhibit CS-induced apoptosis of airway epithelial cell in vivo and in vitro. Moreover, we identified ubiquitin-specific protease 21 (USP21) as a deubiquitinase of TET2 in airway epithelial cells. USP21 interacted with TET2 and inhibited CSE-induced TET2 degradation. USP21 downregulated decreased TET2 abundance and further reduced the anti-apoptosis effect of TET2. Thus, we draw a conclusion that the USP21/TET2 axis is involved in CS-induced apoptosis of airway epithelial cells.
Collapse
Affiliation(s)
- Lijuan Luo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan 410011, China
| | - Zihang Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan 410011, China
| | - Tiao Li
- Department of Pulmonary and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiangming Liu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan 410011, China
| | - Yanan Cui
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan 410011, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yi Li
- Department of Infectious Disease Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan 410011, China
| |
Collapse
|
6
|
Bolhuis DL, Emanuele MJ, Brown NG. Friend or foe? Reciprocal regulation between E3 ubiquitin ligases and deubiquitinases. Biochem Soc Trans 2024; 52:241-267. [PMID: 38414432 PMCID: PMC11349938 DOI: 10.1042/bst20230454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Protein ubiquitination is a post-translational modification that entails the covalent attachment of the small protein ubiquitin (Ub), which acts as a signal to direct protein stability, localization, or interactions. The Ub code is written by a family of enzymes called E3 Ub ligases (∼600 members in humans), which can catalyze the transfer of either a single ubiquitin or the formation of a diverse array of polyubiquitin chains. This code can be edited or erased by a different set of enzymes termed deubiquitinases (DUBs; ∼100 members in humans). While enzymes from these distinct families have seemingly opposing activities, certain E3-DUB pairings can also synergize to regulate vital cellular processes like gene expression, autophagy, innate immunity, and cell proliferation. In this review, we highlight recent studies describing Ub ligase-DUB interactions and focus on their relationships.
Collapse
Affiliation(s)
- Derek L Bolhuis
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Michael J Emanuele
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| |
Collapse
|
7
|
Zhong Y, Huang T, Li X, Luo P, Zhang B. GSDMD suppresses keratinocyte differentiation by inhibiting FLG expression and attenuating KCTD6-mediated HDAC1 degradation in atopic dermatitis. PeerJ 2024; 12:e16768. [PMID: 38250727 PMCID: PMC10798152 DOI: 10.7717/peerj.16768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Background Recent studies have shown that activated pyroptosis in atopic dermatitis (AD) switches inflammatory processes and causes abnormal cornification and epidermal barrier dysfunction. Little research has focused on the interaction mechanism between pyroptosis-related genes and human keratinocyte differentiation. Methods The AD dataset from the Gene Expression Omnibus (GEO) was used to identify differently expressed pyroptosis-related genes (DEPRGs). Hub genes were identified and an enrichment analysis was performed to select epithelial development-related genes. Lesions of AD patients were detected via immunohistochemistry (IHC) to verify the hub gene. Human keratinocytes cell lines, gasdermin D (GSDMD) overexpression, Caspase1 siRNA, Histone Deacetylase1 (HDAC1) siRNA, and HDAC1 overexpression vectors were used for gain-and-loss-of-function experiments. Regulation of cornification protein was determined by qPCR, western blot (WB), immunofluorescence (IF), dual-luciferase reporter assay, co-immunoprecipitation (Co-IP), and chromatin immunoprecipitation (ChIP). Results A total of 27 DEPRGs were identified between either atopic dermatitis non-lesional skin (ANL) and healthy control (HC) or atopic dermatitis lesional skin (AL) and HC. The enrichment analysis showed that these DEPRGs were primarily enriched in the inflammatory response and keratinocytes differentiation. Of the 10 hub genes identified via the protein-protein interaction network, only GSDMD was statistically and negatively associated with the expression of epithelial tight junction core genes. Furthermore, GSDMD was upregulated in AD lesions and inhibited human keratinocyte differentiation by reducing filaggrin (FLG) expression. Mechanistically, GSDMD activated by Caspase1 reduced FLG expression via HDAC1. HDAC1 decreased FLG expression by reducing histone acetylation at the FLG promoter. In addition, GSDMD blocked the interaction of Potassium Channel Tetramerization Domain Containing 6 (KCTD6) and HDAC1 to prohibit HDAC1 degradation. Conclusion This study revealed that GSDMD was upregulated in AD lesions and that GSDMD regulated keratinocytes via epigenetic modification, which might provide potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Dermatology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Taoyuan Huang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Xiaoli Li
- Department of Dermatology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Peiyi Luo
- Department of Dermatology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Bingjun Zhang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
An T, Lu Y, Yan X, Hou J. Insights Into the Properties, Biological Functions, and Regulation of USP21. Front Pharmacol 2022; 13:944089. [PMID: 35846989 PMCID: PMC9279671 DOI: 10.3389/fphar.2022.944089] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Deubiquitylating enzymes (DUBs) antagonize ubiquitination by removing ubiquitin from their substrates. The role of DUBs in controlling various physiological and pathological processes has been extensively studied, and some members of DUBs have been identified as potential therapeutic targets in diseases ranging from tumors to neurodegeneration. Ubiquitin-specific protease 21 (USP21) is a member of the ubiquitin-specific protease family, the largest subfamily of DUBs. Although USP21 was discovered late and early research progress was slow, numerous studies in the last decade have gradually revealed the importance of USP21 in a wide variety of biological processes. In particular, the pro-carcinogenic effect of USP21 has been well elucidated in the last 2 years. In the present review, we provide a comprehensive overview of the current knowledge on USP21, including its properties, biological functions, pathophysiological roles, and cellular regulation. Limited pharmacological interventions for USP21 have also been introduced, highlighting the importance of developing novel and specific inhibitors targeting USP21.
Collapse
Affiliation(s)
- Tao An
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanting Lu
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xu Yan
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, School of Medicine, Institute of Gastrointestinal Oncology, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
- *Correspondence: Jingjing Hou,
| |
Collapse
|
9
|
Choi HS, Baek KH. Pro-apoptotic and anti-apoptotic regulation mediated by deubiquitinating enzymes. Cell Mol Life Sci 2022; 79:117. [PMID: 35118522 PMCID: PMC11071826 DOI: 10.1007/s00018-022-04132-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 12/16/2022]
Abstract
Although damaged cells can be repaired, cells that are considered unlikely to be repaired are eliminated through apoptosis, a type of predicted cell death found in multicellular organisms. Apoptosis is a structured cell death involving alterations to the cell morphology and internal biochemical changes. This process involves the expansion and cracking of cells, changes in cell membranes, nuclear fragmentation, chromatin condensation, and chromosome cleavage, culminating in the damaged cells being eaten and processed by other cells. The ubiquitin-proteasome system (UPS) is a major cellular pathway that regulates the protein levels through proteasomal degradation. This review proposes that apoptotic proteins are regulated through the UPS and describes a unique direction for cancer treatment by controlling proteasomal degradation of apoptotic proteins, and small molecules targeted to enzymes associated with UPS.
Collapse
Affiliation(s)
- Hae-Seul Choi
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea.
| |
Collapse
|
10
|
Hong Y, Lee SO, Oh C, Kang K, Ryoo J, Kim D, Ahn K. USP21 Deubiquitinase Regulates AIM2 Inflammasome Activation. THE JOURNAL OF IMMUNOLOGY 2021; 207:1926-1936. [PMID: 34470856 DOI: 10.4049/jimmunol.2100449] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/01/2021] [Indexed: 12/11/2022]
Abstract
Innate immune sensing of cytosolic DNA via absent in melanoma 2 (AIM2) is a key mechanism leading to inflammatory responses. As aberrant immune responses by dysregulated AIM2 are associated with autoinflammatory diseases, activation of the AIM2 inflammasome should be tightly controlled. In this study, we discovered that ubiquitination and deubiquitination of AIM2 are critical events that regulate AIM2 inflammasome activation. In resting human macrophage cells, AIM2 is constitutively ubiquitinated and undergoes proteasomal degradation to avoid autoinflammation. Upon DNA stimulation, USP21 binds to AIM2 and deubiquitinates it, thereby increasing its protein stability. In addition to the role of USP21 in regulating AIM2 turnover, we uncovered that USP21-mediated deubiquitination of AIM2 is required for the assembly of the AIM2 inflammasome. Depletion of USP21 does not affect the DNA-binding ability of AIM2 but inhibits the formation of the AIM2-ASC complex. Our findings establish that fine-tuning of AIM2 by the ubiquitin system is important for regulating AIM2 inflammasome activation.
Collapse
Affiliation(s)
- Yujin Hong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.,Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea; and
| | - Seong-Ok Lee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.,Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea; and
| | - Changhoon Oh
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.,Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea; and
| | - Kwonyoon Kang
- College of Medicine, The Catholic University, Seoul, Republic of Korea
| | - Jeongmin Ryoo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dongyoung Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.,Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea; and
| | - Kwangseog Ahn
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; .,Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea; and
| |
Collapse
|
11
|
Chen W, Su J, Cai S, Shi C. Cullin3 aggravates the inflammatory response of periodontal ligament stem cells via regulation of SHH signaling and Nrf2. Bioengineered 2021; 12:3089-3100. [PMID: 34193016 PMCID: PMC8806625 DOI: 10.1080/21655979.2021.1943603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
It is found that the activation of Sonic Hedgehog (SHH) signaling pathway is related to the degree of inflammation in patients suffering from periodontitis. Cullin3 (CUL3), an important ubiquitin ligase, can control SHH signaling. In this study, we were dedicated to clarify the roles of SHH and CUL3 in P. gingivalis-LPS (Pg-LPS)-treated periodontal ligament stem cells (PDLSCs). In this study, cell viability was detected using cell counting kit-8 (CCK-8). The inflammatory cytokines of PDLSCs were estimated by enzyme-linked immunosorbent assay (ELISA). With the application of western blots, the protein levels of SHH, Gli1 and NF-E2-related factor 2 (Nrf2) were determined. Alkaline phosphatase staining and Alizarin red staining were performed to evaluate the differentiation and mineralization capabilities of PDLSCs. The apoptotic cells were screened using TUNEL staining. The results showed that Pg-LPS inhibited cell viability and triggered inflammation of PDLSCs. Overexpression of CUL3 weakened the differentiation and mineralization capabilities of PDLSCs. Moreover, CUL3 overexpression aggravated inflammation and cell apoptosis induced by Pg-LPS. It is worth noting that although the protein levels of SHH, Gli1 and Nrf2 were elevated in PDLSCs treated with Pg-LPS, overexpression of CUL3 decreased the expressions of Gli1 and Nrf2. Overall, SHH/Gli1 and Nrf2 were involved in the inflammation and cell apoptosis of PDLSCs, which was dominated by CUL3.
Collapse
Affiliation(s)
- Wanhong Chen
- Department of Stomatology, Quanzhou First Hospital, Quanzhou, Fujian, China
| | - Jiangling Su
- Department of Stomatology, Quanzhou First Hospital, Quanzhou, Fujian, China
| | - Shixiong Cai
- Department of Stomatology, Quanzhou First Hospital, Quanzhou, Fujian, China
| | - Chun Shi
- Department of Endodontics and Periodontics, School of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
12
|
Gao W, Li G, Zhao S, Wang H, Huan C, Zheng B, Jiang C, Zhang W. Deubiquitinating Enzyme USP21 Inhibits HIV-1 Replication by Downregulating Tat Expression. J Virol 2021; 95:e0046021. [PMID: 33827943 PMCID: PMC8316079 DOI: 10.1128/jvi.00460-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 01/14/2023] Open
Abstract
Ubiquitination plays an important role in human immunodeficiency virus 1 (HIV-1) infection. HIV proteins such as Vif and Vpx mediate the degradation of the host proteins APOBEC3 and SAMHD1, respectively, through the proteasome pathway. However, whether deubiquitylating enzymes play an essential role in HIV-1 infection is largely unknown. Here, we demonstrate that the deubiquitinase USP21 potently inhibits HIV-1 production by indirectly downregulating the expression of HIV-1 transactivator of transcription (Tat), which is essential for transcriptional elongation in HIV-1. USP21 deubiquitylates Tat via its deubiquitinase activity, but a stronger ability to reduce Tat expression than a dominant-negative ubiquitin mutant (Ub-KO) showed that other mechanisms may contribute to USP21-mediated inhibition of Tat. Further investigation showed that USP21 downregulates cyclin T1 mRNA levels by increasing methylation of histone K9 in the promoter of cyclin T1, a subunit of the positive transcription elongation factor b (P-TEFb) that interacts with Tat and transactivation response element (TAR) and is required for transcription stimulation and Tat stability. Moreover, USP21 had no effect on the function of other HIV-1 accessory proteins, including Vif, Vpr, Vpx, and Vpu, indicating that USP21 was specific to Tat. These findings improve our understanding of USP21-mediated functional suppression of HIV-1 production. IMPORTANCE Ubiquitination plays an essential role in viral infection. Deubiquitinating enzymes (DUBs) reverse ubiquitination by cleaving ubiquitins from target proteins, thereby affecting viral infection. The role of the members of the USP family, which comprises the largest subfamily of DUBs, is largely unknown in HIV-1 infection. Here, we screened a series of USP members and found that USP21 inhibits HIV-1 production by specifically targeting Tat but not the other HIV-1 accessory proteins. Further investigations revealed that USP21 reduces Tat expression in two ways. First, USP21 deubiquitinates polyubiquitinated Tat, causing Tat instability, and second, USP21 reduces the mRNA levels of cyclin T1 (CycT1), an important component of P-TEFb, that leads to Tat downregulation. Thus, in this study, we report a novel role of the deubiquitinase, USP21, in HIV-1 infection. USP21 represents a potentially useful target for the development of novel anti-HIV drugs.
Collapse
Affiliation(s)
- Wenying Gao
- Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Guangquan Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Simin Zhao
- College of Life Science of Jilin University, Changchun, China
| | - Hong Wang
- Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Chen Huan
- Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Baisong Zheng
- Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Chunlai Jiang
- College of Life Science of Jilin University, Changchun, China
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Angrisani A, Di Fiore A, De Smaele E, Moretti M. The emerging role of the KCTD proteins in cancer. Cell Commun Signal 2021; 19:56. [PMID: 34001146 PMCID: PMC8127222 DOI: 10.1186/s12964-021-00737-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/05/2021] [Indexed: 12/24/2022] Open
Abstract
The human family of Potassium (K+) Channel Tetramerization Domain (KCTD) proteins counts 25 members, and a significant number of them are still only partially characterized. While some of the KCTDs have been linked to neurological disorders or obesity, a growing tally of KCTDs are being associated with cancer hallmarks or involved in the modulation of specific oncogenic pathways. Indeed, the potential relevance of the variegate KCTD family in cancer warrants an updated picture of the current knowledge and highlights the need for further research on KCTD members as either putative therapeutic targets, or diagnostic/prognostic markers. Homology between family members, capability to participate in ubiquitination and degradation of different protein targets, ability to heterodimerize between members, role played in the main signalling pathways involved in development and cancer, are all factors that need to be considered in the search for new key players in tumorigenesis. In this review we summarize the recent published evidence on KCTD members' involvement in cancer. Furthermore, by integrating this information with data extrapolated from public databases that suggest new potential associations with cancers, we hypothesize that the number of KCTD family members involved in tumorigenesis (either as positive or negative modulator) may be bigger than so far demonstrated. Video abstract.
Collapse
Affiliation(s)
| | - Annamaria Di Fiore
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| | - Marta Moretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
14
|
Kaushal K, Ramakrishna S. Deubiquitinating Enzyme-Mediated Signaling Networks in Cancer Stem Cells. Cancers (Basel) 2020; 12:E3253. [PMID: 33158118 PMCID: PMC7694198 DOI: 10.3390/cancers12113253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) have both the capacity for self-renewal and the potential to differentiate and contribute to multiple tumor properties, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. Thus, CSCs are considered to be promising therapeutic targets for cancer therapy. The function of CSCs can be regulated by ubiquitination and deubiquitination of proteins related to the specific stemness of the cells executing various stem cell fate choices. To regulate the balance between ubiquitination and deubiquitination processes, the disassembly of ubiquitin chains from specific substrates by deubiquitinating enzymes (DUBs) is crucial. Several key developmental and signaling pathways have been shown to play essential roles in this regulation. Growing evidence suggests that overactive or abnormal signaling within and among these pathways may contribute to the survival of CSCs. These signaling pathways have been experimentally shown to mediate various stem cell properties, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation. In this review, we focus on the DUBs involved in CSCs signaling pathways, which are vital in regulating their stem-cell fate determination.
Collapse
Affiliation(s)
- Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
15
|
DUBs Activating the Hedgehog Signaling Pathway: A Promising Therapeutic Target in Cancer. Cancers (Basel) 2020; 12:cancers12061518. [PMID: 32531973 PMCID: PMC7352588 DOI: 10.3390/cancers12061518] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/01/2020] [Accepted: 06/06/2020] [Indexed: 12/29/2022] Open
Abstract
The Hedgehog (HH) pathway governs cell proliferation and patterning during embryonic development and is involved in regeneration, homeostasis and stem cell maintenance in adult tissues. The activity of this signaling is finely modulated at multiple levels and its dysregulation contributes to the onset of several human cancers. Ubiquitylation is a coordinated post-translational modification that controls a wide range of cellular functions and signaling transduction pathways. It is mediated by a sequential enzymatic network, in which ubiquitin ligases (E3) and deubiquitylase (DUBs) proteins are the main actors. The dynamic balance of the activity of these enzymes dictates the abundance and the fate of cellular proteins, thus affecting both physiological and pathological processes. Several E3 ligases regulating the stability and activity of the key components of the HH pathway have been identified. Further, DUBs have emerged as novel players in HH signaling transduction, resulting as attractive and promising drug targets. Here, we review the HH-associated DUBs, discussing the consequences of deubiquitylation on the maintenance of the HH pathway activity and its implication in tumorigenesis. We also report the recent progress in the development of selective inhibitors for the DUBs here reviewed, with potential applications for the treatment of HH-related tumors.
Collapse
|
16
|
FOXM1 Deubiquitination by USP21 Regulates Cell Cycle Progression and Paclitaxel Sensitivity in Basal-like Breast Cancer. Cell Rep 2020; 26:3076-3086.e6. [PMID: 30865895 PMCID: PMC6425951 DOI: 10.1016/j.celrep.2019.02.054] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/17/2018] [Accepted: 02/13/2019] [Indexed: 12/23/2022] Open
Abstract
The transcription factor FOXM1 contributes to cell cycle progression and is significantly upregulated in basal-like breast cancer (BLBC). Despite its importance in normal and cancer cell cycles, we lack a complete understanding of mechanisms that regulate FOXM1. We identified USP21 in an RNAi-based screen for deubiquitinases that control FOXM1 abundance. USP21 increases the stability of FOXM1, and USP21 binds and deubiquitinates FOXM1 in vivo and in vitro, indicating a direct enzyme-substrate relationship. Depleting USP21 downregulates the FOXM1 transcriptional network and causes a signifi-cant delay in cell cycle progression. Significantly, USP21 depletion sensitized BLBC cell lines and mouse xenograft tumors to paclitaxel, an anti-mitotic, frontline therapy in BLBC treatment. USP21 is the most frequently amplified deubiquitinase in BLBC patient tumors, and its amplification co-occurs with the upregulation of FOXM1 protein. Altogether, these data suggest a role for USP21 in the proliferation and potentially treatment of FOXM1-high, USP21-high BLBC. The cell cycle transcription factor FOXM1 is activated in basal-like breast cancer (BLBC) and associated with therapeutic resistance and poor patient outcomes. Arceci et al. show USP21 antagonizes FOXM1 degradation, thereby promoting proliferation and paclitaxel resistance. USP21 is catalytically active and recurrently overexpressed in BLBC, representing a potential therapeutic target.
Collapse
|
17
|
Xu P, Xiao H, Yang Q, Hu R, Jiang L, Bi R, Jiang X, Wang L, Mei J, Ding F, Huang J. The USP21/YY1/SNHG16 axis contributes to tumor proliferation, migration, and invasion of non-small-cell lung cancer. Exp Mol Med 2020; 52:41-55. [PMID: 31956270 PMCID: PMC7000404 DOI: 10.1038/s12276-019-0356-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 12/30/2022] Open
Abstract
Deubiquitinases (DUBs) and noncoding RNAs have been the subjects of recent extensive studies regarding their roles in lung cancer, but the mechanisms involved are largely unknown. In our study, we used The Cancer Genome Atlas data set and bioinformatics analyses and identified USP21, a DUB, as a potential contributor to oncogenesis in non-small-cell lung cancer (NSCLC). We further demonstrated that USP21 was highly expressed in NSCLCs. We then conducted a series of in vitro and in vivo assays to explore the effect of USP21 on NSCLC progression and the underlying mechanism involved. USP21 promoted NSCLC cell proliferation, migration, and invasion and in vivo tumor growth by stabilizing a well-known oncogene, Yin Yang-1 (YY1), via mediating its deubiquitination. Furthermore, YY1 transcriptionally regulates the expression of SNHG16. Moreover, StarBase bioinformatics analyses predicted that miR-4500 targets SNHG16 and USP21. A series of in vitro experiments indicated that SNHG16 increased the expression of USP21 through miR-4500. In summary, the USP21/YY1/SNHG16 axis plays a role in promoting the progression of NSCLC. Therefore, the USP21/YY1/SNHG16/miR-4500 axis may be a potential therapeutic target in NSCLC treatment. Therapies targeting a molecular feedback loop involved in tumor growth may prove valuable for treating non-small-cell lung cancer. Fangbao Ding, Jianbing Huang, and co-workers at Shanghai Jiao Tong University in Shanghai, China, have shown how an enzyme called USP21 promotes cancer cell proliferation and tumor growth in non-small-cell lung cancer. The team took cancerous and non-cancerous lung tissue samples from 42 patients, and analyzed the expression and behavior of USP21. The enzyme was highly expressed in cancerous tissues, where it stabilized a known gene with the potential to cause cancer called YY1. This gene also regulated the expression of a particular RNA molecule, which in turn worked to increase levels of USP21. This cyclical process encouraged the proliferation, migration and invasion of non-small-cell lung cancer cells, and may provide a future therapeutic target.
Collapse
Affiliation(s)
- Pei Xu
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Haibo Xiao
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Qi Yang
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Rui Hu
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Lianyong Jiang
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Rui Bi
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Xueyan Jiang
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Lei Wang
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Ju Mei
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Fangbao Ding
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China.
| | - Jianbing Huang
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China.
| |
Collapse
|
18
|
USP21 modulates Goosecoid function through deubiquitination. Biosci Rep 2019; 39:BSR20182148. [PMID: 31253698 PMCID: PMC6620385 DOI: 10.1042/bsr20182148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/12/2019] [Accepted: 06/25/2019] [Indexed: 12/11/2022] Open
Abstract
The homeobox gene Goosecoid (GSC), which is known to regulate craniofacial development, is activated by mono-ubiquitination; however, the deubiquitylase responsible for GSC deubiquitination and inhibition has yet to be identified. In the present study, we constructed the recombinant plasmid pFlag-CMV-2-GSC and the SRY (sex-determining region Y)-box 6 (Sox6) reporter gene system to identify deubiquitylases that regulate GSC expression. We demonstrate that the ubiquitin carboxyl-terminal hydrolase 21 (USP21) regulates the deubiquitination of GSC negatively, as demonstrated by its inhibition of Sox6 reporter gene transcription. USP21 interacted with GSC to promote GSC deubiquitination while having no effect on GSC protein stability. Cell viability, migration, and function in ATDC5 cells were probably influenced by USP21 through GSC. These findings suggest that USP21 modulates GSC function through deubiquitination.
Collapse
|
19
|
Teng X, Aouacheria A, Lionnard L, Metz KA, Soane L, Kamiya A, Hardwick JM. KCTD: A new gene family involved in neurodevelopmental and neuropsychiatric disorders. CNS Neurosci Ther 2019; 25:887-902. [PMID: 31197948 PMCID: PMC6566181 DOI: 10.1111/cns.13156] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
The underlying molecular basis for neurodevelopmental or neuropsychiatric disorders is not known. In contrast, mechanistic understanding of other brain disorders including neurodegeneration has advanced considerably. Yet, these do not approach the knowledge accrued for many cancers with precision therapeutics acting on well-characterized targets. Although the identification of genes responsible for neurodevelopmental and neuropsychiatric disorders remains a major obstacle, the few causally associated genes are ripe for discovery by focusing efforts to dissect their mechanisms. Here, we make a case for delving into mechanisms of the poorly characterized human KCTD gene family. Varying levels of evidence support their roles in neurocognitive disorders (KCTD3), neurodevelopmental disease (KCTD7), bipolar disorder (KCTD12), autism and schizophrenia (KCTD13), movement disorders (KCTD17), cancer (KCTD11), and obesity (KCTD15). Collective knowledge about these genes adds enhanced value, and critical insights into potential disease mechanisms have come from unexpected sources. Translation of basic research on the KCTD-related yeast protein Whi2 has revealed roles in nutrient signaling to mTORC1 (KCTD11) and an autophagy-lysosome pathway affecting mitochondria (KCTD7). Recent biochemical and structure-based studies (KCTD12, KCTD13, KCTD16) reveal mechanisms of regulating membrane channel activities through modulation of distinct GTPases. We explore how these seemingly varied functions may be disease related.
Collapse
Affiliation(s)
- Xinchen Teng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| | - Abdel Aouacheria
- ISEM, Institut des Sciences de l'Evolution de Montpellier, CNRS, EPHE, IRDUniversité de MontpellierMontpellierFrance
| | - Loïc Lionnard
- ISEM, Institut des Sciences de l'Evolution de Montpellier, CNRS, EPHE, IRDUniversité de MontpellierMontpellierFrance
| | - Kyle A. Metz
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
- Present address:
Feinberg School of MedicineNorthwestern UniversityChicagoUSA
| | - Lucian Soane
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral SciencesJohns Hopkins School of MedicineBaltimoreMaryland
| | - J. Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| |
Collapse
|
20
|
Gli Proteins: Regulation in Development and Cancer. Cells 2019; 8:cells8020147. [PMID: 30754706 PMCID: PMC6406693 DOI: 10.3390/cells8020147] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 12/18/2022] Open
Abstract
Gli proteins are transcriptional effectors of the Hedgehog signaling pathway. They play key roles in the development of many organs and tissues, and are deregulated in birth defects and cancer. We review the molecular mechanisms of Gli protein regulation in mammals, with special emphasis on posttranslational modifications and intracellular transport. We also discuss how Gli proteins interact with co-activators and co-repressors to fine-tune the expression of Hedgehog target genes. Finally, we provide an overview of the regulation of developmental processes and tissue regeneration by Gli proteins and discuss how these proteins are involved in cancer progression, both through canonical regulation via the Hedgehog pathway and through cross-talk with other signaling pathways.
Collapse
|
21
|
The deubiquitinase USP21 stabilizes MEK2 to promote tumor growth. Cell Death Dis 2018; 9:482. [PMID: 29706623 PMCID: PMC5924753 DOI: 10.1038/s41419-018-0523-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/16/2018] [Accepted: 03/23/2018] [Indexed: 12/13/2022]
Abstract
Deubiquitinases (DUBs) play essential roles in normal cell proliferation and tumor growth. However, the molecular mechanisms of DUBs on hepatocellular carcinoma (HCC) remains largely unknown. In this study, based on analysis of several HCC datasets, we found that the USP21 gene, which encodes a member of the ubiquitin-specific protease family, is highly amplified and overexpressed in HCCs, with the extent of this up-regulation significantly correlating with poor clinical outcomes. Inhibition of USP21 in HCC cell lines decreased cell proliferation, anchorage-independent growth, cell cycle progression, and in vivo tumor growth. Conversely, ectopic expression of USP21 transformed the normal human hepatocyte line HL-7702 and increased the tumorigenicity of the HCC cell line MHCC97L. Mechanistically, USP21 stabilized MEK2 by decreasing its polyubiquitination at Lys48, thereby activating the ERK signaling pathway. Importantly, MEK2 partially mediated the optimal expression of USP21-mediated oncogenic phenotypes. These findings indicate that USP21-mediated deubiquitination and stabilization of MEK2 play a critical role in HCC development.
Collapse
|
22
|
Mastrangelo E, Milani M. Role and inhibition of GLI1 protein in cancer. LUNG CANCER-TARGETS AND THERAPY 2018; 9:35-43. [PMID: 29628779 PMCID: PMC5877502 DOI: 10.2147/lctt.s124483] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
GLI1 is a transcriptional regulator involved in the development of different types of cancer. GLI1 transcriptional activity is regulated within the Hedgehog pathway (canonical activity), but can also be controlled independently (non-canonical activity) in the context of other signaling pathways. Experimental evidences show GLI1 involvement in both small- and non–small-cell lung cancers. Direct inhibition of the protein, in combination with other chemotherapeutic agents, represents a promising strategy for the treatment of different malignancies.
Collapse
Affiliation(s)
- Eloise Mastrangelo
- CNR - Biophysics Institute, c/o Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Mario Milani
- CNR - Biophysics Institute, c/o Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
23
|
Deubiquitylating Nanog: novel role of USP21 in embryonic stem cell maintenance. Signal Transduct Target Ther 2017; 2:17014. [PMID: 29263917 PMCID: PMC5661622 DOI: 10.1038/sigtrans.2017.14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/20/2022] Open
Abstract
Recently, three groups independently identified ubiquitin-specific peptidase 21 (USP21) as an efficient deubiquitylase that reverses Nanog polyubiquitylation and stabilizes Nanog protein. In this preview, I have summarized the work of these three groups.
Collapse
|
24
|
Darling S, Fielding AB, Sabat-Pośpiech D, Prior IA, Coulson JM. Regulation of the cell cycle and centrosome biology by deubiquitylases. Biochem Soc Trans 2017; 45:1125-1136. [PMID: 28900014 PMCID: PMC5652225 DOI: 10.1042/bst20170087] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022]
Abstract
Post-translational modification of proteins by ubiquitylation is increasingly recognised as a highly complex code that contributes to the regulation of diverse cellular processes. In humans, a family of almost 100 deubiquitylase enzymes (DUBs) are assigned to six subfamilies and many of these DUBs can remove ubiquitin from proteins to reverse signals. Roles for individual DUBs have been delineated within specific cellular processes, including many that are dysregulated in diseases, particularly cancer. As potentially druggable enzymes, disease-associated DUBs are of increasing interest as pharmaceutical targets. The biology, structure and regulation of DUBs have been extensively reviewed elsewhere, so here we focus specifically on roles of DUBs in regulating cell cycle processes in mammalian cells. Over a quarter of all DUBs, representing four different families, have been shown to play roles either in the unidirectional progression of the cell cycle through specific checkpoints, or in the DNA damage response and repair pathways. We catalogue these roles and discuss specific examples. Centrosomes are the major microtubule nucleating centres within a cell and play a key role in forming the bipolar mitotic spindle required to accurately divide genetic material between daughter cells during cell division. To enable this mitotic role, centrosomes undergo a complex replication cycle that is intimately linked to the cell division cycle. Here, we also catalogue and discuss DUBs that have been linked to centrosome replication or function, including centrosome clustering, a mitotic survival strategy unique to cancer cells with supernumerary centrosomes.
Collapse
Affiliation(s)
- Sarah Darling
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, U.K
| | - Andrew B Fielding
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, U.K
| | - Dorota Sabat-Pośpiech
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, U.K
| | - Ian A Prior
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, U.K
| | - Judy M Coulson
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, U.K.
| |
Collapse
|
25
|
The regulation of Hh/Gli1 signaling cascade involves Gsk3β- mediated mechanism in estrogen-derived endometrial hyperplasia. Sci Rep 2017; 7:6557. [PMID: 28747625 PMCID: PMC5529438 DOI: 10.1038/s41598-017-06370-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022] Open
Abstract
The present study was undertaken to explore the functional involvement of Hh signaling and its regulatory mechanism in endometrial hyperplasia. Differential expression of Hh signaling molecules i.e., Ihh, Shh, Gli1 or Gsk3β was observed in endometrial hyperplasial (EH) cells as compared to normal endometrial cells. Estradiol induced the expression of Hh signaling molecules and attenuated the expression of Gsk3β whereas anti-estrogen (K1) or progestin (MPA) suppressed these effects in EH cells. Cyclopamine treatment or Gli1 siRNA knockdown suppressed the growth of EH cells and reduced the expression of proliferative markers. Estradiol also induced the nuclear translocation of Gli1 which was suppressed by both MPA and K1 in EH cells. While exploring non-canonical mechanism, LY-294002 (Gsk3β activator) caused a decrease in Gli1 expression indicating the involvement of Gsk3β in Gli1 regulation. Further, Gsk3β silencing promoted the expression and nuclear translocation of Gli1 demonstrating that Gsk3β serves as a negative kinase regulator of Gli1 in EH cells. Similar attenuation of Hh signaling molecules was observed in rats with uterine hyperplasia undergoing anti-estrogen treatment. The study suggested that Hh/Gli1 cascade (canonical pathway) as well as Gsk3β-Gli1 crosstalk (non-canonical pathway) play crucial role in estrogen-dependent cell proliferation in endometrial hyperplasia.
Collapse
|
26
|
Leznicki P, Kulathu Y. Mechanisms of regulation and diversification of deubiquitylating enzyme function. J Cell Sci 2017; 130:1997-2006. [PMID: 28476940 DOI: 10.1242/jcs.201855] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Deubiquitylating (or deubiquitinating) enzymes (DUBs) are proteases that reverse protein ubiquitylation and therefore modulate the outcome of this post-translational modification. DUBs regulate a variety of intracellular processes, including protein turnover, signalling pathways and the DNA damage response. They have also been linked to a number of human diseases, such as cancer, and inflammatory and neurodegenerative disorders. Although we are beginning to better appreciate the role of DUBs in basic cell biology and their importance for human health, there are still many unknowns. Central among these is the conundrum of how the small number of ∼100 DUBs encoded in the human genome is capable of regulating the thousands of ubiquitin modification sites detected in human cells. This Commentary addresses the biological mechanisms employed to modulate and expand the functions of DUBs, and sets directions for future research aimed at elucidating the details of these fascinating processes.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Exploitation of the host cell ubiquitin machinery by microbial effector proteins' by Yi-Han Lin and Matthias P. Machner (J. Cell Sci.130, 1985-1996). 'Cell scientist to watch - Mads Gyrd-Hansen' (J. Cell Sci.130, 1981-1983).
Collapse
Affiliation(s)
- Pawel Leznicki
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Yogesh Kulathu
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
27
|
Chen Y, Wang L, Jin J, Luan Y, Chen C, Li Y, Chu H, Wang X, Liao G, Yu Y, Teng H, Wang Y, Pan W, Fang L, Liao L, Jiang Z, Ge X, Li B, Wang P. p38 inhibition provides anti-DNA virus immunity by regulation of USP21 phosphorylation and STING activation. J Exp Med 2017; 214:991-1010. [PMID: 28254948 PMCID: PMC5379979 DOI: 10.1084/jem.20161387] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/05/2016] [Accepted: 12/29/2016] [Indexed: 01/09/2023] Open
Abstract
Chen et al. show that USP21 is a deubiquitinating enzyme for the adaptor protein STING and that it negatively regulates the DNA virus–induced production of type I interferons. HSV-1 infection recruited USP21 to STING at a late stage by p38-mediated phosphorylation of USP21 at Ser538. Stimulator of IFN genes (STING) is a central adaptor protein that mediates the innate immune responses to DNA virus infection. Although ubiquitination is essential for STING function, how the ubiquitination/deubiquitination system is regulated by virus infection to control STING activity remains unknown. In this study, we found that USP21 is an important deubiquitinating enzyme for STING and that it negatively regulates the DNA virus–induced production of type I interferons by hydrolyzing K27/63-linked polyubiquitin chain on STING. HSV-1 infection recruited USP21 to STING at late stage by p38-mediated phosphorylation of USP21 at Ser538. Inhibition of p38 MAPK enhanced the production of IFNs in response to virus infection and protected mice from lethal HSV-1 infection. Thus, our study reveals a critical role of p38-mediated USP21 phosphorylation in regulating STING-mediated antiviral functions and identifies p38-USP21 axis as an important pathway that DNA virus adopts to avoid innate immunity responses.
Collapse
Affiliation(s)
- Yunfei Chen
- Department of Central Laboratory, School of Life Science and Technology, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai 200072, China
| | - Lufan Wang
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Jiali Jin
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Yi Luan
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Cong Chen
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Yu Li
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Hongshang Chu
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Xinbo Wang
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Guanghong Liao
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Yue Yu
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Hongqi Teng
- Department of Central Laboratory, School of Life Science and Technology, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai 200072, China
| | - Yanming Wang
- Department of Central Laboratory, School of Life Science and Technology, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai 200072, China
| | - Weijuan Pan
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Lan Fang
- Department of Central Laboratory, School of Life Science and Technology, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai 200072, China
| | - Lujian Liao
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Zhengfan Jiang
- State Key Laboratory of Protein and Plant Gene Research, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100000, China.,Peking University-Tsinghua University Joint Center for Life Sciences, Beijing 100084, China
| | - Xin Ge
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai 200072, China
| | - Bin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Ping Wang
- Department of Central Laboratory, School of Life Science and Technology, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai 200072, China
| |
Collapse
|
28
|
Chen Y, Zhou B, Chen D. USP21 promotes cell proliferation and metastasis through suppressing EZH2 ubiquitination in bladder carcinoma. Onco Targets Ther 2017; 10:681-689. [PMID: 28223825 PMCID: PMC5308592 DOI: 10.2147/ott.s124795] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bladder cancer (BC) is the second most common malignant tumor of the urinary tract in the world. In this study, we found that ubiquitin-specific protease (USP21) was upregulated in BC and the ectopic expression of USP21 was closely associated with tumor size and metastasis. Moreover, patients with higher levels of USP21 had poorer survival rate. Multiple function analysis such as CCK-8, colony formation, wound healing, and transwell analysis indicated that USP21 regulated cell proliferation and metastasis in bladder carcinoma cell lines. We also found that USP21 could facilitate epithelial–mesenchymal transition. As EZH2 has been reported to promote cell metastasis in BC, our work identified that USP21 deubiquitinated EZH2 and stabilized it. Our data demonstrated that USP21 might play a crucial role in regulating BC progression and could provide a potential therapeutic strategy for BC.
Collapse
Affiliation(s)
- Yong Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University
| | - Bo Zhou
- Department of Urology, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Daihui Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University
| |
Collapse
|