1
|
Körner M, Müller P, Das H, Kraus F, Pfeuffer T, Spielhaupter S, Oeljeklaus S, Schülein-Völk C, Harper JW, Warscheid B, Buchberger A. p97/VCP is required for piecemeal autophagy of aggresomes. Nat Commun 2025; 16:4243. [PMID: 40335532 PMCID: PMC12059050 DOI: 10.1038/s41467-025-59556-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 04/23/2025] [Indexed: 05/09/2025] Open
Abstract
Metazoan cells adapt to the exhaustion of protein quality control (PQC) systems by sequestering aggregation-prone proteins in large, pericentriolar structures termed aggresomes. Defects in both aggresome formation and clearance affect proteostasis and have been linked to neurodegenerative diseases, but aggresome clearance pathways are still underexplored. Here we show that aggresomes comprising endogenous proteins are cleared via selective autophagy requiring the cargo receptor TAX1BP1. TAX1BP1 proximitomes reveal the presence of various PQC systems at aggresomes, including Hsp70 chaperones, the 26S proteasome, and the ubiquitin-selective unfoldase p97/VCP. While Hsp70 and p97/VCP with its cofactors UFD1-NPL4 and FAF1 play key roles in aggresome disassembly, the 26S proteasome is dispensable. We identify aggresomal client proteins that are degraded via different routes, in part in a p97/VCP-dependent manner via aggrephagy. Upon acute inhibition of p97/VCP, aggresomes fail to disintegrate and cannot be incorporated into autophagosomes despite the presence of factors critical for aggrephagosome formation, including p62/SQSTM1, TAX1BP1, and WIPI2. We conclude that the p97/VCP-mediated removal of ubiquitylated aggresomal clients is essential for the disintegration and subsequent piecemeal autophagy of aggresomes.
Collapse
Affiliation(s)
- Maria Körner
- Biocenter, Chair of Biochemistry I, University of Würzburg, Würzburg, Germany
| | - Paul Müller
- Biocenter, Chair of Biochemistry I, University of Würzburg, Würzburg, Germany
| | - Hirak Das
- Biocenter, Chair of Biochemistry II, University of Würzburg, Würzburg, Germany
| | - Felix Kraus
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Timo Pfeuffer
- Biocenter, Chair of Biochemistry I, University of Würzburg, Würzburg, Germany
| | - Sven Spielhaupter
- Biocenter, Chair of Biochemistry I, University of Würzburg, Würzburg, Germany
| | - Silke Oeljeklaus
- Biocenter, Chair of Biochemistry II, University of Würzburg, Würzburg, Germany
| | | | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Bettina Warscheid
- Biocenter, Chair of Biochemistry II, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
2
|
Zamotina MA, Muranova LK, Zabolotskii AI, Gusev NB. Interaction of small heat shock proteins with BAG3. Biochimie 2025; 232:15-24. [PMID: 39814164 DOI: 10.1016/j.biochi.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/27/2024] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
BAG3 is a universal adapter protein involved in various cellular processes, including the regulation of apoptosis, chaperone-assisted selective autophagy, and heat shock protein function. The interaction between small heat shock proteins (sHsps) and their α-crystallin domains (Acds) with full-length BAG3 protein and its IPV domain was analyzed using size-exclusion chromatography, native gel electrophoresis, and chemical cross-linking. HspB7 and the 3D mutant of HspB1 (which mimics phosphorylation) showed no interaction, HspB6 weakly interacted, and HspB8 strongly interacted with full-length BAG3. In contrast to the full-length sHsps, their α-crystallin domains (AcdB1, AcdB5, and AcdB6) were able to interact with BAG3, with AcdB8 again being the strongest interactor. Among all the full-length sHsps analyzed, only HspB8 bound to the IPV domain of BAG3. AcdB1, AcdB5, AcdB6, and AcdB8 interacted with the IPV domain of BAG3, with AcdB8 displaying the highest binding efficiency. The stoichiometry of crosslinked complexes formed by HspB8 (or its Acd) and the IPV domain of BAG3 was 2:1, whereas for the other sHsps and their Acds, it was 1:1. These findings suggest that while the IPV domain of BAG3 and the Acds of sHsps play an important role in binding, other structural regions significantly contribute to this interaction. The unique binding efficiency between BAG3 and HspB8 may be attributed to the intrinsic disorder and simple oligomeric structure of HspB8.
Collapse
Affiliation(s)
- Maria A Zamotina
- Department of Biochemistry, School of Biology, M.V. Lomonosov Moscow State University, Russian Federation
| | - Lydia K Muranova
- Department of Biochemistry, School of Biology, M.V. Lomonosov Moscow State University, Russian Federation
| | - Arthur I Zabolotskii
- Department of Biochemistry, School of Biology, M.V. Lomonosov Moscow State University, Russian Federation
| | - Nikolai B Gusev
- Department of Biochemistry, School of Biology, M.V. Lomonosov Moscow State University, Russian Federation; Department of Biochemistry and Regenerative Biomedicine Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, Russian Federation.
| |
Collapse
|
3
|
Roth C, Paulini L, Hoffmann ME, Mosler T, Dikic I, Brunschweiger A, Körschgen H, Behl C, Linder B, Kögel D. BAG3 regulates cilia homeostasis of glioblastoma via its WW domain. Biofactors 2024; 50:1113-1133. [PMID: 38655699 PMCID: PMC11627473 DOI: 10.1002/biof.2060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
The multidomain protein BAG3 exerts pleiotropic oncogenic functions in many tumor entities including glioblastoma (GBM). Here, we compared BAG3 protein-protein interactions in either adherently cultured or stem-like cultured U251 GBM cells. In line with BAG3's putative role in regulating stem-like properties, identified interactors in sphere-cultured cells included different stem cell markers (SOX2, OLIG2, and NES), while interactomes of adherent BAG3-proficient cells indicated a shift toward involvement of BAG3 in regulation of cilium assembly (ACTR3 and ARL3). Applying a set of BAG3 deletion constructs we could demonstrate that none of the domains except the WW domain are required for suppression of cilia formation by full-length BAG3 in U251 and U343 cells. In line with the established regulation of the Hippo pathway by this domain, we could show that the WW mutant fails to rescue YAP1 nuclear translocation. BAG3 depletion reduced activation of a YAP1/AURKA signaling pathway and induction of PLK1. Collectively, our findings point to a complex interaction network of BAG3 with several pathways regulating cilia homeostasis, involving processes related to ciliogenesis and cilium degradation.
Collapse
Affiliation(s)
- Caterina Roth
- Department of Neurosurgery, Experimental NeurosurgeryUniversity Hospital, Goethe UniversityFrankfurt am MainGermany
| | - Lara Paulini
- Department of Neurosurgery, Experimental NeurosurgeryUniversity Hospital, Goethe UniversityFrankfurt am MainGermany
| | | | - Thorsten Mosler
- Institute of Biochemistry II, Goethe UniversityFrankfurt am MainGermany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe UniversityFrankfurt am MainGermany
- Buchmann Institute for Molecular Life Sciences, Goethe UniversityFrankfurt am MainGermany
| | - Andreas Brunschweiger
- Institute of Pharmacy and Food Chemistry, Faculty of Chemistry and PharmacyJulius‐Maximilians‐UniversitätWürzburgGermany
| | - Hagen Körschgen
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Benedikt Linder
- Department of Neurosurgery, Experimental NeurosurgeryUniversity Hospital, Goethe UniversityFrankfurt am MainGermany
| | - Donat Kögel
- Department of Neurosurgery, Experimental NeurosurgeryUniversity Hospital, Goethe UniversityFrankfurt am MainGermany
- German Cancer Consortium (DKTK), Partner Site FrankfurtFrankfurt am MainGermany
- German Cancer Research Center DKFZHeidelbergGermany
| |
Collapse
|
4
|
Wu Y, Li L, Li W, Li N, Zhang X, Zheng L, Zhong S, Lü S, Shu X, Zhou J, Ai D, Gao M, Liu S, Lü D, Long M. Stretch-induced hepatic endothelial mechanocrine promotes hepatocyte proliferation. Hepatology 2024:01515467-990000000-01018. [PMID: 39250438 DOI: 10.1097/hep.0000000000001082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND AND AIMS Partial hepatectomy-induced liver regeneration causes the increase in relative blood flow rate within the liver, which dilates hepatic sinusoids and applies mechanical stretch on liver sinusoidal endothelial cells (LSECs). Heparin-binding EGF-like growth factor is a crucial growth factor during liver regeneration. We aimed to investigate whether this sinusoidal dilation-induced stretch promotes HB-EGF secretion in LSECs and what the related molecular mechanism is. APPROACH AND RESULTS In vivo partial hepatectomy, ex vivo liver perfusion, and in vitro LSEC mechanical stretch were applied to detect HB-EGF expression in LSECs and hepatocyte proliferation. Knockdown or inhibition of mechanosensitive proteins was used to unravel the molecular mechanism in response to stretch. This stretch triggers amplitude-dependent and duration-dependent HB-EGF upregulation in LSECs, which is mediated by Yes-associated protein (YAP) nuclear translocation and binding to TEA domain family. This YAP translocation is achieved in 2 ways: On one hand, F-actin polymerization-mediated expansion of nuclear pores promotes YAP entry into nucleus passively. On the other hand, F-actin polymerization upregulates the expression of BAG family molecular chaperone regulator 3, which binds with YAP to enter the nucleus cooperatively. In this process, β1-integrin serves as a target mechanosensory in stretch-induced signaling pathways. This HB-EGF secretion-promoted liver regeneration after 2/3 partial hepatectomy is attenuated in endothelial cell-specific Yap1 -deficient mice. CONCLUSIONS Our findings indicate that mechanical stretch-induced HB-EGF upregulation in LSECs through YAP translocation can promote hepatocyte proliferation during liver regeneration through a mechanocrine manner, which deepens the understanding of the mechanical-biological coupling in liver regeneration.
Collapse
Affiliation(s)
- Yi Wu
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Linda Li
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Wang Li
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ning Li
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Zhang
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lu Zheng
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shaoyu Zhong
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Shouqin Lü
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Shu
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Zhou
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ding Ai
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Ming Gao
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Sijin Liu
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dongyuan Lü
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Zamotina MA, Muranova LK, Zabolotskii AI, Tyurin-Kuzmin PA, Kulebyakin KY, Gusev NB. Universal Adapter Protein Bag3 and Small Heat Shock Proteins. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1535-1545. [PMID: 39418513 DOI: 10.1134/s0006297924090013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 10/19/2024]
Abstract
Bag3 (Bcl-2-associated athanogene 3) protein contains a number of functional domains and interacts with a wide range of different partner proteins, including small heat shock proteins (sHsps) and heat shock protein Hsp70. The ternary Bag3-sHsp-and Hsp70 complex binds denatured proteins and transports them to phagosomes, thus playing a key role in the chaperone-assisted selective autophagy (CASA). This complex also participates in the control of formation and disassembly of stress granules (granulostasis) and cytoskeleton regulation. As Bag3 and sHsps participate in multiple cellular processes, mutations in these proteins are often associated with neurodegenerative diseases and cardiomyopathy. The review discusses the role of sHsps in different processes regulated by Bag3.
Collapse
Affiliation(s)
- Maria A Zamotina
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Lidia K Muranova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Artur I Zabolotskii
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Pyotr A Tyurin-Kuzmin
- Department of Biochemistry and Regenerative Biomedicine, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Konstantin Yu Kulebyakin
- Department of Biochemistry and Regenerative Biomedicine, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai B Gusev
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Department of Biochemistry and Regenerative Biomedicine, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
6
|
Wang YH, Gao P, Wang YQ, Xu LZ, Zeng KW, Tu PF. Small-molecule targeting PKM2 provides a molecular basis of lactylation-dependent fibroblast-like synoviocytes proliferation inhibition against rheumatoid arthritis. Eur J Pharmacol 2024; 972:176551. [PMID: 38570082 DOI: 10.1016/j.ejphar.2024.176551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/07/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Fibroblast-like synoviocytes (FLS) play an important role in rheumatoid arthritis (RA)-related swelling and bone damage. Therefore, novel targets for RA therapy in FLS are urgently discovered for improving pathologic phenomenon, especially joint damage and dyskinesia. Here, we suggested that pyruvate kinase M2 (PKM2) in FLS represented a pharmacological target for RA treatment by antimalarial drug artemisinin (ART). We demonstrated that ART selectively inhibited human RA-FLS and rat collagen-induced arthritis (CIA)-FLS proliferation and migration without observed toxic effects. In particular, the identification of targets revealed that PKM2 played a crucial role as a primary regulator of the cell cycle, leading to the heightened proliferation of RA-FLS. ART exhibited a direct interaction with PKM2, resulting in an allosteric modulation that enhances the lactylation modification of PKM2. This interaction further promoted the binding of p300, ultimately preventing the nuclear translocation of PKM2 and inducing cell cycle arrest at the S phase. In vivo, ART obviously suppressed RA-mediated synovial hyperplasia, bone damage and inflammatory response to further improve motor behavior in CIA-rats. Taken together, these findings indicate that directing interventions towards PKM2 in FLS could offer a hopeful avenue for pharmaceutical treatments of RA through the regulation of cell cycle via PKM2 lactylation.
Collapse
Affiliation(s)
- Yan-Hang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Peng Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yu-Qi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lu-Zheng Xu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, 100191, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
7
|
Ma XN, Feng W, Li N, Chen SL, Zhong XQ, Chen JX, Lin CS, Xu Q. Leonurine alleviates rheumatoid arthritis by regulating the Hippo signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155243. [PMID: 38056147 DOI: 10.1016/j.phymed.2023.155243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease that can cause joint inflammation and damage. Leonurine (LE) is an alkaloid found in Leonurus heterophyllus. It has anti-inflammatory effects. HYPOTHESIS/PURPOSE The molecular mechanisms by which LE acts in RA are unclear and further investigation is required. METHODS Mice with collagen-induced arthritis (CIA), and RA-fibroblast-like synoviocytes (FLSs) isolated from them were used as in vivo and in vitro models of RA, respectively. The therapeutic effects of LE on CIA-induced joint injury were investigated by micro-computed tomography, and staining with hematoxylin and eosin and Safranin-O/Fast Green. Cell Counting Kit-8, a Transwell® chamber, enzyme-linked immunosorbent assays, RT-qPCR, and western blotting were used to investigate the effects of LE on RA-FLS viability, migratory capacity, inflammation, microRNA-21 (miR-21) levels, the Hippo signaling pathway, and the effects and intrinsic mechanisms of related proteins. Dual luciferase was used to investigate the binding of miR-21 to YOD1 deubiquitinase (YOD1) and yes-associated protein (YAP). Immunofluorescence was used to investigate the localization of YAP within the nucleus and cytoplasm. RESULTS Treatment with LE significantly inhibited joint swelling, bone damage, synovial inflammation, and proteoglycan loss in the CIA mice. It also reduced the proliferation, cell colonization, migration/invasion, and inflammation levels of RA-FLSs, and promoted miR-21 expression in vitro. The effects of LE on RA-FLSs were enhanced by an miR-21 mimic and reversed by an miR-21 inhibitor. The dual luciferase investigation confirmed that both YOD1 and YAP are direct targets of miR-21. Treatment with LE activated the Hippo signaling pathway, and promoted the downregulation and dephosphorylation of MST1 and LATS1 in RA, while inhibiting the activation of YOD1 and YAP. Regulation of the therapeutic effects of LE by miR-21 was counteracted by YOD1 overexpression, which caused the phosphorylation of YAP and prevented its nuclear ectopic position, thereby reducing LE effect on pro-proliferation-inhibiting apoptosis target genes. CONCLUSION LE regulates the Hippo signaling pathway through the miR-21/YOD1/YAP axis to reduce joint inflammation and bone destruction in CIA mice, thereby inhibiting the growth and inflammation of RA-FLSs. LE has potential for the treatment of RA.
Collapse
Affiliation(s)
- Xiao-Na Ma
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wei Feng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Nan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Shu-Lin Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiao-Qin Zhong
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jia-Xu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Chang-Song Lin
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qiang Xu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
8
|
Jung SY, Riew TR, Yun HH, Lim JH, Hwang JW, Jung SW, Kim HL, Lee JS, Lee MY, Lee JH. Skeletal Muscle-Specific Bis Depletion Leads to Muscle Dysfunction and Early Death Accompanied by Impairment in Protein Quality Control. Int J Mol Sci 2023; 24:ijms24119635. [PMID: 37298584 DOI: 10.3390/ijms24119635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Bcl-2-interacting cell death suppressor (BIS), also called BAG3, plays a role in physiological functions such as anti-apoptosis, cell proliferation, autophagy, and senescence. Whole-body Bis-knockout (KO) mice exhibit early lethality accompanied by abnormalities in cardiac and skeletal muscles, suggesting the critical role of BIS in these muscles. In this study, we generated skeletal muscle-specific Bis-knockout (Bis-SMKO) mice for the first time. Bis-SMKO mice exhibit growth retardation, kyphosis, a lack of peripheral fat, and respiratory failure, ultimately leading to early death. Regenerating fibers and increased intensity in cleaved PARP1 immunostaining were observed in the diaphragm of Bis-SMKO mice, indicating considerable muscle degeneration. Through electron microscopy analysis, we observed myofibrillar disruption, degenerated mitochondria, and autophagic vacuoles in the Bis-SMKO diaphragm. Specifically, autophagy was impaired, and heat shock proteins (HSPs), such as HSPB5 and HSP70, and z-disk proteins, including filamin C and desmin, accumulated in Bis-SMKO skeletal muscles. We also found metabolic impairments, including decreased ATP levels and lactate dehydrogenase (LDH) and creatine kinase (CK) activities in the diaphragm of Bis-SMKO mice. Our findings highlight that BIS is critical for protein homeostasis and energy metabolism in skeletal muscles, suggesting that Bis-SMKO mice could be used as a therapeutic strategy for myopathies and to elucidate the molecular function of BIS in skeletal muscle physiology.
Collapse
Affiliation(s)
- Soon-Young Jung
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ji Hee Lim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ji-Won Hwang
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung Won Jung
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
9
|
Tedesco B, Vendredy L, Timmerman V, Poletti A. The chaperone-assisted selective autophagy complex dynamics and dysfunctions. Autophagy 2023:1-23. [PMID: 36594740 DOI: 10.1080/15548627.2022.2160564] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Each protein must be synthesized with the correct amino acid sequence, folded into its native structure, and transported to a relevant subcellular location and protein complex. If any of these steps fail, the cell has the capacity to break down aberrant proteins to maintain protein homeostasis (also called proteostasis). All cells possess a set of well-characterized protein quality control systems to minimize protein misfolding and the damage it might cause. Autophagy, a conserved pathway for the degradation of long-lived proteins, aggregates, and damaged organelles, was initially characterized as a bulk degradation pathway. However, it is now clear that autophagy also contributes to intracellular homeostasis by selectively degrading cargo material. One of the pathways involved in the selective removal of damaged and misfolded proteins is chaperone-assisted selective autophagy (CASA). The CASA complex is composed of three main proteins (HSPA, HSPB8 and BAG3), essential to maintain protein homeostasis in muscle and neuronal cells. A failure in the CASA complex, caused by mutations in the respective coding genes, can lead to (cardio)myopathies and neurodegenerative diseases. Here, we summarize our current understanding of the CASA complex and its dynamics. We also briefly discuss how CASA complex proteins are involved in disease and may represent an interesting therapeutic target.Abbreviation ALP: autophagy lysosomal pathway; ALS: amyotrophic lateral sclerosis; AMOTL1: angiomotin like 1; ARP2/3: actin related protein 2/3; BAG: BAG cochaperone; BAG3: BAG cochaperone 3; CASA: chaperone-assisted selective autophagy; CMA: chaperone-mediated autophagy; DNAJ/HSP40: DnaJ heat shock protein family (Hsp40); DRiPs: defective ribosomal products; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK1/HRI: eukaryotic translation initiation factor 2 alpha kinase 1; GABARAP: GABA type A receptor-associated protein; HDAC6: histone deacetylase 6; HSP: heat shock protein; HSPA/HSP70: heat shock protein family A (Hsp70); HSP90: heat shock protein 90; HSPB8: heat shock protein family B (small) member 8; IPV: isoleucine-proline-valine; ISR: integrated stress response; KEAP1: kelch like ECH associated protein 1; LAMP2A: lysosomal associated membrane protein 2A; LATS1: large tumor suppressor kinase 1; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOC: microtubule organizing center; MTOR: mechanistic target of rapamycin kinase; NFKB/NF-κB: nuclear factor kappa B; NFE2L2: NFE2 like bZIP transcription factor 2; PLCG/PLCγ: phospholipase C gamma; polyQ: polyglutamine; PQC: protein quality control; PxxP: proline-rich; RAN translation: repeat-associated non-AUG translation; SG: stress granule; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; STUB1/CHIP: STIP1 homology and U-box containing protein 1; STK: serine/threonine kinase; SYNPO: synaptopodin; TBP: TATA-box binding protein; TARDBP/TDP-43: TAR DNA binding protein; TFEB: transcription factor EB; TPR: tetratricopeptide repeats; TSC1: TSC complex subunit 1; UBA: ubiquitin associated; UPS: ubiquitin-proteasome system; WW: tryptophan-tryptophan; WWTR1: WW domain containing transcription regulator 1; YAP1: Yes1 associated transcriptional regulator.
Collapse
Affiliation(s)
- Barbara Tedesco
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2027, Università degli studi di Milano, Milan, Italy.,Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Leen Vendredy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Angelo Poletti
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2027, Università degli studi di Milano, Milan, Italy
| |
Collapse
|
10
|
Baldan S, Meriin AB, Sherman MY. Using a Modified Proximity Ligation Protocol to Study the Interaction Between Chaperones and Associated Proteins. Methods Mol Biol 2023; 2693:163-174. [PMID: 37540434 DOI: 10.1007/978-1-0716-3342-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Molecular chaperones can interact with multiple proteins to form large networks. Understanding these interactions may shed light on the complexity of the chaperone functions. Here we developed a protocol for a modified proximity ligation-based methodology (PLA) for the detection of protein-protein interactions in order to understand how the Hsp70-Bag3 complex interacts with components of the Hippo signaling pathway. These experiments helped to elucidate the mechanisms of transmission of the proteotoxic stress signal to the Hippo pathway. The modified PLA technology has many advantages compared to co-immunoprecipitation protocols. It has higher sensitivity, is quantitative, and can be done in a 96-well format.
Collapse
Affiliation(s)
- Simone Baldan
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
11
|
Hsp70–Bag3 Module Regulates Macrophage Motility and Tumor Infiltration via Transcription Factor LITAF and CSF1. Cancers (Basel) 2022; 14:cancers14174168. [PMID: 36077705 PMCID: PMC9454964 DOI: 10.3390/cancers14174168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Patients’ normal cells, such as lymphocytes, fibroblasts, or macrophages, can either suppress or facilitate tumor growth. Macrophages can infiltrate tumors and secrete molecules that enhance the proliferation of cancer cells and their invasion into neighboring tissues and blood. Here, we investigated the mechanism of action of a novel small molecule that suppresses the infiltration of macrophages into tumors and demonstrates potent anticancer activity. We identified the entire pathway that links the intracellular protein Hsp70, which is inhibited by this small molecule, with the macrophage motility system. This study will lay the basis for a novel approach to cancer treatment via targeting tumor-associated macrophages. Abstract The molecular chaperone Hsp70 has been implicated in multiple stages of cancer development. In these processes, a co-chaperone Bag3 links Hsp70 with signaling pathways that control cancer development. Recently, we showed that besides affecting cancer cells, Hsp70 can also regulate the motility of macrophages and their tumor infiltration. However, the mechanisms of these effects have not been explored. Here, we demonstrated that the Hsp70-bound co-chaperone Bag3 associates with a transcription factor LITAF that can regulate the expression of inflammatory cytokines and chemokines in macrophages. Via this interaction, the Hsp70–Bag3 complex regulates expression levels of LITAF by controlling its proteasome-dependent and chaperone-mediated autophagy-dependent degradation. In turn, LITAF regulates the expression of the major chemokine CSF1, and adding this chemokine to the culture medium reversed the effects of Bag3 or LITAF silencing on the macrophage motility. Together, these findings uncover the Hsp70–Bag3–LITAF–CSF1 pathway that controls macrophage motility and tumor infiltration.
Collapse
|
12
|
González-Fernández R, González-Nicolás MÁ, Morales M, Ávila J, Lázaro A, Martín-Vasallo P. FKBP51, AmotL2 and IQGAP1 Involvement in Cilastatin Prevention of Cisplatin-Induced Tubular Nephrotoxicity in Rats. Cells 2022; 11:cells11091585. [PMID: 35563891 PMCID: PMC9099571 DOI: 10.3390/cells11091585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
The immunophilin FKBP51, the angiomotin AmotL2, and the scaffoldin IQGAP1 are overexpressed in many types of cancer, with the highest increase in leucocytes from patients undergoing oxaliplatin chemotherapy. Inflammation is involved in the pathogenesis of nephrotoxicity induced by platinum analogs. Cilastatin prevents renal damage caused by cisplatin. This functional and confocal microscopy study shows the renal focal-segmental expression of TNFα after cisplatin administration in rats, predominantly of tubular localization and mostly prevented by co-administration of cilastatin. FKBP51, AmotL2 and IQGAP1 protein expression increases slightly with cilastatin administration and to a much higher extent with cisplatin, in a cellular- and subcellular-specific manner. Kidney tubule cells expressing FKBP51 show either very low or no expression of TNFα, while cells expressing TNFα have low levels of FKBP51. AmotL2 and TNFα seem to colocalize and their expression is increased in tubular cells. IQGAP1 fluorescence increases with cilastatin, cisplatin and joint cilastatin-cisplatin treatment, and does not correlate with TNFα expression or localization. These data suggest a role for FKBP51, AmotL2 and IQGAP1 in cisplatin toxicity in kidney tubules and in the protective effect of cilastatin through inhibition of dehydropeptidase-I.
Collapse
Affiliation(s)
- Rebeca González-Fernández
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de, Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n., 38206 La Laguna, Spain; (R.G.-F.); (J.Á.)
| | - María Ángeles González-Nicolás
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain;
| | - Manuel Morales
- Department of Medical Oncology, Nuestra Señora de Candelaria University Hospital, 38010 Santa Cruz de Tenerife, Spain;
| | - Julio Ávila
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de, Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n., 38206 La Laguna, Spain; (R.G.-F.); (J.Á.)
| | - Alberto Lázaro
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain;
- Department of Physiology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (A.L.); (P.M.-V.); Tel.: +34-922-318358 (P.M.-V.)
| | - Pablo Martín-Vasallo
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de, Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n., 38206 La Laguna, Spain; (R.G.-F.); (J.Á.)
- Correspondence: (A.L.); (P.M.-V.); Tel.: +34-922-318358 (P.M.-V.)
| |
Collapse
|
13
|
Cytoplasmic proteotoxicity regulates HRI-dependent phosphorylation of eIF2α via the Hsp70-Bag3 module. iScience 2022; 25:104282. [PMID: 35573186 PMCID: PMC9097715 DOI: 10.1016/j.isci.2022.104282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/27/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
The major heat shock protein Hsp70 forms a complex with a scaffold protein Bag3 that links it to components of signaling pathways. Via these interactions, the Hsp70-Bag3 module functions as a proteotoxicity sensor that controls cell signaling. Here, to search for pathways regulated by the complex, we utilized JG-98, an allosteric inhibitor of Hsp70 that blocks its interaction with Bag3. RNAseq followed by the pathway analysis indicated that several signaling pathways including UPR were activated by JG-98. Surprisingly, only the eIF2α-associated branch of the UPR was activated, while other UPR branches were not induced, suggesting that the response was unrelated to the ER proteotoxicity and ER-associated kinase PERK1. Indeed, induction of the UPR genes under these conditions was driven by a distinct eIF2α kinase HRI. Hsp70-Bag3 directly interacted with HRI and regulated eIF2α phosphorylation upon cytoplasmic proteotoxicity. Therefore, cytosolic proteotoxicity can activate certain UPR genes via Hsp70-Bag3-HRI-eIF2α axis. Disruption of Hsp70-Bag3 module activates the unfolded protein response (UPR) This induction of UPR genes is mediated by HRI-dependent phosphorylation of eIF2α Hsp70-Bag3 “monitors” cytoplasmic proteotoxicity to activate the HRI-eIF2α axis eIF2α integrates proteotoxicity signals from ER and cytoplasm
Collapse
|