1
|
Harrison JS, Patek SN. Developing elastic mechanisms: ultrafast motion and cavitation emerge at the millimeter scale in juvenile snapping shrimp. J Exp Biol 2023; 226:287686. [PMID: 36854255 DOI: 10.1242/jeb.244645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/12/2023] [Indexed: 03/02/2023]
Abstract
Organisms such as jumping froghopper insects and punching mantis shrimp use spring-based propulsion to achieve fast motion. Studies of elastic mechanisms have primarily focused on fully developed and functional mechanisms in adult organisms. However, the ontogeny and development of these mechanisms can provide important insights into the lower size limits of spring-based propulsion, the ecological or behavioral relevance of ultrafast movement, and the scaling of ultrafast movement. Here, we examined the development of the spring-latch mechanism in the bigclaw snapping shrimp, Alpheus heterochaelis (Alpheidae). Adult snapping shrimp use an enlarged claw to produce high-speed strikes that generate cavitation bubbles. However, until now, it was unclear when the elastic mechanism emerges during development and whether juvenile snapping shrimp can generate cavitation at this size. We reared A. heterochaelis from eggs, through their larval and postlarval stages. Starting 1 month after hatching, the snapping shrimp snapping claw gradually developed a spring-actuated mechanism and began snapping. We used high-speed videography (300,000 frames s-1) to measure juvenile snaps. We discovered that juvenile snapping shrimp generate the highest recorded accelerations (5.8×105±3.3×105 m s-2) for repeated-use, underwater motion and are capable of producing cavitation at the millimeter scale. The angular velocity of snaps did not change as juveniles grew; however, juvenile snapping shrimp with larger claws produced faster linear speeds and generated larger, longer-lasting cavitation bubbles. These findings establish the development of the elastic mechanism and cavitation in snapping shrimp and provide insights into early life-history transitions in spring-actuated mechanisms.
Collapse
Affiliation(s)
| | - S N Patek
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
2
|
Paul S, Khan MK, Herberstein ME. Sexual and developmental variations of ecto-parasitism in damselflies. PLoS One 2022; 17:e0261540. [PMID: 35802642 PMCID: PMC9269466 DOI: 10.1371/journal.pone.0261540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
The prevalence and intensity of parasitism can have different fitness costs between sexes, and across species and developmental stages. This variation could arise because of species specific sexual and developmental differences in body condition, immunity, and resistance. Theory predicts that the prevalence of parasitism will be greater in individuals with poor body condition and the intensity of parasitism will be greater in individuals with larger body size. These predictions have been tested and verified in vertebrates. In insects, however, contradictory evidence has been found in different taxa. Here, we tested these predictions on two species of Agriocnemis (Agriocnemis femina and Agriocnemis pygmaea) damselflies, which are parasitized by Arrenurus water mite ectoparasites. We measured body weight, total body length, abdomen area and thorax area of non-parasitized damselflies and found body condition varied between males and females, between immature females and mature females and between A. femina and A. pygmaea. Then, we calculated the parasite prevalence, i.e., the absence or presence of parasites and intensity, i.e., the number of parasites per infected damselfly in eleven natural populations of both species. In line to our predictions, we observed greater prevalence in immature females than mature females but found no difference in parasite prevalence between males and females. Furthermore, we found that parasite intensity was higher in females than males and in immature females than mature females. Our result also showed that the frequency and intensity of parasitism varied between the two studied species, being higher in A. pygmaea than A. femina. Our study provides evidence that parasitism impacts sexes, developmental stages and species differentially and suggests that variation may occur due to sex, developmental stage, and species-specific resistance and tolerance mechanism.
Collapse
Affiliation(s)
- Shatabdi Paul
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- Department of Biological Science, Macquarie University, NSW, Australia
- * E-mail:
| | - Md Kawsar Khan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- Department of Biological Science, Macquarie University, NSW, Australia
| | | |
Collapse
|
3
|
Freymiller GA, Whitford MD, Schwaner MJ, McGowan CP, Higham TE, Clark RW. Comparative analysis of Dipodomys species indicates that kangaroo rat hindlimb anatomy is adapted for rapid evasive leaping. J Anat 2022; 240:466-474. [PMID: 34648184 PMCID: PMC8819043 DOI: 10.1111/joa.13567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 11/27/2022] Open
Abstract
Body size is a key factor that influences antipredator behavior. For animals that rely on jumping to escape from predators, there is a theoretical trade-off between jump distance and acceleration as body size changes at both the inter- and intraspecific levels. Assuming geometric similarity, acceleration will decrease with increasing body size due to a smaller increase in muscle cross-sectional area than body mass. Smaller animals will likely have a similar jump distance as larger animals due to their shorter limbs and faster accelerations. Therefore, in order to maintain acceleration in a jump across different body sizes, hind limbs must be disproportionately bigger for larger animals. We explored this prediction using four species of kangaroo rats (Dipodomys spp.), a genus of bipedal rodent with similar morphology across a range of body sizes (40-150 g). Kangaroo rat jump performance was measured by simulating snake strikes to free-ranging individuals. Additionally, morphological measurements of hind limb muscles and segment lengths were obtained from thawed frozen specimens. Overall, jump acceleration was constant across body sizes and jump distance increased with increasing size. Additionally, kangaroo rat hind limb muscle mass and cross-sectional area scaled with positive allometry. Ankle extensor tendon cross-sectional area also scaled with positive allometry. Hind limb segment length scaled isometrically, with the exception of the metatarsals, which scaled with negative allometry. Overall, these findings support the hypothesis that kangaroo rat hind limbs are built to maintain jump acceleration rather than jump distance. Selective pressure from single-strike predators, such as snakes and owls, likely drives this relationship.
Collapse
Affiliation(s)
- Grace A. Freymiller
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Malachi D. Whitford
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
- Graduate Group in EcologyUniversity of CaliforniaDavisCaliforniaUSA
| | - M. Janneke Schwaner
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Craig P. McGowan
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Timothy E. Higham
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Rulon W. Clark
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
- Chiricahua Desert MuseumRodeoNew MexicoUSA
| |
Collapse
|
4
|
Carli G, Farabollini F. Defensive responses in invertebrates: Evolutionary and neural aspects. PROGRESS IN BRAIN RESEARCH 2022; 271:1-35. [DOI: 10.1016/bs.pbr.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Oufiero CE. Ontogenetic changes in behavioral and kinematic components of prey capture strikes in a praying mantis. Evol Ecol 2021. [DOI: 10.1007/s10682-021-10135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Torsekar VR, Balakrishnan R. Sex differences in alternative reproductive tactics in response to predation risk in tree crickets. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Viraj R. Torsekar
- Centre for Ecological Sciences Indian Institute of Science Bangalore India
- Department of Ecology, Evolution & Behavior The Alexander Silberman Institute of Life SciencesThe Hebrew University of Jerusalem Jerusalem Israel
| | | |
Collapse
|
7
|
Impact of Different Developmental Instars on Locusta migratoria Jumping Performance. Appl Bionics Biomech 2020; 2020:2797486. [PMID: 32296466 PMCID: PMC7136764 DOI: 10.1155/2020/2797486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/18/2019] [Accepted: 01/06/2020] [Indexed: 11/30/2022] Open
Abstract
Ontogenetic locomotion research focuses on the evolution of locomotion behavior in different developmental stages of a species. Unlike vertebrates, ontogenetic locomotion in invertebrates is poorly investigated. Locusts represent an outstanding biological model to study this issue. They are hemimetabolous insects and have similar aspects and behaviors in different instars. This research is aimed at studying the jumping performance of Locusta migratoria over different developmental instars. Jumps of third instar, fourth instar, and adult L. migratoria were recorded through a high-speed camera. Data were analyzed to develop a simplified biomechanical model of the insect: the elastic joint of locust hind legs was simplified as a torsional spring located at the femur-tibiae joint as a semilunar process and based on an energetic approach involving both locomotion and geometrical data. A simplified mathematical model evaluated the performances of each tested jump. Results showed that longer hind leg length, higher elastic parameter, and longer takeoff time synergistically contribute to a greater velocity and energy storing/releasing in adult locusts, if compared to young instars; at the same time, they compensate possible decreases of the acceleration due to the mass increase. This finding also gives insights for advanced bioinspired jumping robot design.
Collapse
|
8
|
Lira AFA, Almeida FMF, Albuquerque CMR. Reaction under the risk of predation: effects of age and sexual plasticity on defensive behavior in scorpion Tityus pusillus (Scorpiones: Buthidae). J ETHOL 2019. [DOI: 10.1007/s10164-019-00615-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Small size does not confer male agility advantages in a sexually-size dimorphic spider. PLoS One 2019; 14:e0216036. [PMID: 31091246 PMCID: PMC6519806 DOI: 10.1371/journal.pone.0216036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 04/12/2019] [Indexed: 11/19/2022] Open
Abstract
Selection pressures leading to extreme, female-biased sexual size dimorphism (SSD) in spiders continue to be debated. It has been proposed that males of sexually size dimorphic spiders could be small because gravity constrains adult agility (locomotor abilities). Accordingly, small males should achieve higher vertical climbing speeds and should be more prone to bridge. The curvilinear model of the gravity hypothesis predicts a negative relationship between vertical climbing speed and male body size only over a threshold of 7.6 mm, 42.5 mg. Because males of most species with extreme SSD fall well below this threshold, the relationship between male size and agility at this scale remains vague. Here, we tested three hypotheses on how male size, mass and age (after maturation) relate to vertical climbing and bridging ability in Nephilingis cruentata, a highly sexually dimorphic orb-weaver with males well below the size threshold. We placed males of different sizes and adult ages in a vertical platform and recorded their climbing speeds. Contrary to the original study testing male bridging ability as binary variable, we measured the duration of the crossing of the bridging thread, as well as its sagging distance. Male body size and mass positively related to the vertical climbing speed and to the distance of the sagging thread during bridging, but had no influence on the bridging duration. The detected positive correlation between male size/mass and vertical climbing speed goes against our first prediction, that small males would have vertical climbing advantage in Nephilingis cruentata, but agrees with the curvilinear model. Against our second prediction, small males were not faster during bridging. Finally, in agreement with our third prediction, threads sagged more in heavier males. These results suggest that small male size confers no agility advantages in Nephilingis cruentata.
Collapse
|
10
|
Does fluctuating asymmetry of hind legs impose costs on escape speed in house crickets (Acheta domesticus)? Acta Ethol 2018. [DOI: 10.1007/s10211-018-0305-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Kurali A, Pásztor K, Hettyey A, Tóth Z. Resource-dependent temporal changes in antipredator behavior of common toad (Bufo bufo) tadpoles. Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2503-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Xia J, Cheng M, Cai R, Fu S, Cooke SJ, Elvidge CK. Ontogenetic changes in chemical alarm cue recognition and fast-start performance in guppies (Poecilia reticulata
). Ethology 2017. [DOI: 10.1111/eth.12691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jigang Xia
- Laboratory of Evolutionary Physiology and Behavior; Chongqing Key Laboratory of Animal Biology; College of Life Sciences; Chongqing Normal University; Chongqing China
| | - Meiling Cheng
- Laboratory of Evolutionary Physiology and Behavior; Chongqing Key Laboratory of Animal Biology; College of Life Sciences; Chongqing Normal University; Chongqing China
| | - Ruiyu Cai
- Laboratory of Evolutionary Physiology and Behavior; Chongqing Key Laboratory of Animal Biology; College of Life Sciences; Chongqing Normal University; Chongqing China
| | - Shijian Fu
- Laboratory of Evolutionary Physiology and Behavior; Chongqing Key Laboratory of Animal Biology; College of Life Sciences; Chongqing Normal University; Chongqing China
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory; Department of Biology and Institute of Environmental Science; Carleton University; Ottawa ON Canada
| | - Chris K. Elvidge
- Fish Ecology and Conservation Physiology Laboratory; Department of Biology and Institute of Environmental Science; Carleton University; Ottawa ON Canada
| |
Collapse
|
13
|
Bosco JM, Riechert SE, O'Meara BC. The ontogeny of personality traits in the desert funnel-web spider,Agelenopsis lisa(Araneae: Agelenidae). Ethology 2017. [DOI: 10.1111/eth.12639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jennifer M. Bosco
- Department of Ecology and Evolutionary Biology; University of Tennessee; Knoxville TN USA
| | - Susan E. Riechert
- Department of Ecology and Evolutionary Biology; University of Tennessee; Knoxville TN USA
| | - Brian C. O'Meara
- Department of Ecology and Evolutionary Biology; University of Tennessee; Knoxville TN USA
| |
Collapse
|
14
|
Stanley CR, Mettke-Hofmann C, Preziosi RF. Personality in the cockroach Diploptera punctata: Evidence for stability across developmental stages despite age effects on boldness. PLoS One 2017; 12:e0176564. [PMID: 28489864 PMCID: PMC5425029 DOI: 10.1371/journal.pone.0176564] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 04/12/2017] [Indexed: 01/17/2023] Open
Abstract
Despite a recent surge in the popularity of animal personality studies and their wide-ranging associations with various aspects of behavioural ecology, our understanding of the development of personality over ontogeny remains poorly understood. Stability over time is a central tenet of personality; ecological pressures experienced by an individual at different life stages may, however, vary considerably, which may have a significant effect on behavioural traits. Invertebrates often go through numerous discrete developmental stages and therefore provide a useful model for such research. Here we test for both differential consistency and age effects upon behavioural traits in the gregarious cockroach Diploptera punctata by testing the same behavioural traits in both juveniles and adults. In our sample, we find consistency in boldness, exploration and sociality within adults whilst only boldness was consistent in juveniles. Both boldness and exploration measures, representative of risk-taking behaviour, show significant consistency across discrete juvenile and adult stages. Age effects are, however, apparent in our data; juveniles are significantly bolder than adults, most likely due to differences in the ecological requirements of these life stages. Size also affects risk-taking behaviour since smaller adults are both bolder and more highly explorative. Whilst a behavioural syndrome linking boldness and exploration is evident in nymphs, this disappears by the adult stage, where links between other behavioural traits become apparent. Our results therefore indicate that differential consistency in personality can be maintained across life stages despite age effects on its magnitude, with links between some personality traits changing over ontogeny, demonstrating plasticity in behavioural syndromes.
Collapse
Affiliation(s)
- Christina R. Stanley
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- Department of Biological Sciences, University of Chester, Chester, United Kingdom
- * E-mail:
| | - Claudia Mettke-Hofmann
- School of Natural Sciences & Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Richard F. Preziosi
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- School of Science and the Environment, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
15
|
Yu YSW, Graff MM, Hartmann MJZ. Mechanical responses of rat vibrissae to airflow. J Exp Biol 2016; 219:937-48. [PMID: 27030774 PMCID: PMC4852692 DOI: 10.1242/jeb.126896] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/11/2016] [Indexed: 11/20/2022]
Abstract
The survival of many animals depends in part on their ability to sense the flow of the surrounding fluid medium. To date, however, little is known about how terrestrial mammals sense airflow direction or speed. The present work analyzes the mechanical response of isolated rat macrovibrissae (whiskers) to airflow to assess their viability as flow sensors. Results show that the whisker bends primarily in the direction of airflow and vibrates around a new average position at frequencies related to its resonant modes. The bending direction is not affected by airflow speed or by geometric properties of the whisker. In contrast, the bending magnitude increases strongly with airflow speed and with the ratio of the whisker's arc length to base diameter. To a much smaller degree, the bending magnitude also varies with the orientation of the whisker's intrinsic curvature relative to the direction of airflow. These results are used to predict the mechanical responses of vibrissae to airflow across the entire array, and to show that the rat could actively adjust the airflow data that the vibrissae acquire by changing the orientation of its whiskers. We suggest that, like the whiskers of pinnipeds, the macrovibrissae of terrestrial mammals are multimodal sensors - able to sense both airflow and touch - and that they may play a particularly important role in anemotaxis.
Collapse
Affiliation(s)
- Yan S W Yu
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Matthew M Graff
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Mitra J Z Hartmann
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
16
|
Wexler Y, Subach A, Pruitt JN, Scharf I. Behavioral repeatability of flour beetles before and after metamorphosis and throughout aging. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2098-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Jacob PF, Hedwig B. Impact of cercal air currents on singing motor pattern generation in the cricket (Gryllus bimaculatus DeGeer). J Neurophysiol 2015; 114:2649-60. [PMID: 26334014 PMCID: PMC4643095 DOI: 10.1152/jn.00669.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/31/2015] [Indexed: 11/22/2022] Open
Abstract
The cercal system of crickets detects low-frequency air currents produced by approaching predators and self-generated air currents during singing, which may provide sensory feedback to the singing motor network. We analyzed the effect of cercal stimulation on singing motor pattern generation to reveal the response of a singing interneuron to predator-like signals and to elucidate the possible role of self-generated air currents during singing. In fictive singing males, we recorded an interneuron of the singing network while applying air currents to the cerci; additionally, we analyzed the effect of abolishing the cercal system in freely singing males. In fictively singing crickets, the effect of short air stimuli is either to terminate prematurely or to lengthen the interchirp interval, depending on their phase in the chirp cycle. Within our stimulation paradigm, air stimuli of different velocities and durations always elicited an inhibitory postsynaptic potential in the singing interneuron. Current injection in the singing interneuron elicited singing motor activity, even during the air current-evoked inhibitory input from the cercal pathway. The disruptive effects of air stimuli on the fictive singing pattern and the inhibitory response of the singing interneuron point toward the cercal system being involved in initiating avoidance responses in singing crickets, according to the established role of cerci in a predator escape pathway. After abolishing the activity of the cercal system, the timing of natural singing activity was not significantly altered. Our study provides no evidence that self-generated cercal sensory activity has a feedback function for singing motor pattern generation.
Collapse
Affiliation(s)
- Pedro F Jacob
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom; and Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Berthold Hedwig
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom; and
| |
Collapse
|
18
|
Favati A, Zidar J, Thorpe H, Jensen P, Løvlie H. The ontogeny of personality traits in the red junglefowl,Gallus gallus. Behav Ecol 2015. [DOI: 10.1093/beheco/arv177] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
19
|
Abstract
INTRODUCTION Behavioural traits can differ considerably between individuals, and such differences were found to be consistent over the lifetime of an organism in several species. Whether behavioural traits of holometabolous insects, which undergo a metamorphosis, are consistent across ontogeny is virtually unexplored. We investigated several behavioural parameters at five different time points in the lifetime of the holometabolous mustard leaf beetle Phaedon cochleariae (Coleoptera: Chrysomelidae), two times in the larval (second and third larval stage) and three times in the adult stage. We investigated 1) the stability of the behavioural phenotype (population level), 2) whether individuals rank consistently across behavioural traits and over their lifetime (individual level), and 3) in how far behavioural traits are correlated with the developmental time of the individuals. RESULTS We identified two behavioural dimensions in every life stage of P. cochleariae, activity and boldness (population level). Larvae and young adults ranked consistently across the investigated behavioural traits, whereas consistency over time was only found in adults but not between larvae and adults (individual level). Compared to adult beetles, larvae were less active. Moreover, younger larvae were bolder than all subsequent life stages. Over the adult lifetime of the beetles, males were less active than females. Furthermore, the activity of second instar larvae was significantly negatively correlated with the development time. CONCLUSIONS Our study highlights that, although there is no individual consistency over the larval and the adult life stage, the behavioural clustering shows similar patterns at all tested life stages of a holometabolous insect. Nevertheless, age- and sex-specific differences in behavioural traits occur which may be explained by different challenges an individual faces at each life stage. These differences are presumably related to the tremendous changes in life-history traits from larvae to adults and/or to a niche shift after metamorphosis as well as to different needs of both sexes, respectively. A faster development of more active compared to less active second instar larvae is in line with the pace-of-life syndrome. Overall, this study demonstrates a pronounced individuality in behavioural phenotypes and presumably adaptive changes related to life stage and sex.
Collapse
Affiliation(s)
- Thorben Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|
20
|
Ercit K, Martinez-Novoa A, Gwynne DT. Egg load decreases mobility and increases predation risk in female black-horned tree crickets (Oecanthus nigricornis). PLoS One 2014; 9:e110298. [PMID: 25330090 PMCID: PMC4198256 DOI: 10.1371/journal.pone.0110298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/18/2014] [Indexed: 11/18/2022] Open
Abstract
Female-biased predation is an uncommon phenomenon in nature since males of many species take on riskier behaviours to gain more mates. Several species of sphecid wasps have been observed taking more female than male prey, and it is not fully understood why. The solitary sphecid Isodontia mexicana catches more adult female tree cricket (Oecanthus nigricornis) prey. Previous work has shown that, although female tree crickets are larger and thus likely to be more valuable as prey than males, body size alone cannot fully explain why wasps take more females. We tested the hypothesis that wasps catch adult female tree crickets more often because bearing eggs impedes a female’s ability to escape predation. We compared female survivors to prey of I. mexicana, and found that females carrying more eggs were significantly more likely to be caught by wasps, regardless of their body size and jumping leg mass. We also conducted laboratory experiments where females’ jumping responses to a simulated attack were measured and compared to her egg load and morphology. We found a significant negative relationship between egg load and jumping ability, and a positive relationship between body size and jumping ability. These findings support the hypothesis that ovarian eggs are a physical handicap that contributes to female-biased predation in this system. Predation on the most fecund females may have ecological-evolutionary consequences such as collapse of prey populations or selection for alternate life history strategies and behaviours.
Collapse
Affiliation(s)
- Kyla Ercit
- Ecology and Evolutionary Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
- * E-mail:
| | - Andrew Martinez-Novoa
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | - Darryl T. Gwynne
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
21
|
McGorry CA, Newman CN, Triblehorn JD. Neural responses from the wind-sensitive interneuron population in four cockroach species. JOURNAL OF INSECT PHYSIOLOGY 2014; 66:59-70. [PMID: 24879967 PMCID: PMC4104545 DOI: 10.1016/j.jinsphys.2014.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
The wind-sensitive insect cercal sensory system is involved in important behaviors including predator detection and initiating terrestrial escape responses as well as flight maintenance. However, not all insects possessing a cercal system exhibit these behaviors. In cockroaches, wind evokes strong terrestrial escape responses in Periplaneta americana and Blattella germanica, but only weak escape responses in Blaberus craniifer and no escape responses in Gromphadorhina portentosa. Both P. americana and B. craniifer possesses pink flight muscles correlated with flight ability while B. germanica possesses white flight muscles that cannot support flight and G. portentosa lacks wings. These different behavioral combinations could correlate with differences in sensory processing of wind information by the cercal system. In this study, we focused on the wind-sensitive interneurons (WSIs) since they provide input to the premotor/motor neurons that influence terrestrial escape and flight behavior. Using extracellular recordings, we characterized the responses from the WSI population by generating stimulus-response (S-R) curves and examining spike firing rates. Using cluster analysis, we also examined the activity of individual units (four per species, though not necessarily homologous) comprising the population response in each species. Our main results were: (1) all four species possessed ascending WSIs in the abdominal connectives; (2) wind elicited the weakest WSI responses (lowest spike counts and spike rates) in G. portentosa; (3) wind elicited WSI responses in B. craniifer that were greater than P. americana or B. germanica; (4) the activity of four individual units comprising the WSI population response in each species was similar across species.
Collapse
Affiliation(s)
- Clare A McGorry
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29424, USA
| | - Caroline N Newman
- Program in Neuroscience, College of Charleston, 66 George Street, Charleston, SC 29424, USA
| | - Jeffrey D Triblehorn
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29424, USA; Program in Neuroscience, College of Charleston, 66 George Street, Charleston, SC 29424, USA.
| |
Collapse
|
22
|
Oe M, Ogawa H. Neural basis of stimulus-angle-dependent motor control of wind-elicited walking behavior in the cricket Gryllus bimaculatus. PLoS One 2013; 8:e80184. [PMID: 24244644 PMCID: PMC3828193 DOI: 10.1371/journal.pone.0080184] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/08/2013] [Indexed: 11/18/2022] Open
Abstract
Crickets exhibit oriented walking behavior in response to air-current stimuli. Because crickets move in the opposite direction from the stimulus source, this behavior is considered to represent ‘escape behavior’ from an approaching predator. However, details of the stimulus-angle-dependent control of locomotion during the immediate phase, and the neural basis underlying the directional motor control of this behavior remain unclear. In this study, we used a spherical-treadmill system to measure locomotory parameters including trajectory, turn angle and velocity during the immediate phase of responses to air-puff stimuli applied from various angles. Both walking direction and turn angle were correlated with stimulus angle, but their relationships followed different rules. A shorter stimulus also induced directionally-controlled walking, but reduced the yaw rotation in stimulus-angle-dependent turning. These results suggest that neural control of the turn angle requires different sensory information than that required for oriented walking. Hemi-severance of the ventral nerve cords containing descending axons from the cephalic to the prothoracic ganglion abolished stimulus-angle-dependent control, indicating that this control required descending signals from the brain. Furthermore, we selectively ablated identified ascending giant interneurons (GIs) in vivo to examine their functional roles in wind-elicited walking. Ablation of GI8-1 diminished control of the turn angle and decreased walking distance in the initial response. Meanwhile, GI9-1b ablation had no discernible effect on stimulus-angle-dependent control or walking distance, but delayed the reaction time. These results suggest that the ascending signals conveyed by GI8-1 are required for turn-angle control and maintenance of walking behavior, and that GI9-1b is responsible for rapid initiation of walking. It is possible that individual types of GIs separately supply the sensory signals required to control wind-elicited walking.
Collapse
Affiliation(s)
- Momoko Oe
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
- PREST, Japan Science and Technology Agency (JST), Kawaguchi, Japan
- * E-mail:
| |
Collapse
|
23
|
Binz H, Bucher R, Entling MH, Menzel F. Knowing the Risk: Crickets Distinguish between Spider Predators of Different Size and Commonness. Ethology 2013. [DOI: 10.1111/eth.12183] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hellena Binz
- Institute of Zoology; University of Mainz; Mainz Germany
- Institute for Environmental Sciences; University of Koblenz-Landau; Landau Germany
| | - Roman Bucher
- Institute for Environmental Sciences; University of Koblenz-Landau; Landau Germany
| | - Martin H. Entling
- Institute for Environmental Sciences; University of Koblenz-Landau; Landau Germany
| | - Florian Menzel
- Institute of Zoology; University of Mainz; Mainz Germany
| |
Collapse
|
24
|
McGinley RH, Prenter J, Taylor PW. Whole-organism performance in a jumping spider,Servaea incana(Araneae: Salticidae): links with morphology and between performance traits. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12155] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Rowan H. McGinley
- Department of Biological Sciences; Macquarie University; Sydney; New South Wales; Australia
| | | | - Phillip W. Taylor
- Department of Biological Sciences; Macquarie University; Sydney; New South Wales; Australia
| |
Collapse
|
25
|
Simmons PJ, Sztarker J, Rind FC. Looming detection by identified visual interneurons during larval development of the locust Locusta migratoria. ACTA ACUST UNITED AC 2013; 216:2266-75. [PMID: 23531812 DOI: 10.1242/jeb.083360] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Insect larvae clearly react to visual stimuli, but the ability of any visual neuron in a newly hatched insect to respond selectively to particular stimuli has not been directly tested. We characterised a pair of neurons in locust larvae that have been extensively studied in adults, where they are known to respond selectively to objects approaching on a collision course: the lobula giant motion detector (LGMD) and its postsynaptic partner, the descending contralateral motion detector (DCMD). Our physiological recordings of DCMD axon spikes reveal that at the time of hatching, the neurons already respond selectively to objects approaching the locust and they discriminate between stimulus approach speeds with differences in spike frequency. For a particular approaching stimulus, both the number and peak frequency of spikes increase with instar. In contrast, the number of spikes in responses to receding stimuli decreases with instar, so performance in discriminating approaching from receding stimuli improves as the locust goes through successive moults. In all instars, visual movement over one part of the visual field suppresses a response to movement over another part. Electron microscopy demonstrates that the anatomical substrate for the selective response to approaching stimuli is present in all larval instars: small neuronal processes carrying information from the eye make synapses both onto LGMD dendrites and with each other, providing pathways for lateral inhibition that shape selectivity for approaching objects.
Collapse
Affiliation(s)
- Peter J Simmons
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| | | | | |
Collapse
|
26
|
Dupuy F, Steinmann T, Pierre D, Christidès JP, Cummins G, Lazzari C, Miller J, Casas J. Responses of cricket cercal interneurons to realistic naturalistic stimuli in the field. ACTA ACUST UNITED AC 2012; 215:2382-9. [PMID: 22723476 DOI: 10.1242/jeb.067405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ability of the insect cercal system to detect approaching predators has been studied extensively in the laboratory and in the field. Some previous studies have assessed the extent to which sensory noise affects the operational characteristics of the cercal system, but these studies have only been carried out in laboratory settings using white noise stimuli of unrealistic nature. Using a piston mimicking the natural airflow of an approaching predator, we recorded the neural activity through the abdominal connectives from the terminal abdominal ganglion of freely moving wood crickets (Nemobius sylvestris) in a semi-field situation. A cluster analysis of spike amplitudes revealed six clusters, or 'units', corresponding to six different subsets of cercal interneurons. No spontaneous activity was recorded for the units of larger amplitude, reinforcing the idea they correspond to the largest giant interneurons. Many of the cercal units are already activated by background noise, sometimes only weakly, and the approach of a predator is signaled by an increase in their activity, in particular for the larger-amplitude units. A scaling law predicts that the cumulative number of spikes is a function of the velocity of the flow perceived at the rear of the cricket, including a multiplicative factor that increases linearly with piston velocity. We discuss the implications of this finding in terms of how the cricket might infer the imminence and nature of a predatory attack.
Collapse
Affiliation(s)
- Fabienne Dupuy
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université François Rabelais, Av Monge, Parc Grandmont, Tours 37200, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Shapiro LJ, Young JW. Kinematics of quadrupedal locomotion in sugar gliders (Petaurus breviceps): effects of age and substrate size. J Exp Biol 2012; 215:480-96. [DOI: 10.1242/jeb.062588] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Arboreal mammals face unique challenges to locomotor stability. This is particularly true with respect to juveniles, who must navigate substrates similar to those traversed by adults, despite a reduced body size and neuromuscular immaturity. Kinematic differences exhibited by juveniles and adults on a given arboreal substrate could therefore be due to differences in body size relative to substrate size, to differences in neuromuscular development, or to both. We tested the effects of relative body size and age on quadrupedal kinematics in a small arboreal marsupial (the sugar glider, Petaurus breviceps; body mass range of our sample 33-97 g). Juvenile and adult P. breviceps were filmed moving across a flat board and three poles 2.5, 1.0 and 0.5 cm in diameter. Sugar gliders (regardless of age or relative speed) responded to relative decreases in substrate diameter with kinematic adjustments that promote stability; they increased duty factor, increased the average number of supporting limbs during a stride, increased relative stride length and decreased relative stride frequency. Limb phase increased when moving from the flat board to the poles, but not among poles. Compared with adults, juveniles (regardless of relative body size or speed) used lower limb phases, more pronounced limb flexion, and enhanced stability with higher duty factors and a higher average number of supporting limbs during a stride. We conclude that although substrate variation in an arboreal environment presents similar challenges to all individuals, regardless of age or absolute body size, neuromuscular immaturity confers unique problems to growing animals, requiring kinematic compensation.
Collapse
Affiliation(s)
- Liza J. Shapiro
- Department of Anthropology, University of Texas at Austin, Austin, TX 78712-0303, USA
| | - Jesse W. Young
- Department of Anatomy and Neurobiology, Northeastern Ohio Medical University (NEOMED, formerly known as the Northeastern Ohio Universities College of Medicine), Rootstown, OH 44272, USA
| |
Collapse
|
28
|
Niemelä PT, Vainikka A, Hedrick AV, Kortet R. Integrating behaviour with life history: boldness of the field cricket, Gryllus integer, during ontogeny. Funct Ecol 2011. [DOI: 10.1111/j.1365-2435.2011.01939.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
|
30
|
Miller BM, McDonnell LH, Sanders DJ, Lewtas KL, Turgeon K, Kramer DL. Locomotor compensation in the sea: body size affects escape gait in parrotfish. Anim Behav 2011. [DOI: 10.1016/j.anbehav.2011.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Dupuy F, Casas J, Body M, Lazzari CR. Danger detection and escape behaviour in wood crickets. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:865-871. [PMID: 21439965 DOI: 10.1016/j.jinsphys.2011.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 05/30/2023]
Abstract
The wind-sensitive cercal system of Orthopteroid insects that mediates the detection of the approach of a predator is a very sensitive sensory system. It has been intensively analysed from a behavioural and neurobiological point of view, and constitutes a classical model system in neuroethology. The escape behaviour is triggered in orthopteroids by the detection of air-currents produced by approaching objects, allowing these insects to keep away from potential dangers. Nevertheless, escape behaviour has not been studied in terms of success. Moreover, an attacking predator is more than "air movement", it is also a visible moving entity. The sensory basis of predator detection is thus probably more complex than the perception of air movement by the cerci. We have used a piston mimicking an attacking running predator for a quantitative evaluation of the escape behaviour of wood crickets Nemobius sylvestris. The movement of the piston not only generates air movement, but it can be seen by the insect and can touch it as a natural predator. This procedure allowed us to study the escape behaviour in terms of detection and also in terms of success. Our results showed that 5-52% of crickets that detected the piston thrust were indeed touched. Crickets escaped to stimulation from behind better than to a stimulation from the front, even though they detected the approaching object similarly in both cases. After cerci ablation, 48% crickets were still able to detect a piston approaching from behind (compared with 79% of detection in intact insects) and 24% crickets escaped successfully (compared with 62% in the case of intact insects). So, cerci play a major role in the detection of an approaching object but other mechanoreceptors or sensory modalities are implicated in this detection. It is not possible to assure that other sensory modalities participate (in the case of intact animals) in the behaviour; rather, than in the absence of cerci other sensory modalities can partially mediate the behaviour. Nevertheless, neither antennae nor eyes seem to be used for detecting approaching objects, as their inactivation did not reduce their detection and escape abilities in the presence of cerci.
Collapse
Affiliation(s)
- Fabienne Dupuy
- Institut de Recherche sur la Biologie de l'Insecte, UMR 6035 CNRS-Université François Rabelais, Av Monge, Parc Grandmont, 37200 Tours, France.
| | | | | | | |
Collapse
|
32
|
Lailvaux SP, Zajitschek F, Dessman J, Brooks R. DIFFERENTIAL AGING OF BITE AND JUMP PERFORMANCE IN VIRGIN AND MATED TELEOGRYLLUS COMMODUS CRICKETS. Evolution 2011; 65:3138-47. [DOI: 10.1111/j.1558-5646.2011.01358.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Gravel MA, Suski CD, Cooke SJ. Behavioral and physiological consequences of nest predation pressure for larval fish. Behav Ecol 2011. [DOI: 10.1093/beheco/arr009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Insausti TC, Lazzari CR, Casas J. The morphology and fine structure of the giant interneurons of the wood cricket Nemobius sylvestris. Tissue Cell 2011; 43:52-65. [PMID: 21216421 DOI: 10.1016/j.tice.2010.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 11/30/2010] [Accepted: 12/04/2010] [Indexed: 11/24/2022]
Abstract
The structural and ultrastructural characteristics of giant interneurons in the terminal abdominal ganglion of the cricket Nemobius sylvestris were investigated by means of cobalt and fluorescent dye backfilling and transmission electron microscopy. The projections of the 8 eight pairs of the biggest ascending interneurons (giant interneurons) are described in detail. The somata of all interneurons analyzed are located contralateral to their axons, which project to the posterior region of the terminal ganglion and arborise in the cercal glomerulus. Neuron 7-1a is an exception, because its arborisation is restricted to the anterior region of the ganglion. The fine structure of giant interneurons shows typical features of highly active cells. We observed striking indentations in the perineural layer, enabling the somata of the giant interneurons to be very close to the haemolymph. The cercal glomerulus exhibits a high diversity of synaptic contacts (i.e. axo-dendritic, axo-axonic, dendro-axonic, and dendro-dendritic), as well as areas of tight junctions. Electrical synapses seem to be present, as well as mixed synapses. The anatomical organization of the giant interneurons is finally discussed in terms of functional implications and on a comparative basis.
Collapse
Affiliation(s)
- T C Insausti
- Institut de Recherche sur Biologie de l'Insecte, UMR 6035 CNRS - Université François Rabelais, Tours, France.
| | | | | |
Collapse
|
35
|
Dial KP, Jackson BE. When hatchlings outperform adults: locomotor development in Australian brush turkeys (Alectura lathami, Galliformes). Proc Biol Sci 2010; 278:1610-6. [PMID: 21047855 DOI: 10.1098/rspb.2010.1984] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Within Galliformes, megapods (brush turkey, malleefowl, scrubfowl) exhibit unique forms of parental care and growth. Hatchlings receive no post-hatching parental care and exhibit the most exaggerated precocial development of all extant birds, hatching with fully developed, flight-capable forelimbs. Rather than flying up to safety, young birds preferentially employ wing-assisted incline running. Newly hatched Australian brush turkeys (Alectura lathami) are extraordinarily proficient at negotiating all textured inclined surfaces and can flap-walk up inclines exceeding the vertical. Yet, as brush turkeys grow, their forelimb-dependent locomotor performance declines. In an attempt to elucidate how hatchlings perform so well, we analysed hindlimb forces and forelimb kinematics. We measured ground reaction forces (GRFs) for animals spanning the entire growth range (110-2000 g) as they ascended a variably positioned inclined ramp that housed a forceplate. These data are compared with a similar dataset for a chukar partridge (Alectoris chukar) that exhibit a growth strategy typical of most other Galliformes and that demonstrate improved incline performance with increasing age. The brush turkeys' ontogenetic decline in incline running performance is accompanied by loss of traction at steep angles, reduced GRFs and increased wing-loading. We hypothesize that Australian brush turkeys, in contrast to other Galliformes, develop from forelimb-dominated young that exploit a variable terrain (e.g. mound nests, boulders, embankments, cliffs, bushes and trees) into hindlimb-dominated adults dependent on size and running speed to avoid predation.
Collapse
|
36
|
Lailvaux SP, Hall MD, Brooks RC. Performance is no proxy for genetic quality: trade-offs between locomotion, attractiveness, and life history in crickets. Ecology 2010; 91:1530-7. [DOI: 10.1890/09-0963.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
DESUTTER-GRANDCOLAS LAURE, BLANCHET ELODIE, ROBILLARD TONY, MAGAL CHRISTELLE, VANNIER FABRICE, DANGLES OLIVIER. Evolution of the cercal sensory system in a tropical cricket clade (Orthoptera: Grylloidea: Eneopterinae): a phylogenetic approach. Biol J Linn Soc Lond 2010. [DOI: 10.1111/j.1095-8312.2009.01371.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Jackson BE, Segre P, Dial KP. Precocial development of locomotor performance in a ground-dwelling bird (Alectoris chukar): negotiating a three-dimensional terrestrial environment. Proc Biol Sci 2009; 276:3457-66. [PMID: 19570787 DOI: 10.1098/rspb.2009.0794] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Developing animals are particularly vulnerable to predation. Hence, precocial young of many taxa develop predator escape performance that rivals that of adults. Ontogenetically unique among vertebrates, birds transition from hind limb to forelimb dependence for escape behaviours, so developmental investment for immediate gains in running performance may impair flight performance later. Here, in a three-dimensional kinematic study of developing birds performing pre-flight flapping locomotor behaviours, wing-assisted incline running (WAIR) and a newly described behaviour, controlled flapping descent (CFD), we define three stages of locomotor ontogeny in a model gallinaceous bird (Alectoris chukar). In stage I (1-7 days post-hatching (dph)) birds crawl quadrupedally during ascents, and their flapping fails to reduce their acceleration during aerial descents. Stage II (8-19 dph) birds use symmetric wing beats during WAIR, and in CFD significantly reduce acceleration while controlling body pitch to land on their feet. In stage III (20 dph to adults), birds are capable of vertical WAIR and level-powered flight. In contrast to altricial species, which first fly when nearly at adult mass, we show that in a precocial bird the major requirements for flight (i.e. high power output, wing control and wing size) convene by around 8 dph (at ca 5% of adult mass) and yield significant gains in escape performance: immature chukars can fly by 20 dph, at only about 12 per cent of adult mass.
Collapse
Affiliation(s)
- Brandon E Jackson
- Flight Laboratory, Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.
| | | | | |
Collapse
|
39
|
Dangles O, Irschick D, Chittka L, Casas J. Variability in Sensory Ecology: Expanding the Bridge Between Physiology and Evolutionary Biology. QUARTERLY REVIEW OF BIOLOGY 2009; 84:51-74. [DOI: 10.1086/596463] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
YOUNG CRICKETS' SUPERIOR ESCAPE RESPONSE. J Exp Biol 2007. [DOI: 10.1242/jeb.011742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|