1
|
Li Z, Guo H, Ge Y, Li X, Dong F, Zhang F. Decoding Alzheimer's Disease With Depression: Molecular Insights and Therapeutic Target. J Cell Mol Med 2025; 29:e70454. [PMID: 40074694 PMCID: PMC11903198 DOI: 10.1111/jcmm.70454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/20/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
The purpose of this study was to recognise predictive biomarkers and explore the promising therapeutic targets of AD with depression. We confirmed a positive correlation between AD and depression through MR Analysis. Through WGCNA analysis, we identified 1569 genes containing two modules, which were most related to AD. In addition, 1629 depressive DEGs were also identified. In these genes, 84 genes were shared by both AD and depression, which were screened by the Degree algorithm, MCC algorithm, and four machine learning algorithms. Two genes (ITGB5 and SPCS1) were confirmed as predictive biomarkers with AUC > 0.7. Furthermore, the nomogram indicated that ITGB5 and SPCS1 are good biomarkers in diagnosing AD with depression. Four drugs targeted at ITGB5 were determined by the DGIdb website. In conclusion, we identified two predictive biomarkers for AD with depression, thus providing promising therapeutic targets for AD with depression.
Collapse
Affiliation(s)
- Zekun Li
- Department of Rehabilitation MedicineThe Third Hospital of Hebei Medical UniversityShijiazhuangP. R. China
| | - Hongmin Guo
- Department of Rehabilitation MedicineThe Third Hospital of Hebei Medical UniversityShijiazhuangP. R. China
| | - Yihao Ge
- Department of Rehabilitation MedicineThe Third Hospital of Hebei Medical UniversityShijiazhuangP. R. China
| | - Xiaohan Li
- Department of Rehabilitation MedicineThe Third Hospital of Hebei Medical UniversityShijiazhuangP. R. China
| | - Fang Dong
- Department of Clinical Laboratory MedicineThe Third Hospital of Hebei Medical UniversityShijiazhuangP. R. China
| | - Feng Zhang
- Department of Rehabilitation MedicineThe Third Hospital of Hebei Medical UniversityShijiazhuangP. R. China
| |
Collapse
|
2
|
Chung Y, Yim C, Pereira GP, Son S, Kjølbye LR, Mazurkiewicz LE, Weeks AM, Förster F, von Heijne G, Souza PC, Kim H. Spc2 modulates substrate- and cleavage site-selection in the yeast signal peptidase complex. J Cell Biol 2024; 223:e202211035. [PMID: 39565596 PMCID: PMC11579918 DOI: 10.1083/jcb.202211035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/07/2023] [Accepted: 09/20/2024] [Indexed: 11/21/2024] Open
Abstract
Secretory proteins are critically dependent on the correct processing of their signal sequence by the signal peptidase complex (SPC). This step, which is essential for the proper folding and localization of proteins in eukaryotic cells, is still not fully understood. In eukaryotes, the SPC comprises four evolutionarily conserved membrane subunits (Spc1-3 and Sec11). Here, we investigated the role of Spc2, examining SPC cleavage efficiency on various models and natural signal sequences in yeast cells depleted of or with mutations in Spc2. Our data show that discrimination between substrates and identification of the cleavage site by SPC is compromised when Spc2 is absent or mutated. Molecular dynamics simulation of the yeast SPC AlphaFold2-Multimer model indicates that membrane thinning at the center of SPC is reduced without Spc2, suggesting a molecular explanation for the altered substrate recognition properties of SPC lacking Spc2. These results provide new insights into the molecular mechanisms by which SPC governs protein biogenesis.
Collapse
Affiliation(s)
- Yeonji Chung
- School of Biological Sciences and Institute of Biodiversity, Seoul National University, Seoul, South Korea
| | - Chewon Yim
- School of Biological Sciences and Institute of Biodiversity, Seoul National University, Seoul, South Korea
| | - Gilberto P. Pereira
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, Lyon, France
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086 and Université Claude Bernard Lyon 1, Lyon, France
| | - Sungjoon Son
- School of Biological Sciences and Institute of Biodiversity, Seoul National University, Seoul, South Korea
| | - Lisbeth R. Kjølbye
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086 and Université Claude Bernard Lyon 1, Lyon, France
| | | | - Amy M. Weeks
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Friedrich Förster
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- Science for Life Laboratory Stockholm University, Solna, Sweden
| | - Paulo C.T. Souza
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, Lyon, France
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086 and Université Claude Bernard Lyon 1, Lyon, France
| | - Hyun Kim
- School of Biological Sciences and Institute of Biodiversity, Seoul National University, Seoul, South Korea
| |
Collapse
|
3
|
Yim C, Chung Y, Son S, Kim J, Kim JS, Kim H. Abundance of the Membrane Proteome in Yeast Cells Lacking Spc1, a Non-catalytic Subunit of the Signal Peptidase Complex. J Membr Biol 2024; 257:207-214. [PMID: 38630294 DOI: 10.1007/s00232-024-00312-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/05/2024] [Indexed: 07/31/2024]
Abstract
The signal peptidase complex (SPC) mediates processing of signal peptides of secretory precursors. But, recent studies show that the eukaryotic SPC also cleaves internal transmembrane segments of some membrane proteins, and its non-catalytic subunit, Spc1/SPCS1 plays a critical role in this process. To assess the impact of Spc1 on membrane proteostasis, we carried out quantitative proteomics of yeast cells with and without Spc1. Our data show that the abundance of the membrane proteome in yeast cells lacking Spc1 is in general reduced compared to that in wild-type cells, implicating its role in controlling the cellular levels of membrane proteins.
Collapse
Affiliation(s)
- Chewon Yim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Building 504-421, Seoul, 08826, South Korea
| | - Yeonji Chung
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Building 504-421, Seoul, 08826, South Korea
| | - Sungjoon Son
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Building 504-421, Seoul, 08826, South Korea
| | - Jeesoo Kim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Building 504-421, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Jong-Seo Kim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Building 504-421, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Hyun Kim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Building 504-421, Seoul, 08826, South Korea.
| |
Collapse
|
4
|
Yang S, Zhuo Y, Lin Y, Huang M, Tang W, Zheng W, Lu G, Wang Z, Yun Y. The Signal Peptidase FoSpc2 Is Required for Normal Growth, Conidiation, Virulence, Stress Response, and Regulation of Light Sensitivity in Fusarium odoratissimum. Microbiol Spectr 2023; 11:e0440322. [PMID: 37367437 PMCID: PMC10433827 DOI: 10.1128/spectrum.04403-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
Signal peptidase (SPase) is responsible for cleavage of N-terminal signal peptides in most secretory precursor proteins and many membrane proteins during maturation. In this study, we identified four components of the SPase complex (FoSec11, FoSpc1, FoSpc2, and FoSpc3) in the banana wilt fungal pathogen Fusarium odoratissimum. We proved that interactions exist among the four SPase subunits by bimolecular fluorescence complementation (BiFC) and affinity purification and mass spectrometry (AP-MS) assays. Among the four SPase genes, FoSPC2 was successfully deleted. FoSPC2 deletion caused defects in vegetative growth, conidiation, and virulence. Loss of FoSPC2 also affected the secretion of some pathogenicity-related extracellular enzymes, suggesting that SPase without FoSpc2 may have a lower efficiency in managing the maturation of the extracellular enzymes in F. odoratissimum. In addition, we found that the ΔFoSPC2 mutant had increased sensitivity to light, and the colonies of the mutant grew faster under all-dark conditions than under all-light conditions. We further observed that deletion of FoSPC2 affected expression of the blue light photoreceptor gene FoWC2, leading to cytoplasmic accumulation of FoWc2 under all-light conditions. Since FoWc2 has signal peptides, FoSpc2 may regulate the expression and subcellular localization of FoWc2 indirectly. Contrary to its response to light, the ΔFoSPC2 mutant displayed a significant decreased sensitivity to osmotic stress, and culturing the mutant under osmotic stress conditions restored both the localization of FoWc2 and light sensitivity of the ΔFoSPC2, suggesting that a cross talk between osmotic stress and light response pathways in F. odoratissimum and FoSpc2 takes part in these processes. IMPORTANCE In this study, we identified four components of SPase in the banana wilt pathogen Fusarium odoratissimum and characterized the SPase FoSpc2. Loss of FoSPC2 affected the secretion of extracellular enzymes, suggesting that SPase without FoSpc2 may have a lower efficiency in managing the maturation of the extracellular enzymes in F. odoratissimum. In addition, this is the first time that we have found a relationship between the SPase and fungal light response. Deletion of FoSPC2 resulted in decreased sensitivity to the osmotic stresses but with increased sensitivity to light. Continuous light inhibited the growth rate of the ΔFoSPC2 mutant and affected the cellular localization of the blue light photoreceptor FoWc2 in this mutant, but culturing the mutant under osmotic stress both restored the localization of FoWc2 and eliminated the light sensitivity of the ΔFoSPC2 mutant, suggesting that loss of FoSPC2 may affect a cross talk between the osmotic stress and light response pathways in F. odoratissimum.
Collapse
Affiliation(s)
- Shuai Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanghong Zhuo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yaqi Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meimei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Yingzi Yun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
| |
Collapse
|
5
|
Kim KH, Kang S, Seo H, Yun CW. AfSec1 is a signal peptidase and removes signal peptides of 1,3-β-glucanosyltransferases in Aspergillus fumigatus. Med Mycol 2022; 61:6993075. [PMID: 36657388 DOI: 10.1093/mmy/myad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
To identify the infection mechanism of Aspergillus fumigatus, which is an opportunistic fungal pathogen, we analyzed the expression profile of the whole genome of A. fumigatus during the infection of murine macrophages. A previously reported RNA-seq data analysis showed that many genes involved in cell wall synthesis were upregulated during the infection process. Interestingly, AfSec1 (3g12840), which encodes a putative signal peptidase, was upregulated dramatically, and its putative target protein Gel1, which encodes a 1,3-β-glucanosyltransferase, was also upregulated. Instead of the AfSec1 deletion strain, the AfSec1-ΔP strain was constructed, in which the promoter region of AfSec1 was deleted, and AfSec1 expression was not detected in the AfSec1-ΔP strain. The expression of AfSec1 was recovered by the introduction of the promoter region (the AfSec1-ΔP/P strain). The nonprocessed form of Gel1 was identified in the AfSec1-ΔP strain, which lacked the promoter, but mature forms of Gel1 were found in the wild-type and in AfSec1-ΔP/P, which was the promoter complementation strain. In the plate assay, the AfSec1-ΔP strain showed higher sensitivity against caspofungin than the wild-type. However, compared with the wild-type, the deletion strain showed no difference in the sensitivity to other antifungal drugs, such as amphotericin B and voriconazole, which inhibit different targets compared with caspofungin. The AfSec1-ΔP strain exhibited ∼20% lower levels of β-glucan in the cell wall than the wild-type. Finally, the virulence decreased when the promoter region of AfSec1 was deleted, as observed in the murine infection test and conidia-killing assay using human macrophages and neutrophils. These results suggest that AfSec1 exerts signal peptidase activity on its target Gel1 and has an important role in fungal pathogenesis.
Collapse
Affiliation(s)
- Ki-Hwan Kim
- School of Life Sciences and Biotechnology, Korea University Anam-dong, Sungbuk-gu, Seoul, Republic of Korea
| | - Suzie Kang
- School of Life Sciences and Biotechnology, Korea University Anam-dong, Sungbuk-gu, Seoul, Republic of Korea
| | - Hyewon Seo
- School of Life Sciences and Biotechnology, Korea University Anam-dong, Sungbuk-gu, Seoul, Republic of Korea
| | - Cheol-Won Yun
- School of Life Sciences and Biotechnology, Korea University Anam-dong, Sungbuk-gu, Seoul, Republic of Korea.,NeuroEsgel Co., Anam-dong, Sungbuk-gu, Seoul, 02841, Korea
| |
Collapse
|
6
|
Zanotti A, Coelho JPL, Kaylani D, Singh G, Tauber M, Hitzenberger M, Avci D, Zacharias M, Russell RB, Lemberg MK, Feige MJ. The human signal peptidase complex acts as a quality control enzyme for membrane proteins. Science 2022; 378:996-1000. [DOI: 10.1126/science.abo5672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cells need to detect and degrade faulty membrane proteins to maintain homeostasis. In this study, we identify a previously unknown function of the human signal peptidase complex (SPC)—the enzyme that removes endoplasmic reticulum (ER) signal peptides—as a membrane protein quality control factor. We show that the SPC cleaves membrane proteins that fail to correctly fold or assemble into their native complexes at otherwise hidden cleavage sites, which our study reveals to be abundant in the human membrane proteome. This posttranslocational cleavage synergizes with ER-associated degradation to sustain membrane protein homeostasis and contributes to cellular fitness. Cryptic SPC cleavage sites thus serve as predetermined breaking points that, when exposed, help to target misfolded or surplus proteins for degradation, thereby maintaining a healthy membrane proteome.
Collapse
Affiliation(s)
- Andrea Zanotti
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany
| | - João P. L. Coelho
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Dinah Kaylani
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Gurdeep Singh
- BioQuant and Biochemistry Center (BZH), Heidelberg University, 69120 Heidelberg, Germany
| | - Marina Tauber
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Manuel Hitzenberger
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Dönem Avci
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Martin Zacharias
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Robert B. Russell
- BioQuant and Biochemistry Center (BZH), Heidelberg University, 69120 Heidelberg, Germany
| | - Marius K. Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Matthias J. Feige
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich (TUM), 85748 Garching, Germany
| |
Collapse
|
7
|
Upadhyay C, Rao PG, Feyznezhad R. Dual Role of HIV-1 Envelope Signal Peptide in Immune Evasion. Viruses 2022; 14:v14040808. [PMID: 35458538 PMCID: PMC9030904 DOI: 10.3390/v14040808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/10/2022] Open
Abstract
HIV-1 Env signal peptide (SP) is an important contributor to Env functions. Env is generated from Vpu/Env encoded bicistronic mRNA such that the 5′ end of Env-N-terminus, that encodes for Env-SP overlaps with 3′ end of Vpu. Env SP displays high sequence diversity, which translates into high variability in Vpu sequence. This study aimed to understand the effect of sequence polymorphism in the Vpu-Env overlapping region (VEOR) on the functions of two vital viral proteins: Vpu and Env. We used infectious molecular clone pNL4.3-CMU06 and swapped its SP (or VEOR) with that from other HIV-1 isolates. Swapping VEOR did not affect virus production in the absence of tetherin however, presence of tetherin significantly altered the release of virus progeny. VEOR also altered Vpu’s ability to downregulate CD4 and tetherin. We next tested the effect of these swaps on Env functions. Analyzing the binding of monoclonal antibodies to membrane embedded Env revealed changes in the antigenic landscape of swapped Envs. These swaps affected the oligosaccharide composition of Env-N-glycans as shown by changes in DC-SIGN-mediated virus transmission. Our study suggests that genetic diversity in VEOR plays an important role in the differential pathogenesis and also assist in immune evasion by altering Env epitope exposure.
Collapse
|