1
|
Zhu X, Yu Y, Jiang Z, Otani Y, Fujitani M. Ankyrin-G and Its Binding Partners in Neurons: Orchestrating the Molecular Structure of the Axon Initial Segment. Biomolecules 2025; 15:901. [PMID: 40563541 DOI: 10.3390/biom15060901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2025] [Revised: 06/09/2025] [Accepted: 06/17/2025] [Indexed: 06/28/2025] Open
Abstract
The axon initial segment (AIS) is a specialized subcellular domain that plays an essential role in action potential initiation and the diffusion barrier. A key organizer of the AIS is Ankyrin-G, a scaffolding protein responsible for clustering voltage-gated ion channels, cell adhesion molecules (CAMs), and cytoskeletal components at this critical neuronal domain. Recent proteomic analyses have revealed a complex network of proteins in the AIS, emphasizing Ankyrin-G's central role in its molecular architecture. This review discusses new findings in the study of AIS-associated proteins. It explains how Ankyrin-G and its binding partners (such as ion channels, CAMs, spectrins, actin, and microtubule-associated proteins including end-binding protein 3, tripartite motif-containing protein 46, and calmodulin-regulated spectrin-associated protein 2) organize their structure. Understanding the dynamic regulation and molecular interactions within the AIS offers insights into neuronal excitability and reveals potential therapeutic targets for axonal dysfunction-related diseases. Through these dynamic interactions, Ankyrin-G ensures the proper alignment and dense clustering of key channel complexes, thereby maintaining the AIS's distinctive molecular and functional identity. By further unraveling the complexity of Ankyrin-G's interactome, our understanding of AIS formation, maintenance, and plasticity will be considerably enhanced, contributing to the elucidation of the pathogenesis of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Xiaowei Zhu
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi 693-8501, Shimane, Japan
| | - Yanyan Yu
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi 693-8501, Shimane, Japan
| | - Zhuqian Jiang
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi 693-8501, Shimane, Japan
| | - Yoshinori Otani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi 693-8501, Shimane, Japan
| | - Masashi Fujitani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi 693-8501, Shimane, Japan
| |
Collapse
|
2
|
Zhang W, Palfini VL, Wu Y, Ding X, Melton AJ, Gao Y, Ogawa Y, Rasband MN. A hierarchy of PDZ domain scaffolding proteins clusters the Kv1 K + channel protein complex at the axon initial segment. SCIENCE ADVANCES 2025; 11:eadv1281. [PMID: 40408471 PMCID: PMC12101511 DOI: 10.1126/sciadv.adv1281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/18/2025] [Indexed: 05/25/2025]
Abstract
Action potentials are initiated and modulated at the axon initial segment (AIS) by highly clustered ion channels. Voltage-gated Kv1 potassium channels underlie most outward AIS K+ current. AIS Kv1 channels exist in a large protein complex including ADAM22, Caspr2, and LGI1. However, their clustering mechanisms remain unknown. Because Kv1 channels have a highly conserved PDZ-binding motif, we used CRISPR-based genome editing to screen 18 PDZ domain-containing proteins identified in our previous AIS proximity proteome for their AIS localization. Among these, we found that the scaffolding proteins SCRIB and PSD93 are highly enriched at the AIS. Using CRISPR-mediated knockout, cell surface clustering assays, and coimmunoprecipitation, we show that SCRIB and PSD93 bind to and are required for AIS Kv1 channel clustering, whereas SCRIB links the AIS Kv1 channel protein complex to the master AIS scaffolding protein AnkyrinG. These results define a hierarchy of scaffolding proteins that combine to cluster AIS Kv1 channels.
Collapse
Affiliation(s)
| | | | - Yu Wu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaoyun Ding
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Allison J. Melton
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yudong Gao
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuki Ogawa
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew N. Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Zhao Y, Yuan Y, Wang R, Cui M, Chen S, Chen K, Li M, Huang Y, Zhang H, Zhang Y, Zhao M, Tian H, Sun L, Yu J. Clinical, Electroencephalogram and Imaging Characteristics of Patients With Anti-LGI1 Antibody Encephalitis: A Multicenter Cohort Study. CNS Neurosci Ther 2025; 31:e70414. [PMID: 40322833 PMCID: PMC12051031 DOI: 10.1111/cns.70414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/01/2025] [Accepted: 04/20/2025] [Indexed: 05/08/2025] Open
Abstract
OBJECTIVES To summarize the clinical, electroencephalogram (EEG), and imaging characteristics of patients with anti-leucine-rich glioma-inactivated 1 autoimmune encephalitis (LGI1-AE) and provide a reference for clinical diagnosis and treatment. METHODS We retrospectively analyzed 88 patients diagnosed with LGI1-AE between January 2018 and April 2024 in the Department of Neurology, Huashan Hospital, Fudan University, and the First Hospital of Jilin University. RESULTS This retrospective study analyzed 88 patients diagnosed with LGI1-AE. The initial clinical presentation predominantly featured rapidly progressive cognitive impairment (RPCI) (51.1%) and seizures (50%). Brain magnetic resonance imaging and 18 F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) indicated predominant lesion localization in the unilateral or bilateral temporal lobe and/or basal ganglia. Abnormal EEG was observed in 66 cases (79.5%). LGI1-AE cases had increased power in the low-frequency bands (δ and θ) compared to normal controls. Low-frequency band (δ and θ) power in T3 and Fz channels was positively correlated with LGI1 antibody titers in cerebrospinal fluid (CSF). Spearman correlation analysis showed that baseline modified Rankin Scale (mRS) scores were correlated with serum antibody titers and CSF antibody titers. CONCLUSIONS Baseline mRS scores and low-frequency power in the frontotemporal region showed a positive correlation with anti-LGI1 antibody titers, suggesting that antibody levels may reflect disease severity in LGI1 autoimmune encephalitis. Further studies are warranted to validate these associations in prospective multicenter cohorts.
Collapse
Affiliation(s)
- Yang Zhao
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunJilin ProvinceChina
| | - Yue Yuan
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunJilin ProvinceChina
| | - Rong‐Ze Wang
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Mei Cui
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Shu‐Fen Chen
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Ke‐Liang Chen
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Meng‐Meng Li
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yu‐Yuan Huang
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Hai‐Ning Zhang
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunJilin ProvinceChina
| | - Yan Zhang
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunJilin ProvinceChina
| | - Meng Zhao
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunJilin ProvinceChina
| | - Hui Tian
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunJilin ProvinceChina
| | - Li Sun
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunJilin ProvinceChina
| | - Jin‐Tai Yu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
4
|
Lamothe SM, Das D, Wong AA, Hao Y, Maguire AD, Kerr BJ, Baronas VA, Kurata HT. Regulation of Kv1.2 Redox-Sensitive Gating by the Transmembrane Lectin LMAN2. FUNCTION 2024; 5:zqae041. [PMID: 39264045 DOI: 10.1093/function/zqae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024] Open
Abstract
Voltage gated potassium (Kv)1.2 channels influence excitability and action potential propagation in the nervous system. Unlike closely related Kv1 channels, Kv1.2 exhibits highly variable voltage-dependence of gating, attributed to regulation by unidentified extrinsic factors. Variability of Kv1.2 gating is strongly influenced by the extracellular redox potential, and we demonstrate that Kv1.2 currents in dorsal root ganglion sensory neurons exhibit similar variability and redox sensitivity as observed when the channel is heterologously expressed in cell lines. We used a functional screening approach to test the effects of candidate regulatory proteins on Kv1.2 gating, using patch clamp electrophysiology. Among 52 candidate genes tested, we observed that co-expression with the transmembrane lectin LMAN2 led to a pronounced gating shift of Kv1.2 activation to depolarized voltages in CHO and L(tk-) cell lines, accompanied by deceleration of activation kinetics. Overexpression of LMAN2 promoted a slow gating mode of Kv1.2 that mimics the functional outcomes of extracellular reducing conditions, and enhanced sensitivity to extracellular reducing agents. In contrast, shRNA-mediated knockdown of endogenous LMAN2 in cell lines reduced Kv1.2 redox sensitivity and gating variability. Kv1.2 sensitivity to LMAN2 is abolished by mutation of neighboring residues F251 and T252 in the intracellular S2-S3 linker, and these also abolish redox-dependent gating changes, suggesting that LMAN2 influences the same pathway as redox for Kv1.2 modulation. In conclusion, we identified LMAN2 as a candidate regulatory protein that influences redox-dependent modulation of Kv1.2, and clarified the structural elements of the channel that are required for sensitivity.
Collapse
Affiliation(s)
- Shawn M Lamothe
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, 9-70 Medical Sciences Building, Edmonton AB T6G 2H7, Canada
| | - Damayantee Das
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, 9-70 Medical Sciences Building, Edmonton AB T6G 2H7, Canada
| | - Anson A Wong
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, 9-70 Medical Sciences Building, Edmonton AB T6G 2H7, Canada
| | - Yubin Hao
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, 9-70 Medical Sciences Building, Edmonton AB T6G 2H7, Canada
| | - Aislinn D Maguire
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Bradley J Kerr
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, 9-70 Medical Sciences Building, Edmonton AB T6G 2H7, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Victoria A Baronas
- Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Harley T Kurata
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, 9-70 Medical Sciences Building, Edmonton AB T6G 2H7, Canada
| |
Collapse
|
5
|
Joubert B. The neurobiology and immunology of CASPR2-associated neurological disorders. Rev Neurol (Paris) 2024; 180:950-956. [PMID: 39341757 DOI: 10.1016/j.neurol.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
CASPR2-associated neurological disorders encompass a wide clinical spectrum broadly divided into overlapping three autoimmune syndromes: CASPR2 limbic encephalitis, Morvan syndrome, and Isaacs syndrome. CASPR2 is a neuronal protein expressed at different sites in the central and peripheral nervous system and has a variety of roles and functions regarding neuronal excitability, synaptic plasticity, and homeostasis of inhibitory networks, most of which are only partially understood. CASPR2 antibodies have various pathogenic effects including internalization of CASPR2, disruption of protein-protein interactions, and, possibly, complement activation. Their pathogenic effect is well demonstrated in the limbic encephalitis phenotype, but the role of pathogenic antibodies in the development of other clinical manifestations is less clear. CASPR2 limbic encephalitis also differ from the other CASPR2-associated disorders in regard to HLA allele and paraneoplastic associations, suggesting it has immunological mechanisms distinct from the other clinical forms. Future studies are needed to better understand how the immunological alterations lead to the different phenotypes associated with CASPR2 antibodies.
Collapse
Affiliation(s)
- B Joubert
- Service de neurologie clinique et fonctionnelle, groupe hospitalier Sud, hospices civils de Lyon, Lyon, France; Centre de référence pour les encéphalites auto-immunes et les syndromes neurologiques paranéoplasiques, hospices civils de Lyon, Lyon, France.
| |
Collapse
|
6
|
Xie C, Kessi M, Yin F, Peng J. Roles of KCNA2 in Neurological Diseases: from Physiology to Pathology. Mol Neurobiol 2024; 61:8491-8517. [PMID: 38517617 DOI: 10.1007/s12035-024-04120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
Potassium voltage-gated channel subfamily a member 2 (Kv1.2, encoded by KCNA2) is highly expressed in the central and peripheral nervous systems. Based on the patch clamp studies, gain-of function (GOF), loss-of-function (LOF), and a mixed type (GOF/LOF) variants can cause different conditions/disorders. KCNA2-related neurological diseases include epilepsy, intellectual disability (ID), attention deficit/hyperactive disorder (ADHD), autism spectrum disorder (ASD), pain as well as autoimmune and movement disorders. Currently, the molecular mechanisms for the reported variants in causing diverse disorders are unknown. Consequently, this review brings up to date the related information regarding the structure and function of Kv1.2 channel, expression patterns, neuronal localizations, and tetramerization as well as important cell and animal models. In addition, it provides updates on human genetic variants, genotype-phenotype correlations especially highlighting the deep insight into clinical prognosis of KCNA2-related developmental and epileptic encephalopathy, mechanisms, and the potential treatment targets for all KCNA2-related neurological disorders.
Collapse
Affiliation(s)
- Changning Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Hunan, Changsha, 410008, China
| | - Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Hunan, Changsha, 410008, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Hunan, Changsha, 410008, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Hunan, Changsha, 410008, China.
- Hunan Intellectual and Development Disabilities Research Center, Hunan, Changsha, 410008, China.
| |
Collapse
|
7
|
Wang C, Guo X, Long D, Li Y, Yuan C, Ni G, Zhang H, Li X, Yin S, Peng X, Huang W, Chen S, Liu Y, Chen Z. Familial mesial temporal lobe epilepsy phenotype is associated with novel LGI1 variants: A report of two families. Seizure 2024; 120:180-188. [PMID: 39029408 DOI: 10.1016/j.seizure.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/21/2024] Open
Abstract
OBJECTIVE To expand the clinical phenotype and mutation spectrum of familial mesial temporal lobe epilepsy (FMTLE) and provide a new perspective for exploring the pathological mechanisms of epilepsy caused by leucine-rich glioma inactivated 1 (LGI1) variants. METHODS We reported clinical data from two families with FMTLE and screened patients for variants in the LGI1 gene using Whole-exome sequencing and Sanger sequencing. The clinical features of FMTLE were analysed. The pathogenicity of the causative loci was assessed according to the American College of Medical Genetics and Genomics guidelines, and potential pathogenic mechanisms were predicted through multiple bioinformatics and molecular dynamics software. RESULTS We identified two novel LGI1 truncating variants within two large families with FMTLE: LGI1 (c.1174C>T, p.Q392X) and LGI1 (c.703C>T, p.Q235X). Compared to previous reports, we found that focal to bilateral tonic-clonic seizures are a common type of seizure in FMTLE. The clinical phenotypes of patients with FMTLE caused by LGI1 variants were relatively mild, and all patients responded well to valproic acid. Bioinformatics analyses and molecular dynamics simulations showed that protein structure and interactions were considerably weakened or damaged as a result of both variants. CONCLUSION This study presents the first report identifying LGI1 as a potential novel pathogenic gene within FMTLE families, thereby broadening the mutation spectrum associated with FMTLE. The findings of this study offer novel insights and avenues for understanding the intricate molecular mechanisms underlying LGI1 variants and their correlations with patient phenotypes. This study proposes the possibility of familial focal epilepsy syndromes overlapping.
Collapse
Affiliation(s)
- Chengzhe Wang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, PR China
| | - Xintong Guo
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, PR China
| | - Dingju Long
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, PR China
| | - Yinchao Li
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Cai Yuan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, PR China
| | - Guanzhong Ni
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, PR China
| | - Heyu Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, PR China
| | - Xi Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, PR China; Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Sijing Yin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, PR China; Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Xinxin Peng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, PR China; Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Wenyao Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, PR China
| | - Siqing Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, PR China
| | - Yue Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, PR China; Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Ziyi Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, PR China.
| |
Collapse
|
8
|
Lyons PJ. Inactive metallopeptidase homologs: the secret lives of pseudopeptidases. Front Mol Biosci 2024; 11:1436917. [PMID: 39050735 PMCID: PMC11266112 DOI: 10.3389/fmolb.2024.1436917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Inactive enzyme homologs, or pseudoenzymes, are proteins, found within most enzyme families, that are incapable of performing catalysis. Rather than catalysis, they are involved in protein-protein interactions, sometimes regulating the activity of their active enzyme cousins, or scaffolding protein complexes. Pseudoenzymes found within metallopeptidase families likewise perform these functions. Pseudoenzymes within the M14 carboxypeptidase family interact with collagens within the extracellular space, while pseudopeptidase members of the M12 "a disintegrin and metalloprotease" (ADAM) family either discard their pseudopeptidase domains as unnecessary for their roles in sperm maturation or utilize surface loops to enable assembly of key complexes at neuronal synapses. Other metallopeptidase families contain pseudopeptidases involved in protein synthesis at the ribosome and protein import into organelles, sometimes using their pseudo-active sites for these interactions. Although the functions of these pseudopeptidases have been challenging to study, ongoing work is teasing out the secret lives of these proteins.
Collapse
Affiliation(s)
- Peter J. Lyons
- Department of Biology, Andrews University, Berrien Springs, MI, United States
| |
Collapse
|
9
|
Pozzi E, Terribile G, Cherchi L, Di Girolamo S, Sancini G, Alberti P. Ion Channel and Transporter Involvement in Chemotherapy-Induced Peripheral Neurotoxicity. Int J Mol Sci 2024; 25:6552. [PMID: 38928257 PMCID: PMC11203899 DOI: 10.3390/ijms25126552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The peripheral nervous system can encounter alterations due to exposure to some of the most commonly used anticancer drugs (platinum drugs, taxanes, vinca alkaloids, proteasome inhibitors, thalidomide), the so-called chemotherapy-induced peripheral neurotoxicity (CIPN). CIPN can be long-lasting or even permanent, and it is detrimental for the quality of life of cancer survivors, being associated with persistent disturbances such as sensory loss and neuropathic pain at limb extremities due to a mostly sensory axonal polyneuropathy/neuronopathy. In the state of the art, there is no efficacious preventive/curative treatment for this condition. Among the reasons for this unmet clinical and scientific need, there is an uncomplete knowledge of the pathogenetic mechanisms. Ion channels and transporters are pivotal elements in both the central and peripheral nervous system, and there is a growing body of literature suggesting that they might play a role in CIPN development. In this review, we first describe the biophysical properties of these targets and then report existing data for the involvement of ion channels and transporters in CIPN, thus paving the way for new approaches/druggable targets to cure and/or prevent CIPN.
Collapse
Affiliation(s)
- Eleonora Pozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.P.); (L.C.); (S.D.G.)
| | - Giulia Terribile
- Human Physiology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.T.); (G.S.)
| | - Laura Cherchi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.P.); (L.C.); (S.D.G.)
| | - Sara Di Girolamo
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.P.); (L.C.); (S.D.G.)
| | - Giulio Sancini
- Human Physiology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.T.); (G.S.)
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.P.); (L.C.); (S.D.G.)
- Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| |
Collapse
|
10
|
Extrémet J, Ramirez-Franco J, Fronzaroli-Molinieres L, Boumedine-Guignon N, Ankri N, El Far O, Garrido JJ, Debanne D, Russier M. Rescue of Normal Excitability in LGI1-Deficient Epileptic Neurons. J Neurosci 2023; 43:8596-8606. [PMID: 37863654 PMCID: PMC10727174 DOI: 10.1523/jneurosci.0701-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/08/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023] Open
Abstract
Leucine-rich glioma inactivated 1 (LGI1) is a glycoprotein secreted by neurons, the deletion of which leads to autosomal dominant lateral temporal lobe epilepsy. We previously showed that LGI1 deficiency in a mouse model (i.e., knock-out for LGI1 or KO-Lgi1) decreased Kv1.1 channel density at the axon initial segment (AIS) and at presynaptic terminals, thus enhancing both intrinsic excitability and glutamate release. However, it is not known whether normal excitability can be restored in epileptic neurons. Here, we show that the selective expression of LGI1 in KO-Lgi1 neurons from mice of both sexes, using single-cell electroporation, reduces intrinsic excitability and restores both the Kv1.1-mediated D-type current and Kv1.1 channels at the AIS. In addition, we show that the homeostatic-like shortening of the AIS length observed in KO-Lgi1 neurons is prevented in neurons electroporated with the Lgi1 gene. Furthermore, we reveal a spatial gradient of intrinsic excitability that is centered on the electroporated neuron. We conclude that expression of LGI1 restores normal excitability through functional Kv1 channels at the AIS.SIGNIFICANCE STATEMENT The lack of leucine-rich glioma inactivated 1 (LGI1) protein induces severe epileptic seizures that leads to death. Enhanced intrinsic and synaptic excitation in KO-Lgi1 mice is because of the decrease in Kv1.1 channels in CA3 neurons. However, the conditions to restore normal excitability profile in epileptic neurons remain to be defined. We show here that the expression of LGI1 in KO-Lgi1 neurons in single neurons reduces intrinsic excitability, and restores both the Kv1.1-mediated D-type current and Kv1.1 channels at the axon initial segment (AIS). Furthermore, the homeostatic shortening of the AIS length observed in KO-Lgi1 neurons is prevented in neurons in which the Lgi1 gene has been rescued. We conclude that LGI1 constitutes a critical factor to restore normal excitability in epileptic neurons.
Collapse
Affiliation(s)
- Johanna Extrémet
- Unité de Neurobiologie des canaux Ioniques et de la Synapse, Unité Mixte de Recherche 1072, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille Université, Marseille, 13015, France
| | - Jorge Ramirez-Franco
- Unité de Neurobiologie des canaux Ioniques et de la Synapse, Unité Mixte de Recherche 1072, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille Université, Marseille, 13015, France
| | - Laure Fronzaroli-Molinieres
- Unité de Neurobiologie des canaux Ioniques et de la Synapse, Unité Mixte de Recherche 1072, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille Université, Marseille, 13015, France
| | - Norah Boumedine-Guignon
- Unité de Neurobiologie des canaux Ioniques et de la Synapse, Unité Mixte de Recherche 1072, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille Université, Marseille, 13015, France
| | - Norbert Ankri
- Unité de Neurobiologie des canaux Ioniques et de la Synapse, Unité Mixte de Recherche 1072, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille Université, Marseille, 13015, France
| | - Oussama El Far
- Unité de Neurobiologie des canaux Ioniques et de la Synapse, Unité Mixte de Recherche 1072, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille Université, Marseille, 13015, France
| | - Juan José Garrido
- Cajal Institute, Consejo Superior de Investigaciones Cientificas, Madrid, 28002, Spain
| | - Dominique Debanne
- Unité de Neurobiologie des canaux Ioniques et de la Synapse, Unité Mixte de Recherche 1072, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille Université, Marseille, 13015, France
| | - Michaël Russier
- Unité de Neurobiologie des canaux Ioniques et de la Synapse, Unité Mixte de Recherche 1072, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille Université, Marseille, 13015, France
| |
Collapse
|
11
|
Pathak A, Patel J, Tran G, Mrlik M, Zhong N, Lui F. An Unusual Case of LGI1 (Leucine-Rich Glioma-Inactivated Protein 1) Limbic Encephalitis With Anti-acetylcholine Receptor and Anti-striational Autoantibodies. Cureus 2023; 15:e46491. [PMID: 37927656 PMCID: PMC10624515 DOI: 10.7759/cureus.46491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Autoimmune encephalitis (AE) results from immune-mediated damage to the central nervous system (CNS) with varying clinical manifestations depending on autoimmune antibodies present and the antigens they target. Leucine-rich glioma-inactivated protein 1 (LGI1) has been recognized as one of the leading causes of limbic encephalitis (LE), presenting with seizures, memory loss, and faciobrachial dystonic seizures. A better understanding of the unique presentations of these AE allows for quick and effective diagnosis and treatment. We are presenting a very unusual case of LGI1 autoimmune LE with two additional autoantibodies, anti-acetylcholine receptor (AChR) and anti-striational, in a patient with an underlying thymoma. We will discuss the pathophysiology and common clinical presentation of anti-LGI1 autoimmune LE.
Collapse
Affiliation(s)
- Akash Pathak
- Neurology, California Northstate University College of Medicine, Elk Grove, USA
| | - Jay Patel
- Neurology, California Northstate University College of Medicine, Elk Grove, USA
| | - Giselle Tran
- Neurology, California Northstate University College of Medicine, Elk Grove, USA
| | - Matthew Mrlik
- Neurology, California Northstate University College of Medicine, Elk Grove, USA
| | - Ning Zhong
- Neurology, Kaiser Permanente Sacramento Medical Center, Sacramento, USA
| | - Forshing Lui
- Clinical Sciences, California Northstate University College of Medicine, Elk Grove, USA
| |
Collapse
|
12
|
Liu Y, Gong Y, Wu XL, Hao XM, Liu JP, Li YY, Yang KZ, Gao XY, Zhang J, Zhang L, Zhang XD, Wang J, Liu QG. Fire acupuncture for anti-LGI1 antibody autoimmune encephalitis: a case report. Front Neurosci 2023; 17:1203915. [PMID: 37539383 PMCID: PMC10395828 DOI: 10.3389/fnins.2023.1203915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/19/2023] [Indexed: 08/05/2023] Open
Abstract
Autoimmune encephalitis, a class of encephalitis, is clinically characterized by multifocal or diffuse brain injury, including aberrant mental behavior, convulsions, and near-event memory impairment. In this article, we describe a female patient with autoimmune encephalitis who tested positive for leucine-rich glioma inactivated 1 (LGI1) antibodies and had hippocampal inflammatory edema in the lesion area. During the first 3 months of her illness, the patient primarily experienced memory loss, the onset of rigid twitching in her extremities that lasted for 1 min while in remission, and incontinence. After gamma globulin administration, methylprednisolone shock, and other symptomatic therapies during hospitalization, the patient's psychiatric symptoms and seizures improved considerably; however, she did not fully recover her memory. After receiving fire acupuncture for 6 months, the patient's understanding, orientation, and calculation skills improved considerably. Her memory and mental state were also improved at the follow-up visit. In this case, the use of fire acupuncture for the treatment of autoimmune encephalitis resulted in favorable outcomes with important benefits for conditions affecting the central nervous system; however, more convincing data are required to support the effectiveness of this treatment method.
Collapse
Affiliation(s)
- Yu Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Gong
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-li Wu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-min Hao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ji-peng Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yin-yin Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ke-zhen Yang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-yu Gao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-dong Zhang
- Department of Chinese Medicine, Beijing Jishuitan Hospital, Beijing, China
| | - Jun Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-guo Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Sell J, Rahmati V, Kempfer M, Irani SR, Ritzau-Jost A, Hallermann S, Geis C. Comparative Effects of Domain-Specific Human Monoclonal Antibodies Against LGI1 on Neuronal Excitability. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200096. [PMID: 37028941 PMCID: PMC10099296 DOI: 10.1212/nxi.0000000000200096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/04/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND AND OBJECTIVES Autoantibodies to leucine-rich glioma inactivated protein 1 (LGI1) cause an autoimmune limbic encephalitis with frequent focal seizures and anterograde memory dysfunction. LGI1 is a neuronal secreted linker protein with 2 functional domains: the leucine-rich repeat (LRR) and epitempin (EPTP) regions. LGI1 autoantibodies are known to interfere with presynaptic function and neuronal excitability; however, their epitope-specific mechanisms are incompletely understood. METHODS We used patient-derived monoclonal autoantibodies (mAbs), which target either LRR or EPTP domains of LGI1 to investigate long-term antibody-induced alteration of neuronal function. LRR- and EPTP-specific effects were evaluated by patch-clamp recordings in cultured hippocampal neurons and compared with biophysical neuron modeling. Kv1.1 channel clustering at the axon initial segment (AIS) was quantified by immunocytochemistry and structured illumination microscopy techniques. RESULTS Both EPTP and LRR domain-specific mAbs decreased the latency of first somatic action potential firing. However, only the LRR-specific mAbs increased the number of action potential firing together with enhanced initial instantaneous frequency and promoted spike-frequency adaptation, which were less pronounced after the EPTP mAb. This also led to an effective reduction in the slope of ramp-like depolarization in the subthreshold response, suggesting Kv1 channel dysfunction. A biophysical model of a hippocampal neuron corroborated experimental results and suggests that an isolated reduction of the conductance of Kv1-mediated K+ currents largely accounts for the antibody-induced alterations in the initial firing phase and spike-frequency adaptation. Furthermore, Kv1.1 channel density was spatially redistributed from the distal toward the proximal site of AIS under LRR mAb treatment and, to a lesser extant, under EPTP mAb. DISCUSSION These findings indicate an epitope-specific pathophysiology of LGI1 autoantibodies. The pronounced neuronal hyperexcitability and SFA together with dropped slope of ramp-like depolarization after LRR-targeted interference suggest disruption of LGI1-dependent clustering of K+ channel complexes. Moreover, considering the effective triggering of action potentials at the distal AIS, the altered spatial distribution of Kv1.1 channel density may contribute to these effects through impairing neuronal control of action potential initiation and synaptic integration.
Collapse
Affiliation(s)
- Josefine Sell
- From the Section Translational Neuroimmunology (J.S., V.R., M.K., C.G.), Department of Neurology, Jena University Hospital, Germany; Oxford Autoimmune Neurology Group (S.R.I.), Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Department of Neurology (S.R.I.), Oxford University Hospitals, UK; and Carl-Ludwig-Institute of Physiology (A.R.-J., S.H.), Faculty of Medicine, Leipzig University, Germany
| | - Vahid Rahmati
- From the Section Translational Neuroimmunology (J.S., V.R., M.K., C.G.), Department of Neurology, Jena University Hospital, Germany; Oxford Autoimmune Neurology Group (S.R.I.), Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Department of Neurology (S.R.I.), Oxford University Hospitals, UK; and Carl-Ludwig-Institute of Physiology (A.R.-J., S.H.), Faculty of Medicine, Leipzig University, Germany
| | - Marin Kempfer
- From the Section Translational Neuroimmunology (J.S., V.R., M.K., C.G.), Department of Neurology, Jena University Hospital, Germany; Oxford Autoimmune Neurology Group (S.R.I.), Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Department of Neurology (S.R.I.), Oxford University Hospitals, UK; and Carl-Ludwig-Institute of Physiology (A.R.-J., S.H.), Faculty of Medicine, Leipzig University, Germany
| | - Sarosh R Irani
- From the Section Translational Neuroimmunology (J.S., V.R., M.K., C.G.), Department of Neurology, Jena University Hospital, Germany; Oxford Autoimmune Neurology Group (S.R.I.), Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Department of Neurology (S.R.I.), Oxford University Hospitals, UK; and Carl-Ludwig-Institute of Physiology (A.R.-J., S.H.), Faculty of Medicine, Leipzig University, Germany
| | - Andreas Ritzau-Jost
- From the Section Translational Neuroimmunology (J.S., V.R., M.K., C.G.), Department of Neurology, Jena University Hospital, Germany; Oxford Autoimmune Neurology Group (S.R.I.), Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Department of Neurology (S.R.I.), Oxford University Hospitals, UK; and Carl-Ludwig-Institute of Physiology (A.R.-J., S.H.), Faculty of Medicine, Leipzig University, Germany
| | - Stefan Hallermann
- From the Section Translational Neuroimmunology (J.S., V.R., M.K., C.G.), Department of Neurology, Jena University Hospital, Germany; Oxford Autoimmune Neurology Group (S.R.I.), Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Department of Neurology (S.R.I.), Oxford University Hospitals, UK; and Carl-Ludwig-Institute of Physiology (A.R.-J., S.H.), Faculty of Medicine, Leipzig University, Germany
| | - Christian Geis
- From the Section Translational Neuroimmunology (J.S., V.R., M.K., C.G.), Department of Neurology, Jena University Hospital, Germany; Oxford Autoimmune Neurology Group (S.R.I.), Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Department of Neurology (S.R.I.), Oxford University Hospitals, UK; and Carl-Ludwig-Institute of Physiology (A.R.-J., S.H.), Faculty of Medicine, Leipzig University, Germany.
| |
Collapse
|
14
|
Kozar-Gillan N, Velichkova A, Kanatouris G, Eshed-Eisenbach Y, Steel G, Jaegle M, Aunin E, Peles E, Torsney C, Meijer DN. LGI3/2-ADAM23 interactions cluster Kv1 channels in myelinated axons to regulate refractory period. J Cell Biol 2023; 222:e202211031. [PMID: 36828548 PMCID: PMC9997507 DOI: 10.1083/jcb.202211031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/18/2022] [Accepted: 01/17/2023] [Indexed: 02/26/2023] Open
Abstract
Along myelinated axons, Shaker-type potassium channels (Kv1) accumulate at high density in the juxtaparanodal region, directly adjacent to the paranodal axon-glia junctions that flank the nodes of Ranvier. However, the mechanisms that control the clustering of Kv1 channels, as well as their function at this site, are still poorly understood. Here we demonstrate that axonal ADAM23 is essential for both the accumulation and stability of juxtaparanodal Kv1 complexes. The function of ADAM23 is critically dependent on its interaction with its extracellular ligands LGI2 and LGI3. Furthermore, we demonstrate that juxtaparanodal Kv1 complexes affect the refractory period, thus enabling high-frequency burst firing of action potentials. Our findings not only reveal a previously unknown molecular pathway that regulates Kv1 channel clustering, but they also demonstrate that the juxtaparanodal Kv1 channels that are concealed below the myelin sheath, play a significant role in modifying axonal physiology.
Collapse
Affiliation(s)
- Nina Kozar-Gillan
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh. UK
| | | | - George Kanatouris
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh. UK
| | - Yael Eshed-Eisenbach
- Department of Molecular Cell Biology and Molecular Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Gavin Steel
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh. UK
| | | | - Eerik Aunin
- Biomedical Sciences, ErasmusMC, Rotterdam, Netherlands
| | - Elior Peles
- Department of Molecular Cell Biology and Molecular Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Carole Torsney
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh. UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh. UK
| | - Dies N. Meijer
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh. UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
15
|
Baudin P, Roussel D, Mahon S, Charpier S, Navarro V. In Vivo Injection of Anti-LGI1 Antibodies into the Rodent M1 Cortex and Hippocampus Is Ineffective in Inducing Seizures. eNeuro 2023; 10:ENEURO.0267-22.2023. [PMID: 36849262 PMCID: PMC10012326 DOI: 10.1523/eneuro.0267-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/22/2022] [Accepted: 02/02/2023] [Indexed: 03/01/2023] Open
Abstract
Autoimmune encephalitis (AIE) associated with antibodies directed against the leucine-rich glioma inactivated 1 (LGI1) protein is the second most common AIE and is responsible for deleterious neocortical and limbic epileptic seizures. Previous studies demonstrated a pathogenic role of anti-LGI1 antibodies via alterations in the expression and function of Kv1 channels and AMPA receptors. However, the causal link between antibodies and epileptic seizures has never been demonstrated. Here, we attempted to determine the role of human anti-LGI1 autoantibodies in the genesis of seizures by analyzing the impact of their intracerebral injection in rodents. Acute and chronic injections were performed in rats and mice in the hippocampus and primary motor cortex, the two main brain regions affected by the disease. Acute infusion of CSF or serum IgG of anti-LGI1 AIE patients did not lead to the emergence of epileptic activities, as assessed by multisite electrophysiological recordings over a 10 h period after injection. A chronic 14 d injection, coupled with continuous video-EEG monitoring, was not more effective. Overall, these results demonstrate that acute and chronic injections of CSF or purified IgG from LGI1 patients are not able to generate epileptic activity by themselves in the different animal models tested.
Collapse
Affiliation(s)
- Paul Baudin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtriére, 75013 Paris, France
| | - Delphine Roussel
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtriére, 75013 Paris, France
| | - Séverine Mahon
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtriére, 75013 Paris, France
| | - Stéphane Charpier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtriére, 75013 Paris, France
| | - Vincent Navarro
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtriére, 75013 Paris, France
- AP-HP, Hôpital de la Pitié-Salpêtriére, DMU Neurosciences 6, Epilepsy Unit and Clinical Neurophysiology Department, 75013 Paris, France
- Center of Reference for Rare Epilepsies, APHP, Hôpital de la Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
16
|
Mierke CT. The versatile roles of ADAM8 in cancer cell migration, mechanics, and extracellular matrix remodeling. Front Cell Dev Biol 2023; 11:1130823. [PMID: 36910158 PMCID: PMC9995898 DOI: 10.3389/fcell.2023.1130823] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The posttranslational proteolytic cleavage is a unique and irreversible process that governs the function and half-life of numerous proteins. Thereby the role of the family of A disintegrin and metalloproteases (ADAMs) plays a leading part. A member of this family, ADAM8, has gained attention in regulating disorders, such as neurogenerative diseases, immune function and cancer, by attenuating the function of proteins nearby the extracellular membrane leaflet. This process of "ectodomain shedding" can alter the turnover rate of a number of transmembrane proteins that function in cell adhesion and receptor signal transduction. In the past, the major focus of research about ADAMs have been on neurogenerative diseases, such as Alzheimer, however, there seems to be evidence for a connection between ADAM8 and cancer. The role of ADAMs in the field of cancer research has gained recent attention, but it has been not yet been extensively addressed. Thus, this review article highlights the various roles of ADAM8 with particular emphasis on pathological conditions, such as cancer and malignant cancer progression. Here, the shedding function, direct and indirect matrix degradation, effects on cancer cell mobility and transmigration, and the interplay of ADAM8 with matrix-embedded neighboring cells are presented and discussed. Moreover, the most probable mechanical impact of ADAM8 on cancer cells and their matrix environment is addressed and debated. In summary, this review presents recent advances in substrates/ligands and functions of ADAM8 in its new role in cancer and its potential link to cell mechanical properties and discusses matrix mechanics modifying properties. A deeper comprehension of the regulatory mechanisms governing the expression, subcellular localization, and activity of ADAM8 is expected to reveal appropriate drug targets that will permit a more tailored and fine-tuned modification of its proteolytic activity in cancer development and metastasis.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Leipzig University, Leipzig, Germany
| |
Collapse
|
17
|
Ramirez-Franco J, Debreux K, Extremet J, Maulet Y, Belghazi M, Villard C, Sangiardi M, Youssouf F, El Far L, Lévêque C, Debarnot C, Marchot P, Paneva S, Debanne D, Russier M, Seagar M, Irani SR, El Far O. Patient-derived antibodies reveal the subcellular distribution and heterogeneous interactome of LGI1. Brain 2022; 145:3843-3858. [PMID: 35727946 DOI: 10.1093/brain/awac218] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/14/2022] Open
Abstract
Autoantibodies against leucine-rich glioma-inactivated 1 (LGI1) occur in patients with encephalitis who present with frequent focal seizures and a pattern of amnesia consistent with focal hippocampal damage. To investigate whether the cellular and subcellular distribution of LGI1 may explain the localization of these features, and hence gain broader insights into LGI1's neurobiology, we analysed the detailed localization of LGI1 and the diversity of its protein interactome, in mouse brains using patient-derived recombinant monoclonal LGI1 antibodies. Combined immunofluorescence and mass spectrometry analyses showed that LGI1 is enriched in excitatory and inhibitory synaptic contact sites, most densely within CA3 regions of the hippocampus. LGI1 is secreted in both neuronal somatodendritic and axonal compartments, and occurs in oligodendrocytic, neuro-oligodendrocytic and astro-microglial protein complexes. Proteomic data support the presence of LGI1-Kv1-MAGUK complexes, but did not reveal LGI1 complexes with postsynaptic glutamate receptors. Our results extend our understanding of regional, cellular and subcellular LGI1 expression profiles and reveal novel LGI1-associated complexes, thus providing insights into the complex biology of LGI1 and its relationship to seizures and memory loss.
Collapse
Affiliation(s)
- Jorge Ramirez-Franco
- INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015 Marseille, France
| | - Kévin Debreux
- INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015 Marseille, France
| | - Johanna Extremet
- INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015 Marseille, France
| | - Yves Maulet
- INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015 Marseille, France
| | - Maya Belghazi
- Aix-Marseille University, CNRS, Institute of Neurophysiopathology (INP), PINT, PFNT, 13385 cedex 5 Marseille, France
| | - Claude Villard
- Aix-Marseille University, CNRS, Institute of Neurophysiopathology (INP), PINT, PFNT, 13385 cedex 5 Marseille, France
| | - Marion Sangiardi
- INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015 Marseille, France
| | - Fahamoe Youssouf
- INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015 Marseille, France
| | - Lara El Far
- INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015 Marseille, France
| | - Christian Lévêque
- INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015 Marseille, France
| | - Claire Debarnot
- Laboratoire 'Architecture et Fonction des Macromolécules Biologiques (AFMB)', CNRS, Aix-Marseille Université, 13288 cedex 09 Marseille, France
| | - Pascale Marchot
- Laboratoire 'Architecture et Fonction des Macromolécules Biologiques (AFMB)', CNRS, Aix-Marseille Université, 13288 cedex 09 Marseille, France
| | - Sofija Paneva
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Dominique Debanne
- INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015 Marseille, France
| | - Michael Russier
- INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015 Marseille, France
| | - Michael Seagar
- INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015 Marseille, France
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Neurology, Oxford University Hospitals, Oxford, UK
| | - Oussama El Far
- INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015 Marseille, France
| |
Collapse
|
18
|
Dziadkowiak E, Nowakowska-Kotas M, Budrewicz S, Koszewicz M. Pathology of Initial Axon Segments in Chronic Inflammatory Demyelinating Polyradiculoneuropathy and Related Disorders. Int J Mol Sci 2022; 23:13621. [PMID: 36362407 PMCID: PMC9658771 DOI: 10.3390/ijms232113621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 07/30/2023] Open
Abstract
The diagnosis of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is based on a combination of clinical, electrodiagnostic and laboratory features. The different entities of the disease include chronic immune sensory polyradiculopathy (CISP) and autoimmune nodopathies. It is debatable whether CIDP occurring in the course of other conditions, i.e., monoclonal IgG or IgA gammopathy, should be treated as a separate disease entity from idiopathic CIDP. This study aims to evaluate the molecular differences of the nodes of Ranvier and the initial axon segment (AIS) and juxtaparanode region (JXP) as the potential cause of phenotypic variation of CIDP while also seeking new pathomechanisms since JXP is sequestered behind the paranode and autoantibodies may not access the site easily. The authors initially present the structure of the different parts of the neuron and its functional significance, then discuss the problem of whether damage to the juxtaparanodal region, Schwann cells and axons could cause CIDP or if these damages should be separated as separate disease entities. In particular, AIS's importance for modulating neural excitability and carrying out transport along the axon is highlighted. The disclosure of specific pathomechanisms, including novel target antigens, in the heterogeneous CIDP syndrome is important for diagnosing and treating these patients.
Collapse
|
19
|
Wang G, Wu W, Xu Y, Yang Z, Xiao B, Long L. Imaging Genetics in Epilepsy: Current Knowledge and New Perspectives. Front Mol Neurosci 2022; 15:891621. [PMID: 35706428 PMCID: PMC9189397 DOI: 10.3389/fnmol.2022.891621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is a neurological network disease with genetics playing a much greater role than was previously appreciated. Unfortunately, the relationship between genetic basis and imaging phenotype is by no means simple. Imaging genetics integrates multidimensional datasets within a unified framework, providing a unique opportunity to pursue a global vision for epilepsy. This review delineates the current knowledge of underlying genetic mechanisms for brain networks in different epilepsy syndromes, particularly from a neural developmental perspective. Further, endophenotypes and their potential value are discussed. Finally, we highlight current challenges and provide perspectives for the future development of imaging genetics in epilepsy.
Collapse
Affiliation(s)
- Ge Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Wenyue Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yuchen Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuanyi Yang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
- *Correspondence: Lili Long
| |
Collapse
|
20
|
Furia A, Licchetta L, Muccioli L, Ferri L, Mostacci B, Mazzoni S, Menghi V, Minardi R, Tinuper P, Bisulli F. Epilepsy With Auditory Features: From Etiology to Treatment. Front Neurol 2022; 12:807939. [PMID: 35153984 PMCID: PMC8829259 DOI: 10.3389/fneur.2021.807939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/31/2021] [Indexed: 01/22/2023] Open
Abstract
Epilepsy with auditory features (EAF) is a focal epilepsy belonging to the focal epileptic syndromes with onset at variable age according to the new ILAE Classification. It is characterized by seizures with auditory aura or receptive aphasia suggesting a lateral temporal lobe involvement of the epileptic discharge. Etiological factors underlying EAF are largely unknown. In the familial cases with an autosomal dominant pattern of inheritance several genes have been involved, among which the first discovered, LGI1, was thought to be predominant. However, increasing evidence now points to a multifactorial etiology, as familial and sporadic EAF share a virtually identical electro-clinical characterization and only a few have a documented genetic etiology. Patients with EAF usually have an unremarkable neurological examination and a good response to antiseizure medications. However, it must be underscored that total remission might be lower than expected and that treatment withdrawal might lead to relapses. Thus, a proper understanding of this condition is in order for better patient treatment and counseling. Further studies are still required to further characterize the many facets of EAF.
Collapse
Affiliation(s)
- Alessandro Furia
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Laura Licchetta
- Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Reference Center for Rare and Complex Epilepsies, Bologna, Italy
| | - Lorenzo Muccioli
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Lorenzo Ferri
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Reference Center for Rare and Complex Epilepsies, Bologna, Italy
| | - Barbara Mostacci
- Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Reference Center for Rare and Complex Epilepsies, Bologna, Italy
| | - Stefania Mazzoni
- Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Reference Center for Rare and Complex Epilepsies, Bologna, Italy
| | - Veronica Menghi
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Raffaella Minardi
- Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Reference Center for Rare and Complex Epilepsies, Bologna, Italy
| | - Paolo Tinuper
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Reference Center for Rare and Complex Epilepsies, Bologna, Italy
| | - Francesca Bisulli
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Reference Center for Rare and Complex Epilepsies, Bologna, Italy
- *Correspondence: Francesca Bisulli
| |
Collapse
|
21
|
Baudin P, Cousyn L, Navarro V. The LGI1 protein: molecular structure, physiological functions and disruption-related seizures. Cell Mol Life Sci 2021; 79:16. [PMID: 34967933 PMCID: PMC11072701 DOI: 10.1007/s00018-021-04088-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 01/16/2023]
Abstract
Leucine-rich, glioma inactivated 1 (LGI1) is a secreted glycoprotein, mainly expressed in the brain, and involved in central nervous system development and physiology. Mutations of LGI1 have been linked to autosomal dominant lateral temporal lobe epilepsy (ADLTE). Recently auto-antibodies against LGI1 have been described as the basis for an autoimmune encephalitis, associated with specific motor and limbic epileptic seizures. It is the second most common cause of autoimmune encephalitis. This review presents details on the molecular structure, expression and physiological functions of LGI1, and examines how their disruption underlies human pathologies. Knock-down of LGI1 in rodents reveals that this protein is necessary for normal brain development. In mature brains, LGI1 is associated with Kv1 channels and AMPA receptors, via domain-specific interaction with membrane anchoring proteins and contributes to regulation of the expression and function of these channels. Loss of function, due to mutations or autoantibodies, of this key protein in the control of neuronal activity is a common feature in the genesis of epileptic seizures in ADLTE and anti-LGI1 autoimmune encephalitis.
Collapse
Affiliation(s)
- Paul Baudin
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Louis Cousyn
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France
| | - Vincent Navarro
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France.
- AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France.
- AP-HP, Center of Reference for Rare Epilepsies, Pitié-Salpêtrière Hospital, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
22
|
Pathophysiology of the Different Clinical Phenotypes of Chronic Inflammatory Demyelinating Polyradiculoneuropathy (CIDP). Int J Mol Sci 2021; 23:ijms23010179. [PMID: 35008604 PMCID: PMC8745770 DOI: 10.3390/ijms23010179] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/22/2022] Open
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) is the most common form of autoimmune polyneuropathy. It is a chronic disease and may be monophasic, progressive or recurrent with exacerbations and incomplete remissions, causing accumulating disability. In recent years, there has been rapid progress in understanding the background of CIDP, which allowed us to distinguish specific phenotypes of this disease. This in turn allowed us to better understand the mechanism of response or non-response to various forms of therapy. On the basis of a review of the relevant literature, the authors present the current state of knowledge concerning the pathophysiology of the different clinical phenotypes of CIDP as well as ongoing research in this field, with reference to key points of immune-mediated processes involved in the background of CIDP.
Collapse
|
23
|
Kalafatakis I, Savvaki M, Velona T, Karagogeos D. Implication of Contactins in Demyelinating Pathologies. Life (Basel) 2021; 11:life11010051. [PMID: 33451101 PMCID: PMC7828632 DOI: 10.3390/life11010051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Demyelinating pathologies comprise of a variety of conditions where either central or peripheral myelin is attacked, resulting in white matter lesions and neurodegeneration. Myelinated axons are organized into molecularly distinct domains, and this segregation is crucial for their proper function. These defined domains are differentially affected at the different stages of demyelination as well as at the lesion and perilesion sites. Among the main players in myelinated axon organization are proteins of the contactin (CNTN) group of the immunoglobulin superfamily (IgSF) of cell adhesion molecules, namely Contactin-1 and Contactin-2 (CNTN1, CNTN2). The two contactins perform their functions through intermolecular interactions, which are crucial for myelinated axon integrity and functionality. In this review, we focus on the implication of these two molecules as well as their interactors in demyelinating pathologies in humans. At first, we describe the organization and function of myelinated axons in the central (CNS) and the peripheral (PNS) nervous system, further analyzing the role of CNTN1 and CNTN2 as well as their interactors in myelination. In the last section, studies showing the correlation of the two contactins with demyelinating pathologies are reviewed, highlighting the importance of these recognition molecules in shaping the function of the nervous system in multiple ways.
Collapse
|
24
|
Assembly and Function of the Juxtaparanodal Kv1 Complex in Health and Disease. Life (Basel) 2020; 11:life11010008. [PMID: 33374190 PMCID: PMC7824554 DOI: 10.3390/life11010008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The precise axonal distribution of specific potassium channels is known to secure the shape and frequency of action potentials in myelinated fibers. The low-threshold voltage-gated Kv1 channels located at the axon initial segment have a significant influence on spike initiation and waveform. Their role remains partially understood at the juxtaparanodes where they are trapped under the compact myelin bordering the nodes of Ranvier in physiological conditions. However, the exposure of Kv1 channels in de- or dys-myelinating neuropathy results in alteration of saltatory conduction. Moreover, cell adhesion molecules associated with the Kv1 complex, including Caspr2, Contactin2, and LGI1, are target antigens in autoimmune diseases associated with hyperexcitability such as encephalitis, neuromyotonia, or neuropathic pain. The clustering of Kv1.1/Kv1.2 channels at the axon initial segment and juxtaparanodes is based on interactions with cell adhesion molecules and cytoskeletal linkers. This review will focus on the trafficking and assembly of the axonal Kv1 complex in the peripheral and central nervous system (PNS and CNS), during development, and in health and disease.
Collapse
|
25
|
Souza ILM, Oliveira NH, Huamaní PAM, Martin ATS, Borgonovo ZLM, Nakao LS, Zanata SM. Endocytosis of the non-catalytic ADAM23: Recycling and long half-life properties. Exp Cell Res 2020; 398:112415. [PMID: 33296662 DOI: 10.1016/j.yexcr.2020.112415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 11/15/2020] [Accepted: 11/28/2020] [Indexed: 11/16/2022]
Abstract
A Disintegrin And Metalloprotease 23 (ADAM23) is a member of the ADAMs family of transmembrane proteins, mostly expressed in nervous system, and involved in traffic and stabilization of Kv1-potassium channels, synaptic transmission, neurite outgrowth, neuronal morphology and cell adhesion. Also, ADAM23 has been linked to human pathological conditions, such as epilepsy, cancer metastasis and cardiomyopathy. ADAM23 functionality depends on the molecule presence at the cell surface and along the secretory pathway, as expected for a cell surface receptor. Because endocytosis is an important functional regulatory mechanism of plasma membrane receptors and no information is available about the traffic or turnover of non-catalytic ADAMs, we investigated ADAM23 internalization, recycling and half-life properties. Here, we show that ADAM23 undergoes constitutive internalization from the plasma membrane, a process that depends on lipid raft integrity, and is redistributed to intracellular vesicles, especially early and recycling endosomes. Furthermore, we observed that ADAM23 is recycled from intracellular compartments back to the plasma membrane and thus has longer half-life and higher cell surface stability compared with other ADAMs. Our findings suggest that regulation of ADAM23 endocytosis/stability could be exploited therapeutically in diseases in which ADAM23 is directly involved, such as epilepsy, cancer progression and cardiac hypertrophy.
Collapse
Affiliation(s)
- Ingrid L M Souza
- Departments of Basic Pathology and Cell Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Natália H Oliveira
- Departments of Basic Pathology and Cell Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Pierina A M Huamaní
- Departments of Basic Pathology and Cell Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Anh-Tuan S Martin
- Institut für Molekulare Zellbiologie, University of Münster, Münster, Germany
| | - Zaine L M Borgonovo
- Departments of Basic Pathology and Cell Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Lia S Nakao
- Departments of Basic Pathology and Cell Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Silvio M Zanata
- Departments of Basic Pathology and Cell Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
26
|
Shin J, Pelletier S, Richer L, Pike GB, Gaudet D, Paus T, Pausova Z. Adiposity-related insulin resistance and thickness of the cerebral cortex in middle-aged adults. J Neuroendocrinol 2020; 32:e12921. [PMID: 33340164 PMCID: PMC8132297 DOI: 10.1111/jne.12921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022]
Abstract
The thickness of the cerebral cortex decreases with ageing. Recent research suggests that obesity and type 2 diabetes mellitus may accelerate this cortical thinning, and that obesity-related insulin resistance may be a shared mechanistic pathway. Ageing of the cerebral cortex demonstrates sex-specific trajectories, with a gradual shift towards accelerated thinning beginning in midlife. Here, we investigated whether adiposity-related insulin resistance is associated with lower thickness of the human cerebral cortex in a community-based sample of middle-aged adults. We studied 533 adult participants (36-65 years) from the Saguenay Youth Study. Adiposity was assessed with bioimpedance, and insulin resistance was evaluated from a fasting blood sample with the homeostatic model assessment of insulin resistance (HOMA-IR). Associations between adiposity-related insulin resistance (adiposity/IR) and cortical thickness were assessed with linear models, separately in males and females younger or older than 50 years. Potential biological underpinnings were investigated with virtual histology. Adiposity/IR was associated with lower cortical thickness in females older than 50 years but not in males or younger females. The strength of the association varied across the cerebral cortex, with regions of the lateral frontal and parietal cortices and the superior temporal cortex demonstrating most pronounced thinning. Based on virtual histology, adiposity/IR-related cortical thinning may involve neurones, astrocytes, oligodendrocytes and ependymal cells acting so that they lower the cortical potential for synaptogenesis, formation of dendritic spines, production of extracellular matrix and myelination. Adiposity-related insulin resistance is associated with lower cortical thickness in middle-aged women older than 50 years. This aspect of thinning may involve neuronal and glial cells in a way that lowers the capacity of the cerebral cortex for neuronal plasticity and maintenance of myelination.
Collapse
Affiliation(s)
- Jean Shin
- The Hospital for Sick Children, University of Toronto, Toronto, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Stephanie Pelletier
- The Hospital for Sick Children, University of Toronto, Toronto, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Louis Richer
- Department of Health Sciences, Université du Québec à Chicoutimi, Chicoutimi, Canada
| | - G. Bruce Pike
- Department of Radiology and Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Daniel Gaudet
- Lipidology Unit, Community Genomic Medicine Centre and ECOGENE-21, Department of Medicine, Université de Montréal, Saguenay, Canada
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, Canada
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
27
|
Liu YD, Ma MY, Hu XB, Yan H, Zhang YK, Yang HX, Feng JH, Wang L, Zhang H, Zhang B, Li QB, Zhang JC, Kong QX. Brain Proteomic Profiling in Intractable Epilepsy Caused by TSC1 Truncating Mutations: A Small Sample Study. Front Neurol 2020; 11:475. [PMID: 32655475 PMCID: PMC7326032 DOI: 10.3389/fneur.2020.00475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/30/2020] [Indexed: 01/01/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a genetic disease characterized by seizures, mental deficiency, and abnormalities of the skin, brain, kidney, heart, and lungs. TSC is inherited in an autosomal dominant manner and is caused by variations in either the TSC1 or TSC2 gene. TSC-related epilepsy (TRE) is the most prevalent and challenging clinical feature of TSC, and more than half of the patients have refractory epilepsy. In clinical practice, we found several patients of intractable epilepsy caused by TSC1 truncating mutations. To study the changes of protein expression in the brain, three cases of diseased brain tissue with TSC1 truncating mutation resected in intractable epilepsy operations and three cases of control brain tissue resected in craniocerebral trauma operations were collected to perform protein spectrum detection, and then the data-independent acquisition (DIA) workflow was used to analyze differentially expressed proteins. As a result, there were 55 up- and 55 down-regulated proteins found in the damaged brain tissue with TSC1 mutation compared to the control. Further bioinformatics analysis revealed that the differentially expressed proteins were mainly concentrated in the synaptic membrane between the patients with TSC and the control. Additionally, TSC1 truncating mutations may affect the pathway of amino acid metabolism. Our study provides a new idea to explore the brain damage mechanism caused by TSC1 mutations.
Collapse
Affiliation(s)
- Yi-Dan Liu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Meng-Yu Ma
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xi-Bin Hu
- Department of Imaging, Affiliated Hospital of Jining Medical University, Jining, China
| | - Huan Yan
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yan-Ke Zhang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Hao-Xiang Yang
- Clinical Medical College, Jining Medical University, Jining, China
| | - Jing-Hui Feng
- Clinical Medical College, Jining Medical University, Jining, China
| | - Lin Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Hao Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Bin Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Qiu-Bo Li
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Jun-Chen Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Qing-Xia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China.,Institute of Epilepsy, Jining Medical University, Jining, China
| |
Collapse
|
28
|
Yamagata A, Fukai S. Insights into the mechanisms of epilepsy from structural biology of LGI1-ADAM22. Cell Mol Life Sci 2020; 77:267-274. [PMID: 31432233 PMCID: PMC11104983 DOI: 10.1007/s00018-019-03269-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 01/05/2023]
Abstract
Epilepsy is one of the most common brain disorders, which can be caused by abnormal synaptic transmissions. Many epilepsy-related mutations have been identified in synaptic ion channels, which are main targets for current antiepileptic drugs. One of the novel potential targets for therapy of epilepsy is a class of non-ion channel-type epilepsy-related proteins. The leucine-rich repeat glioma-inactivated protein 1 (LGI1) is a neuronal secreted protein, and has been extensively studied as a product of a causative gene for autosomal dominant lateral temporal lobe epilepsy (ADLTE; also known as autosomal dominant partial epilepsy with auditory features [ADPEAF]). At least 43 mutations of LGI1 have been found in ADLTE families. Additionally, autoantibodies against LGI1 in limbic encephalitis are associated with amnesia, seizures, and cognitive dysfunction. Although the relationship of LGI1 with synaptic transmission and synaptic disorders has been studied genetically, biochemically, and clinically, the structural mechanism of LGI1 remained largely unknown until recently. In this review, we introduce insights into pathogenic mechanisms of LGI1 from recent structural studies on LGI1 and its receptor, ADAM22. We also discuss the mechanism for pathogenesis of autoantibodies against LGI1, and the potential of chemical correctors as novel drugs for epilepsy, with structural aspects of LGI1-ADAM22.
Collapse
Affiliation(s)
- Atsushi Yamagata
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.
- Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo, 113-0032, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan.
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, 230-0045, Japan.
| | - Shuya Fukai
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.
- Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo, 113-0032, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan.
| |
Collapse
|
29
|
Bonetto G, Hivert B, Goutebroze L, Karagogeos D, Crépel V, Faivre-Sarrailh C. Selective Axonal Expression of the Kv1 Channel Complex in Pre-myelinated GABAergic Hippocampal Neurons. Front Cell Neurosci 2019; 13:222. [PMID: 31164806 PMCID: PMC6535494 DOI: 10.3389/fncel.2019.00222] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/02/2019] [Indexed: 01/01/2023] Open
Abstract
In myelinated fibers, the voltage-gated sodium channels Nav1 are concentrated at the nodal gap to ensure the saltatory propagation of action potentials. The voltage-gated potassium channels Kv1 are segregated at the juxtaparanodes under the compact myelin sheath and may stabilize axonal conduction. It has been recently reported that hippocampal GABAergic neurons display high density of Nav1 channels remarkably in clusters along the axon before myelination (Freeman et al., 2015). In inhibitory neurons, the Nav1 channels are trapped by the ankyrinG scaffold at the axon initial segment (AIS) as observed in pyramidal and granule neurons, but are also forming “pre-nodes,” which may accelerate conduction velocity in pre-myelinated axons. However, the distribution of the Kv1 channels along the pre-myelinated inhibitory axons is still unknown. In the present study, we show that two subtypes of hippocampal GABAergic neurons, namely the somatostatin and parvalbumin positive cells, display a selective high expression of Kv1 channels at the AIS and all along the unmyelinated axons. These inhibitory axons are also highly enriched in molecules belonging to the juxtaparanodal Kv1 complex, including the cell adhesion molecules (CAMs) TAG-1, Caspr2, and ADAM22 and the scaffolding protein 4.1B. Here, taking advantage of hippocampal cultures from 4.1B and TAG-1 knock-out mice, we observed that 4.1B is required for the proper positioning of Caspr2 and TAG-1 along the distal axon, and that TAG-1 deficiency induces alterations in the axonal distribution of Caspr2. However, the axonal expression of Kv1 channels and clustering of ankyrinG were not modified. In conclusion, this study allowed the analysis of the hierarchy between channels, CAMs and scaffolding proteins for their expression along hippocampal inhibitory axons before myelination. The early steps of channel compartmentalization preceding myelination may be crucial for stabilizing nerve impulses switching from a continuous to saltatory conduction during network development.
Collapse
Affiliation(s)
- Giulia Bonetto
- INSERM UMR1249, Institut de Neurobiologie de la Méditerranée, Aix-Marseille Université, Marseille, France
| | - Bruno Hivert
- INSERM UMR1249, Institut de Neurobiologie de la Méditerranée, Aix-Marseille Université, Marseille, France
| | - Laurence Goutebroze
- INSERM UMR-S 1270, Institut du Fer à Moulin, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Domna Karagogeos
- Department of Basic Sciences, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, University of Crete Medical School - University of Crete, Heraklion, Greece
| | - Valérie Crépel
- INSERM UMR1249, Institut de Neurobiologie de la Méditerranée, Aix-Marseille Université, Marseille, France
| | - Catherine Faivre-Sarrailh
- INSERM UMR1249, Institut de Neurobiologie de la Méditerranée, Aix-Marseille Université, Marseille, France
| |
Collapse
|