1
|
Lu L, Tao R. Prognostic implications of glucose metabolism pathways in colon adenocarcinoma: a comprehensive outlook on the molecular landscape and immunotherapy. Biochem Biophys Res Commun 2025; 768:151961. [PMID: 40345006 DOI: 10.1016/j.bbrc.2025.151961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/30/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND Colon adenocarcinoma (COAD) is a common and aggressive cancer characterized by significant metabolic alterations, particularly in glucose metabolism. Identifying key genes and pathways involved in glucose metabolism could provide valuable prognostic biomarkers and therapeutic targets. METHODS Clinical and transcriptomic data for patients with COAD were obtained from TCGA and validated using external datasets (GSE17536 and GSE39582). Seventeen glucose metabolism-related pathways were selected from the MSigDB and analysed using ssGSEA. WGCNA was used to identify key gene modules. Prognostic genes were selected via univariate Cox regression, Lasso-Cox regression, and multivariate Cox regression. Model validation was conducted using independent datasets. Immunotherapy prediction and immune infiltration analyses were also performed. A-NEK9 knockdown cell line was established using SW1116 and SW480 cell lines. The effect of NEK9 on COAD was evaluated in vivo and in vitro. The effects of NEK9 on glucose uptake and lactate production were also assessed. RESULTS A prognostic model based on five glucose metabolism-related genes (NEK9, HS2ST1, AC016394.3, H2BC21, and MIR23A) was developed. The model demonstrated strong predictive value, with high-risk patients showing poorer survival outcomes in both the TCGA and external validation cohorts. Additionally, lower risk scores were associated with better responses to immunotherapy, as indicated by TIDE and SubMap analyses. These findings were further validated through ROC analysis, which revealed robust predictive performance for immunotherapy response across multiple cohorts. NEK9 promoted the proliferation and tumour angiogenesis of SW1116 and SW480 cells, inhibited apoptosis, and enhanced glucose uptake and lactate production in tumour cells. NEK9 knockdown significantly inhibited the tumorigenic ability of COAD in mice. CONCLUSIONS This study highlights the role of glucose metabolism in COAD and presents a novel prognostic model based on glucose metabolism-related genes. The model has potential clinical applications for predicting survival and guiding immunotherapy decisions in patients with COAD.
Collapse
Affiliation(s)
- Ling Lu
- Medical College of Soochow University, Suzhou, Jiangsu, 215123, China; Center for Rehabilitation Medicine Center, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Ran Tao
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
2
|
Marasi V, Adib R, O'Regan L, Straatman KR, Prigent SA, Fry AM. EML2 and EML4 splice variants regulate microtubule remodelling during neuronal cell differentiation †. J Biol Chem 2025:110252. [PMID: 40398603 DOI: 10.1016/j.jbc.2025.110252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/23/2025] Open
Abstract
Neurons depend on microtubule organization for axon and dendrite formation during differentiation. Yet, our understanding of how microtubules are remodelled during this process is far from complete. Echinoderm microtubule-associated protein-like (EML) is a family of microtubule-associated proteins (MAPs) highly expressed in neuronal cells. Database analysis revealed that EMLs are subject to alternative splicing in their N-terminal regions, leading to the production of one long (L) variant containing a complete N-terminus and TAPE domain, and possibly several short (S) variants with a truncated N-terminal region. We investigated EML4 and EML2 splice variants during SH-SY5Y neuronal cell differentiation, examining their expression, localisation, and effects on neurite outgrowth and branching. We found that differentiation led to decreased expression of the EML4-L, but not the -S variant. Moreover, expression of the EML2-L variant increased, while EML2-S expression decreased. Overexpression of EML2-L and EML2-S led to increased and decreased neurite lengths, respectively. Interestingly, neurite branching increased in EML2-S transfected cells. Using immunofluorescence microscopy, we found that EML2-L and EML4-L but not EML2-S and EML4-S localised strongly to interphase microtubules regardless of whether cells had differentiated or not. Depletion of both EML4 and EML2 led to neurite outgrowth. We propose that the presence of the N-terminal microtubule-binding region in the long variants of EML2 and EML4 promotes stabilisation of microtubules and neurite extension while short variants favour branching. Together, these data suggest that regulated expression and localisation of different splice variants of EML proteins are crucial to microtubule remodelling during neuronal differentiation.
Collapse
Affiliation(s)
- Venus Marasi
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester, LE1 9HN, UK.
| | - Rozita Adib
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester, LE1 9HN, UK.
| | - Laura O'Regan
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester, LE1 9HN, UK.
| | - Kees R Straatman
- Advanced Imaging Facility, Core Biotechnology Services, University of Leicester, LE1 9HN, UK.
| | - Sally A Prigent
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester, LE1 9HN, UK.
| | - Andrew M Fry
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester, LE1 9HN, UK.
| |
Collapse
|
3
|
Zhang H, Lu C, Yao Q, Jiao Q. In silico study to identify novel NEK7 inhibitors from natural sources by a combination strategy. Mol Divers 2025; 29:139-162. [PMID: 38598164 DOI: 10.1007/s11030-024-10838-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Cancer poses a significant global health challenge and significantly contributes to mortality. NEK7, related to the NIMA protein kinase family, plays a crucial role in spindle assembly and cell division. The dysregulation of NEK7 is closely linked to the onset and progression of various cancers, especially colon and breast cancer, making it a promising target for cancer therapy. Nevertheless, the shortage of high-quality NEK7 inhibitors highlights the need for new therapeutic strategies. In this study, we utilized a multidisciplinary approach, including virtual screening, molecular docking, pharmacokinetics, molecular dynamics simulations (MDs), and MM/PBSA calculations, to evaluate natural compounds as NEK7 inhibitors comprehensively. Through various docking strategies, we identified three natural compounds: (-)-balanol, digallic acid, and scutellarin. Molecular docking revealed significant interactions at residues such as GLU112 and ALA114, with docking scores of -15.054, -13.059, and -11.547 kcal/mol, respectively, highlighting their potential as NEK7 inhibitors. MDs confirmed the stability of these compounds at the NEK7-binding site. Hydrogen bond analysis during simulations revealed consistent interactions, supporting their strong binding capacity. MM/PBSA analysis identified other crucial amino acids contributing to binding affinity, including ILE20, VAL28, ILE75, LEU93, ALA94, LYS143, PHE148, LEU160, and THR161, crucial for stabilizing the complex. This research demonstrated that these compounds exceeded dabrafenib in binding energy, according to MM/PBSA calculations, underscoring their effectiveness as NEK7 inhibitors. ADME/T predictions showed lower oral toxicity for these compounds, suggesting their potential for further development. This study highlights the promise of these natural compounds as bases for creating more potent derivatives with significant biological activities, paving the way for future experimental validation.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Chenhong Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Qilong Yao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Qingcai Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
4
|
Xiao Y, Wang H, Lu J, Pang J, Liu S, Zhou Y, Shi X, Liang Z. Characteristics of the immune microenvironment and their clinical significance in lung adenocarcinoma patients with different ALK fusion variants. Transl Lung Cancer Res 2024; 13:3538-3554. [PMID: 39830736 PMCID: PMC11736598 DOI: 10.21037/tlcr-24-682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025]
Abstract
Background The tumor immune microenvironment of anaplastic lymphoma kinase (ALK)-rearranged lung adenocarcinoma (LUAD) stratified by ALK fusion variants is poorly pictured. Hence, in this study, we aim to explore the immune heterogeneity of ALK+ LUAD across different ALK fusion variants and further investigate their significance on clinical prognosis. Methods A retrospective analysis was conducted on ALK+ LUAD patients (N=68). DNA and RNA-based next-generation sequencing (NGS) was performed to clarify the specific ALK fusion variants. Clinical and pathological characteristics were compared between long and short ALK variants. To research the immune heterogeneity, multi-fluorescence was carried out to explore the differences in immune properties, such as tumor-infiltrating lymphocyte (TIL) number, TIL subset, and tertiary lymphoid structures (TLS) development, between long and short ALK variants. Furthermore, the prognostic value of these characteristics was analyzed. Finally, the expression of lymphocyte-activation gene-3 (LAG3), one novel immune therapy target, was assessed across ALK+ LUAD. Results LUAD patients with short ALK fusion variant-driven tumors exhibited higher American Joint Committee on Cancer (AJCC) stage as well as larger tumor size than those with long ALK fusion variant-driven tumors. Compared to long ALK fusion variants, there were more TILs, especially natural killer (NK) cells, within short ALK variants. However, fewer TLS were established in cancers harboring short ALK variants than those with long ALK variants. In advanced-stage LUAD patients with ALK fusion, short ALK variants, hot immune status, and high-level NK cells were identified to be adverse prognostic factors, while high-level B cells, as well as the development of TLS, served as positive prognostic factors. As for LAG3 expression, LAG3+ immune cells were more enriched in short ALK variants than in long ALK variants. Conclusions LUAD patients with short ALK fusion variant-driven tumors exhibited worse prognosis than those with long ALK fusion variant-driven tumors. The tumor immune microenvironments are heterogeneous across different ALK fusion variants with short variants characterized by higher levels of TIL, especially NK cells, but by less TLS development than long variants ALK+ LUAD, which disfavor disease outcomes.
Collapse
Affiliation(s)
- Yinbo Xiao
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hao Wang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Junliang Lu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Junyi Pang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shiyi Liu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yang Zhou
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | | | | |
Collapse
|
5
|
Papageorgiou S, Pashley SL, O’Regan L, Straatman KR, Fry AM. Microtubule Association of EML4-ALK V3 Is Key for the Elongated Cell Morphology and Enhanced Migration Observed in V3 Cells. Cells 2024; 13:1954. [PMID: 39682703 PMCID: PMC11639804 DOI: 10.3390/cells13231954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The EML4-ALK oncogene drives tumour progression in approximately 5% of cases of non-small-cell lung cancers. At least 15 EML4-ALK variants have been identified, which elicit differential responses to conventional ALK inhibitors. Unfortunately, most, if not all, patients eventually acquire resistance to these inhibitors and succumb to the disease, which warrants the need for alternative targets to be identified. The most aggressive variant, EML4-ALK variant 3 (V3), assembles into a complex on interphase microtubules together with the NEK9 and NEK7 kinases, which leads to the downstream phosphorylation of NEK7 substrates. Overall, this promotes an elongated cell morphology and an enhanced migratory phenotype, which likely contributes to the increased metastasis often seen in V3 patients. Here, using two separate approaches to displace V3 from microtubules and a variety of in vitro assays, we show that microtubule association of EML4-ALK V3 is required for both V3 phenotypes, as removal of the oncogenic fusion protein from microtubules led to the dissociation of the V3-NEK9-NEK7 complex and the reversal of both phenotypic changes. Overall, we propose that targeting the interaction between EML4-ALK V3 and microtubules might offer a novel therapeutic option, independent of ALK activity, for V3+ NSCLC patients with acquired resistance to ALK inhibitors.
Collapse
Affiliation(s)
- Savvas Papageorgiou
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7RH, UK; (S.L.P.); (L.O.); (A.M.F.)
| | - Sarah L. Pashley
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7RH, UK; (S.L.P.); (L.O.); (A.M.F.)
| | - Laura O’Regan
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7RH, UK; (S.L.P.); (L.O.); (A.M.F.)
| | - Kees R. Straatman
- Advanced Imaging Facility, Core Biotechnology Services, University of Leicester, Leicester LE1 9HN, UK;
| | - Andrew M. Fry
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7RH, UK; (S.L.P.); (L.O.); (A.M.F.)
| |
Collapse
|
6
|
Wang S, Zeng Y, Zhu L, Zhang M, Zhou L, Yang W, Luo W, Wang L, Liu Y, Zhu H, Xu X, Su P, Zhang X, Ahmed M, Chen W, Chen M, Chen S, Slobodyanyuk M, Xie Z, Guan J, Zhang W, Khan AA, Sakashita S, Liu N, Pham NA, Boutros PC, Ke Z, Moran MF, Cai Z, Cheng C, Yu J, Tsao MS, He HH. The N6-methyladenosine Epitranscriptomic Landscape of Lung Adenocarcinoma. Cancer Discov 2024; 14:2279-2299. [PMID: 38922581 PMCID: PMC11528209 DOI: 10.1158/2159-8290.cd-23-1212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/25/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Comprehensive N6-methyladenosine (m6A) epitranscriptomic profiling of primary tumors remains largely uncharted. Here, we profiled the m6A epitranscriptome of 10 nonneoplastic lung tissues and 51 lung adenocarcinoma (LUAD) tumors, integrating the corresponding transcriptomic, proteomic, and extensive clinical annotations. We identified distinct clusters and genes that were exclusively linked to disease progression through m6A modifications. In comparison with nonneoplastic lung tissues, we identified 430 transcripts to be hypo-methylated and 222 to be hyper-methylated in tumors. Among these genes, EML4 emerged as a novel metastatic driver, displaying significant hypermethylation in tumors. m6A modification promoted the translation of EML4, leading to its widespread overexpression in primary tumors. Functionally, EML4 modulated cytoskeleton dynamics by interacting with ARPC1A, enhancing lamellipodia formation, cellular motility, local invasion, and metastasis. Clinically, high EML4 protein abundance correlated with features of metastasis. METTL3 small-molecule inhibitor markedly diminished both EML4 m6A and protein abundance and efficiently suppressed lung metastases in vivo. Significance: Our study reveals a dynamic and functional epitranscriptomic landscape in LUAD, offering a valuable resource for further research in the field. We identified EML4 hypermethylation as a key driver of tumor metastasis, highlighting a novel therapeutic strategy of targeting EML4 to prevent LUAD metastasis.
Collapse
Affiliation(s)
- Shiyan Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yong Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Min Zhang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Zhou
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weixiong Yang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weishan Luo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lina Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanming Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Helen Zhu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Vector Institute, Toronto, Canada
| | - Xin Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Peiran Su
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Xinyue Zhang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Musaddeque Ahmed
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Wei Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Moliang Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Sujun Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Mykhaylo Slobodyanyuk
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Ontario Institute of Cancer Research, Toronto, Canada
| | - Zhongpeng Xie
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiansheng Guan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- College of Electrical Engineering and Automation, Xiamen University of Technology, Xiamen, China
| | - Wen Zhang
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | - Shingo Sakashita
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ni Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Nhu-An Pham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Paul C. Boutros
- Department of Human Genetics, University of California, Los Angeles, California
- Department of Urology, University of California, Los Angeles, California
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, California
| | - Zunfu Ke
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Michael F. Moran
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Chao Cheng
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming S. Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Housheng H. He
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Bayliss R, Fry T, Mahen R, Shackleton S, Tanaka K. Remembering Andrew Fry (1966-2024). J Cell Sci 2024; 137:jcs263478. [PMID: 39240162 DOI: 10.1242/jcs.263478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
In this article we reflect on the life and work of Andrew Fry, a renowned molecular cell biologist and a cherished member of the scientific community at the University of Leicester, UK, who passed away on 30th April 2024 at the age of 57. His groundbreaking work on the cellular mechanisms of Never in Mitosis gene-A related kinases (Neks) made an indelible mark on the field. Alongside his scientific achievements, Andrew was an exceptional mentor, a thoughtful academic leader and a dependable collaborator. To understand what motivated Andrew, we first need to look into his background.
Collapse
Affiliation(s)
- Richard Bayliss
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | - Robert Mahen
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Sue Shackleton
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Kayoko Tanaka
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
8
|
Pashley SL, Papageorgiou S, O'Regan L, Barone G, Robinson SW, Lucken K, Straatman KR, Roig J, Fry AM. The mesenchymal morphology of cells expressing the EML4-ALK V3 oncogene is dependent on phosphorylation of Eg5 by NEK7. J Biol Chem 2024; 300:107144. [PMID: 38458397 PMCID: PMC11061729 DOI: 10.1016/j.jbc.2024.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) oncogenic fusion proteins are found in approximately 5% of non-small cell lung cancers. Different EML4-ALK fusion variants exist with variant 3 (V3) being associated with a significantly higher risk than other common variants, such as variant 1 (V1). Patients with V3 respond less well to targeted ALK inhibitors, have accelerated rates of metastasis, and have poorer overall survival. A pathway has been described downstream of EML4-ALK V3 that is independent of ALK catalytic activity but dependent on the NEK9 and NEK7 kinases. It has been proposed that assembly of an EML4-ALK V3-NEK9-NEK7 complex on microtubules leads to cells developing a mesenchymal-like morphology and exhibiting enhanced migration. However, downstream targets of this complex remain unknown. Here, we show that the microtubule-based kinesin, Eg5, is recruited to interphase microtubules in cells expressing EML4-ALK V3, whereas chemical inhibition of Eg5 reverses the mesenchymal morphology of cells. Furthermore, we show that depletion of NEK7 interferes with Eg5 recruitment to microtubules in cells expressing EML4-ALK V3 and cell length is reduced, but this is reversed by coexpression of a phosphomimetic mutant of Eg5, in a site, S1033, phosphorylated by NEK7. Intriguingly, we also found that expression of Eg5-S1033D led to cells expressing EML4-ALK V1 adopting a more mesenchymal-like morphology. Together, we propose that Eg5 acts as a substrate of NEK7 in cells expressing EML4-ALK V3 and Eg5 phosphorylation promotes the mesenchymal morphology typical of these cells.
Collapse
Affiliation(s)
- Sarah L Pashley
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Savvas Papageorgiou
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Laura O'Regan
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Giancarlo Barone
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Susan W Robinson
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Kellie Lucken
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Kees R Straatman
- Advanced Imaging Facility, Core Biotechnology Services, University of Leicester, Leicester, UK
| | - Joan Roig
- Department of Cell & Developmental Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Andrew M Fry
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
9
|
Elshatlawy M, Sampson J, Clarke K, Bayliss R. EML4-ALK biology and drug resistance in non-small cell lung cancer: a new phase of discoveries. Mol Oncol 2023; 17:950-963. [PMID: 37149843 PMCID: PMC10257413 DOI: 10.1002/1878-0261.13446] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/08/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK) can be driven to oncogenic activity by different types of mutational events such as point-mutations, for example F1174L in neuroblastoma, and gene fusions, for example with echinoderm microtubule-associated protein-like 4 (EML4) in non-small cell lung cancer (NSCLC). EML4-ALK variants result from different breakpoints, generating fusions of different sizes and properties. The most common variants (Variant 1 and Variant 3) form cellular compartments with distinct physical properties. The presence of a partial, probably misfolded beta-propeller domain in variant 1 confers solid-like properties to the compartments it forms, greater dependence on Hsp90 for protein stability and higher cell sensitivity to ALK tyrosine kinase inhibitors (TKIs). These differences translate to the clinic because variant 3, on average, worsens patient prognosis and increases metastatic risk. Latest generation ALK-TKIs are beneficial for most patients with EML4-ALK fusions. However, resistance to ALK inhibitors can occur via point-mutations within the kinase domain of the EML4-ALK fusion, for example G1202R, reducing inhibitor effectiveness. Here, we discuss the biology of EML4-ALK variants, their impact on treatment response, ALK-TKI drug resistance mechanisms and potential combination therapies.
Collapse
Affiliation(s)
- Mariam Elshatlawy
- Faculty of Biological Sciences, School of Molecular and Cellular BiologyUniversity of LeedsUK
| | - Josephina Sampson
- Faculty of Biological Sciences, School of Molecular and Cellular BiologyUniversity of LeedsUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsUK
| | - Katy Clarke
- Leeds Cancer Center, St.James' University HospitalLeeds Teaching Hospitals NHS TrustUK
| | - Richard Bayliss
- Faculty of Biological Sciences, School of Molecular and Cellular BiologyUniversity of LeedsUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsUK
| |
Collapse
|
10
|
Kim M, Jeong HJ, Ju HM, Song JY, Jang SJ, Choi J. Overexpression of the NEK9-EG5 axis is a novel metastatic marker in pathologic stage T3 colon cancer. Sci Rep 2023; 13:342. [PMID: 36611072 PMCID: PMC9825400 DOI: 10.1038/s41598-022-26249-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
NEK9 is a key player in the NEK9-EG5 axis for microtubule polymerization, chromosome alignment, and mitosis. In present study, we investigated the altered expression of the NEK9, EG5 and acetyl-α-tubulin as well as common epithelial-mesenchymal transition (EMT) markers (E-cadherin, vimentin, claudin-1, and β-catenin) through the immunohistochemistry analysis of 138 patients with pathologic T3 (pT3) stage colon cancers, and evaluated their metastatic potential. NEK9 expression showed an association with distant metastasis (P = 0.032) and was an independent predictive factor for distant metastasis (HR = 3.365, P < 0.001) by multivariate analysis, which was more significant than either the regional nodal metastasis (HR = 2.496, P = 0.007) or lymphovascular invasion (HR = 2.090, P = 0.153). Positive correlations were observed between NEK9 and EG5 or acetyl-α-tubulin (r = 0.236 and P = 0.007; r = 0.181 and P = 0.038, respectively) and concordant overexpression of the NEK9-EG5 axis was further confirmed in colon cancer cell lines. These findings collectively suggest that the overexpression of the NEK9-EG5 axis is present and associated with distant metastasis in colon cancer. These biomarkers might be useful for predicting metastatic potential among the patients with pT3 colon cancers.
Collapse
Affiliation(s)
- Meejeong Kim
- grid.411947.e0000 0004 0470 4224Department of Pathology, Seoul St. Mary’s Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Hui Jeong Jeong
- HiLab Clinical Laboratories, Hanaro Medical Foundation, Seoul, Korea
| | - Hyun-min Ju
- grid.267370.70000 0004 0533 4667Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 Korea
| | - Ji-young Song
- grid.267370.70000 0004 0533 4667Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 Korea
| | - Se Jin Jang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| | - Jene Choi
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| |
Collapse
|
11
|
[Consensus on Postoperative Recurrence Prediction of Non-small Cell Lung Cancer
Based on Molecular Markers]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:701-714. [PMID: 36285390 PMCID: PMC9619343 DOI: 10.3779/j.issn.1009-3419.2022.102.44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Significant progress has been made in lung cancer screening, surgery, chemoradiation, targeted therapy, and immunotherapy recently. Surgical resection is the most important treatment for localized non-small cell lung cancer (NSCLC) so far, but there are still many patients who develop local recurrence or distant metastases within 5 years of surgery. Currently, the risk factors of recurrence in patients with NSCLC are mainly based on clinical and pathological features, which hardly identify patients at high risk of recurrence accurately. With the development of new detection technologies, a number of molecular markers that may have a predictive risk of recurrence in NSCLC have been discovered over the years. In order to summarize the molecular markers related to postoperative recurrence in NSCLC patients, we have formulated a consensus on the prediction of postoperative recurrence of NSCLC based on molecular markers. This consensus mainly focuses on the early stage NSCLC patients, discusses and summarizes the risk factors of disease recurrence from the molecular level. It is hoped that more and more valuable information can be provided for the management of patients, so as to provide more guidance for the perioperative management of the patients with early stage NSCLC in the future.
.
Collapse
|
12
|
Alternative Treatment Options to ALK Inhibitor Monotherapy for EML4-ALK-Driven Lung Cancer. Cancers (Basel) 2022; 14:cancers14143452. [PMID: 35884511 PMCID: PMC9325236 DOI: 10.3390/cancers14143452] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
EML4-ALK is an oncogenic fusion protein that accounts for approximately 5% of NSCLC cases. Targeted inhibitors of ALK are the standard of care treatment, often leading to a good initial response. Sadly, some patients do not respond well, and most will develop resistance over time, emphasizing the need for alternative treatments. This review discusses recent advances in our understanding of the mechanisms behind EML4-ALK-driven NSCLC progression and the opportunities they present for alternative treatment options to ALK inhibitor monotherapy. Targeting ALK-dependent signalling pathways can overcome resistance that has developed due to mutations in the ALK catalytic domain, as well as through activation of bypass mechanisms that utilise the same pathways. We also consider evidence for polytherapy approaches that combine targeted inhibition of these pathways with ALK inhibitors. Lastly, we review combination approaches that use targeted inhibitors of ALK together with chemotherapy, radiotherapy or immunotherapy. Throughout this article, we highlight the importance of alternative breakpoints in the EML4 gene that result in the generation of distinct EML4-ALK variants with different biological and pathological properties and consider monotherapy and polytherapy approaches that may be selective to particular variants.
Collapse
|
13
|
Wang J, Chen S, Liu M, Zhang M, Jia X. NEK7: a new target for the treatment of multiple tumors and chronic inflammatory diseases. Inflammopharmacology 2022; 30:1179-1187. [PMID: 35829941 DOI: 10.1007/s10787-022-01026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/20/2022] [Indexed: 11/05/2022]
Abstract
NIMA-related kinase 7 (NEK7) is a serine/threonine kinase, which is the smallest one in mammalian NEK family. At present, many studies have reported that NEK7 has a physiological role in regulating the cell cycle and promoting the mitotic process of cells. In recent years, an increasing number of studies have proposed that NEK7 is involved in the activation of the NLRP3 inflammasome. Under normal conditions, NEK7 is in a low activity state, while under pathological conditions, NEK7 is abnormally expressed and therefore plays a key role in the progression of multiple tumors and chronic inflammatory diseases. This review will concentrate on the mechanism of NEK7 participates in the process of mitosis and regulates the activation of NLRP3 inflammasome, the aberrant expression of NEK7 in a variety of tumors and chronic inflammatory diseases, and some potential inhibitors, which may provide some new ideas for the treatment of diverse tumors and chronic inflammatory diseases associated with NEK7.
Collapse
Affiliation(s)
- Jin Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, People's Republic of China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Simeng Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, People's Republic of China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Min Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, People's Republic of China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Min Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Xiaoyi Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China. .,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, People's Republic of China. .,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, 230012, People's Republic of China.
| |
Collapse
|
14
|
Abstract
Lorlatinib, a third-generation ALK tyrosine kinase inhibitor, has been approved as a treatment for ALK-positive lung cancer. This review provides information regarding the pharmacology and clinical features of lorlatinib, including its efficacy and associated adverse events. Pivotal clinical trials are discussed along with the current status of lorlatinib as a treatment for ALK-positive lung cancer and future therapeutic challenges.
Collapse
Affiliation(s)
- Keisuke Baba
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Yasushi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| |
Collapse
|
15
|
Lucken K, O'Regan L, Choi J, Sampson J, Pashley SL, Bayliss R, Khan S, Fry AM. EML4-ALK Variant 3 Promotes Mitotic Errors and Spindle Assembly Checkpoint Deficiency Leading to Increased Microtubule Poison Sensitivity. Mol Cancer Res 2022; 20:854-866. [PMID: 35656694 PMCID: PMC9381094 DOI: 10.1158/1541-7786.mcr-21-1010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 02/23/2022] [Indexed: 01/07/2023]
Abstract
EML4-ALK is an oncogenic fusion protein present in approximately 5% of non-small cell lung cancers (NSCLC). Alternative breakpoints in the gene encoding EML4 result in distinct variants that are linked to markedly different patient outcomes. Patients with EML4-ALK variant 3 (V3) respond poorly to ALK inhibitors and have lower survival rates compared with patients with other common variants, such as V1. Here, we use isogenic Beas-2B bronchial epithelial cell lines expressing EML4-ALK V1 or V3, as well as ALK-positive NSCLC patient cells that express V1 (H3122 cells) or V3 (H2228 cells), to show that EML4-ALK V3 but not V1 leads to hyperstabilized K-fibers in mitosis, as well as errors in chromosome congression and segregation. This is consistent with our observation that EML4-ALK V3 but not V1 localizes to spindle microtubules and that wild-type EML4 is a microtubule stabilizing protein. In addition, cells expressing EML4-ALK V3 exhibit loss of spindle assembly checkpoint control that is at least in part dependent on ALK catalytic activity. Finally, we demonstrate that cells expressing EML4-ALK V3 have increased sensitivity to microtubule poisons that interfere with mitotic spindle assembly, whereas combination treatment with paclitaxel and clinically approved ALK inhibitors leads to a synergistic response in terms of reduced survival of H2228 cells. IMPLICATIONS This study suggests that combining the microtubule poison, paclitaxel, with targeted ALK inhibitors may provide an effective new treatment option for patients with NSCLC with tumors that express the EML4-ALK V3 oncogenic fusion.
Collapse
Affiliation(s)
- Kellie Lucken
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Laura O'Regan
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Jene Choi
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Josephina Sampson
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sarah L. Pashley
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Richard Bayliss
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sam Khan
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, United Kingdom
| | - Andrew M. Fry
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
- Corresponding Author: Andrew M. Fry, Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, United Kingdom. E-mail:
| |
Collapse
|
16
|
In Mitosis You Are Not: The NIMA Family of Kinases in Aspergillus, Yeast, and Mammals. Int J Mol Sci 2022; 23:ijms23074041. [PMID: 35409400 PMCID: PMC8999480 DOI: 10.3390/ijms23074041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
The Never in mitosis gene A (NIMA) family of serine/threonine kinases is a diverse group of protein kinases implicated in a wide variety of cellular processes, including cilia regulation, microtubule dynamics, mitotic processes, cell growth, and DNA damage response. The founding member of this family was initially identified in Aspergillus and was found to play important roles in mitosis and cell division. The yeast family has one member each, Fin1p in fission yeast and Kin3p in budding yeast, also with functions in mitotic processes, but, overall, these are poorly studied kinases. The mammalian family, the main focus of this review, consists of 11 members named Nek1 to Nek11. With the exception of a few members, the functions of the mammalian Neks are poorly understood but appear to be quite diverse. Like the prototypical NIMA, many members appear to play important roles in mitosis and meiosis, but their functions in the cell go well beyond these well-established activities. In this review, we explore the roles of fungal and mammalian NIMA kinases and highlight the most recent findings in the field.
Collapse
|
17
|
Review of Therapeutic Strategies for Anaplastic Lymphoma Kinase-Rearranged Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14051184. [PMID: 35267492 PMCID: PMC8909087 DOI: 10.3390/cancers14051184] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) was first reported in 2007. Following the development of crizotinib as a tyrosine kinase inhibitor (TKI) targeting ALK, the treatment of advanced NSCLC with ALK-rearrangements has made remarkable progress. Currently, there are five ALK-TKIs approved by the FDA, and the development of new agents, including fourth-generation TKI, is ongoing. Clinical trials with angiogenesis inhibitors and immune checkpoint inhibitors are also underway, and further progress in the treatment of ALK-rearranged advanced NSCLC is expected. The purpose of this manuscript is to provide information on the recent clinical trials of ALK-TKIs, angiogenesis inhibitors, immune checkpoint inhibitors, and chemotherapy, to describe tissue and liquid biopsy as a method to investigate the mechanisms of resistance against ALK-TKIs and suggest a proposed treatment algorithm. Abstract Non-small cell lung cancer (NSCLC) with anaplastic lymphoma kinase rearrangement (ALK) was first reported in 2007. ALK-rearranged NSCLC accounts for about 3–8% of NSCLC. The first-line therapy for ALK-rearranged advanced NSCLC is tyrosine kinase inhibitors (TKI) targeting ALK. Following the development of crizotinib, the first ALK-TKI, patient prognosis has been greatly improved. Currently, five TKIs are approved by the FDA. In addition, clinical trials of the novel TKI, ensartinib, and fourth-generation ALK-TKI for compound ALK mutation are ongoing. Treatment with angiogenesis inhibitors and immune checkpoint inhibitors is also being studied. However, as the disease progresses, cancers tend to develop resistance mechanisms. In addition to ALK mutations, other mechanisms, including the activation of bypass signaling pathways and histological transformation, cause resistance, and the identification of these mechanisms is important in selecting subsequent therapy. Studies on tissue and liquid biopsy have been reported and are expected to be useful tools for identifying resistance mechanisms. The purpose of this manuscript is to provide information on the recent clinical trials of ALK-TKIs, angiogenesis inhibitors, immune checkpoint inhibitors, and chemotherapy to describe tissue and liquid biopsy as a method to investigate the mechanisms of resistance against ALK-TKIs and suggest a proposed treatment algorithm.
Collapse
|
18
|
Sampson J, Ju HM, Song JY, Fry AM, Bayliss R, Choi J. A Polytherapy Strategy Using Vincristine and ALK Inhibitors to Sensitise EML4-ALK-Positive NSCLC. Cancers (Basel) 2022; 14:779. [PMID: 35159046 PMCID: PMC8833940 DOI: 10.3390/cancers14030779] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/29/2022] Open
Abstract
The oncogenic fusion of EML4-ALK is present in about 4-6% of non-small cell lung cancer (NSCLC). A targeted approach with ALK tyrosine kinase inhibitors (TKIs) has been proven highly effective in ALK-positive NSCLC patients. However, despite the initial responses, the outcome of the treatment is variable. Previous studies have shown that the differential response depends in part on the type of EML4-ALK variant. Here, we examined the combination of ALK inhibitors and microtubule poison, vincristine, in cells expressing EML4-ALK V1 and V3, the two most common variants in NSCLC. We showed that combination therapy of ALK-TKIs with vincristine had anti-proliferative effects and blocked RAS/MAPK, PI3K/AKT and JAK/STAT3 signalling pathways in EML4-ALK V1 but not V3 cells. Our results demonstrate that high levels of tubulin acetylation are associated with poor response to vincristine in EML4-ALK V3 cells. Additionally, we demonstrated differences in microtubule stability between the two EML4-ALK fusions. EML4-ALK V3 cells exhibited dynamic microtubules that confer poor response to vincristine compared to V1 cells. Hence, we suggested that the portion of EML4 in the fusion has an important role for the outcome of the combination treatment.
Collapse
Affiliation(s)
- Josephina Sampson
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Hyun-min Ju
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea; (H.-m.J.); (J.-y.S.)
| | - Ji-young Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea; (H.-m.J.); (J.-y.S.)
| | - Andrew M. Fry
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK;
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Jene Choi
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea; (H.-m.J.); (J.-y.S.)
| |
Collapse
|
19
|
Yang M, Guo Y, Guo X, Mao Y, Zhu S, Wang N, Lu D. Analysis of the effect of NEKs on the prognosis of patients with non-small-cell lung carcinoma based on bioinformatics. Sci Rep 2022; 12:1705. [PMID: 35105934 PMCID: PMC8807624 DOI: 10.1038/s41598-022-05728-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
NEKs are proteins that are involved in various cell processes and play important roles in the formation and development of cancer. However, few studies have examined the role of NEKs in the development of non-small-cell lung carcinoma (NSCLC). To address this problem, the Oncomine, UALCAN, and the Human Protein Atlas databases were used to analyze differential NEK expression and its clinicopathological parameters, while the Kaplan-Meier, cBioPortal, GEPIA, and DAVID databases were used to analyze survival, gene mutations, similar genes, and biological enrichments. The rate of NEK family gene mutation was high (> 50%) in patients with NSCLC, in which NEK2/4/6/8/ was overexpressed and significantly correlated with tumor stage and nodal metastasis status. In addition, the high expression of NEK2/3mRNA was significantly associated with poor prognosis in patients with NSCLC, while high expression of NEK1/4/6/7/8/9/10/11mRNA was associated with good prognosis. In summary, these results suggest that NEK2/4/6/8 may be a potential prognostic biomarker for the survival of patients with NSCLC.
Collapse
Affiliation(s)
- Mengxia Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Yikun Guo
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Xiaofei Guo
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Yun Mao
- Department of Oncology, The Second Hospital of Hunan University of Chinese Medicine, Changsha, 410005, People's Republic of China
| | - Shijie Zhu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Ningjun Wang
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China.
| | - Dianrong Lu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China.
| |
Collapse
|
20
|
Sampson J, Richards MW, Choi J, Fry AM, Bayliss R. Phase-separated foci of EML4-ALK facilitate signalling and depend upon an active kinase conformation. EMBO Rep 2021; 22:e53693. [PMID: 34661367 PMCID: PMC8647013 DOI: 10.15252/embr.202153693] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022] Open
Abstract
Variants of the oncogenic EML4-ALK fusion protein contain a similar region of ALK encompassing the kinase domain, but different portions of EML4. Here, we show that EML4-ALK V1 and V3 proteins form cytoplasmic foci that contain components of the MAPK, PLCγ and PI3K signalling pathways. The ALK inhibitors ceritinib and lorlatinib dissolve these foci and EML4-ALK V3 but not V1 protein re-localises to microtubules, an effect recapitulated in a catalytically inactive EML4-ALK mutant. Mutations that promote a constitutively active ALK stabilise the cytoplasmic foci even in the presence of these inhibitors. In contrast, the inhibitor alectinib increases foci formation of both wild-type and catalytically inactive EML4-ALK V3 proteins, but not a Lys-Glu salt bridge mutant. We propose that EML4-ALK foci formation occurs as a result of transient association of stable EML4-ALK trimers mediated through an active conformation of the ALK kinase domain. Our results demonstrate the formation of EML4-ALK cytoplasmic foci that orchestrate oncogenic signalling and reveal that their assembly depends upon the conformational state of the catalytic domain and can be differentially modulated by structurally divergent ALK inhibitors.
Collapse
Affiliation(s)
- Josephina Sampson
- School of Molecular and Cellular BiologyAstbury Centre for Structural Molecular BiologyFaculty of Biological SciencesUniversity of LeedsLeedsUK
| | - Mark W Richards
- School of Molecular and Cellular BiologyAstbury Centre for Structural Molecular BiologyFaculty of Biological SciencesUniversity of LeedsLeedsUK
| | - Jene Choi
- Department of PathologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Andrew M Fry
- Department of Molecular and Cell BiologyUniversity of LeicesterLeicesterUK
| | - Richard Bayliss
- School of Molecular and Cellular BiologyAstbury Centre for Structural Molecular BiologyFaculty of Biological SciencesUniversity of LeedsLeedsUK
| |
Collapse
|
21
|
Pan Y, Deng C, Qiu Z, Cao C, Wu F. The Resistance Mechanisms and Treatment Strategies for ALK-Rearranged Non-Small Cell Lung Cancer. Front Oncol 2021; 11:713530. [PMID: 34660278 PMCID: PMC8517331 DOI: 10.3389/fonc.2021.713530] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a validated molecular target for non-small-cell lung cancer (NSCLC). The use of tyrosine kinase inhibitors (TKIs) has led to significantly improved survival benefits. However, the clinical benefits of targeting ALK using TKIs are limited due to the emergence of drug resistance. The landscape of resistance mechanisms and treatment decisions has become increasingly complex. Therefore, continued research into new drugs and combinatorial therapies is required to improve outcomes in NSCLC. In this review, we explore the resistance mechanisms of ALK TKIs in advanced NSCLC in order to provide a theoretical basis and research ideas for solving the problem of ALK drug resistance.
Collapse
Affiliation(s)
- Yue Pan
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chao Deng
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhua Qiu
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha, China
| | | | - Fang Wu
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Christopoulos P, Bozorgmehr F, Brückner L, Chung I, Krisam J, Schneider MA, Stenzinger A, Eickhoff R, Mueller DW, Thomas M. Brigatinib versus other second-generation ALK inhibitors as initial treatment of anaplastic lymphoma kinase positive non-small cell lung cancer with deep phenotyping: study protocol of the ABP trial. BMC Cancer 2021; 21:743. [PMID: 34182952 PMCID: PMC8240323 DOI: 10.1186/s12885-021-08460-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/08/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Availability of potent anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKI) has pushed the median survival of ALK+ non-smallcell lung cancer (NSCLC) patients to over five years. In particular, second-generation ALK TKI have demonstrated superiority compared to the first-generation compound crizotinib and are meanwhile standard first-line treatment. However, clinical courses of individual patients vary widely, with secondary development of drug resistance and intracranial progression remaining important problems. While these limitations highlight the need for better disease monitoring and additional therapeutic tools, molecular tumor features are increasingly recognized as crucial determinants of clinical outcome. This trial aims to optimize management of ALK+ NSCLC by analyzing the efficacy of second-generation ALK inhibitors in conjunction with deep longitudinal phenotyping across two treatment lines. METHODS/DESIGN In this exploratory prospective phase II clinical trial, newly diagnosed ALK+ NSCLC patients will be randomized into two treatment arms, stratified by presence of brain metastases and ECOG performance status: brigatinib (experimental arm) vs. any other approved second-generation ALK TKI. Tumor tissue and blood samples will be collected for biomarker analysis at the beginning and throughout the study period to investigate baseline molecular tumor properties and analyze the development of acquired drug resistance. In addition, participating investigators and patients will have the possibility of fast-track molecular tumor and ctDNA profiling at the time of disease progression using state-of-the-art next-generation sequencing (NGS), in order to support decisions regarding next-line therapy. DISCUSSION Besides supporting therapeutic decisions for enrolled patients, the ABP trial primarily aims to deepen the understanding of the underlying biology and facilitate development of a framework for individualized management of ALK+ NSCLC according to molecular features. Patients with low molecular risk and the perspective of a "chronic disease" will be distinguished from "high-risk" cases, molecular properties of which will be utilized to elaborate improved methods of non-invasive monitoring and novel preclinical models in order to advance therapeutic strategies. TRIAL REGISTRATION Clinicaltrials.gov , NCT04318938. Registered March 182,020, https://www.clinicaltrials.gov/ct2/show/NCT04318938 Eudra-CT, 2019-001828-36. Registered September 302,019, https://www.clinicaltrialsregister.eu/ctr-search/search?query=2019-001828-36.
Collapse
Affiliation(s)
- Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik at University Hospital of Heidelberg, Röntgenstraße 1, 69126, Heidelberg, Germany.,Translational Lung Research Center Heidelberg TLRCH, Member of the German Center for Lung Research DZL, Im Neuenheimer Feld 156, 69120, Heidelberg, Germany
| | - Farastuk Bozorgmehr
- Department of Thoracic Oncology, Thoraxklinik at University Hospital of Heidelberg, Röntgenstraße 1, 69126, Heidelberg, Germany.,Translational Lung Research Center Heidelberg TLRCH, Member of the German Center for Lung Research DZL, Im Neuenheimer Feld 156, 69120, Heidelberg, Germany
| | - Lena Brückner
- Department of Thoracic Oncology, Thoraxklinik at University Hospital of Heidelberg, Röntgenstraße 1, 69126, Heidelberg, Germany.,Translational Lung Research Center Heidelberg TLRCH, Member of the German Center for Lung Research DZL, Im Neuenheimer Feld 156, 69120, Heidelberg, Germany
| | - Inn Chung
- Department of Thoracic Oncology, Thoraxklinik at University Hospital of Heidelberg, Röntgenstraße 1, 69126, Heidelberg, Germany.,Translational Lung Research Center Heidelberg TLRCH, Member of the German Center for Lung Research DZL, Im Neuenheimer Feld 156, 69120, Heidelberg, Germany
| | - Johannes Krisam
- University Hospital of Heidelberg, Institute of Medical Biometry and Informatics, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Marc A Schneider
- Translational Lung Research Center Heidelberg TLRCH, Member of the German Center for Lung Research DZL, Im Neuenheimer Feld 156, 69120, Heidelberg, Germany.,Translational Research Unit (STF), Thoraxklinik at University Hospital of Heidelberg, Röntgenstraße 1, 69126, Heidelberg, Germany
| | - Albrecht Stenzinger
- Translational Lung Research Center Heidelberg TLRCH, Member of the German Center for Lung Research DZL, Im Neuenheimer Feld 156, 69120, Heidelberg, Germany.,University of Heidelberg, Institute of Pathology, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Regina Eickhoff
- Institut für Klinische Krebsforschung IKF GmbH am Krankenhaus Nordwest, Steinbacher Hohl 2-26, 60488, Frankfurt am Main, Germany
| | - Daniel W Mueller
- Institut für Klinische Krebsforschung IKF GmbH am Krankenhaus Nordwest, Steinbacher Hohl 2-26, 60488, Frankfurt am Main, Germany
| | - Michael Thomas
- Department of Thoracic Oncology, Thoraxklinik at University Hospital of Heidelberg, Röntgenstraße 1, 69126, Heidelberg, Germany. .,Translational Lung Research Center Heidelberg TLRCH, Member of the German Center for Lung Research DZL, Im Neuenheimer Feld 156, 69120, Heidelberg, Germany.
| |
Collapse
|
23
|
El Shafie RA, Seidensaal K, Bozorgmehr F, Kazdal D, Eichkorn T, Elshiaty M, Weber D, Allgäuer M, König L, Lang K, Forster T, Arians N, Rieken S, Heussel CP, Herth FJ, Thomas M, Stenzinger A, Debus J, Christopoulos P. Effect of timing, technique and molecular features on brain control with local therapies in oncogene-driven lung cancer. ESMO Open 2021; 6:100161. [PMID: 34090172 PMCID: PMC8182387 DOI: 10.1016/j.esmoop.2021.100161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/24/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The improved efficacy of tyrosine kinase inhibitors (TKI) mandates reappraisal of local therapy (LT) for brain metastases (BM) of oncogene-driven non-small-cell lung cancer (NSCLC). PATIENTS AND METHODS This study included all epidermal growth factor receptor-mutated (EGFR+, n = 108) and anaplastic lymphoma kinase-rearranged (ALK+, n = 33) TKI-naive NSCLC patients diagnosed with BM in the Thoraxklinik Heidelberg between 2009 and 2019. Eighty-seven patients (62%) received early LT, while 54 (38%) received delayed (n = 34; 24%) or no LT (n = 20; 14%). LT comprised stereotactic (SRT; n = 40; 34%) or whole-brain radiotherapy (WBRT; n = 77; 66%), while neurosurgical resection was carried out in 19 cases. RESULTS Median overall survival (OS) was 49.1 months for ALK+ and 19.5 months for EGFR+ patients (P = 0.001), with similar median intracranial progression-free survival (icPFS) (15.7 versus 14.0 months, respectively; P = 0.80). Despite the larger and more symptomatic BM (P < 0.001) of patients undergoing early LT, these experienced longer icPFS [hazard ratio (HR) 0.52; P = 0.024], but not OS (HR 1.63; P = 0.12), regardless of the radiotherapy technique (SRT versus WBRT) and number of lesions. High-risk oncogene variants, i.e. non-del19 EGFR mutations and 'short' EML4-ALK fusions (mainly variant 3, E6:A20), were associated with earlier intracranial progression (HR 2.97; P = 0.001). The longer icPFS with early LT was also evident in separate analyses of the EGFR+ and ALK+ subsets. CONCLUSIONS Despite preferential use for cases with poor prognostic factors, early LT prolongs the icPFS, but not OS, in TKI-treated EGFR+/ALK+ NSCLC. Considering the lack of survival benefit, and the neurocognitive effects of WBRT, patients presenting with polytopic BM may benefit from delaying radiotherapy, or from radiosurgery of multiple or selected lesions. For SRT candidates, the improved tumor control with earlier radiotherapy should be weighed against the potential toxicity and the enhanced intracranial activity of newer TKI. High-risk EGFR/ALK variants are associated with earlier intracranial failure and identify patients who could benefit from more aggressive management.
Collapse
Affiliation(s)
- R A El Shafie
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiology and Nuclear Medicines, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany.
| | - K Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiology and Nuclear Medicines, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - F Bozorgmehr
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - D Kazdal
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany; Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - T Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiology and Nuclear Medicines, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - M Elshiaty
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - D Weber
- Institute of Medical Biometry and Informatics (IMBI), Heidelberg University Hospital, Heidelberg, Germany
| | - M Allgäuer
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany; Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - L König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiology and Nuclear Medicines, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - K Lang
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiology and Nuclear Medicines, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - T Forster
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiology and Nuclear Medicines, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - N Arians
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiology and Nuclear Medicines, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - S Rieken
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; University Medical Center Göttingen, Department of Radiation Oncology, Göttingen, Germany
| | - C-P Heussel
- Department of Radiology and Nuclear Medicines, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - F J Herth
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany; Department of Pneumology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - M Thomas
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - A Stenzinger
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany; Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - J Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology (E050), German Cancer Research Center (DKFZ), Heidelberg, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberger Ionenstrahltherapie-Zentrum (HIT), Heidelberg, Germany
| | - P Christopoulos
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany.
| |
Collapse
|
24
|
Christopoulos P, Dietz S, Angeles AK, Rheinheimer S, Kazdal D, Volckmar AL, Janke F, Endris V, Meister M, Kriegsmann M, Zemojtel T, Reck M, Stenzinger A, Thomas M, Sültmann H. Earlier extracranial progression and shorter survival in ALK-rearranged lung cancer with positive liquid rebiopsies. Transl Lung Cancer Res 2021; 10:2118-2131. [PMID: 34164264 PMCID: PMC8182700 DOI: 10.21037/tlcr-21-32] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/19/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Liquid rebiopsies can detect resistance mutations to guide therapy of anaplastic lymphoma kinase-rearranged (ALK+) non-small-cell lung cancer (NSCLC) failing tyrosine kinase inhibitors (TKI). Here, we analyze how their results relate to the anatomical pattern of disease progression and patient outcome. METHODS Clinical, molecular, and radiologic characteristics of consecutive TKI-treated ALK+ NSCLC patients were analyzed using prospectively collected plasma samples and the 17-gene targeted AVENIO kit, which covers oncogenic drivers and all TP53 exons. RESULTS In 56 patients, 139 instances of radiologic changes were analyzed, of which 133 corresponded to disease progression. Circulating tumor DNA (ctDNA) alterations were identified in most instances of extracranial progression (58/94 or 62%), especially if concomitant intracranial progression was also present (89%, P<0.001), but rarely in case of isolated central nervous system (CNS) progression (8/39 or 21%, P<0.001). ctDNA detectability correlated with presence of "short" echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion variants (mainly V3, E6:A20) and/or TP53 mutations (P<0.05), and presented therapeutic opportunities in <50% of cases. Patients with extracranial progression and positive liquid biopsies had shorter survival from the start of palliative treatment (mean 52 vs. 69 months, P=0.002), regardless of previous and subsequent therapy and initial ECOG performance status. Furthermore, for patients with extracranial progression, ctDNA detectability was associated with shorter next-line progression-free survival (PFS) (3 vs. 13 months, P=0.003) if they were switched to another systemic therapy (49/86 samples), and with shorter time-to-next-treatment (TNT) (3 vs. 8 months, P=0.004) if they were continued on the same treatment due to oligoprogression (37/86). In contrast, ctDNA detectability was not associated with the outcome of patients showing CNS-only progression. In 6/6 cases with suspicion of non-neoplastic radiologic lung changes (mainly infection or pneumonitis), ctDNA results remained negative. CONCLUSIONS Positive blood-based liquid rebiopsies in ALK+ NSCLC characterize biologically more aggressive disease and are common with extracranial, but rare with CNS-only progression or benign radiologic changes. These results reconcile the increased detection of ALK resistance mutations with other features of the high-risk EML4-ALK V3-associated phenotype. Conversely, most oligoprogressive patients with negative liquid biopsies have a more indolent course without need for early change of systemic treatment.
Collapse
Affiliation(s)
- Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
| | - Steffen Dietz
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Arlou K. Angeles
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stephan Rheinheimer
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Kazdal
- Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna-Lena Volckmar
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Janke
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Volker Endris
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Meister
- Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Mark Kriegsmann
- Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomasz Zemojtel
- Charité – Universitätsmedizin Berlin, BIH - Genomics Core Unit, Berlin, Germany
| | - Martin Reck
- Lungenclinic Großhansdorf, Großhansdorf, Germany
| | - Albrecht Stenzinger
- Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Thomas
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
25
|
An Immune Checkpoint-Related Gene Signature for Predicting Survival of Pediatric Acute Myeloid Leukemia. JOURNAL OF ONCOLOGY 2021; 2021:5550116. [PMID: 33986802 PMCID: PMC8079183 DOI: 10.1155/2021/5550116] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 01/04/2023]
Abstract
Objective The aim of this research was to create a new genetic signature of immune checkpoint-associated genes as a prognostic method for pediatric acute myeloid leukemia (AML). Methods Transcriptome profiles and clinical follow-up details were obtained in Therapeutically Applicable Research to Generate Effective Treatments (TARGET), a database of pediatric tumors. Secondary data was collected from the Gene Expression Omnibus (GEO) to test the observations. In univariate Cox regression and multivariate Cox regression studies, the expression of immune checkpoint-related genes was studied. A three-mRNA signature was developed for predicting pediatric AML patient survival. Furthermore, the GEO cohort was used to confirm the reliability. A bioinformatics method was utilized to identify the diagnostic and prognostic value. Results A three-gene (STAT1, BATF, EML4) signature was developed to identify patients into two danger categories depending on their OS. A multivariate regression study showed that the immune checkpoint-related signature (STAT1, BATF, EML4) was an independent indicator of pediatric AML. By immune cell subtypes analyses, the signature was correlated with multiple subtypes of immune cells. Conclusion In summary, our three-gene signature can be a useful tool to predict the OS in AML patients.
Collapse
|
26
|
Bozorgmehr F, Kazdal D, Chung I, Kirchner M, Magios N, Kriegsmann M, Allgäuer M, Klotz LV, Muley T, El Shafie RA, Fischer JR, Faehling M, Stenzinger A, Thomas M, Christopoulos P. De Novo Versus Secondary Metastatic EGFR-Mutated Non-Small-Cell Lung Cancer. Front Oncol 2021; 11:640048. [PMID: 33898315 PMCID: PMC8063726 DOI: 10.3389/fonc.2021.640048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background Metastatic epidermal growth factor receptor-mutated (EGFR+) non-small-cell lung cancer (NSCLC) can present de novo or following previous nonmetastatic disease (secondary). Potential differences between these two patient subsets are unclear at present. Methods We retrospectively analyzed characteristics of tyrosine kinase inhibitor (TKI)-treated patients with de novo vs. secondary metastatic EGFR+ NSCLC until December 2019 (n = 401). Results De novo metastatic disease was 4× more frequent than secondary (n = 83/401), but no significant differences were noted regarding age (median 66 vs. 70 years), sex (65% vs. 65% females), smoking history (67% vs. 62% never/light-smokers), and histology (both >95% adenocarcinoma). Patients with secondary metastatic disease showed a better ECOG performance status (PS 0-1 67%-32% vs. 46%-52%, p = 0.003), fewer metastatic sites (mean 1.3 vs. 2.0, p < 0.001), and less frequent brain involvement (16% vs. 28%, p = 0.022) at the time of stage IV diagnosis. Progression-free survival (PFS) under TKI (median 17 for secondary vs. 12 months for de novo, p = 0.26) and overall survival (OS, 29 vs. 25 months, respectively, p = 0.47) were comparable. EGFR alterations (55% vs. 60% exon 19 deletions), TP53 mutation rate at baseline (47% vs. 43%, n = 262), and T790M positivity at the time of TKI failure (51% vs. 56%, n = 193) were also similar. OS according to differing characteristics, e.g., presence or absence of brain metastases (19-20 or 30-31 months, respectively, p = 0.001), and ECOG PS 0 or 1 or 2 (32-34 or 20-23 or 5-7 months, respectively, p < 0.001), were almost identical for de novo and secondary metastatic disease. Conclusions Despite the survival advantage reported in the pre-TKI era for relapsed NSCLC, molecular features and outcome of TKI-treated metastatic EGFR+ tumors are currently independent of preceding nonmetastatic disease. This simplifies design of outcome studies and can assist prognostic considerations in everyday management of patients with secondary metastatic EGFR+ tumors.
Collapse
Affiliation(s)
- Farastuk Bozorgmehr
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Daniel Kazdal
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Inn Chung
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Martina Kirchner
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nikolaus Magios
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Mark Kriegsmann
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Allgäuer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Laura V Klotz
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany.,Department of Thoracic Surgery, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Muley
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany.,Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Rami A El Shafie
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen R Fischer
- Department of Thoracic Oncology, Lungenklinik Löwenstein, Löwenstein, Germany
| | - Martin Faehling
- Department of Cardiology, Angiology and Pneumology, Klinikum Esslingen, Esslingen, Germany
| | - Albrecht Stenzinger
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Thomas
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
27
|
Elsayed M, Christopoulos P. Therapeutic Sequencing in ALK + NSCLC. Pharmaceuticals (Basel) 2021; 14:ph14020080. [PMID: 33494549 PMCID: PMC7912146 DOI: 10.3390/ph14020080] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/17/2022] Open
Abstract
Anaplastic lymphoma kinase-rearranged non-small-cell lung cancer (ALK+ NSCLC) is a model disease for the use of targeted pharmaceuticals in thoracic oncology. Due to higher systemic and intracranial efficacy, the second-generation ALK tyrosine kinase inhibitors (TKI) alectinib and brigatinib have irrevocably displaced crizotinib as standard first-line treatment, based on the results of the ALEX and ALTA-1L trials. Besides, lorlatinib and brigatinib are the preferred second-line therapies for progression under second-generation TKI and crizotinib, respectively, based on the results of several phase II studies. Tissue or liquid rebiopsies at the time of disease progression, even though not mandated by the approval status of any ALK inhibitor, are gaining importance for individualization and optimization of patient management. Of particular interest are cases with off-target resistance, for example MET, HER2 or KRAS alterations, which require special therapeutic maneuvers, e.g., inclusion in early clinical trials or off-label administration of respectively targeted drugs. On the other hand, up to approximately half of the patients failing TKI, develop anatomically restricted progression, which can be initially tackled with local ablative measures without switch of systemic therapy. Among the overall biologically favorable ALK+ tumors, with a mean tumor mutational burden uniquely below 3 mutations per Mb and the longest survival among NSCLC currently, presence of the EML4-ALK fusion variant 3 and/or TP53 mutations identify high-risk cases with earlier treatment failure and a need for more aggressive surveillance and treatment strategies. The potential clinical utility of longitudinal ctDNA assays for earlier detection of disease progression and improved guidance of therapy in these patients is a currently a matter of intense investigation. Major pharmaceutical challenges for the field are the development of more potent, fourth-generation TKI and effective immuno-oncological interventions, especially ALK-directed cell therapies, which will be essential for further improving survival and achieving cure of ALK+ tumors.
Collapse
Affiliation(s)
- Mei Elsayed
- Department of Thoracic Oncology, Thoraxklinik and National Center for Tumor Diseases (NCT) at Heidelberg University Hospital, 69126 Heidelberg, Germany;
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik and National Center for Tumor Diseases (NCT) at Heidelberg University Hospital, 69126 Heidelberg, Germany;
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), 69126 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-396-1371
| |
Collapse
|
28
|
Lu G, Tian S, Sun Y, Dong J, Wang N, Zeng J, Nie Y, Wu K, Han Y, Feng B, Shang Y. NEK9, a novel effector of IL-6/STAT3, regulates metastasis of gastric cancer by targeting ARHGEF2 phosphorylation. Am J Cancer Res 2021; 11:2460-2474. [PMID: 33500736 PMCID: PMC7797683 DOI: 10.7150/thno.53169] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale: Inflammatory stimuli from the tumor microenvironment play important roles in cancer progression. However, the mechanism of promotion of cancer metastasis by inflammation in gastric cancer (GC) is poorly understood. Methods: The roles of NEK9 were validated via loss-of-function and gain-of-function experiments in vitro and in an animal model of metastasis. Cytoskeletal reorganization-associated molecules were detected by GST pull-down. The regulation of ARHGEF2 by NEK9 was investigated by phosphoproteomics analysis, immunoprecipitation (IP) and in vitro kinase assay. The transcriptional regulation of miR-520f-3p was studied using luciferase reporter and chromatin immunoprecipitation (ChIP). The expression of these proteins in GC tissues was examined by immunohistochemistry. Results: NEK9 directly regulates cell motility and RhoA activation in GC. The phosphorylation of ARHGEF2 by NEK9 is the key step of this process. NEK9 is a direct target of miR-520f-3p, which is transcriptionally suppressed by IL-6-mediated activation of STAT3. A decrease in miR-520f-3p leads to the amplification of IL-6/STAT3 by targeting GP130. A simultaneous elevation of the levels of NEK9, GP130 and p-STAT3 was confirmed in the lymph nodes and distant metastases. An increase in NEK9, GP130 and STAT3 is associated with reduced overall survival of GC patients. Conclusion: This study demonstrates that activation of STAT3 by IL-6 transcriptionally suppresses miR-520f-3p and diminishes the inhibitory effects of miR-520f-3p on NEK9 and GP130. An increase in GP130 enhances this signaling, and NEK9 directly influences cell motility and RhoA activation by targeting the phosphorylation of ARHGEF2. Targeting the IL-6-STAT3-NEK9 pathway may be a new strategy for GC treatment.
Collapse
|
29
|
Sun Z, Gong W, Zhang Y, Jia Z. Physiological and Pathological Roles of Mammalian NEK7. Front Physiol 2020; 11:606996. [PMID: 33364979 PMCID: PMC7750478 DOI: 10.3389/fphys.2020.606996] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
NEK7 is the smallest NIMA-related kinase (NEK) in mammals. The pathological and physiological roles of NEK7 have been widely reported in many studies. To date, the major function of NEK7 has been well documented in mitosis and NLRP3 inflammasome activation, but the detailed mechanisms of its regulation remain unclear. This review summarizes current advances in NEK7 research involving mitotic regulation, NLRP3 inflammasome activation, related diseases and potential inhibitors, which may provide new insights into the understanding and therapy of the diseases associated with NEK7, as well as the subsequent studies in the future.
Collapse
Affiliation(s)
- Zhenzhen Sun
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Wei Gong
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
30
|
Minati R, Perreault C, Thibault P. A Roadmap Toward the Definition of Actionable Tumor-Specific Antigens. Front Immunol 2020; 11:583287. [PMID: 33424836 PMCID: PMC7793940 DOI: 10.3389/fimmu.2020.583287] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
The search for tumor-specific antigens (TSAs) has considerably accelerated during the past decade due to the improvement of proteogenomic detection methods. This provides new opportunities for the development of novel antitumoral immunotherapies to mount an efficient T cell response against one or multiple types of tumors. While the identification of mutated antigens originating from coding exons has provided relatively few TSA candidates, the possibility of enlarging the repertoire of targetable TSAs by looking at antigens arising from non-canonical open reading frames opens up interesting avenues for cancer immunotherapy. In this review, we outline the potential sources of TSAs and the mechanisms responsible for their expression strictly in cancer cells. In line with the heterogeneity of cancer, we propose that discrete families of TSAs may be enriched in specific cancer types.
Collapse
Affiliation(s)
- Robin Minati
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
31
|
Byrne MJ, Nasir N, Basmadjian C, Bhatia C, Cunnison RF, Carr KH, Mas-Droux C, Yeoh S, Cano C, Bayliss R. Nek7 conformational flexibility and inhibitor binding probed through protein engineering of the R-spine. Biochem J 2020; 477:1525-1539. [PMID: 32242624 PMCID: PMC7200626 DOI: 10.1042/bcj20200128] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022]
Abstract
Nek7 is a serine/threonine-protein kinase required for proper spindle formation and cytokinesis. Elevated Nek7 levels have been observed in several cancers, and inhibition of Nek7 might provide a route to the development of cancer therapeutics. To date, no selective and potent Nek7 inhibitors have been identified. Nek7 crystal structures exhibit an improperly formed regulatory-spine (R-spine), characteristic of an inactive kinase. We reasoned that the preference of Nek7 to crystallise in this inactive conformation might hinder attempts to capture Nek7 in complex with Type I inhibitors. Here, we have introduced aromatic residues into the R-spine of Nek7 with the aim to stabilise the active conformation of the kinase through R-spine stacking. The strong R-spine mutant Nek7SRS retained catalytic activity and was crystallised in complex with compound 51, an ATP-competitive inhibitor of Nek2 and Nek7. Subsequently, we obtained the same crystal form for wild-type Nek7WT in apo form and bound to compound 51. The R-spines of the three well-ordered Nek7WT molecules exhibit variable conformations while the R-spines of the Nek7SRS molecules all have the same, partially stacked configuration. Compound 51 bound to Nek2 and Nek7 in similar modes, but differences in the precise orientation of a substituent highlights features that could be exploited in designing inhibitors that are selective for particular Nek family members. Although the SRS mutations are not required to obtain a Nek7-inhibitor structure, we conclude that it is a useful strategy for restraining the conformation of a kinase in order to promote crystallogenesis.
Collapse
Affiliation(s)
- Matthew J. Byrne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, U.K
| | - Nazia Nasir
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, U.K
| | - Christine Basmadjian
- Newcastle University Centre for Cancer, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, U.K
| | - Chitra Bhatia
- Department of Molecular and Cell Biology, University of Leicester, Leicester, U.K
| | - Rory F. Cunnison
- Department of Molecular and Cell Biology, University of Leicester, Leicester, U.K
| | - Katherine H. Carr
- Department of Molecular and Cell Biology, University of Leicester, Leicester, U.K
| | - Corine Mas-Droux
- Section of Structural Biology, The Institute of Cancer Research, London, U.K
| | - Sharon Yeoh
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, U.K
| | - Céline Cano
- Newcastle University Centre for Cancer, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, U.K
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, U.K
| |
Collapse
|
32
|
Peres de Oliveira A, Kazuo Issayama L, Betim Pavan IC, Riback Silva F, Diniz Melo-Hanchuk T, Moreira Simabuco F, Kobarg J. Checking NEKs: Overcoming a Bottleneck in Human Diseases. Molecules 2020; 25:molecules25081778. [PMID: 32294979 PMCID: PMC7221840 DOI: 10.3390/molecules25081778] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
In previous years, several kinases, such as phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), and extracellular-signal-regulated kinase (ERK), have been linked to important human diseases, although some kinase families remain neglected in terms of research, hiding their relevance to therapeutic approaches. Here, a review regarding the NEK family is presented, shedding light on important information related to NEKs and human diseases. NEKs are a large group of homologous kinases with related functions and structures that participate in several cellular processes such as the cell cycle, cell division, cilia formation, and the DNA damage response. The review of the literature points to the pivotal participation of NEKs in important human diseases, like different types of cancer, diabetes, ciliopathies and central nervous system related and inflammatory-related diseases. The different known regulatory molecular mechanisms specific to each NEK are also presented, relating to their involvement in different diseases. In addition, important information about NEKs remains to be elucidated and is highlighted in this review, showing the need for other studies and research regarding this kinase family. Therefore, the NEK family represents an important group of kinases with potential applications in the therapy of human diseases.
Collapse
Affiliation(s)
- Andressa Peres de Oliveira
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
| | - Luidy Kazuo Issayama
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Isadora Carolina Betim Pavan
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
- Laboratório Multidisciplinar em Alimentos e Saúde, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, São Paulo 13484-350, Brazil;
| | - Fernando Riback Silva
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Talita Diniz Melo-Hanchuk
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Fernando Moreira Simabuco
- Laboratório Multidisciplinar em Alimentos e Saúde, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, São Paulo 13484-350, Brazil;
| | - Jörg Kobarg
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
- Correspondence: ; Tel.: +55-19-3521-8143
| |
Collapse
|