1
|
Komleva Y, Shpiliukova K, Bondar N, Salmina A, Khilazheva E, Illarioshkin S, Piradov M. Decoding brain aging trajectory: predictive discrepancies, genetic susceptibilities, and emerging therapeutic strategies. Front Aging Neurosci 2025; 17:1562453. [PMID: 40177249 PMCID: PMC11962000 DOI: 10.3389/fnagi.2025.1562453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
The global extension of human lifespan has intensified the focus on aging, yet its underlying mechanisms remain inadequately understood. The article highlights aspects of genetic susceptibility to impaired brain bioenergetics, trends in age-related gene expression related to neuroinflammation and brain senescence, and the impact of stem cell exhaustion and quiescence on accelerated brain aging. We also review the accumulation of senescent cells, mitochondrial dysfunction, and metabolic disturbances as central pathological processes in aging, emphasizing how these factors contribute to inflammation and disrupt cellular competition defining the aging trajectory. Furthermore, we discuss emerging therapeutic strategies and the future potential of integrating advanced technologies to refine aging assessments. The combination of several methods including genetic analysis, neuroimaging techniques, cognitive tests and digital twins, offer a novel approach by simulating and monitoring individual health and aging trajectories, thereby providing more accurate and personalized insights. Conclusively, the accurate estimation of brain aging trajectories is crucial for understanding and managing aging processes, potentially transforming preventive and therapeutic strategies to improve health outcomes in aging populations.
Collapse
Affiliation(s)
| | | | - Nikolai Bondar
- Research Center of Neurology, Moscow, Russia
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Elena Khilazheva
- Department of Biological Chemistry with Courses in Medical, Research Institute of Molecular Medicine and Pathobiochemistry, Pharmaceutical and Toxicological Chemistry Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Healthcare of the Russian Federation, Krasnoyarsk, Russia
| | | | | |
Collapse
|
2
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Baniahmad A, Branicki W, Taheri M, Eghbali A. Emerging Role of Non-Coding RNAs in Senescence. Front Cell Dev Biol 2022; 10:869011. [PMID: 35865636 PMCID: PMC9294638 DOI: 10.3389/fcell.2022.869011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Senescence is defined as a gradual weakening of functional features of a living organism. Cellular senescence is a process that is principally aimed to remove undesirable cells by prompting tissue remodeling. This process is also regarded as a defense mechanism induced by cellular damage. In the course of oncogenesis, senescence can limit tumor progression. However, senescence participates in the pathoetiology of several disorders such as fibrotic disorders, vascular disorders, diabetes, renal disorders and sarcopenia. Recent studies have revealed contribution of different classes of non-coding RNAs in the cellular senescence. Long non-coding RNAs, microRNAs and circular RNAs are three classes of these transcripts whose contributions in this process have been more investigated. In the current review, we summarize the available literature on the impact of these transcripts in the cellular senescence.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospitals, Jena, Germany
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospitals, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| | - Ahmad Eghbali
- Anesthesiology Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| |
Collapse
|
3
|
Morimune T, Tano A, Tanaka Y, Yukiue H, Yamamoto T, Tooyama I, Maruo Y, Nishimura M, Mori M. Gm14230 controls Tbc1d24 cytoophidia and neuronal cellular juvenescence. PLoS One 2021; 16:e0248517. [PMID: 33886577 PMCID: PMC8062039 DOI: 10.1371/journal.pone.0248517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 02/28/2021] [Indexed: 11/19/2022] Open
Abstract
It is not fully understood how enzymes are regulated in the tiny reaction field of a cell. Several enzymatic proteins form cytoophidia, a cellular macrostructure to titrate enzymatic activities. Here, we show that the epileptic encephalopathy-associated protein Tbc1d24 forms cytoophidia in neuronal cells both in vitro and in vivo. The Tbc1d24 cytoophidia are distinct from previously reported cytoophidia consisting of inosine monophosphate dehydrogenase (Impdh) or cytidine-5'-triphosphate synthase (Ctps). Tbc1d24 cytoophidia is induced by loss of cellular juvenescence caused by depletion of Gm14230, a juvenility-associated lncRNA (JALNC) and zeocin treatment. Cytoophidia formation is associated with impaired enzymatic activity of Tbc1d24. Thus, our findings reveal the property of Tbc1d24 to form cytoophidia to maintain neuronal cellular juvenescence.
Collapse
Affiliation(s)
- Takao Morimune
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
- Department of Pediatrics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Ayami Tano
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Yuya Tanaka
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Haruka Yukiue
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Takefumi Yamamoto
- Central Research Laboratory, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Yoshihiro Maruo
- Department of Pediatrics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Masaki Nishimura
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Masaki Mori
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| |
Collapse
|
4
|
Neuroepithelial cell competition triggers loss of cellular juvenescence. Sci Rep 2020; 10:18044. [PMID: 33093561 PMCID: PMC7582913 DOI: 10.1038/s41598-020-74874-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/07/2020] [Indexed: 12/02/2022] Open
Abstract
Cell competition is a cell–cell interaction mechanism which maintains tissue homeostasis through selective elimination of unfit cells. During early brain development, cells are eliminated through apoptosis. How cells are selected to undergo elimination remains unclear. Here we aimed to identify a role for cell competition in the elimination of suboptimal cells using an in vitro neuroepithelial model. Cell competition was observed when neural progenitor HypoE-N1 cells expressing RASV12 were surrounded by normal cells in the co-culture. The elimination through apoptosis was observed by cellular changes of RASV12 cells with rounding/fragmented morphology, by SYTOX blue-positivity, and by expression of apoptotic markers active caspase-3 and cleaved PARP. In this model, expression of juvenility-associated genes Srsf7 and Ezh2 were suppressed under cell-competitive conditions. Srsf7 depletion led to loss of cellular juvenescence characterized by suppression of Ezh2, cell growth impairment and enhancement of senescence-associated proteins. The cell bodies of eliminated cells were engulfed by the surrounding cells through phagocytosis. Our data indicates that neuroepithelial cell competition may have an important role for maintaining homeostasis in the neuroepithelium by eliminating suboptimal cells through loss of cellular juvenescence.
Collapse
|
5
|
Kadota Y, Jam FA, Yukiue H, Terakado I, Morimune T, Tano A, Tanaka Y, Akahane S, Fukumura M, Tooyama I, Mori M. Srsf7 Establishes the Juvenile Transcriptome through Age-Dependent Alternative Splicing in Mice. iScience 2020; 23:100929. [PMID: 32146325 PMCID: PMC7063262 DOI: 10.1016/j.isci.2020.100929] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/26/2020] [Accepted: 02/17/2020] [Indexed: 11/25/2022] Open
Abstract
The juvenile phase is characterized by continuously progressing physiological processes such as growth and maturation, which are accompanied by transitions in gene expression. The contribution of transcriptome dynamics to the establishment of juvenile properties remains unclear. Here, we investigated alternative splicing (AS) events in postnatal growth and elucidated the landscape of age-dependent alternative splicing (ADAS) in C57BL/6 mice. Our analysis of ADAS in the cerebral cortex, cardiomyocytes, and hepatocytes revealed numerous juvenile-specific splicing isoforms that shape the juvenile transcriptome, which in turn functions as a basis for the highly anabolic status of juvenile cells. Mechanistically, the juvenile-expressed splicing factor Srsf7 mediates ADAS, as exemplified by switching from juvenile to adult forms of anabolism-associated genes Eif4a2 and Rbm7. Suppression of Srsf7 results in “fast-forwarding” of this transcriptome transition, causing impaired anabolism and growth in mice. Thus, juvenile-specific AS is indispensable for the anabolic state of juveniles and differentiates juveniles from adults. Age-dependent alternative splicing (ADAS) was determined in mice Srsf7 depletion causes loss of cellular juvenescence Srsf7 mutation causes a shift from juvenile to adult-type transcriptome Srsf7 promotes juvenile growth and anabolism through ADAS
Collapse
Affiliation(s)
- Yosuke Kadota
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Faidruz Azura Jam
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Haruka Yukiue
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Ichiro Terakado
- Research Center for Animal Life Science (RCALS), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Takao Morimune
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan; Department of Pediatrics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Ayami Tano
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Yuya Tanaka
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Sayumi Akahane
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Mayu Fukumura
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Masaki Mori
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.
| |
Collapse
|