1
|
Toscano E, Cimmino E, Boccia A, Sepe L, Paolella G. Cell populations simulated in silico within SimulCell accurately reproduce the behaviour of experimental cell cultures. NPJ Syst Biol Appl 2025; 11:48. [PMID: 40379622 DOI: 10.1038/s41540-025-00518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/08/2025] [Indexed: 05/19/2025] Open
Abstract
In silico simulations are used to understand cell behaviour by means of different approaches and tools, which range from reproducing average population trends to building lattice-based models to, more recently, creating populations of individual cell agents whose mass, volume and morphology behave according to more or less precise rules and models. In this work, a new agent-based simulator, SimulCell, was conceived, developed and used to predict the behaviour of eukaryotic cell cultures while growing attached to a flat surface. The system, starting from time-lapse microscopy experiments, uses growth, proliferation and migration models to create synthetic populations closely resembling original cultures. Support for cell-cell and cell-environment interaction makes cell agents able to react to changes in medium composition and other events, such as physical damage or chemical modifications occurring in the culture plate. The simulator is accessible through a web application and generates data that can be shown as tables and graphs or exported for further analyses.
Collapse
Affiliation(s)
- Elvira Toscano
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli "Federico II", Naples, Italy
| | - Elena Cimmino
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli "Federico II", Naples, Italy
| | - Angelo Boccia
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Leandra Sepe
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli "Federico II", Naples, Italy
| | - Giovanni Paolella
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli "Federico II", Naples, Italy.
| |
Collapse
|
2
|
Hoogerland L, van den Berg SPH, Suo Y, Moriuchi YW, Zoumaro-Djayoon A, Geurken E, Yang F, Bruggeman F, Burkart MD, Bokinsky G. A temperature-sensitive metabolic valve and a transcriptional feedback loop drive rapid homeoviscous adaptation in Escherichia coli. Nat Commun 2024; 15:9386. [PMID: 39477942 PMCID: PMC11525553 DOI: 10.1038/s41467-024-53677-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
All free-living microorganisms homeostatically maintain the fluidity of their membranes by adapting lipid composition to environmental temperatures. Here, we quantify enzymes and metabolic intermediates of the Escherichia coli fatty acid and phospholipid synthesis pathways, to describe how this organism measures temperature and restores optimal membrane fluidity within a single generation after a temperature shock. A first element of this regulatory system is a temperature-sensitive metabolic valve that allocates flux between the saturated and unsaturated fatty acid synthesis pathways via the branchpoint enzymes FabI and FabB. A second element is a transcription-based negative feedback loop that counteracts the temperature-sensitive valve. The combination of these elements accelerates membrane adaptation by causing a transient overshoot in the synthesis of saturated or unsaturated fatty acids following temperature shocks. This strategy is comparable to increasing the temperature of a water bath by adding water that is excessively hot rather than adding water at the desired temperature. These properties are captured in a mathematical model, which we use to show how hard-wired parameters calibrate the system to generate membrane compositions that maintain constant fluidity across temperatures. We hypothesize that core features of the E. coli system will prove to be ubiquitous features of homeoviscous adaptation systems.
Collapse
Affiliation(s)
- Loles Hoogerland
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Stefan Pieter Hendrik van den Berg
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- Department of Immunopathology, Sanquin Research Amsterdam, Amsterdam, The Netherlands
| | - Yixing Suo
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Yuta W Moriuchi
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Adja Zoumaro-Djayoon
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Esther Geurken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Flora Yang
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Frank Bruggeman
- Systems Biology Lab, AIMMS/ALIFE, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Gregory Bokinsky
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
3
|
Paspunurwar AS, Moure A, Gomez H. Dynamic cluster field modeling of collective chemotaxis. Sci Rep 2024; 14:25162. [PMID: 39448677 PMCID: PMC11502788 DOI: 10.1038/s41598-024-75653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Collective migration of eukaryotic cells is often guided by chemotaxis, and is critical in several biological processes, such as cancer metastasis, wound healing, and embryogenesis. Understanding collective chemotaxis has challenged experimental, theoretical and computational scientists because cells can sense very small chemoattractant gradients that are tightly controlled by cell-cell interactions and the regulation of the chemoattractant distribution by the cells. Computational models of collective cell migration that offer a high-fidelity resolution of the cell motion and chemoattractant dynamics in the extracellular space have been limited to a small number of cells. Here, we present Dynamic cluster field modeling (DCF), a novel computational method that enables simulations of collective chemotaxis of cellular systems with O ( 1000 ) cells and high-resolution transport dynamics of the chemoattractant in the time-evolving extracellular space. We illustrate the efficiency and predictive capabilities of our approach by comparing our numerical simulations with experiments in multiple scenarios that involve chemoattractant secretion and uptake by the migrating cells, cell migration in confined spaces, regulation of the attractant distribution by cell motion, and interactions of the chemoattractant with an enzyme. The proposed algorithm opens new opportunities to address outstanding problems that involve collective cell migration in the central nervous system, immune response and cancer metastasis.
Collapse
Affiliation(s)
| | - Adrian Moure
- Department of Mechanical and Civil Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, 91125, CA, USA
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, 47907, IN, USA.
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, 47907, IN, USA.
- Purdue Institute for Cancer Research, Purdue University, 201 S. University Street, West Lafayette, 47907, IN, USA.
| |
Collapse
|
4
|
Ma Q, Fan Y, Cui Y, Luo Z, Kang H. A Preliminary Study on Quantitative Analysis of Collagen and Apoptosis Related Protein on 1064 nm Laser-Induced Skin Injury. BIOLOGY 2024; 13:217. [PMID: 38666829 PMCID: PMC11048553 DOI: 10.3390/biology13040217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
To investigate the associated factors concerning collagen and the expression of apoptosis-related proteins in porcine skin injuries induced by laser exposure, live pig skin was irradiated at multiple spots one time, using a grid-array method with a 1064 nm laser at different power outputs. The healing process of the laser-treated areas, alterations in collagen structure, and changes in apoptosis were continuously observed and analyzed from 6 h to 28 days post-irradiation. On the 28th day following exposure, wound contraction and recovery were notably sluggish in the medium-high dose group, displaying more premature and delicate type III collagen within the newly regenerated tissues. The collagen density in these groups was roughly 37-58% of that in the normal group. Between days 14 and 28 after irradiation, there was a substantial rise in apoptotic cell count in the forming epidermis and granulation tissue of the medium-high dose group, in contrast to the normal group. Notably, the expression of proapoptotic proteins Bax, caspase-3, and caspase-9 surged significantly 14 days after irradiation in the medium-high dose group and persisted at elevated levels on the 28th day. During the later stage of wound healing, augmented apoptotic cell population and insufficient collagen generation in the newly generated skin tissue of the medium-high dose group were closely associated with delayed wound recovery.
Collapse
Affiliation(s)
- Qiong Ma
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (Q.M.); (Y.C.)
| | - Yingwei Fan
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China;
| | - Yufang Cui
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (Q.M.); (Y.C.)
| | - Zhenkun Luo
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (Q.M.); (Y.C.)
| | - Hongxiang Kang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (Q.M.); (Y.C.)
| |
Collapse
|
5
|
Wang XC, Tang YL, Liang XH. Tumour follower cells: A novel driver of leader cells in collective invasion (Review). Int J Oncol 2023; 63:115. [PMID: 37615176 PMCID: PMC10552739 DOI: 10.3892/ijo.2023.5563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Collective cellular invasion in malignant tumours is typically characterized by the cooperative migration of multiple cells in close proximity to each other. Follower cells are led away from the tumour by specialized leader cells, and both cell populations play a crucial role in collective invasion. Follower cells form the main body of the migration system and depend on intercellular contact for migration, whereas leader cells indicate the direction for the entire cell population. Although collective invasion can occur in epithelial and non‑epithelial malignant neoplasms, such as medulloblastoma and rhabdomyosarcoma, the present review mainly provided an extensive analysis of epithelial tumours. In the present review, the cooperative mechanisms of contact inhibition locomotion between follower and leader cells, where follower cells coordinate and direct collective movement through physical (mechanical) and chemical (signalling) interactions, is summarised. In addition, the molecular mechanisms of follower cell invasion and metastasis during remodelling and degradation of the extracellular matrix and how chemotaxis and lateral inhibition mediate follower cell behaviour were analysed. It was also demonstrated that follower cells exhibit genetic and metabolic heterogeneity during invasion, unlike leader cells.
Collapse
Affiliation(s)
- Xiao-Chen Wang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ya-Ling Tang
- Departments of Oral Pathology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin-Hua Liang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
6
|
Williams RSB, Chubb JR, Insall R, King JS, Pears CJ, Thompson E, Weijer CJ. Moving the Research Forward: The Best of British Biology Using the Tractable Model System Dictyostelium discoideum. Cells 2021; 10:3036. [PMID: 34831258 PMCID: PMC8616412 DOI: 10.3390/cells10113036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022] Open
Abstract
The social amoeba Dictyostelium discoideum provides an excellent model for research across a broad range of disciplines within biology. The organism diverged from the plant, yeast, fungi and animal kingdoms around 1 billion years ago but retains common aspects found in these kingdoms. Dictyostelium has a low level of genetic complexity and provides a range of molecular, cellular, biochemical and developmental biology experimental techniques, enabling multidisciplinary studies to be carried out in a wide range of areas, leading to research breakthroughs. Numerous laboratories within the United Kingdom employ Dictyostelium as their core research model. This review introduces Dictyostelium and then highlights research from several leading British research laboratories, covering their distinct areas of research, the benefits of using the model, and the breakthroughs that have arisen due to the use of Dictyostelium as a tractable model system.
Collapse
Affiliation(s)
- Robin S. B. Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Jonathan R. Chubb
- UCL Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK;
| | - Robert Insall
- Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK;
| | - Jason S. King
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK;
| | - Catherine J. Pears
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Elinor Thompson
- School of Science, University of Greenwich, Chatham Maritime, Chatham ME4 4TB, UK;
| | - Cornelis J. Weijer
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;
| |
Collapse
|
7
|
Liu J, Rebecca VW, Kossenkov AV, Connelly T, Liu Q, Gutierrez A, Xiao M, Li L, Zhang G, Samarkina A, Zayasbazan D, Zhang J, Cheng C, Wei Z, Alicea GM, Fukunaga-Kalabis M, Krepler C, Aza-Blanc P, Yang CC, Delvadia B, Tong C, Huang Y, Delvadia M, Morias AS, Sproesser K, Brafford P, Wang JX, Beqiri M, Somasundaram R, Vultur A, Hristova DM, Wu LW, Lu Y, Mills GB, Xu W, Karakousis GC, Xu X, Schuchter LM, Mitchell TC, Amaravadi RK, Kwong LN, Frederick DT, Boland GM, Salvino JM, Speicher DW, Flaherty KT, Ronai ZA, Herlyn M. Neural Crest-Like Stem Cell Transcriptome Analysis Identifies LPAR1 in Melanoma Progression and Therapy Resistance. Cancer Res 2021; 81:5230-5241. [PMID: 34462276 PMCID: PMC8530965 DOI: 10.1158/0008-5472.can-20-1496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/15/2020] [Accepted: 08/26/2021] [Indexed: 02/07/2023]
Abstract
Metastatic melanoma is challenging to clinically address. Although standard-of-care targeted therapy has high response rates in patients with BRAF-mutant melanoma, therapy relapse occurs in most cases. Intrinsically resistant melanoma cells drive therapy resistance and display molecular and biologic properties akin to neural crest-like stem cells (NCLSC) including high invasiveness, plasticity, and self-renewal capacity. The shared transcriptional programs and vulnerabilities between NCLSCs and cancer cells remains poorly understood. Here, we identify a developmental LPAR1-axis critical for NCLSC viability and melanoma cell survival. LPAR1 activity increased during progression and following acquisition of therapeutic resistance. Notably, genetic inhibition of LPAR1 potentiated BRAFi ± MEKi efficacy and ablated melanoma migration and invasion. Our data define LPAR1 as a new therapeutic target in melanoma and highlights the promise of dissecting stem cell-like pathways hijacked by tumor cells. SIGNIFICANCE: This study identifies an LPAR1-axis critical for melanoma invasion and intrinsic/acquired therapy resistance.
Collapse
Affiliation(s)
- Jianglan Liu
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Vito W Rebecca
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania.,Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Andrew V Kossenkov
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Thomas Connelly
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Alexis Gutierrez
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Min Xiao
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Ling Li
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Gao Zhang
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Anastasia Samarkina
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Delaine Zayasbazan
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Jie Zhang
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Chaoran Cheng
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Gretchen M Alicea
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Mizuho Fukunaga-Kalabis
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Clemens Krepler
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Pedro Aza-Blanc
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Chih-Cheng Yang
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Bela Delvadia
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Cynthia Tong
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Ye Huang
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Maya Delvadia
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Alice S Morias
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Katrin Sproesser
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Patricia Brafford
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Joshua X Wang
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Marilda Beqiri
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Rajasekharan Somasundaram
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Adina Vultur
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Denitsa M Hristova
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Lawrence W Wu
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Xu
- Abramson Cancer Center, Department of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Giorgos C Karakousis
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lynn M Schuchter
- Abramson Cancer Center, Department of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tara C Mitchell
- Abramson Cancer Center, Department of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ravi K Amaravadi
- Abramson Cancer Center, Department of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dennie T Frederick
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Genevieve M Boland
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Joseph M Salvino
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - David W Speicher
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Keith T Flaherty
- Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Ze'ev A Ronai
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
8
|
Lysophosphatidic Acid Signaling in Cancer Cells: What Makes LPA So Special? Cells 2021; 10:cells10082059. [PMID: 34440828 PMCID: PMC8394178 DOI: 10.3390/cells10082059] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Lysophosphatidic acid (LPA) refers to a family of simple phospholipids that act as ligands for G protein-coupled receptors. While LPA exerts effects throughout the body in normal physiological circumstances, its pathological role in cancer is of great interest from a therapeutic viewpoint. The numerous LPA receptors (LPARs) are coupled to a variety of G proteins, and more than one LPAR is typically expressed on any given cell. While the individual receptors signal through conventional GPCR pathways, LPA is particularly efficacious in stimulating cancer cell proliferation and migration. This review addresses the mechanistic aspects underlying these pro-tumorigenic effects. We provide examples of LPA signaling responses in various types of cancers, with an emphasis on those where roles have been identified for specific LPARs. While providing an overview of LPAR signaling, these examples also reveal gaps in our knowledge regarding the mechanisms of LPA action at the receptor level. The current understanding of the LPAR structure and the roles of LPAR interactions with other receptors are discussed. Overall, LPARs provide insight into the potential molecular mechanisms that underlie the ability of individual GPCRs (or combinations of GPCRs) to elicit a unique spectrum of responses from their agonist ligands. Further knowledge of these mechanisms will inform drug discovery, since GPCRs are promising therapeutic targets for cancer.
Collapse
|
9
|
Cell dispersal by localized degradation of a chemoattractant. Proc Natl Acad Sci U S A 2021; 118:2008126118. [PMID: 33526658 DOI: 10.1073/pnas.2008126118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chemotaxis, the guided motion of cells by chemical gradients, plays a crucial role in many biological processes. In the social amoeba Dictyostelium discoideum, chemotaxis is critical for the formation of cell aggregates during starvation. The cells in these aggregates generate a pulse of the chemoattractant, cyclic adenosine 3',5'-monophosphate (cAMP), every 6 min to 10 min, resulting in surrounding cells moving toward the aggregate. In addition to periodic pulses of cAMP, the cells also secrete phosphodiesterase (PDE), which degrades cAMP and prevents the accumulation of the chemoattractant. Here we show that small aggregates of Dictyostelium can disperse, with cells moving away from instead of toward the aggregate. This surprising behavior often exhibited oscillatory cycles of motion toward and away from the aggregate. Furthermore, the onset of outward cell motion was associated with a doubling of the cAMP signaling period. Computational modeling suggests that this dispersal arises from a competition between secreted cAMP and PDE, creating a cAMP gradient that is directed away from the aggregate, resulting in outward cell motion. The model was able to predict the effect of PDE inhibition as well as global addition of exogenous PDE, and these predictions were subsequently verified in experiments. These results suggest that localized degradation of a chemoattractant is a mechanism for morphogenesis.
Collapse
|
10
|
Stock J, Pauli A. Self-organized cell migration across scales - from single cell movement to tissue formation. Development 2021; 148:148/7/dev191767. [PMID: 33824176 DOI: 10.1242/dev.191767] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Self-organization is a key feature of many biological and developmental processes, including cell migration. Although cell migration has traditionally been viewed as a biological response to extrinsic signals, advances within the past two decades have highlighted the importance of intrinsic self-organizing properties to direct cell migration on multiple scales. In this Review, we will explore self-organizing mechanisms that lay the foundation for both single and collective cell migration. Based on in vitro and in vivo examples, we will discuss theoretical concepts that underlie the persistent migration of single cells in the absence of directional guidance cues, and the formation of an autonomous cell collective that drives coordinated migration. Finally, we highlight the general implications of self-organizing principles guiding cell migration for biological and medical research.
Collapse
Affiliation(s)
- Jessica Stock
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC) Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC) Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| |
Collapse
|
11
|
Shi W, Zhang C, Ning Z, Hua Y, Li Y, Chen L, Liu L, Chen Z, Meng Z. CMTM8 as an LPA1-associated partner mediates lysophosphatidic acid-induced pancreatic cancer metastasis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:42. [PMID: 33553335 PMCID: PMC7859753 DOI: 10.21037/atm-20-1013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Lysophosphatidic acid (LPA) is known to promote cancer cell invasiveness through LPA1, but the downstream signaling cascades are still not fully clarified. The CKLF-like MARVEL transmembrane domain-containing (CMTM) family regulates aggressive phenotype in many cancers. Methods We performed LPA1 co-immunoprecipitation combined with mass spectrometry to search for LPA1-associated proteins. The role of CMTM8 in mediating the pro-invasive activity of LPA was investigated in pancreatic cancer. Results We identified CMTM8 as an LPA1-interacting protein. LPA1 and CMTM8 were co-localized in pancreatic cancer cells. LPA treatment led to stabilization of CMTM8 protein, which was impaired by knockdown of LPA1. Depletion of CMTM8 significantly suppressed the migration and invasion of pancreatic cancer cells. Conversely, ectopic expression of CMTM8 enhanced the migratory and invasive capacity of pancreatic cancer cells. CMTM8 depletion blocked the formation of metastatic lesions in the lung. Knockdown of CMTM8 attenuated LPA-induced migration and invasion in pancreatic cancer cells. CMTM8 overexpression stimulated β-catenin activation through reduction of GSK3β. In addition, knockdown of β-catenin dramatically antagonized CMTM8-mediated migration and invasion in pancreatic cancer cells. Conclusions CMTM8 serves as a key mediator of LPA-induced invasiveness in pancreatic cancer. The interaction between CMTM8 and LPA1 leads to activation of oncogenic β-catenin signaling. CMTM8 represents a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Weidong Shi
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chenyue Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhouyu Ning
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yongqiang Hua
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ye Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lianyu Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Luming Liu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
12
|
Lysophosphatidic acid promotes survival of T lymphoma cells by altering apoptosis and glucose metabolism. Apoptosis 2020; 25:135-150. [PMID: 31867678 DOI: 10.1007/s10495-019-01585-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid, which plays an indispensable role in various physiological and pathological processes. Moreover, an elevated level of LPA has been observed in malignancies of different origins and implicated in their progression via modulation of proliferation, apoptosis, invasion and metastasis. Interestingly, few recent reports suggest a pivotal role of LPA-modulated metabolism in oncogenesis of ovarian cancer. However, little is understood regarding the role of LPA in the development and progression of T cell malignancies, which are considered as one of the most challenging neoplasms for clinical management. Additionally, mechanisms underlying the LPA-dependent modulation of glucose metabolism in T cell lymphoma are also not known. Therefore, the present study was undertaken to explore the role of LPA-altered apoptosis and glucose metabolism on the survival of T lymphoma cells. Observations of this investigation suggest that LPA supports survival of T lymphoma cells via altering apoptosis and glucose metabolism through changing the level of reactive species, namely nitric oxide and reactive oxygen species along with expression of various survival and glucose metabolism regulatory molecules, including hypoxia-inducible factor 1-alpha, p53, Bcl2, and glucose transporter 3, hexokinase II, pyruvate kinase muscle isozyme 2, monocarboxylate transporter 1, pyruvate dehydrogenase kinase 1. Taken together' the results of the present investigation decipher the novel mechanisms of LPA-mediated survival of T lymphoma cells via modulation of apoptosis and glucose metabolism.
Collapse
|
13
|
Tang X, Brindley DN. Lipid Phosphate Phosphatases and Cancer. Biomolecules 2020; 10:biom10091263. [PMID: 32887262 PMCID: PMC7564803 DOI: 10.3390/biom10091263] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/22/2022] Open
Abstract
Lipid phosphate phosphatases (LPPs) are a group of three enzymes (LPP1–3) that belong to a phospholipid phosphatase (PLPP) family. The LPPs dephosphorylate a wide spectrum of bioactive lipid phosphates, among which lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P) are two important extracellular signaling molecules. The LPPs are integral membrane proteins, which are localized on plasma membranes and intracellular membranes, including the endoplasmic reticulum and Golgi network. LPPs regulate signaling transduction in cancer cells and demonstrate different effects in cancer progression through the breakdown of extracellular LPA and S1P and other intracellular substrates. This review is intended to summarize an up-to-date understanding about the functions of LPPs in cancers.
Collapse
Affiliation(s)
- Xiaoyun Tang
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - David N. Brindley
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence:
| |
Collapse
|
14
|
Tweedy L, Thomason PA, Paschke PI, Martin K, Machesky LM, Zagnoni M, Insall RH. Seeing around corners: Cells solve mazes and respond at a distance using attractant breakdown. Science 2020; 369:eaay9792. [PMID: 32855311 DOI: 10.1126/science.aay9792] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 05/12/2020] [Accepted: 07/02/2020] [Indexed: 02/11/2024]
Abstract
During development and metastasis, cells migrate large distances through complex environments. Migration is often guided by chemotaxis, but simple chemoattractant gradients between a source and sink cannot direct cells over such ranges. We describe how self-generated gradients, created by cells locally degrading attractant, allow single cells to navigate long, tortuous paths and make accurate choices between live channels and dead ends. This allows cells to solve complex mazes efficiently. Cells' accuracy at finding live channels was determined by attractant diffusivity, cell speed, and path complexity. Manipulating these parameters directed cells in mathematically predictable ways; specific combinations can even actively misdirect them. We propose that the length and complexity of many long-range migratory processes, including inflammation and germ cell migration, means that self-generated gradients are needed for successful navigation.
Collapse
Affiliation(s)
- Luke Tweedy
- CRUK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
| | | | - Peggy I Paschke
- CRUK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Kirsty Martin
- CRUK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Laura M Machesky
- CRUK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
- Institute for Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Michele Zagnoni
- Centre for Microsystems and Photonics, Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK
| | - Robert H Insall
- CRUK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK.
- Institute for Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
15
|
Posttranslational Control of PlsB Is Sufficient To Coordinate Membrane Synthesis with Growth in Escherichia coli. mBio 2020; 11:mBio.02703-19. [PMID: 32817111 PMCID: PMC7439487 DOI: 10.1128/mbio.02703-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
How do bacterial cells grow without breaking their membranes? Although the biochemistry of fatty acid and membrane synthesis is well known, how membrane synthesis is balanced with growth and metabolism has remained unclear. This is partly due to the many control points that have been discovered within the membrane synthesis pathways. By precisely establishing the contributions of individual pathway enzymes, our results simplify the model of membrane biogenesis in the model bacterial species Escherichia coli. Specifically, we found that allosteric control of a single enzyme, PlsB, is sufficient to balance growth with membrane synthesis and to ensure that growing E. coli cells produce sufficient membrane. Identifying the signals that activate and deactivate PlsB will resolve the issue of how membrane synthesis is synchronized with growth. Every cell must produce enough membrane to contain itself. However, the mechanisms by which the rate of membrane synthesis is coupled with the rate of cell growth remain unresolved. By comparing substrate and enzyme concentrations of the fatty acid and phospholipid synthesis pathways of Escherichia coli across a 3-fold range of carbon-limited growth rates, we show that the rate of membrane phospholipid synthesis during steady-state growth is determined principally through allosteric control of a single enzyme, PlsB. Due to feedback regulation of the fatty acid pathway, PlsB activity also indirectly controls synthesis of lipopolysaccharide, a major component of the outer membrane synthesized from a fatty acid synthesis intermediate. Surprisingly, concentrations of the enzyme that catalyzes the committed step of lipopolysaccharide synthesis (LpxC) do not differ across steady-state growth conditions, suggesting that steady-state lipopolysaccharide synthesis is modulated primarily via indirect control by PlsB. In contrast to steady-state regulation, we found that responses to environmental perturbations are triggered directly via changes in acetyl coenzyme A (acetyl-CoA) concentrations, which enable rapid adaptation. Adaptations are further modulated by ppGpp, which regulates PlsB activity during slow growth and growth arrest. The strong reliance of the membrane synthesis pathway upon posttranslational regulation ensures both the reliability and the responsiveness of membrane synthesis.
Collapse
|
16
|
Tweedy L, Insall RH. Self-Generated Gradients Yield Exceptionally Robust Steering Cues. Front Cell Dev Biol 2020; 8:133. [PMID: 32195256 PMCID: PMC7066204 DOI: 10.3389/fcell.2020.00133] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/17/2020] [Indexed: 11/26/2022] Open
Abstract
Chemotaxis is a widespread mechanism that allows migrating cells to steer to where they are needed. Attractant gradients may be imposed by external sources, or self-generated, when cells create their own steep local gradients by breaking down a prevalent, broadly distributed attractant. Here we show that chemotaxis works far more robustly toward self-generated gradients. Cells can only respond efficiently to a restricted range of attractant concentrations; if attractants are too dilute, their gradients are too shallow for cells to sense, but if they are too high, all receptors become saturated and cells cannot perceive spatial differences. Self-generated gradients are robust because cells maintain the attractant at optimal concentrations. A wave can recruit varying numbers of steered cells, and cells can take time to break down attractant before starting to migrate. Self-generated gradients can therefore operate over a greater range of attractant concentrations, larger distances, and longer times than imposed gradients. The robustness is further enhanced at low cell numbers if attractants also act as mitogens, and at high attractant concentrations if the enzymes that break down attractants are themselves induced by constant attractant levels.
Collapse
Affiliation(s)
- Luke Tweedy
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Robert H Insall
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| |
Collapse
|
17
|
Wong M, Newton LR, Hartmann J, Hennrich ML, Wachsmuth M, Ronchi P, Guzmán-Herrera A, Schwab Y, Gavin AC, Gilmour D. Dynamic Buffering of Extracellular Chemokine by a Dedicated Scavenger Pathway Enables Robust Adaptation during Directed Tissue Migration. Dev Cell 2020; 52:492-508.e10. [PMID: 32059773 DOI: 10.1016/j.devcel.2020.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/22/2019] [Accepted: 01/13/2020] [Indexed: 01/16/2023]
Abstract
How tissues migrate robustly through changing guidance landscapes is poorly understood. Here, quantitative imaging is combined with inducible perturbation experiments to investigate the mechanisms that ensure robust tissue migration in vivo. We show that tissues exposed to acute "chemokine floods" halt transiently before they perfectly adapt, i.e., return to the baseline migration behavior in the continued presence of elevated chemokine levels. A chemokine-triggered phosphorylation of the atypical chemokine receptor Cxcr7b reroutes it from constitutive ubiquitination-regulated degradation to plasma membrane recycling, thus coupling scavenging capacity to extracellular chemokine levels. Finally, tissues expressing phosphorylation-deficient Cxcr7b migrate normally in the presence of physiological chemokine levels but show delayed recovery when challenged with elevated chemokine concentrations. This work establishes that adaptation to chemokine fluctuations can be "outsourced" from canonical GPCR signaling to an autonomously acting scavenger receptor that both senses and dynamically buffers chemokine levels to increase the robustness of tissue migration.
Collapse
Affiliation(s)
- Mie Wong
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Lionel R Newton
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Jonas Hartmann
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Marco L Hennrich
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Malte Wachsmuth
- Luxendo GmbH, Kurfürsten-Anlage 58, 69115 Heidelberg, Germany
| | - Paolo Ronchi
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Alejandra Guzmán-Herrera
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany; Electron Microscopy Core Facility, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Anne-Claude Gavin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany; Department for Cell Physiology and Metabolism, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Darren Gilmour
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
18
|
Lim GJ, Kang SJ, Lee JY. Novel invasion indices quantify the feed-forward facilitation of tumor invasion by macrophages. Sci Rep 2020; 10:718. [PMID: 31959808 PMCID: PMC6971071 DOI: 10.1038/s41598-020-57517-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/02/2020] [Indexed: 01/08/2023] Open
Abstract
Quantitative and reliable measurement of cellular invasion is important to understand a range of biological processes such as cancer metastasis and angiogenesis. Spheroid invasion assays are an attractive in vitro platform because they effectively mimic the tumor cell invasion of solid tissues. Here, we developed an image analysis–based method to quantify the invasiveness of HT1080 human fibrosarcoma tumor cell spheroids. We segmented a cell-covered area into three subareas using objectively set threshold pixel intensities and calculated invasion indices using these subareas. Comparison with conventional parameters for spheroid invasion assays, such as area, length, and detached cells, showed that our indices present the invasion event at an early time and without being convoluted by proliferation. As an application, we then examined paracrine interactions between LLC1 mouse lung carcinoma cells and Raw264.7 mouse macrophage cells with our developed analysis method. We found that the invasion of tumor spheroids was increased by a macrophage-conditioned medium, concomitantly with a decrease in tumor cell proliferation. Importantly, invasion was further enhanced by a conditioned medium from activated macrophages by co-culture with tumor cells. Thus, our indices reveal that tumor cell invasion is facilitated in a feed-forward manner by communication between tumor cells and macrophages in the tumor microenvironment.
Collapse
Affiliation(s)
- Gippeum J Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Suk-Jo Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Ji Youn Lee
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
19
|
Snaebjornsson MT, Janaki-Raman S, Schulze A. Greasing the Wheels of the Cancer Machine: The Role of Lipid Metabolism in Cancer. Cell Metab 2020; 31:62-76. [PMID: 31813823 DOI: 10.1016/j.cmet.2019.11.010] [Citation(s) in RCA: 629] [Impact Index Per Article: 125.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/27/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
Abstract
Altered lipid metabolism is among the most prominent metabolic alterations in cancer. Enhanced synthesis or uptake of lipids contributes to rapid cancer cell growth and tumor formation. Lipids are a highly complex group of biomolecules that not only constitute the structural basis of biological membranes but also function as signaling molecules and an energy source. Here, we summarize recent evidence implicating altered lipid metabolism in different aspects of the cancer phenotype and discuss potential strategies by which targeting lipid metabolism could provide a therapeutic window for cancer treatment.
Collapse
Affiliation(s)
- Marteinn Thor Snaebjornsson
- Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074 Würzburg, Germany; Division of Tumor Metabolism and Microenvironment, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.
| | - Sudha Janaki-Raman
- Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074 Würzburg, Germany.
| | - Almut Schulze
- Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074 Würzburg, Germany; Division of Tumor Metabolism and Microenvironment, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.
| |
Collapse
|
20
|
Peercy BE, Starz-Gaiano M. Clustered cell migration: Modeling the model system of Drosophila border cells. Semin Cell Dev Biol 2019; 100:167-176. [PMID: 31837934 DOI: 10.1016/j.semcdb.2019.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 01/19/2023]
Abstract
In diverse developmental contexts, certain cells must migrate to fulfill their roles. Many questions remain unanswered about the genetic and physical properties that govern cell migration. While the simplest case of a single cell moving alone has been well-studied, additional complexities arise in considering how cohorts of cells move together. Significant differences exist between models of collectively migrating cells. We explore the experimental model of migratory border cell clusters in Drosophila melanogaster egg chambers, which are amenable to direct observation and precise genetic manipulations. This system involves two special characteristics that are worthy of attention: border cell clusters contain a limited number of both migratory and non-migratory cells that require coordination, and they navigate through a heterogeneous three-dimensional microenvironment. First, we review how clusters of motile border cells are specified and guided in their migration by chemical signals and the physical impact of adjacent tissue interactions. In the second part, we examine questions around the 3D structure of the motile cluster and surrounding microenvironment in understanding the limits to cluster size and speed of movement through the egg chamber. Mathematical models have identified sufficient gene regulatory networks for specification, the key forces that capture emergent behaviors observed in vivo, the minimal regulatory topologies for signaling, and the distribution of key signaling cues that direct cell behaviors. This interdisciplinary approach to studying border cells is likely to reveal governing principles that apply to different types of cell migration events.
Collapse
Affiliation(s)
- Bradford E Peercy
- Department of Mathematics and Statistics, UMBC, Baltimore, MD 21250, United States.
| | | |
Collapse
|
21
|
Capuana L, Boström A, Etienne-Manneville S. Multicellular scale front-to-rear polarity in collective migration. Curr Opin Cell Biol 2019; 62:114-122. [PMID: 31756576 DOI: 10.1016/j.ceb.2019.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/29/2019] [Accepted: 10/08/2019] [Indexed: 10/25/2022]
Abstract
Collective cell migration does not only reflect the migration of cells at a similar speed and in the same direction, it also implies the emergence of new properties observed at the level of the cell group. This collective behavior relies on interactions between the cells and the establishment of a hierarchy amongst cells with leaders driving the group of followers. Here, we make the parallel between the front-to-rear polarity axis in single cell and the front-to-rear multicellular-scale polarity of a migrating collective which established through exchange of biochemical and mechanical information from the front to the rear and vice versa. Such multicellular-scale polarity gives the migrating group the possibility to better sense and adapt to energy, biochemical and mechanical constraints and facilitates migration over long distances in complex and changing environments.
Collapse
Affiliation(s)
- Lavinia Capuana
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Équipe Labellisée Ligue Contre le Cancer, F-75015, Paris, France; Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Astrid Boström
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Équipe Labellisée Ligue Contre le Cancer, F-75015, Paris, France; School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Équipe Labellisée Ligue Contre le Cancer, F-75015, Paris, France.
| |
Collapse
|
22
|
Juin A, Spence HJ, Martin KJ, McGhee E, Neilson M, Cutiongco MFA, Gadegaard N, Mackay G, Fort L, Lilla S, Kalna G, Thomason P, Koh YWH, Norman JC, Insall RH, Machesky LM. N-WASP Control of LPAR1 Trafficking Establishes Response to Self-Generated LPA Gradients to Promote Pancreatic Cancer Cell Metastasis. Dev Cell 2019; 51:431-445.e7. [PMID: 31668663 PMCID: PMC6863394 DOI: 10.1016/j.devcel.2019.09.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 07/23/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma is one of the most invasive and metastatic cancers and has a dismal 5-year survival rate. We show that N-WASP drives pancreatic cancer metastasis, with roles in both chemotaxis and matrix remodeling. lysophosphatidic acid, a signaling lipid abundant in blood and ascites fluid, is both a mitogen and chemoattractant for cancer cells. Pancreatic cancer cells break lysophosphatidic acid down as they respond to it, setting up a self-generated gradient driving tumor egress. N-WASP-depleted cells do not recognize lysophosphatidic acid gradients, leading to altered RhoA activation, decreased contractility and traction forces, and reduced metastasis. We describe a signaling loop whereby N-WASP and the endocytic adapter SNX18 promote lysophosphatidic acid-induced RhoA-mediated contractility and force generation by controlling lysophosphatidic acid receptor recycling and preventing degradation. This chemotactic loop drives collagen remodeling, tumor invasion, and metastasis and could be an important target against pancreatic cancer spread.
Collapse
Affiliation(s)
| | | | | | | | | | - Marie F A Cutiongco
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - Nikolaj Gadegaard
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | | | - Loic Fort
- CRUK Beatson Institute, Glasgow G61 1BD, UK
| | | | | | | | | | - Jim C Norman
- CRUK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Robert H Insall
- CRUK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Laura M Machesky
- CRUK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK.
| |
Collapse
|
23
|
Hopkins A, Camley BA. Leader cells in collective chemotaxis: Optimality and trade-offs. Phys Rev E 2019; 100:032417. [PMID: 31639926 DOI: 10.1103/physreve.100.032417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Indexed: 11/06/2022]
Abstract
Clusters of cells can work together in order to follow a signal gradient, chemotaxing even when single cells do not. Cells in different regions of collectively migrating neural crest streams show different gene expression profiles, suggesting that cells may specialize to leader and follower roles. We use a minimal mathematical model to understand when this specialization is advantageous. In our model, leader cells sense the gradient with an accuracy that depends on the kinetics of ligand-receptor binding, while follower cells follow the cluster's direction with a finite error. Intuitively, specialization into leaders and followers should be optimal when a few cells have more information than the rest of the cluster, such as in the presence of a sharp transition in chemoattractant concentration. We do find this-but also find that high levels of specialization can be optimal in the opposite limit of very shallow gradients. We also predict that the best location for leaders may not be at the front of the cluster. In following leaders, clusters may have to choose between speed and flexibility. Clusters with only a few leaders can take orders of magnitude more time to reorient than all-leader clusters.
Collapse
Affiliation(s)
- Austin Hopkins
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Brian A Camley
- Department of Physics & Astronomy and Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
24
|
Deregulated Lysophosphatidic Acid Metabolism and Signaling in Liver Cancer. Cancers (Basel) 2019; 11:cancers11111626. [PMID: 31652837 PMCID: PMC6893780 DOI: 10.3390/cancers11111626] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is one of the leading causes of death worldwide due to late diagnosis and scarcity of treatment options. The major risk factor for liver cancer is cirrhosis with the underlying causes of cirrhosis being viral infection (hepatitis B or C), metabolic deregulation (Non-alcoholic fatty liver disease (NAFLD) in the presence of obesity and diabetes), alcohol or cholestatic disorders. Lysophosphatidic acid (LPA) is a bioactive phospholipid with numerous effects, most of them compatible with the hallmarks of cancer (proliferation, migration, invasion, survival, evasion of apoptosis, deregulated metabolism, neoangiogenesis, etc.). Autotaxin (ATX) is the enzyme responsible for the bulk of extracellular LPA production, and together with LPA signaling is involved in chronic inflammatory diseases, fibrosis and cancer. This review discusses the most important findings and the mechanisms related to ATX/LPA/LPAR involvement on metabolic, viral and cholestatic liver disorders and their progression to liver cancer in the context of human patients and mouse models. It focuses on the role of ATX/LPA in NAFLD development and its progression to liver cancer as NAFLD has an increasing incidence which is associated with the increasing incidence of liver cancer. Bearing in mind that adipose tissue accounts for the largest amount of LPA production, many studies have implicated LPA in adipose tissue metabolism and inflammation, liver steatosis, insulin resistance, glucose intolerance and lipogenesis. At the same time, LPA and ATX play crucial roles in fibrotic diseases. Given that hepatocellular carcinoma (HCC) is usually developed on the background of liver fibrosis, therapies that both delay the progression of fibrosis and prevent its development to malignancy would be very promising. Therefore, ATX/LPA signaling appears as an attractive therapeutic target as evidenced by the fact that it is involved in both liver fibrosis progression and liver cancer development.
Collapse
|
25
|
Xu Y. Targeting Lysophosphatidic Acid in Cancer: The Issues in Moving from Bench to Bedside. Cancers (Basel) 2019; 11:E1523. [PMID: 31658655 PMCID: PMC6826372 DOI: 10.3390/cancers11101523] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Since the clear demonstration of lysophosphatidic acid (LPA)'s pathological roles in cancer in the mid-1990s, more than 1000 papers relating LPA to various types of cancer were published. Through these studies, LPA was established as a target for cancer. Although LPA-related inhibitors entered clinical trials for fibrosis, the concept of targeting LPA is yet to be moved to clinical cancer treatment. The major challenges that we are facing in moving LPA application from bench to bedside include the intrinsic and complicated metabolic, functional, and signaling properties of LPA, as well as technical issues, which are discussed in this review. Potential strategies and perspectives to improve the translational progress are suggested. Despite these challenges, we are optimistic that LPA blockage, particularly in combination with other agents, is on the horizon to be incorporated into clinical applications.
Collapse
Affiliation(s)
- Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 950 W. Walnut Street R2-E380, Indianapolis, IN 46202, USA.
| |
Collapse
|
26
|
Hypoxia Downregulates LPP3 and Promotes the Spatial Segregation of ATX and LPP1 During Cancer Cell Invasion. Cancers (Basel) 2019; 11:cancers11091403. [PMID: 31546971 PMCID: PMC6769543 DOI: 10.3390/cancers11091403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/07/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022] Open
Abstract
Hypoxia is a common characteristic of advanced solid tumors and a potent driver of tumor invasion and metastasis. Recent evidence suggests the involvement of autotaxin (ATX) and lysophosphatidic acid receptors (LPARs) in cancer cell invasion promoted by the hypoxic tumor microenvironment; however, the transcriptional and/or spatiotemporal control of this process remain unexplored. Herein, we investigated whether hypoxia promotes cell invasion by affecting the main enzymes involved in its production (ATX) and degradation (lipid phosphate phosphatases, LPP1 and LPP3). We report that hypoxia not only modulates the expression levels of lysophosphatidic acid (LPA) regulatory enzymes but also induces their significant spatial segregation in a variety of cancers. While LPP3 expression was downregulated by hypoxia, ATX and LPP1 were asymmetrically redistributed to the leading edge and to the trailing edge, respectively. This was associated with the opposing roles of ATX and LPPs in cell invasion. The regulated expression and compartmentalization of these enzymes of opposing function can provide an effective way to control the generation of an LPA gradient that drives cellular invasion and migration in the hypoxic zones of tumors.
Collapse
|
27
|
Norden C, Lecaudey V. Collective cell migration: general themes and new paradigms. Curr Opin Genet Dev 2019; 57:54-60. [PMID: 31430686 DOI: 10.1016/j.gde.2019.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 11/16/2022]
Abstract
Collective cell migration plays essential roles in embryogenesis and also contributes to disease states. Recent years have seen immense progress in understanding mechanisms and overarching concepts of collective cell migration. Self-organization of moving groups emerges as an important common feature. This includes self-generating gradients, internal chemotaxis or mechanotaxis and contact-dependent polarization within migrating cell groups. Here, we will discuss these concepts and their applications to classical models of collective cell migration. Further, we discuss new models and paradigms of collective cell migration and elaborate on open questions and future challenges. Answering these questions will help to expand our appreciation of this exciting theme in developmental cell biology and contribute to the understanding of disease states.
Collapse
Affiliation(s)
- Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany.
| | - Virginie Lecaudey
- Department of Developmental Biology of Vertebrates, Institute for Cell Biology and Neuroscience, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
28
|
Abstract
In the past decades, a vast amount of data accumulated on the role of lipid signaling pathways in the progression of malignant melanoma, the most metastatic/aggressive human cancer type. Genomic studies identified that PTEN loss is the leading factor behind the activation of the PI3K-signaling pathway in melanoma, mutations of which are one of the main resistance mechanisms behind target therapy failures. On the other hand, illegitimate expressions of megakaryocytic genes p12-lipoxyganse, cyclooxygenase-2, and phosphodiestherase-2/autotaxin (ATX) are mostly involved in the regulation of motility signaling in melanoma through various G-protein-coupled bioactive lipid receptors. Furthermore, endocannabinoid signaling can also be a novel paracrine survival factor in melanoma. Last but not least, prenylation inhibitors acting even on mutated small GTP-ases, such as NRAS of melanoma may offer novel therapeutic opportunities. As regards melanoma, the most effective therapy nowadays is immunotherapy, with the resistance mechanisms also possibly involving the lipid signaling activities of melanoma cells, which further supports the idea of their being therapeutic targets.
Collapse
Affiliation(s)
- József Tímár
- 2nd Department of Pathology, Semmelweis University, 93. Üllöi u, Budapest, 1091, Hungary. .,Molecular Oncology Research Group, Semmelweis University, Budapest, Hungary.
| | - B Hegedüs
- Molecular Oncology Research Group, Semmelweis University, Budapest, Hungary.,Department of Throracic Surgery, University Hospital Essen, Essen, Germany
| | - E Rásó
- 2nd Department of Pathology, Semmelweis University, 93. Üllöi u, Budapest, 1091, Hungary
| |
Collapse
|
29
|
Williams TD, Peak-Chew SY, Paschke P, Kay RR. Akt and SGK protein kinases are required for efficient feeding by macropinocytosis. J Cell Sci 2019; 132:jcs.224998. [PMID: 30617109 DOI: 10.1242/jcs.224998] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022] Open
Abstract
Macropinocytosis is an actin-driven process of large-scale and non-specific fluid uptake used for feeding by some cancer cells and the macropinocytosis model organism Dictyostelium discoideum In Dictyostelium, macropinocytic cups are organized by 'macropinocytic patches' in the plasma membrane. These contain activated Ras, Rac and phospholipid PIP3, and direct actin polymerization to their periphery. We show that a Dictyostelium Akt (PkbA) and an SGK (PkbR1) protein kinase act downstream of PIP3 and, together, are nearly essential for fluid uptake. This pathway enables the formation of larger macropinocytic patches and macropinosomes, thereby dramatically increasing fluid uptake. Through phosphoproteomics, we identify a RhoGAP, GacG, as a PkbA and PkbR1 target, and show that it is required for efficient macropinocytosis and expansion of macropinocytic patches. The function of Akt and SGK in cell feeding through control of macropinosome size has implications for cancer cell biology.
Collapse
Affiliation(s)
| | | | - Peggy Paschke
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Robert R Kay
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| |
Collapse
|
30
|
Susanto O, Insall RH. LPP3, LPA and self-generated chemotactic gradients in biomedical science. Commun Integr Biol 2018. [PMCID: PMC5824962 DOI: 10.1080/19420889.2017.1398870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Chemotaxis is a major driver of cancer spread, but in most cases we do not know where gradients of attractant come from. In the case of melanoma, chemotaxis to LPA is an important driver of metastasis, and the gradients are made by the tumour cells themselves, by locally breaking down ambient LPA. We have now made a general assay for self-generated chemotaxis, and used it to show that the enzyme LPP3 is responsible for breaking down LPA and thus creating the gradients. Further analysis shows LPP3 is important in several invasion assays, in particular 3D ones in which cells spread outwards through matrix. The new assays will illuminate where physiological self-generated gradients occur; we believe they will be common throughout biology and pathology.
Collapse
Affiliation(s)
- Olivia Susanto
- CR-UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
| | | |
Collapse
|
31
|
First person – Olivia Susanto. J Cell Sci 2017. [DOI: 10.1242/jcs.210872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Olivia Susanto is the first author on ‘LPP3 mediates self-generation of chemotactic LPA gradients by melanoma cells’, published in Journal of Cell Science. Olivia is a postdoctoral researcher in the lab of Prof. Robert Insall at the Beaton Institute in Glasgow, UK, where she focuses on imaging live cell interactions and cell migration both in vivo and in vitro, in cell biology and immunology.
Collapse
|