1
|
Aryal B, Kwakye J, Ariyo OW, Ghareeb AFA, Milfort MC, Fuller AL, Khatiwada S, Rekaya R, Aggrey SE. Major Oxidative and Antioxidant Mechanisms During Heat Stress-Induced Oxidative Stress in Chickens. Antioxidants (Basel) 2025; 14:471. [PMID: 40298812 PMCID: PMC12023971 DOI: 10.3390/antiox14040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Heat stress (HS) is one of the most important stressors in chickens, and its adverse effects are primarily caused by disturbing the redox homeostasis. An increase in electron leakage from the mitochondrial electron transport chain is the major source of free radical production under HS, which triggers other enzymatic systems to generate more radicals. As a defense mechanism, cells have enzymatic and non-enzymatic antioxidant systems that work cooperatively against free radicals. The generation of free radicals, particularly the reactive oxygen species (ROS) and reactive nitrogen species (RNS), under HS condition outweighs the cellular antioxidant capacity, resulting in oxidative damage to macromolecules, including lipids, carbohydrates, proteins, and DNA. Understanding these detrimental oxidative processes and protective defense mechanisms is important in developing mitigation strategies against HS. This review summarizes the current understanding of major oxidative and antioxidant systems and their molecular mechanisms in generating or neutralizing the ROS/RNS. Importantly, this review explores the potential mechanisms that lead to the development of oxidative stress in heat-stressed chickens, highlighting their unique behavioral and physiological responses against thermal stress. Further, we summarize the major findings associated with these oxidative and antioxidant mechanisms in chickens.
Collapse
Affiliation(s)
- Bikash Aryal
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Josephine Kwakye
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Oluwatomide W. Ariyo
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Ahmed F. A. Ghareeb
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
- Boehringer Ingelheim Animal Health (BIAH), Gainesville, GA 30501, USA
| | - Marie C. Milfort
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Alberta L. Fuller
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Saroj Khatiwada
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Romdhane Rekaya
- Department of Animal and Dairy Science, The University of Georgia, Athens, GA 30602, USA;
| | - Samuel E. Aggrey
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| |
Collapse
|
2
|
Cutrone L, Djupenström H, Peltonen J, Martinez Klimova E, Corso S, Giordano S, Sistonen L, Gramolelli S. Heat shock factor 2 regulates oncogenic gamma-herpesvirus gene expression by remodeling the chromatin at the ORF50 and BZLF1 promoter. PLoS Pathog 2025; 21:e1013108. [PMID: 40245053 PMCID: PMC12047821 DOI: 10.1371/journal.ppat.1013108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/02/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025] Open
Abstract
The Human gamma-herpesviruses Kaposi's sarcoma herpesvirus (KSHV) and Epstein-Barr virus (EBV) are causally associated to a wide range of cancers. While the default infection program for these viruses is latent, sporadic lytic reactivation supports virus dissemination and oncogenesis. Despite its relevance, the repertoire of host factors governing the transition from latent to lytic phase is not yet complete, leaving much of this complex process unresolved. Here we show that heat shock factor 2 (HSF2), a transcription factor involved in regulation of stress responses and specific cell differentiation processes, promotes gamma-herpesvirus lytic gene expression. In lymphatic endothelial cells infected with KSHV and in gastric cancer cells positive for EBV, ectopic HSF2 enhances the expression of lytic genes; While knocking down HSF2 significantly decreases their expression. HSF2 overexpression is accompanied by decreased levels of repressive histone marks at the promoters of the lytic regulators KSHV ORF50 and EBV BZLF1, both characterized by poised chromatin features. Our results demonstrate that endogenous HSF2 binds to the promoters of KSHV ORF50 and EBV BZLF1 genes and shifts the bivalent chromatin state towards a more transcriptionally permissive state. We detected HSF2 binding to the ORF50 promoter in latent cells, in contrast, in lytic cells, HSF2 occupancy at the ORF50 promoter is lost in conjunction with its proteasomal degradation. These findings identify HSF2 as a regulator of gamma-herpesvirus lytic gene expression in latency and offer new insights on the function of this transcription factors at poised gene promoters, improving our understanding of its role in differentiation and development.
Collapse
Affiliation(s)
- Lorenza Cutrone
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Hedvig Djupenström
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Jasmin Peltonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Elena Martinez Klimova
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Simona Corso
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Silvia Giordano
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Silvia Gramolelli
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| |
Collapse
|
3
|
Keuls RA, Ochsner SA, O'Neill MB, O'Day DR, Miyauchi A, Campbell KM, Lanners N, Goldstein JA, Yee C, McKenna NJ, Parchem RJ, Parchem JG. Single-nucleus transcriptional profiling of the placenta reveals the syncytiotrophoblast stress response to COVID-19. Am J Obstet Gynecol 2025; 232:S160-S175.e7. [PMID: 40253079 DOI: 10.1016/j.ajog.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND COVID-19 in pregnancy is associated with placental immune activation, inflammation, and vascular malperfusion, but its impact on syncytiotrophoblast biology and function is unclear. OBJECTIVE This study aimed to determine the effects of maternal COVID-19 on placental syncytiotrophoblasts using single-nucleus transcriptional profiling and to compare placental stress responses in COVID-19 and preeclampsia. STUDY DESIGN For transcriptional characterization of syncytiotrophoblasts, we used the single-nucleus RNA sequencing platform, single-cell combinatorial indexing RNA sequencing (sci-RNA-seq3), to profile placental villi and fetal membranes from unvaccinated patients with symptomatic COVID-19 at birth (n = 4), gestational age-matched controls (n = 4), and a case of critical COVID-19 in the second trimester with delivery at term (n = 1). Clustering of nuclei and differential gene expression analysis was performed in Seurat. Gene ontology analysis was conducted using Enrichr. High-confidence transcriptional target analysis was used to identify key transcription factor nodes governing the syncytiotrophoblast response to maternal SARS-CoV-2 infection. Bioinformatic approaches were further used to compare the COVID-19 dataset to published preeclampsia gene signatures. Tissue analysis, including immunofluorescence, was conducted to validate the transcriptional data and to compare COVID-19 and preeclampsia placental histology for an expanded cohort of placentas: controls (n = 6), asymptomatic COVID-19 (n = 3), symptomatic COVID-19 (n = 5), and preeclampsia with severe features (n = 7). RESULTS The analyzed dataset comprised 15 cell clusters and 47,889 nuclei. We identified 3 clusters of syncytiotrophoblasts representing fusing and mature nuclei with overlapping but distinct transcriptional responses to COVID-19. Bioinformatic analyses indicated that COVID-19 is associated with the following alterations in syncytiotrophoblasts: (1) endoplasmic reticulum stress and activation of stress signaling pathways, including the unfolded protein response and integrated stress response; (2) regulation of gene expression by CCAAT/enhancer-binding protein beta (CEBPB), a master transcription factor of the syncytiotrophoblast lineage; and (3) upregulation of preeclampsia-associated genes. Using complementary methods, we confirmed increased levels of stress response proteins (eg, BiP, G3BP1) in syncytiotrophoblasts, unfolded protein response signaling (spliced XBP1 mRNA), and CEBPB activation (phosphorylation) in COVID-19. Increased cytotrophoblast proliferation (Ki-67) was also detected in COVID-19, consistent with a trophoblast response to injury. Markers of stress detected in preeclampsia demonstrated similarities in the placental stress phenotype of COVID-19 and preeclampsia. CONCLUSION Maternal COVID-19 is associated with syncytiotrophoblast endoplasmic reticulum stress and activation of the syncytiotrophoblast lineage transcription factor, CEBPB. Similarities between syncytiotrophoblast stress in COVID-19 and preeclampsia provide insights into their clinical association.
Collapse
Affiliation(s)
- Rachel A Keuls
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX; Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Scott A Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Mary B O'Neill
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA
| | - Diana R O'Day
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA
| | - Akihiko Miyauchi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX; Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Kadeshia M Campbell
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
| | - Natalie Lanners
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
| | - Jeffery A Goldstein
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Connor Yee
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX; Larry C. Gilstrap MD Center for Perinatal and Women's Health Research, The University of Texas Health Science Center at Houston, Houston, TX
| | - Neil J McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Ronald J Parchem
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX; Department of Neuroscience, Baylor College of Medicine, Houston, TX.
| | - Jacqueline G Parchem
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX.
| |
Collapse
|
4
|
Xu Q, Wang Y, Dou S, Xu Y, Xu Z, Xu H, Zhang Y, Xia Y, Xue Y, Li H, Ma X, Zhang K, Wang H, Ma F, Wang Q, Li B, Wang W. High-Viability Circulating Tumor Cells Sorting From Whole Blood at Single Cell Level Using Laser-Induced Forward Transfer-Assisted Microfiltration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414195. [PMID: 39868845 DOI: 10.1002/advs.202414195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/20/2025] [Indexed: 01/28/2025]
Abstract
The efficient isolation and molecular analysis of circulating tumor cells (CTCs) from whole blood at single-cell level are crucial for understanding tumor metastasis and developing personalized treatments. The viability of isolated cells is the key prerequisite for the downstream molecular analysis, especially for RNA sequencing. This study develops a laser-induced forward transfer -assisted microfiltration system (LIFT-AMFS) for high-viability CTC enrichment and retrieval from whole blood. The LIFT-compatible double-stepped microfilter (DSMF), central to this system, comprises two micropore layers: the lower layer's smaller micropores facilitate size-based cell separation, and the upper layer's larger micropores enable liquid encapsulating captured cells. By optimizing the design of the DSMFs, the system has a capture efficiency of 88% at the processing throughput of up to 15.0 mL min-1 during the microfilter-based size screening stage, with a single-cell yield of over 95% during the retrieval stage. The retrieved single cells, with high viability, are qualified for ex vivo culture and direct RNA sequencing. The cDNA yield from isolated CTCs surpassed 4.5 ng, sufficient for library construction. All single-cell sequencing data exhibited Q30 scores above 95.92%. The LIFT-AMFS shows promise in cellular and biomedical research.
Collapse
Affiliation(s)
- Qingmei Xu
- School of Integrated Circuits, Peking University, Beijing, 100871, China
- Department of Electrical Engineering, Taiyuan Institute of Technology, Taiyuan, 030008, China
| | - Yuntong Wang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Songtao Dou
- School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Yang Xu
- Cancer Translational Medicine Research Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Zhenhe Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Han Xu
- School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Yi Zhang
- School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Yanming Xia
- Guangzhou National Laboratory, Guangzhou, 510320, China
| | - Ying Xue
- Hooke Laboratory, Changchun, 130033, China
| | - Hang Li
- Hooke Laboratory, Changchun, 130033, China
| | - Xiao Ma
- Hangzhou Branemagic Medical Technology Co. Ltd., Hangzhou, 310021, China
| | | | - Huan Wang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengzhou Ma
- School of Integrated Circuits, Peking University, Beijing, 100871, China
- Hangzhou Branemagic Medical Technology Co. Ltd., Hangzhou, 310021, China
| | - Qi Wang
- Cancer Translational Medicine Research Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Bei Li
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wang
- School of Integrated Circuits, Peking University, Beijing, 100871, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
| |
Collapse
|
5
|
Liu X, Chang Z, Sun P, Cao B, Wang Y, Fang J, Pei Y, Chen B, Zou W. MONITTR allows real-time imaging of transcription and endogenous proteins in C. elegans. J Cell Biol 2025; 224:e202403198. [PMID: 39400293 PMCID: PMC11473600 DOI: 10.1083/jcb.202403198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
Maximizing cell survival under stress requires rapid and transient adjustments of RNA and protein synthesis. However, capturing these dynamic changes at both single-cell level and across an organism has been challenging. Here, we developed a system named MONITTR (MS2-embedded mCherry-based monitoring of transcription) for real-time simultaneous measurement of nascent transcripts and endogenous protein levels in C. elegans. Utilizing this system, we monitored the transcriptional bursting of fasting-induced genes and found that the epidermis responds to fasting by modulating the proportion of actively transcribing nuclei and transcriptional kinetics of individual alleles. Additionally, our findings revealed the essential roles of the transcription factors NHR-49 and HLH-30 in governing the transcriptional kinetics of fasting-induced genes under fasting. Furthermore, we tracked transcriptional dynamics during heat-shock response and ER unfolded protein response and observed rapid changes in the level of nascent transcripts under stress conditions. Collectively, our study provides a foundation for quantitatively investigating how animals spatiotemporally modulate transcription in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiaofan Liu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Zhi Chang
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Pingping Sun
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Beibei Cao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Yuzhi Wang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Jie Fang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yechun Pei
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Baohui Chen
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Akaree N, Secco V, Levy-Adam F, Younis A, Carra S, Shalgi R. Regulation of physiological and pathological condensates by molecular chaperones. FEBS J 2025. [PMID: 39756021 DOI: 10.1111/febs.17390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/17/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Biomolecular condensates are dynamic membraneless compartments that regulate a myriad of cellular functions. A particular type of physiological condensate called stress granules (SGs) has gained increasing interest due to its role in the cellular stress response and various diseases. SGs, composed of several hundred RNA-binding proteins, form transiently in response to stress to protect mRNAs from translation and disassemble when the stress subsides. Interestingly, SGs contain several aggregation-prone proteins, such as TDP-43, FUS, hnRNPA1, and others, which are typically found in pathological inclusions seen in autopsy tissues from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients. Moreover, mutations in these genes lead to the familial form of ALS and FTD. This has led researchers to propose that pathological aggregation is seeded by aberrant SGs: SGs that fail to properly disassemble, lose their dynamic properties, and become pathological condensates which finally 'mature' into aggregates. Here, we discuss the evidence supporting this model for various ALS/FTD-associated proteins. We further continue to focus on molecular chaperone-mediated regulation of ALS/FTD-associated physiological condensates on one hand, and pathological condensates on the other. In addition to SGs, we review ALS/FTD-relevant nuclear condensates, namely paraspeckles, anisosomes, and nucleolar amyloid bodies, and discuss their emerging regulation by chaperones. As the majority of chaperoning mechanisms regulate physiological condensate disassembly, we highlight parallel themes of physiological and pathological condensation regulation across different chaperone families, underscoring the potential for early disease intervention.
Collapse
Affiliation(s)
- Nadeen Akaree
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Flonia Levy-Adam
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amal Younis
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Reut Shalgi
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
7
|
Brewis HT, Stirling PC, Kobor MS. Characterizing the regulatory effects of H2A.Z and SWR1-C on gene expression during hydroxyurea exposure in Saccharomyces cerevisiae. PLoS Genet 2025; 21:e1011566. [PMID: 39836664 PMCID: PMC11761084 DOI: 10.1371/journal.pgen.1011566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/24/2025] [Accepted: 01/06/2025] [Indexed: 01/23/2025] Open
Abstract
Chromatin structure and DNA accessibility are partly modulated by the incorporation of histone variants. H2A.Z, encoded by the non-essential HTZ1 gene in S. cerevisiae, is an evolutionarily conserved H2A histone variant that is predominantly incorporated at transcription start sites by the SWR1-complex (SWR1-C). While H2A.Z has often been implicated in transcription regulation, htz1Δ mutants exhibit minimal changes in gene expression compared to wild-type. However, given that growth defects of htz1Δ mutants are alleviated by simultaneous deletion of SWR1-C subunits, previous work examining the role of H2A.Z in gene expression regulation may be confounded by deleterious activity caused by SWR1-C when missing its H2A.Z substrate (apo-SWR1-C). Furthermore, as H2A.Z mutants only display significant growth defects in genotoxic stress conditions, a more substantive role for H2A.Z in gene expression may only be uncovered after exposure to cellular stress. To explore this possibility, we generated mRNA transcript profiles for wild-type, htz1Δ, swr1Δ, and htz1Δswr1Δ mutants before and after exposure to hydroxyurea (HU), which induces DNA replication stress. Our data showed that H2A.Z played a more prominent role in gene activation than repression during HU exposure, and its incorporation was important for proper upregulation of several HU-induced genes. We also observed that apo-SWR1-C contributed to gene expression defects in the htz1Δ mutant, particularly for genes involved in phosphate homeostasis regulation. Furthermore, mapping H2A.Z incorporation before and after treatment with HU revealed that decreases in H2A.Z enrichment at transcription start sites was correlated with, but generally not required for, the upregulation of genes during HU exposure. Together this study characterized the regulatory effects of H2A.Z incorporation during the transcriptional response to HU.
Collapse
Affiliation(s)
- Hilary T. Brewis
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter C. Stirling
- Department of Medical Genetics, Terry Fox Laboratory, BC Cancer Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael S. Kobor
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Duarte-Delgado D, Vogt I, Dadshani S, Léon J, Ballvora A. Expression interplay of genes coding for calcium-binding proteins and transcription factors during the osmotic phase provides insights on salt stress response mechanisms in bread wheat. PLANT MOLECULAR BIOLOGY 2024; 114:119. [PMID: 39485577 PMCID: PMC11530504 DOI: 10.1007/s11103-024-01523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024]
Abstract
Bread wheat is an important crop for the human diet, but the increasing soil salinization is reducing the yield. The Ca2+ signaling events at the early stages of the osmotic phase of salt stress are crucial for the acclimation response of the plants through the performance of calcium-sensing proteins, which activate or repress transcription factors (TFs) that affect the expression of downstream genes. Physiological, genetic mapping, and transcriptomics studies performed with the contrasting genotypes Syn86 (synthetic, salt-susceptible) and Zentos (elite cultivar, salt-tolerant) were integrated to gain a comprehensive understanding of the salt stress response. The MACE (Massive Analysis of cDNA 3'-Ends) based transcriptome analysis until 4 h after stress exposure revealed among the salt-responsive genes, the over-representation of genes coding for calcium-binding proteins. The functional and structural diversity within this category was studied and linked with the expression levels during the osmotic phase in the contrasting genotypes. The non-EF-hand category from calcium-binding proteins was found to be enriched for the susceptibility response. On the other side, the tolerant genotype was characterized by a faster and higher up-regulation of genes coding for proteins with EF-hand domain, such as RBOHD orthologs, and TF members. This study suggests that the interplay of calcium-binding proteins, WRKY, and AP2/ERF TF families in signaling pathways at the start of the osmotic phase can affect the expression of downstream genes. The identification of SNPs in promoter sequences and 3' -UTR regions provides insights into the molecular mechanisms controlling the differential expression of these genes through differential transcription factor binding affinity or altered mRNA stability.
Collapse
Affiliation(s)
- Diana Duarte-Delgado
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
- Research Group of Genetics of Agronomic Traits, Faculty of Agricultural Sciences, National University of Colombia, Bogotá, Colombia
- Bean Program, Crops for Nutrition and Health, Alliance Bioversity International & International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Inci Vogt
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| | - Said Dadshani
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| | - Jens Léon
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- INRES-Plant Breeding, University of Bonn, Bonn, Germany.
| |
Collapse
|
9
|
Hayward R, Moore S, Artun D, Madhavan A, Harte E, Torres-Pérez JV, Nagy I. Transcriptional reprogramming post-peripheral nerve injury: A systematic review. Neurobiol Dis 2024; 200:106624. [PMID: 39097036 DOI: 10.1016/j.nbd.2024.106624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
Neuropathic pain is characterised by periodic or continuous hyperalgesia, numbness, or allodynia, and results from insults to the somatosensory nervous system. Peripheral nerve injury induces transcriptional reprogramming in peripheral sensory neurons, contributing to increased spinal nociceptive input and the development of neuropathic pain. Effective treatment for neuropathic pain remains an unmet medical need as current therapeutics offer limited effectiveness and have undesirable effects. Understanding transcriptional changes in peripheral nerve injury-induced neuropathy might offer a path for novel analgesics. Our literature search identified 65 papers exploring transcriptomic changes post-peripheral nerve injury, many of which were conducted in animal models. We scrutinize their transcriptional changes data and conduct gene ontology enrichment analysis to reveal their common functional profile. Focusing on genes involved in 'sensory perception of pain' (GO:0019233), we identified transcriptional changes for different ion channels, receptors, and neurotransmitters, shedding light on its role in nociception. Examining peripheral sensory neurons subtype-specific transcriptional reprograming and regeneration-associated genes, we delved into downstream regulation of hypersensitivity. Identifying the temporal program of transcription regulatory mechanisms might help develop better therapeutics to target them effectively and selectively, thus preventing the development of neuropathic pain without affecting other physiological functions.
Collapse
Affiliation(s)
- R Hayward
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - S Moore
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - D Artun
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - A Madhavan
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - E Harte
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - J V Torres-Pérez
- Departament de Biologia Cel·lular, Biologia Funcional i Antropologia Física, Facultat de Ciències Biològiques, Universitat de València, C/Dr. Moliner 50, 46100 Burjassot, Spain.
| | - I Nagy
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK.
| |
Collapse
|
10
|
Sinha NK, McKenney C, Yeow ZY, Li JJ, Nam KH, Yaron-Barir TM, Johnson JL, Huntsman EM, Cantley LC, Ordureau A, Regot S, Green R. The ribotoxic stress response drives UV-mediated cell death. Cell 2024; 187:3652-3670.e40. [PMID: 38843833 PMCID: PMC11246228 DOI: 10.1016/j.cell.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/03/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024]
Abstract
While ultraviolet (UV) radiation damages DNA, eliciting the DNA damage response (DDR), it also damages RNA, triggering transcriptome-wide ribosomal collisions and eliciting a ribotoxic stress response (RSR). However, the relative contributions, timing, and regulation of these pathways in determining cell fate is unclear. Here we use time-resolved phosphoproteomic, chemical-genetic, single-cell imaging, and biochemical approaches to create a chronological atlas of signaling events activated in cells responding to UV damage. We discover that UV-induced apoptosis is mediated by the RSR kinase ZAK and not through the DDR. We identify two negative-feedback modules that regulate ZAK-mediated apoptosis: (1) GCN2 activation limits ribosomal collisions and attenuates ZAK-mediated RSR and (2) ZAK activity leads to phosphodegron autophosphorylation and its subsequent degradation. These events tune ZAK's activity to collision levels to establish regimes of homeostasis, tolerance, and death, revealing its key role as the cellular sentinel for nucleic acid damage.
Collapse
Affiliation(s)
- Niladri K Sinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Connor McKenney
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhong Y Yeow
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeffrey J Li
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ki Hong Nam
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tomer M Yaron-Barir
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Emily M Huntsman
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Sergi Regot
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
11
|
Umapathi P, Aggarwal A, Zahra F, Narayanan B, Zachara NE. The multifaceted role of intracellular glycosylation in cytoprotection and heart disease. J Biol Chem 2024; 300:107296. [PMID: 38641064 PMCID: PMC11126959 DOI: 10.1016/j.jbc.2024.107296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024] Open
Abstract
The modification of nuclear, cytoplasmic, and mitochondrial proteins by O-linked β-N-actylglucosamine (O-GlcNAc) is an essential posttranslational modification that is common in metozoans. O-GlcNAc is cycled on and off proteins in response to environmental and physiological stimuli impacting protein function, which, in turn, tunes pathways that include transcription, translation, proteostasis, signal transduction, and metabolism. One class of stimulus that induces rapid and dynamic changes to O-GlcNAc is cellular injury, resulting from environmental stress (for instance, heat shock), hypoxia/reoxygenation injury, ischemia reperfusion injury (heart attack, stroke, trauma hemorrhage), and sepsis. Acute elevation of O-GlcNAc before or after injury reduces apoptosis and necrosis, suggesting that injury-induced changes in O-GlcNAcylation regulate cell fate decisions. However, prolonged elevation or reduction in O-GlcNAc leads to a maladaptive response and is associated with pathologies such as hypertrophy and heart failure. In this review, we discuss the impact of O-GlcNAc in both acute and prolonged models of injury with a focus on the heart and biological mechanisms that underpin cell survival.
Collapse
Affiliation(s)
- Priya Umapathi
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Akanksha Aggarwal
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fiddia Zahra
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bhargavi Narayanan
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
12
|
Ying S, Webster B, Gomez-Cano L, Shivaiah KK, Wang Q, Newton L, Grotewold E, Thompson A, Lundquist PK. Multiscale physiological responses to nitrogen supplementation of maize hybrids. PLANT PHYSIOLOGY 2024; 195:879-899. [PMID: 37925649 PMCID: PMC11060684 DOI: 10.1093/plphys/kiad583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/15/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Maize (Zea mays) production systems are heavily reliant on the provision of managed inputs such as fertilizers to maximize growth and yield. Hence, the effective use of nitrogen (N) fertilizer is crucial to minimize the associated financial and environmental costs, as well as maximize yield. However, how to effectively utilize N inputs for increased grain yields remains a substantial challenge for maize growers that requires a deeper understanding of the underlying physiological responses to N fertilizer application. We report a multiscale investigation of five field-grown maize hybrids under low or high N supplementation regimes that includes the quantification of phenolic and prenyl-lipid compounds, cellular ultrastructural features, and gene expression traits at three developmental stages of growth. Our results reveal that maize perceives the lack of supplemented N as a stress and, when provided with additional N, will prolong vegetative growth. However, the manifestation of the stress and responses to N supplementation are highly hybrid-specific. Eight genes were differentially expressed in leaves in response to N supplementation in all tested hybrids and at all developmental stages. These genes represent potential biomarkers of N status and include two isoforms of Thiamine Thiazole Synthase involved in vitamin B1 biosynthesis. Our results uncover a detailed view of the physiological responses of maize hybrids to N supplementation in field conditions that provides insight into the interactions between management practices and the genetic diversity within maize.
Collapse
Affiliation(s)
- Sheng Ying
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Brandon Webster
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Lina Gomez-Cano
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Kiran-Kumar Shivaiah
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Qianjie Wang
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Linsey Newton
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Erich Grotewold
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Addie Thompson
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Peter K Lundquist
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
13
|
Huertas-Abril PV, Jurado J, Prieto-Álamo MJ, García-Barrera T, Abril N. Proteomic analysis of the hepatic response to a pollutant mixture in mice. The protective action of selenium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166558. [PMID: 37633382 DOI: 10.1016/j.scitotenv.2023.166558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Metals and pharmaceuticals contaminate water and food worldwide, forming mixtures where they can interact to enhance their individual toxicity. Here we use a shotgun proteomic approach to evaluate the toxicity of a pollutant mixture (PM) of metals (As, Cd, Hg) and pharmaceuticals (diclofenac, flumequine) on mice liver proteostasis. These pollutants are abundant in the environment, accumulate in the food chain, and are toxic to humans primarily through oxidative damage. Thus, we also evaluated the putative antagonistic effect of low-dose dietary supplementation with the antioxidant trace element selenium. A total of 275 proteins were affected by PM treatment. Functional analyses revealed an increased abundance of proteins involved in the integrated stress response that promotes translation, the inflammatory response, carbohydrate and lipid metabolism, and the sustained expression of the antioxidative response mediated by NRF2. As a consequence, a reductive stress situation arises in the cell that inhibits the RICTOR pathway, thus activating the early stage of autophagy, impairing xenobiotic metabolism, and potentiating lipid biosynthesis and steatosis. PM exposure-induced hepato-proteostatic alterations were significantly reduced in Se supplemented mice, suggesting that the use of this trace element as a dietary supplement may at least partially ameliorate liver damage caused by exposure to environmental mixtures.
Collapse
Affiliation(s)
- Paula V Huertas-Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Juan Jurado
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - María-José Prieto-Álamo
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Tamara García-Barrera
- Research Center of Natural Resources, Health, and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, Campus El Carmen, University of Huelva, Fuerzas Armadas Ave., 21007 Huelva, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain.
| |
Collapse
|
14
|
Harris MT, Marr MT. The intrinsically disordered region of eIF5B stimulates IRES usage and nucleates biological granule formation. Cell Rep 2023; 42:113283. [PMID: 37862172 PMCID: PMC10680144 DOI: 10.1016/j.celrep.2023.113283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 03/22/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023] Open
Abstract
Cells activate stress response pathways to survive adverse conditions. Such responses involve the inhibition of global cap-dependent translation. This inhibition is a block that essential transcripts must escape via alternative methods of translation initiation, e.g., an internal ribosome entry site (IRES). IRESs have distinct structures and generally require a limited repertoire of translation factors. Cellular IRESs have been identified in many critical cellular stress response transcripts. We previously identified cellular IRESs in the murine insulin receptor (Insr) and insulin-like growth factor 1 receptor (Igf1r) transcripts and demonstrated their resistance to eukaryotic initiation factor 4F (eIF4F) inhibition. Here, we find that eIF5B preferentially promotes Insr, Igf1r, and hepatitis C virus IRES activity through a non-canonical mechanism that requires its highly charged and disordered N terminus. We find that the N-terminal region of eIF5B can drive cytoplasmic granule formation. This eIF5B granule is triggered by cellular stress and is sufficient to specifically promote IRES activity.
Collapse
Affiliation(s)
- Meghan T Harris
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA
| | - Michael T Marr
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA.
| |
Collapse
|
15
|
Vardar Acar N, Özgül RK. A big picture of the mitochondria-mediated signals: From mitochondria to organism. Biochem Biophys Res Commun 2023; 678:45-61. [PMID: 37619311 DOI: 10.1016/j.bbrc.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Mitochondria, well-known for years as the powerhouse and biosynthetic center of the cell, are dynamic signaling organelles beyond their energy production and biosynthesis functions. The metabolic functions of mitochondria, playing an important role in various biological events both in physiological and stress conditions, transform them into important cellular stress sensors. Mitochondria constantly communicate with the rest of the cell and even from other cells to the organism, transmitting stress signals including oxidative and reductive stress or adaptive signals such as mitohormesis. Mitochondrial signal transduction has a vital function in regulating integrity of human genome, organelles, cells, and ultimately organism.
Collapse
Affiliation(s)
- Neşe Vardar Acar
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - R Köksal Özgül
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
16
|
Barros GC, Guerrero S, Silva GM. The central role of translation elongation in response to stress. Biochem Soc Trans 2023; 51:959-969. [PMID: 37318088 PMCID: PMC11160351 DOI: 10.1042/bst20220584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Protein synthesis is essential to support homeostasis, and thus, must be highly regulated during cellular response to harmful environments. All stages of translation are susceptible to regulation under stress, however, the mechanisms involved in translation regulation beyond initiation have only begun to be elucidated. Methodological advances enabled critical discoveries on the control of translation elongation, highlighting its important role in translation repression and the synthesis of stress-response proteins. In this article, we discuss recent findings on mechanisms of elongation control mediated by ribosome pausing and collisions and the availability of tRNAs and elongation factors. We also discuss how elongation intersects with distinct modes of translation control, further supporting cellular viability and gene expression reprogramming. Finally, we highlight how several of these pathways are reversibly regulated, emphasizing the dynamics of translation control during stress-response progression. A comprehensive understanding of translation regulation under stress will produce fundamental knowledge of protein dynamics while opening new avenues and strategies to overcome dysregulated protein production and cellular sensitivity to stress.
Collapse
Affiliation(s)
| | | | - Gustavo M. Silva
- Department of Biology, Duke University, Durham, NC, USA
- Lead contact
| |
Collapse
|
17
|
Rajan RG, Krutilina RI, Ignatova TN, Pavicevich ZS, Dulatova GM, Lane MA, Chatterjee AR, Rooney RJ, Antony M, Hagerty VR, Kukekov NV, Hanafy KA, Vrionis FD. Upregulation of the Oct3/4 Network in Basal Breast Cancer Is Associated with Its Metastatic Potential and Shows Tissue Dependent Variability. Int J Mol Sci 2023; 24:ijms24119142. [PMID: 37298091 DOI: 10.3390/ijms24119142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023] Open
Abstract
Adaptive plasticity of Breast Cancer stem cells (BCSCs) is strongly correlated with cancer progression and resistance, leading to a poor prognosis. In this study, we report the expression profile of several pioneer transcription factors of the Oct3/4 network associated with tumor initiation and metastasis. In the triple negative breast cancer cell line (MDA-MB-231) stably transfected with human Oct3/4-GFP, differentially expressed genes (DEGs) were identified using qPCR and microarray, and the resistance to paclitaxel was assessed using an MTS assay. The tumor-seeding potential in immunocompromised (NOD-SCID) mice and DEGs in the tumors were also assessed along with the intra-tumor (CD44+/CD24-) expression using flow cytometry. Unlike 2-D cultures, the Oct3/4-GFP expression was homogenous and stable in 3-D mammospheres developed from BCSCs. A total of 25 DEGs including Gata6, FoxA2, Sall4, Zic2, H2afJ, Stc1 and Bmi1 were identified in Oct3/4 activated cells coupled with a significantly increased resistance to paclitaxel. In mice, the higher Oct3/4 expression in tumors correlated with enhanced tumorigenic potential and aggressive growth, with metastatic lesions showing a >5-fold upregulation of DEGs compared to orthotopic tumors and variability in different tissues with the highest modulation in the brain. Serially re-implanting tumors in mice as a model of recurrence and metastasis highlighted the sustained upregulation of Sall4, c-Myc, Mmp1, Mmp9 and Dkk1 genes in metastatic lesions with a 2-fold higher expression of stem cell markers (CD44+/CD24-). Thus, Oct3/4 transcriptome may drive the differentiation and maintenance of BCSCs, promoting their tumorigenic potential, metastasis and resistance to drugs such as paclitaxel with tissue-specific heterogeneity.
Collapse
Affiliation(s)
- Robin G Rajan
- Helene and Stephen Weicholz Cell Therapy Laboratory, Marcus Neuroscience Institute, 800 Meadows Road, Boca Raton, FL 33486, USA
| | - Raisa I Krutilina
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee Health Sciences Center, 920 Madison Ave., Memphis, TN 38163, USA
| | - Tatyana N Ignatova
- Helene and Stephen Weicholz Cell Therapy Laboratory, Marcus Neuroscience Institute, 800 Meadows Road, Boca Raton, FL 33486, USA
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee Health Sciences Center, 920 Madison Ave., Memphis, TN 38163, USA
| | - Zoran S Pavicevich
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee Health Sciences Center, 920 Madison Ave., Memphis, TN 38163, USA
| | - Galina M Dulatova
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee Health Sciences Center, 920 Madison Ave., Memphis, TN 38163, USA
| | - Maria A Lane
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee Health Sciences Center, 920 Madison Ave., Memphis, TN 38163, USA
| | - Arindam R Chatterjee
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee Health Sciences Center, 920 Madison Ave., Memphis, TN 38163, USA
- Mallinckrodt Institute of Radiology, Departments of Neurosurgery and Neurology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Robert J Rooney
- Le-Bonheur Children's Outpatient Hospital, 51 N Dunlap St., Memphis, TN 38105, USA
| | - Mymoon Antony
- Wellington Regional Medical Center, 10101 Forest Hill Blvd, Wellington, FL 33414, USA
| | - Vivian R Hagerty
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | - Nickolay V Kukekov
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee Health Sciences Center, 920 Madison Ave., Memphis, TN 38163, USA
| | - Khalid A Hanafy
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | - Frank D Vrionis
- Helene and Stephen Weicholz Cell Therapy Laboratory, Marcus Neuroscience Institute, 800 Meadows Road, Boca Raton, FL 33486, USA
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| |
Collapse
|
18
|
Hamouzová K, Sen MK, Bharati R, Košnarová P, Chawdhery MRA, Roy A, Soukup J. Calcium signalling in weeds under herbicide stress: An outlook. FRONTIERS IN PLANT SCIENCE 2023; 14:1135845. [PMID: 37035053 PMCID: PMC10080077 DOI: 10.3389/fpls.2023.1135845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
The continuous use of herbicides for controlling weeds has led to the evolution of resistance to all major herbicidal modes of action globally. Every year, new cases of herbicide resistance are reported. Resistance is still in progress in many species, which must be stopped before it becomes a worldwide concern. Several herbicides are known to cause stressful conditions that resemble plant abiotic stresses. Variation in intracellular calcium (Ca2+) concentration is a primary event in a wide range of biological processes in plants, including adaptation to various biotic and abiotic stresses. Ca2+ acts as a secondary messenger, connecting various environmental stimuli to different biological processes, especially during stress rejoindering in plants. Even though many studies involving Ca2+ signalling in plants have been published, there have been no studies on the roles of Ca2+ signalling in herbicide stress response. Hence, this mini-review will highlight the possible sensing and molecular communication via Ca2+ signals in weeds under herbicide stress. It will also discuss some critical points regarding integrating the sensing mechanisms of multiple stress conditions and subsequent molecular communication. These signalling responses must be addressed in the future, enabling researchers to discover new herbicidal targets.
Collapse
Affiliation(s)
- Katerina Hamouzová
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Madhab Kumar Sen
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Excellent Team for Mitigation (E.T.M.), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Rohit Bharati
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Pavlína Košnarová
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Md Rafique Ahasan Chawdhery
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Amit Roy
- Excellent Team for Mitigation (E.T.M.), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Josef Soukup
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
19
|
The Nuclear Transporter Importin 13 Can Regulate Stress-Induced Cell Death through the Clusterin/KU70 Axis. Cells 2023; 12:cells12020279. [PMID: 36672214 PMCID: PMC9857240 DOI: 10.3390/cells12020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
The cellular response to environmental stresses, such as heat and oxidative stress, is dependent on extensive trafficking of stress-signalling molecules between the cytoplasm and nucleus, which potentiates stress-activated signalling pathways, eventually resulting in cell repair or death. Although Ran-dependent nucleocytoplasmic transport mediated by members of the importin (IPO) super family of nuclear transporters is believed to be responsible for nearly all macromolecular transit between nucleus and cytoplasm, it is paradoxically known to be significantly impaired under conditions of stress. Importin 13 (IPO13) is a unique bidirectional transporter that binds to and releases cargo in a Ran-dependent manner, but in some cases, cargo release from IPO13 is affected by loading of another cargo. To investigate IPO13's role in stress-activated pathways, we performed cell-based screens to identify a multitude of binding partners of IPO13 from human brain, lung, and testes. Analysis of the IPO13 interactome intriguingly indicated more than half of the candidate binding partners to be annotated for roles in stress responses; these included the pro-apoptotic protein nuclear clusterin (nCLU), as well as the nCLU-interacting DNA repair protein KU70. Here, we show, for the first time, that unlike other IPOs which are mislocalised and non-functional, IPO13 continues to translocate between the nucleus and cytoplasm under stress, retaining the capacity to import certain cargoes, such as nCLU, but not export others, such as KU70, as shown by analysis using fluorescence recovery after photobleaching. Importantly, depletion of IPO13 reduces stress-induced import of nCLU and protects against stress-induced cell death, with concomitant protection from DNA damage during stress. Overexpression/FACS experiments demonstrate that nCLU is dependent on IPO13 to trigger stress-induced cell death via apoptosis. Taken together, these results implicate IPO13 as a novel functional nuclear transporter in cellular stress, with a key role thereby in cell fate decision.
Collapse
|
20
|
Fu R, Jiang X, Li G, Zhu Y, Zhang H. Junctional complexes in epithelial cells: sentinels for extracellular insults and intracellular homeostasis. FEBS J 2022; 289:7314-7333. [PMID: 34453866 DOI: 10.1111/febs.16174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 01/13/2023]
Abstract
The cell-cell and cell-ECM junctions within the epithelial tissues are crucial anchoring structures that provide architectural stability, mechanical resistance, and permeability control. Their indispensable role as signaling hubs orchestrating cell shape-related changes such as proliferation, differentiation, migration, and apoptosis has also been well recognized. However, growing amount of evidence now suggests that the multitasking nature of epithelial junctions extends well beyond anchorage-dependent or cell shape change-related biological processes. In this review, we discuss the emerging roles of junctional complexes in regulating innate immune defense, stress resistance, and intracellular proteostasis of the epithelial cells, with emphasis on the upstream regulation of epithelial junctions on various aspects of the epithelial barrier.
Collapse
Affiliation(s)
- Rong Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Xiaowan Jiang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Gang Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Yi Zhu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Huimin Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| |
Collapse
|
21
|
Roos-Mattjus P, Sistonen L. Interplay between mammalian heat shock factors 1 and 2 in physiology and pathology. FEBS J 2022; 289:7710-7725. [PMID: 34478606 DOI: 10.1111/febs.16178] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/17/2021] [Accepted: 09/02/2021] [Indexed: 01/14/2023]
Abstract
The heat-shock factors (HSFs) belong to an evolutionary conserved family of transcription factors that were discovered already over 30 years ago. The HSFs have been shown to a have a broad repertoire of target genes, and they also have crucial functions during normal development. Importantly, HSFs have been linked to several disease states, such as neurodegenerative disorders and cancer, highlighting their importance in physiology and pathology. However, it is still unclear how HSFs are regulated and how they choose their specific target genes under different conditions. Posttranslational modifications and interplay among the HSF family members have been shown to be key regulatory mechanisms for these transcription factors. In this review, we focus on the mammalian HSF1 and HSF2, including their interplay, and provide an updated overview of the advances in understanding how HSFs are regulated and how they function in multiple processes of development, aging, and disease. We also discuss HSFs as therapeutic targets, especially the recently reported HSF1 inhibitors.
Collapse
Affiliation(s)
- Pia Roos-Mattjus
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Lea Sistonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| |
Collapse
|
22
|
Cruz-Lorenzo E, Ramirez NGP, Lee J, Pandhe S, Wang L, Hernandez-Doria J, Spivak AM, Planelles V, Petersen T, Jain MK, Martinez ED, D’Orso I. Host Cell Redox Alterations Promote Latent HIV-1 Reactivation through Atypical Transcription Factor Cooperativity. Viruses 2022; 14:v14102288. [PMID: 36298843 PMCID: PMC9612055 DOI: 10.3390/v14102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Immune cell state alterations rewire HIV-1 gene expression, thereby influencing viral latency and reactivation, but the mechanisms are still unfolding. Here, using a screen approach on CD4+ T cell models of HIV-1 latency, we revealed Small Molecule Reactivators (SMOREs) with unique chemistries altering the CD4+ T cell state and consequently promoting latent HIV-1 transcription and reactivation through an unprecedented mechanism of action. SMOREs triggered rapid oxidative stress and activated a redox-responsive program composed of cell-signaling kinases (MEK-ERK axis) and atypical transcription factor (AP-1 and HIF-1α) cooperativity. SMOREs induced an unusual AP-1 phosphorylation signature to promote AP-1/HIF-1α binding to the latent HIV-1 proviral genome for its activation. Consistently, latent HIV-1 reactivation was compromised with pharmacologic inhibition of oxidative stress sensing or of cell-signaling kinases, and transcription factor’s loss of expression, thus functionally linking the host redox-responsive program to viral transcriptional rewiring. Notably, SMOREs induced the redox program in primary CD4+ T cells and reactivated latent HIV-1 in aviremic patient samples alone and in combination with known latency-reversing agents, thus providing physiological relevance. Our findings suggest that manipulation of redox-sensitive pathways could be exploited to alter the course of HIV-1 latency, thus rendering host cells responsive to help achieve a sterilizing cure.
Collapse
Affiliation(s)
- Emily Cruz-Lorenzo
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nora-Guadalupe P. Ramirez
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeon Lee
- Lydia Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sonali Pandhe
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Wang
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juan Hernandez-Doria
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam M. Spivak
- Division of Infectious Diseases, Department of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Vicente Planelles
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Tianna Petersen
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mamta K. Jain
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Parkland Health & Hospital System, 5200 Harry Hines Blvd, Dallas, TX 75235, USA
| | - Elisabeth D. Martinez
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Iván D’Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
23
|
Wang D, Shalamberidze A, Arguello AE, Purse BW, Kleiner RE. Live-Cell RNA Imaging with Metabolically Incorporated Fluorescent Nucleosides. J Am Chem Soc 2022; 144:14647-14656. [PMID: 35930766 PMCID: PMC9940818 DOI: 10.1021/jacs.2c04142] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescence imaging is a powerful method for probing macromolecular dynamics in biological systems; however, approaches for cellular RNA imaging are limited to the investigation of individual RNA constructs or bulk RNA labeling methods compatible primarily with fixed samples. Here, we develop a platform for fluorescence imaging of bulk RNA dynamics in living cells. We show that fluorescent bicyclic and tricyclic cytidine analogues can be metabolically incorporated into cellular RNA by overexpression of uridine-cytidine kinase 2. In particular, metabolic feeding with the tricyclic cytidine-derived nucleoside tC combined with confocal imaging enables the investigation of RNA synthesis, degradation, and trafficking at single-cell resolution. We apply our imaging modality to study RNA metabolism and localization during the oxidative stress response and find that bulk RNA turnover is greatly accelerated upon NaAsO2 treatment. Furthermore, we identify cytoplasmic RNA granules containing RNA transcripts generated during oxidative stress that are distinct from canonical stress granules and P-bodies and co-localize with the RNA helicase DDX6. Taken together, our work provides a powerful approach for live-cell RNA imaging and reveals how cells reshape RNA transcriptome dynamics in response to oxidative stress.
Collapse
Affiliation(s)
- Danyang Wang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Ana Shalamberidze
- Department of Chemistry and Biochemistry and the Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | | | - Byron W. Purse
- Department of Chemistry and Biochemistry and the Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
24
|
Li Z, Liu S, Zhu T, An X, Wei X, Zhang J, Wu S, Dong Z, Long Y, Wan X. The Loss-Function of the Male Sterile Gene ZmMs33/ZmGPAT6 Results in Severely Oxidative Stress and Metabolic Disorder in Maize Anthers. Cells 2022; 11:cells11152318. [PMID: 35954161 PMCID: PMC9367433 DOI: 10.3390/cells11152318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
In plants, oxidative stress and metabolic reprogramming frequently induce male sterility, however our knowledge of the underlying molecular mechanism is far from complete. Here, a maize genic male-sterility (GMS) mutant (ms33-6038) with a loss-of-function of the ZmMs33 gene encoding glycerol-3-phosphate acyltransferase 6 (GPAT6) displayed severe deficiencies in the development of a four-layer anther wall and microspores and excessive reactive oxygen species (ROS) content in anthers. In ms33-6038 anthers, transcriptome analysis identified thousands of differentially expressed genes that were functionally enriched in stress response and primary metabolism pathways. Further investigation revealed that 64 genes involved in ROS production, scavenging, and signaling were specifically changed in expression levels in ms33-6038 anthers compared to the other five investigated GMS lines. The severe oxidative stress triggered premature tapetal autophagy and metabolic reprogramming mediated mainly by the activated SnRK1-bZIP pathway, as well as the TOR and PP2AC pathways, proven by transcriptome analysis. Furthermore, 20 reported maize GMS genes were altered in expression levels in ms33-6038 anthers. The excessive oxidative stress and the metabolic reprogramming resulted in severe phenotypic deficiencies in ms33-6038 anthers. These findings enrich our understanding of the molecular mechanisms by which ROS and metabolic homeostasis impair anther and pollen development in plants.
Collapse
Affiliation(s)
- Ziwen Li
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
| | - Shuangshuang Liu
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| | - Taotao Zhu
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
| | - Xueli An
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| | - Xun Wei
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
| | - Juan Zhang
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
| | - Suowei Wu
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| | - Zhenying Dong
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
| | - Yan Long
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
- Correspondence: (Y.L.); (X.W.); Tel.: +86-158-1133-2686 (Y.L.); +86-186-0056-1850 (X.W.)
| | - Xiangyuan Wan
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
- Correspondence: (Y.L.); (X.W.); Tel.: +86-158-1133-2686 (Y.L.); +86-186-0056-1850 (X.W.)
| |
Collapse
|
25
|
Liang X, Brooks MJ, Swaroop A. Developmental genome-wide occupancy analysis of bZIP transcription factor NRL uncovers the role of c-Jun in early differentiation of rod photoreceptors in the mammalian retina. Hum Mol Genet 2022; 31:3914-3933. [PMID: 35776116 DOI: 10.1093/hmg/ddac143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/12/2022] Open
Abstract
The basic motif-leucine zipper (bZIP) transcription factor NRL determines rod photoreceptor cell fate during retinal development, and its loss leads to cone-only retina in mice. NRL works synergistically with homeodomain protein CRX and other regulatory factors to control the transcription of most genes associated with rod morphogenesis and functional maturation, which span over a period of several weeks in the mammalian retina. We predicted that NRL gradually establishes rod cell identity and function by temporal and dynamic regulation of stage-specific transcriptional targets. Therefore, we mapped the genomic occupancy of NRL at four stages of mouse photoreceptor differentiation by CUT&RUN analysis. Dynamics of NRL-binding revealed concordance with the corresponding changes in transcriptome of the developing rods. Notably, we identified c-Jun proto-oncogene as one of the targets of NRL, which could bind to specific cis-elements in the c-Jun promoter and modulate its activity in HEK293 cells. Coimmunoprecipitation studies showed association of NRL with c-Jun, also a bZIP protein, in transfected cells as well as in developing mouse retina. Additionally, shRNA-mediated knockdown of c-Jun in the mouse retina in vivo resulted in altered expression of almost 1000 genes, with reduced expression of phototransduction genes and many direct targets of NRL in rod photoreceptors. We propose that c-Jun-NRL heterodimers prime the NRL-directed transcriptional program in neonatal rod photoreceptors before high NRL expression suppresses c-Jun at later stages. Our study highlights a broader cooperation among cell-type restricted and widely expressed bZIP proteins, such as c-Jun, in specific spatiotemporal contexts during cellular differentiation.
Collapse
Affiliation(s)
- Xulong Liang
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, USA
| | - Matthew J Brooks
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Himanen SV, Puustinen MC, Da Silva AJ, Vihervaara A, Sistonen L. HSFs drive transcription of distinct genes and enhancers during oxidative stress and heat shock. Nucleic Acids Res 2022; 50:6102-6115. [PMID: 35687139 PMCID: PMC9226494 DOI: 10.1093/nar/gkac493] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Reprogramming of transcription is critical for the survival under cellular stress. Heat shock has provided an excellent model to investigate nascent transcription in stressed cells, but the molecular mechanisms orchestrating RNA synthesis during other types of stress are unknown. We utilized PRO-seq and ChIP-seq to study how Heat Shock Factors, HSF1 and HSF2, coordinate transcription at genes and enhancers upon oxidative stress and heat shock. We show that pause-release of RNA polymerase II (Pol II) is a universal mechanism regulating gene transcription in stressed cells, while enhancers are activated at the level of Pol II recruitment. Moreover, besides functioning as conventional promoter-binding transcription factors, HSF1 and HSF2 bind to stress-induced enhancers to trigger Pol II pause-release from poised gene promoters. Importantly, HSFs act at distinct genes and enhancers in a stress type-specific manner. HSF1 binds to many chaperone genes upon oxidative and heat stress but activates them only in heat-shocked cells. Under oxidative stress, HSF1 localizes to a unique set of promoters and enhancers to trans-activate oxidative stress-specific genes. Taken together, we show that HSFs function as multi-stress-responsive factors that activate distinct genes and enhancers when encountering changes in temperature and redox state.
Collapse
Affiliation(s)
- Samu V Himanen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Mikael C Puustinen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Alejandro J Da Silva
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Anniina Vihervaara
- Department of Gene Technology, Science for Life Laboratory, KTH Royal Institute of Technology, 17165 Stockholm, Sweden
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
27
|
Rosa-Mercado NA, Steitz JA. Who let the DoGs out? - biogenesis of stress-induced readthrough transcripts. Trends Biochem Sci 2022; 47:206-217. [PMID: 34489151 PMCID: PMC8840951 DOI: 10.1016/j.tibs.2021.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 01/22/2023]
Abstract
Readthrough transcription caused by inefficient 3'-end cleavage of nascent mRNAs has emerged as a hallmark of the mammalian cellular stress response and results in the production of long noncoding RNAs known as downstream-of-gene (DoG)-containing transcripts. DoGs arise from around 10% of human protein-coding genes and are retained in the nucleus. They are produced minutes after cell exposure to stress and can be detected hours after stress removal. However, their biogenesis and the role(s) that DoGs or their production play in the cellular stress response are incompletely understood. We discuss findings that implicate host and viral proteins in the mechanisms underlying DoG production, as well as the transcriptional landscapes that accompany DoG induction under different stress conditions.
Collapse
Affiliation(s)
- Nicolle A Rosa-Mercado
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
28
|
Shen J, Yang C, Zhang MS, Chin DWC, Chan FF, Law CT, Wang G, Cheng CLH, Chen M, Wan RTC, Wu M, Kuang Z, Sharma R, Lee TKW, Ng IOL, Wong CCL, Wong CM. Histone chaperone FACT complex coordinates with HIF to mediate an expeditious transcription program to adapt to poorly oxygenated cancers. Cell Rep 2022; 38:110304. [PMID: 35108543 DOI: 10.1016/j.celrep.2022.110304] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 11/16/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer cells adapt to hypoxia through HIFs (hypoxia-inducible factors), which initiate the transcription of numerous genes for cancer cell survival in the hypoxia microenvironment. In this study, we find that the FACT (facilitates chromatin transcription) complex works cooperatively with HIFs to facilitate the expeditious expression of HIF targets for hypoxia adaptation. Knockout (KO) of the FACT complex abolishes HIF-mediated transcription by impeding transcription elongation in hypoxic cancer cells. Interestingly, the FACT complex is post-translationally regulated by PHD/VHL-mediated hydroxylation and proteasomal degradation, in similar fashion to HIF-1/2α. Metabolic tracing confirms that FACT KO suppresses glycolytic flux and impairs lactate extrusion, leading to intracellular acidification and apoptosis in cancer cells. Therapeutically, hepatic artery ligation and anti-angiogenic inhibitors adversely induce intratumoral hypoxia, while co-treatment with FACT inhibitor curaxin remarkably hinders the growth of hypoxic tumors. In summary, our findings suggest that the FACT complex is a critical component of hypoxia adaptation and a therapeutic target for hypoxic tumors.
Collapse
Affiliation(s)
- Jialing Shen
- State Key Laboratory of Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Chunxue Yang
- State Key Laboratory of Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Misty Shuo Zhang
- State Key Laboratory of Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Don Wai-Ching Chin
- State Key Laboratory of Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - For-Fan Chan
- State Key Laboratory of Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Cheuk-Ting Law
- State Key Laboratory of Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Gengchao Wang
- State Key Laboratory of Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Carol Lai-Hung Cheng
- State Key Laboratory of Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Mengnuo Chen
- State Key Laboratory of Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Rebecca Ting-Chi Wan
- State Key Laboratory of Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Mengjie Wu
- State Key Laboratory of Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zhijian Kuang
- State Key Laboratory of Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Rakesh Sharma
- Proteomic and Metabolic Core Facility, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Irene Oi-Lin Ng
- State Key Laboratory of Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Carmen Chak-Lui Wong
- State Key Laboratory of Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| | - Chun-Ming Wong
- State Key Laboratory of Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
29
|
Transcriptional Reprogramming in Rumen Epithelium during the Developmental Transition of Pre-Ruminant to the Ruminant in Cattle. Animals (Basel) 2021; 11:ani11102870. [PMID: 34679891 PMCID: PMC8532853 DOI: 10.3390/ani11102870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary The rumen is the critical organ mediating nutrient uptake and use in cattle. Health development is essential to ensure animal feed efficiency. In this report, we present an analysis of gene expression dynamic in rumen epithelium during the transition from pre-ruminant to ruminant in cattle fed with hay or concentrated diets at weaning. The global shifts in gene expression and correlated transcription factors activities indicate transcriptional reprogramming during weaning. Transcriptional reprogramming in rumen epithelial tissue reflects critical nutrient-gene interactions occurring during the developmental progression. The results unveiled that nutrient-gene interactions compel transcriptional reprogramming. Our findings also suggest that this transcriptional reprogramming is the molecular basis of the transitional development of pre-ruminant to the ruminant in cattle. Abstract We present an analysis of transcriptomic dynamics in rumen epithelium of 18 Holstein calves during the transition from pre-rumination to rumination in cattle-fed hay or concentrated diets at weaning. Three calves each were euthanized at 14 and 42 d of age to exemplify preweaning, and six calves each were provided diets of either milk replacer and grass hay or calf starter to introduce weaning. The two distinct phases of rumen development and function in cattle are tightly regulated by a series of signaling events and clusters of effectors on critical pathways. The dietary shift from liquid to solid feeds prompted the shifting of gene activity. The number of differentially expressed genes increased significantly after weaning. Bioinformatic analysis revealed gene activity shifts underline the functional transitions in the ruminal epithelium and signify the transcriptomic reprogramming. Gene ontogeny (GO) term enrichment shows extensively activated biological functions of differentially expressed genes in the ruminal epithelium after weaning were predominant metabolic functions. The transcriptomic reprogramming signifies a correlation between gene activity and changes in metabolism and energy production in the rumen epithelium, which occur at weaning when transitioning from glucose use to VFA use by epithelium during the weaning.
Collapse
|
30
|
Istiaq A, Ohta K. Ribosome-Induced Cellular Multipotency, an Emerging Avenue in Cell Fate Reversal. Cells 2021; 10:cells10092276. [PMID: 34571922 PMCID: PMC8469204 DOI: 10.3390/cells10092276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 01/23/2023] Open
Abstract
The ribosome, which is present in all three domains of life, plays a well-established, critical role in the translation process by decoding messenger RNA into protein. Ribosomal proteins, in contrast, appear to play non-translational roles in growth, differentiation, and disease. We recently discovered that ribosomes are involved in reverting cellular potency to a multipotent state. Ribosomal incorporation (the uptake of free ribosome by living cells) can direct the fate of both somatic and cancer cells into multipotency, allowing them to switch cell lineage. During this process, both types of cells experienced cell-cycle arrest and cellular stress while remaining multipotent. This review provides a molecular perspective on current insights into ribosome-induced multipotency and sheds light on how a common stress-associated mechanism may be involved. We also discuss the impact of this phenomenon on cancer cell reprogramming and its potential in cancer therapy.
Collapse
Affiliation(s)
- Arif Istiaq
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan;
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-8555, Japan
- HIGO Program, Kumamoto University, Kumamoto 860-8555, Japan
| | - Kunimasa Ohta
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan;
- Correspondence: ; Tel.: +81-92-802-6014
| |
Collapse
|
31
|
Xu H, Bensalel J, Capobianco E, Lu ML, Wei J. Impaired Restoration of Global Protein Synthesis Contributes to Increased Vulnerability to Acute ER Stress Recovery in Huntington's Disease. Cell Mol Neurobiol 2021; 42:2757-2771. [PMID: 34347195 DOI: 10.1007/s10571-021-01137-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/28/2021] [Indexed: 12/21/2022]
Abstract
Neurons are susceptible to different cellular stresses and this vulnerability has been implicated in the pathogenesis of Huntington's disease (HD). Accumulating evidence suggest that acute or chronic stress, depending on its duration and severity, can cause irreversible cellular damages to HD neurons, which contributes to neurodegeneration. In contrast, how normal and HD neurons respond during the resolution of a cellular stress remain less explored. In this study, we challenged normal and HD cells with a low-level acute ER stress and examined the molecular and cellular responses after stress removal. Using both striatal cell lines and primary neurons, we first showed the temporal activation of p-eIF2α-ATF4-GADD34 pathway in response to the acute ER stress and during recovery between normal and HD cells. HD cells were more vulnerable to cell death during stress recovery and were associated with increased number of apoptotic/necrotic cells and decreased cell proliferation. This is also supported by the Gene Ontology analysis from the RNA-seq data which indicated that "apoptosis-related Biological Processes" were more enriched in HD cells during stress recovery. We further showed that HD cells were defective in restoring global protein synthesis during stress recovery and promoting protein synthesis by an integrated stress response inhibitor, ISRIB, could attenuate cell death in HD cells. Together, these data suggest that normal and HD cells undergo distinct mechanisms of transcriptional reprogramming, leading to different cell fate decisions during the stress recovery.
Collapse
Affiliation(s)
- Hongyuan Xu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Johanna Bensalel
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Enrico Capobianco
- Institute of Data Science and Computing, University of Miami, Miami, FL, 33146, USA
| | - Michael L Lu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Jianning Wei
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA.
| |
Collapse
|
32
|
Levings DC, Lacher SE, Palacios-Moreno J, Slattery M. Transcriptional reprogramming by oxidative stress occurs within a predefined chromatin accessibility landscape. Free Radic Biol Med 2021; 171:319-331. [PMID: 33992677 PMCID: PMC8608001 DOI: 10.1016/j.freeradbiomed.2021.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/16/2023]
Abstract
Reactive oxygen species (ROS) are important signaling molecules in many physiological processes, yet excess ROS leads to cell damage and can lead to pathology. Accordingly, cells need to maintain tight regulation of ROS levels, and ROS-responsive transcriptional reprogramming is central to this process. Although it has long been recognized that oxidative stress leads to rapid, significant changes in gene expression, the impact of oxidative stress on the underlying chromatin accessibility landscape remained unclear. Here, we asked whether ROS-responsive transcriptional reprogramming is accompanied by reprogramming of the chromatin environment in MCF7 human breast cancer cells. Using a time-course exposure to multiple inducers of oxidative stress, we determined that the widespread ROS-responsive changes in gene expression induced by ROS occur with minimal changes to the chromatin environment. While we did observe changes in chromatin accessibility, these changes were: (1) far less numerous than gene expression changes after oxidative stress, and (2) occur within pre-existing regions of accessible chromatin. Transcription factor (TF) footprinting analysis of our ATAC-seq experiments identified 5 TFs or TF families with evidence for ROS-responsive changes in DNA binding: NRF2, AP-1, p53, NFY, and SP/KLF. Importantly, several of these (AP-1, NF-Y, and SP/KLF factors) have not been previously implicated as widespread regulators in the response to ROS. In summary, we have characterized genome-wide changes in gene expression and chromatin accessibility in response to ROS treatment of MCF7 cells, and we have found that regulation of the large-scale transcriptional response to excess ROS is primarily constrained by the cell's pre-existing chromatin landscape.
Collapse
Affiliation(s)
- Daniel C Levings
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Sarah E Lacher
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Juan Palacios-Moreno
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Matthew Slattery
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA.
| |
Collapse
|
33
|
Sun WS, Yang H, No JG, Lee H, Lee N, Lee M, Kang MJ, Oh KB. Select Porcine Elongation Factor 1α Sequences Mediate Stable High-Level and Upregulated Expression of Heterologous Genes in Porcine Cells in Response to Primate Serum. Genes (Basel) 2021; 12:genes12071046. [PMID: 34356062 PMCID: PMC8304002 DOI: 10.3390/genes12071046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Genetically engineered (GE) pigs with various combinations of genetic profiles have been developed using heterologous promoters. This study aimed to identify autologous promoters for high and ubiquitous expression of xenotransplantation relevant genes in GE pigs. A 1.4 kb upstream regulatory sequence of porcine elongation factor 1α (pEF1α) gene was selected and isolated for use as a promoter. Activity of the pEF1α promoter was subsequently compared with that of the cytomegalovirus (CMV) promoter, CMV enhancer/chicken β-actin (CAG) promoter, and human EF1α (hEF1α) promoter in different types of pig-derived cells. Comparative analysis of luciferase and mutant human leukocyte antigen class E-F2A-β-2 microglobulin (HLA-E) expression driven by pEF1α, CMV, CAG, and hEF1α promoters revealed the pEF1α promoter mediated comparable expression levels with those of the CAG promoter in porcine ear skin fibroblasts (PEFs) and porcine kidney-15 (PK-15) cells, but lower than those of the CAG promoter in porcine aortic endothelial cells (PAECs). The pEF1α promoter provided long-term stable HLA-E expression in PEFs, but the CAG promoter failed to sustain those levels of expression. For xenogeneic serum-induced cytotoxicity assays, the cells were cultured for several hours in growth medium supplemented with primate serum. Notably, the pEF1α promoter induced significant increases in luciferase and HLA-E expression in response to primate serum in PAECs compared with those driven by the CAG promoter, suggesting the pEF1α promoter could regulate temporal expression of heterologous genes under xenogeneic-cytotoxic conditions. These results suggest the pEF1α promoter may be valuable for development of GE pigs spatiotemporally and stably expressing immunomodulatory genes for xenotransplantation.
Collapse
Affiliation(s)
- Wu-Sheng Sun
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Korea; (W.-S.S.); (H.Y.); (J.G.N.); (H.L.); (N.L.); (M.L.)
| | - Hyeon Yang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Korea; (W.-S.S.); (H.Y.); (J.G.N.); (H.L.); (N.L.); (M.L.)
| | - Jin Gu No
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Korea; (W.-S.S.); (H.Y.); (J.G.N.); (H.L.); (N.L.); (M.L.)
| | - Haesun Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Korea; (W.-S.S.); (H.Y.); (J.G.N.); (H.L.); (N.L.); (M.L.)
| | - Nahyun Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Korea; (W.-S.S.); (H.Y.); (J.G.N.); (H.L.); (N.L.); (M.L.)
| | - Minguk Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Korea; (W.-S.S.); (H.Y.); (J.G.N.); (H.L.); (N.L.); (M.L.)
| | - Man-Jong Kang
- Department of Animal Science, Chonnam National University, Gwangju 61186, Korea;
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Korea; (W.-S.S.); (H.Y.); (J.G.N.); (H.L.); (N.L.); (M.L.)
- Correspondence: ; Tel.: +82-63-238-7254
| |
Collapse
|
34
|
Weinhouse C. The roles of inducible chromatin and transcriptional memory in cellular defense system responses to redox-active pollutants. Free Radic Biol Med 2021; 170:85-108. [PMID: 33789123 PMCID: PMC8382302 DOI: 10.1016/j.freeradbiomed.2021.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
People are exposed to wide range of redox-active environmental pollutants. Air pollution, heavy metals, pesticides, and endocrine disrupting chemicals can disrupt cellular redox status. Redox-active pollutants in our environment all trigger their own sets of specific cellular responses, but they also activate a common set of general stress responses that buffer the cell against homeostatic insults. These cellular defense system (CDS) pathways include the heat shock response, the oxidative stress response, the hypoxia response, the unfolded protein response, the DNA damage response, and the general stress response mediated by the stress-activated p38 mitogen-activated protein kinase. Over the past two decades, the field of environmental epigenetics has investigated epigenetic responses to environmental pollutants, including redox-active pollutants. Studies of these responses highlight the role of chromatin modifications in controlling the transcriptional response to pollutants and the role of transcriptional memory, often referred to as "epigenetic reprogramming", in predisposing previously exposed individuals to more potent transcriptional responses on secondary challenge. My central thesis in this review is that high dose or chronic exposure to redox-active pollutants leads to transcriptional memories at CDS target genes that influence the cell's ability to mount protective responses. To support this thesis, I will: (1) summarize the known chromatin features required for inducible gene activation; (2) review the known forms of transcriptional memory; (3) discuss the roles of inducible chromatin and transcriptional memory in CDS responses that are activated by redox-active environmental pollutants; and (4) propose a conceptual framework for CDS pathway responsiveness as a readout of total cellular exposure to redox-active pollutants.
Collapse
Affiliation(s)
- Caren Weinhouse
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97214, USA.
| |
Collapse
|
35
|
Abstract
In its natural habitat, C. elegans encounters a wide variety of microbes, including food, commensals and pathogens. To be able to survive long enough to reproduce, C. elegans has developed a complex array of responses to pathogens. These activities are coordinated on scales that range from individual organelles to the entire organism. Often, the response is triggered within cells, by detection of infection-induced damage, mainly in the intestine or epidermis. C. elegans has, however, a capacity for cell non-autonomous regulation of these responses. This frequently involves the nervous system, integrating pathogen recognition, altering host biology and governing avoidance behavior. Although there are significant differences with the immune system of mammals, some mechanisms used to limit pathogenesis show remarkable phylogenetic conservation. The past 20 years have witnessed an explosion of host-pathogen interaction studies using C. elegans as a model. This review will discuss the broad themes that have emerged and highlight areas that remain to be fully explored.
Collapse
Affiliation(s)
- Céline N Martineau
- Aix Marseille Université, Inserm, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | | | - Nathalie Pujol
- Aix Marseille Université, Inserm, CNRS, CIML, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
36
|
Affiliation(s)
- Andrew W Truman
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA.
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA.
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
37
|
Gościńska K, Shahmoradi Ghahe S, Domogała S, Topf U. Eukaryotic Elongation Factor 3 Protects Saccharomyces cerevisiae Yeast from Oxidative Stress. Genes (Basel) 2020; 11:genes11121432. [PMID: 33260587 PMCID: PMC7760200 DOI: 10.3390/genes11121432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Translation is a core process of cellular protein homeostasis and, thus, needs to be tightly regulated. The production of newly synthesized proteins adapts to the current needs of the cell, including the response to conditions of oxidative stress. Overall protein synthesis decreases upon oxidative stress. However, the selective production of proteins is initiated to help neutralize stress conditions. In contrast to higher eukaryotes, fungi require three translation elongation factors, eEF1, eEF2, and eEF3, for protein synthesis. eEF1 and eEF2 are evolutionarily conserved, but they alone are insufficient for the translation elongation process. eEF3 is encoded by two paralogous genes, YEF3 and HEF3. However, only YEF3 is essential in yeast, whereas the function of HEF3 remains unknown. To elucidate the cellular function of Hef3p, we used cells that were depleted of HEF3 and treated with H2O2 and analyzed the growth of yeast, global protein production, and protein levels. We found that HEF3 is necessary to withstand oxidative stress conditions, suggesting that Hef3p is involved in the selective production of proteins that are necessary for defense against reactive oxygen species.
Collapse
|
38
|
Fu R, Huang Z, Li H, Zhu Y, Zhang H. A Hemidesmosome-to-Cytoplasm Translocation of Small Heat Shock Proteins Provides Immediate Protection against Heat Stress. Cell Rep 2020; 33:108410. [DOI: 10.1016/j.celrep.2020.108410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/28/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023] Open
|
39
|
Hansen PJ. Prospects for gene introgression or gene editing as a strategy for reduction of the impact of heat stress on production and reproduction in cattle. Theriogenology 2020; 154:190-202. [PMID: 32622199 DOI: 10.1016/j.theriogenology.2020.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/28/2022]
Abstract
In cattle, genetic variation exists in regulation of body temperature and stabilization of cellular function during heat stress. There are opportunities to reduce the impact of heat stress on cattle production by identifying the causative mutations responsible for genetic variation in thermotolerance and transferring specific alleles that confer thermotolerance to breeds not adapted to hot climates. An example of a mutation conferring superior ability to regulate body temperature is the group of frame-sift mutations in the prolactin receptor gene (PRLR) that lead to a truncated receptor and development of cattle with a short, sleek hair coat. Slick mutations in PRLR have been found in several extant breeds derived from criollo cattle. The slick mutation in Senepol cattle has been introgressed into dairy cattle in Puerto Rico, Florida and New Zealand. An example of a mutation that confers cellular protection against elevated body temperature is a deletion mutation in the promoter region of a heat shock protein 70 gene called HSPA1L. Inheritance of the mutation results in amplification of the transcriptional response of HSPA1L to heat shock and increased cell survival. The case of PRLR provides a promising example of the efficacy of the genetic approach outlined in this paper. Identification of other mutations conferring thermotolerance at the whole-animal or cellular level will lead to additional opportunities for using genetic solutions to reduce the impact of heat stress.
Collapse
Affiliation(s)
- Peter J Hansen
- Department of Animal Sciences, D.H Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA.
| |
Collapse
|
40
|
Puustinen MC, Sistonen L. Molecular Mechanisms of Heat Shock Factors in Cancer. Cells 2020; 9:cells9051202. [PMID: 32408596 PMCID: PMC7290425 DOI: 10.3390/cells9051202] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Malignant transformation is accompanied by alterations in the key cellular pathways that regulate development, metabolism, proliferation and motility as well as stress resilience. The members of the transcription factor family, called heat shock factors (HSFs), have been shown to play important roles in all of these biological processes, and in the past decade it has become evident that their activities are rewired during tumorigenesis. This review focuses on the expression patterns and functions of HSF1, HSF2, and HSF4 in specific cancer types, highlighting the mechanisms by which the regulatory functions of these transcription factors are modulated. Recently developed therapeutic approaches that target HSFs are also discussed.
Collapse
Affiliation(s)
- Mikael Christer Puustinen
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland;
- Turku Bioscience, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Lea Sistonen
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland;
- Turku Bioscience, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
- Correspondence: ; Tel.: +358-2215-3311
| |
Collapse
|
41
|
Spadafora C. Transgenerational epigenetic reprogramming of early embryos: a mechanistic model. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa009. [PMID: 32704385 PMCID: PMC7368376 DOI: 10.1093/eep/dvaa009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 05/10/2023]
Abstract
The notion that epigenetic information can be transmitted across generations is supported by mounting waves of data, but the underlying mechanisms remain elusive. Here, a model is proposed which combines different lines of experimental evidence. First, it has been shown that somatic tissues exposed to stressing stimuli release circulating RNA-containing extracellular vesicles; second, epididymal spermatozoa can take up, internalize and deliver the RNA-containing extracellular vesicles to oocytes at fertilization; third, early embryos can process RNA-based information. These elements constitute the building blocks upon which the model is built. The model proposes that a continuous stream of epigenetic information flows from parental somatic tissues to the developing embryos. The flow can cross the Weismann barrier, is mediated by circulating vesicles and epididymal spermatozoa, and has the potential to generate epigenetic traits that are then stably acquired in the offspring. In a broader perspective, it emerges that a natural 'assembly line' operates continuously, aiming at passing the parental epigenetic blueprint in growing embryos.
Collapse
Affiliation(s)
- Corrado Spadafora
- Institute of Translational Pharmacology, National Research Council (CNR), 100 Via del Fosso del Cavaliere, 00133 Rome, Italy
- Correspondence address. Institute of Translational Pharmacology, National Research Council (CNR), 100 Via del Fosso del Cavaliere, 00133 Rome, Italy. Tel: +39 0649917536; Fax: +39 064457529; E-mail: ;
| |
Collapse
|