1
|
Amador MHB, McDonald MD. Is serotonin uptake by peripheral tissues sensitive to hypoxia exposure? FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:617-630. [PMID: 35583623 DOI: 10.1007/s10695-022-01083-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
In the Gulf toadfish (Opsanus beta), the serotonin (5-HT) transporter (SERT) is highly expressed in the heart, and the heart and gill both demonstrate the capacity for SERT-mediated uptake of 5-HT from the circulation. Because 5-HT is a potent vasoconstrictor in fish, we hypothesized that hypoxia exposure may increase 5-HT uptake by these tissues-and increase excretion of 5-HT-to prevent branchial vasoconstriction that would hamper gas exchange. Spot sampling of blood, bile, and urine revealed that fish exposed to chronic hypoxia (1.83 ± 0.12 mg·L-1 O2 for 24-26 h) had 41% lower plasma 5-HT in the ventral aorta (immediately following the heart) than in the hepatic vein (immediately before the heart), suggesting enhanced cardiac 5-HT uptake during hypoxia. 5-HT concentrations in the bile were greater than those in the urine, but there were no effects of acute (1.31 ± 0.06 mg·L-1 O2 for 25 min) or chronic hypoxia on 5-HT levels in these fluids. In 5-HT radiotracer experiments, the presence of tracer in the bile decreased upon hypoxia exposure, but, surprisingly, neither acute nor chronic hypoxia-induced changes in [3H]5-HT uptake in the heart, gill, or other tissues. Given the likely impact of the hypoxia exposure on metabolic rate, future studies should examine the effects of a milder hypoxia exposure on 5-HT uptake into these tissues and the role of 5-HT degradation.
Collapse
Affiliation(s)
- Molly H B Amador
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA
| | - M Danielle McDonald
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA.
| |
Collapse
|
2
|
Cartolano MC, Babcock EA, McDonald MD. Evidence that Gulf toadfish use pulsatile urea excretion to communicate social status. Physiol Behav 2020; 227:113182. [PMID: 32976848 DOI: 10.1016/j.physbeh.2020.113182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Gulf toadfish (Opsanus beta), a highly territorial marine teleost species, are believed to communicate through chemicals released across the gill during pulsatile urea excretion. While freshwater teleost and crustacean urinary signals have been shown to relay information about dominance to reduce physical aggression in future encounters, the use of chemical signals to convey social status in marine teleosts is understudied. Behavior and urea excretion patterns were monitored in pairs of male toadfish during an initial agonistic encounter and in a 2nd encounter where a subset of pairs had their nares blocked to determine how olfaction, and thus chemical communication, play a role in establishing dominance. Anosmic toadfish did not experience increases in aggressive behavior, unlike other species previously studied. However, behavior and the pattern of urea excretion were disrupted in anosmic pairs compared to control pairs. Specifically, control subordinate fish had an increase in their dominance index during the 2nd encounter, a response that anosmic subordinate fish did not experience suggesting that without the ability to smell, subordinate fish cannot recognize their opponent and assess their fighting ability and have a reduced chance of winning. These anosmic subordinate fish also had an increase in pulse frequency, perhaps reflecting an increased effort in communication of status. Future research is needed to conclude if peaks in agonistic behavior are coordinated around the time of urea pules. However, the observed changes in behavior and pulsatile urea excretion due to anosmia in the present study provide evidence that toadfish use pulsatile urea excretion to release signals for chemical communication during agonistic encounters.
Collapse
Affiliation(s)
- Maria C Cartolano
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.
| | - Elizabeth A Babcock
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - M Danielle McDonald
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| |
Collapse
|
3
|
Cartolano MC, Chng Y, McDonald MD. Do reproductive hormones control Gulf toadfish pulsatile urea excretion? Comp Biochem Physiol A Mol Integr Physiol 2019; 238:110561. [PMID: 31499168 DOI: 10.1016/j.cbpa.2019.110561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/14/2019] [Accepted: 08/30/2019] [Indexed: 01/04/2023]
Abstract
Gulf toadfish (Opsanus beta) can excrete the majority of their nitrogenous waste as urea in distinct pulses across their gill. Urea pulses are controlled by cortisol and serotonin (5-HT) and are believed to contain chemical signals that may communicate reproductive and/or social status. The objectives of this study were to determine if reproductive hormones are involved in controlling pulsatile urea excretion, and if toadfish respond to prostaglandins as a chemical signal. Specifically, 11-ketotestosterone (11-KT), estradiol (E2), and the teleost pheromone prostaglandin E2 (PGE2) were investigated. Castration during breeding season did not affect pulsatile urea excretion but serial injections of 11-KT outside of breeding season did result in a 48% reduction in urea pulse size in fish of both sexes. Injections of E2 and PGE2, on the other hand, did not alter urea excretion patterns. Toadfish also did not pulse urea in response to waterborne exposure of PGE2 suggesting that this compound does not serve as a toadfish pheromone alone. Toadfish have significantly higher plasma 5-HT during breeding season compared to the months following breeding season. Future research should focus on the composition of the chemical signal in toadfish and the potential importance of seasonal changes in plasma 5-HT in toadfish pulsatile urea excretion and teleost reproduction in general.
Collapse
Affiliation(s)
- Maria C Cartolano
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.
| | - Yi Chng
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - M Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| |
Collapse
|
4
|
Use of gene knockout to examine serotonergic control of ion uptake in zebrafish reveals the importance of controlling for genetic background: A cautionary tale. Comp Biochem Physiol A Mol Integr Physiol 2019; 238:110558. [PMID: 31446068 DOI: 10.1016/j.cbpa.2019.110558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Freshwater (FW) fishes inhabit dilute environments and must actively absorb ions in order to counteract diffusive salt loss. Neuroendocrine control of ion uptake in FW fishes is an important feature of ion homeostasis and several important neuroendocrine factors have been identified. The role of serotonin (5-HT), however, has received less attention despite several studies pointing to a role for 5-HT in the control of ion balance. Here, we used a gene knockout approach to elucidate the role of 5-HT in regulating Na+ and Ca2+ uptake rates in larval zebrafish. Tryptophan hydroxylase (TPH) is the rate-limiting step in 5-HT synthesis and we therefore hypothesized that ion uptake rates would be altered in zebrafish larvae carrying knockout mutations in tph genes. We first examined the effect of tph1b knockout (KO) and found that tph1bKO larvae, obtained from Harvard University, had reduced rates of Na+ and Ca2+ uptake compared to wild-type (WT) larvae from our institution (uOttawa WT), lending support to our hypothesis. However, further experiments controlling for differences in genetic background demonstrated that WT larvae from Harvard University (Harvard WT) had lower ion uptake rates than those of uOttawa WT, and that ion uptake rate between Harvard WT and tph1bKO larvae were not significantly different. Therefore, our initial observation that tph1bKO larvae (Harvard source) had reduced ion uptake rates relative to uOttawa WT was a function of genetic background and not of knockout itself. These data provide a cautionary tale of the importance of controlling for genetic background in gene knockout experiments.
Collapse
|
5
|
Cartolano MC, Gancel HN, Lonthair J, Wood CM, McDonald MD. Pulsatile urea excretion in Gulf toadfish: the role of circulating serotonin and additional 5-HT receptor subtypes. J Comp Physiol B 2019; 189:537-548. [DOI: 10.1007/s00360-019-01223-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/28/2019] [Accepted: 06/24/2019] [Indexed: 11/28/2022]
|
6
|
Cartolano MC, Tullis-Joyce P, Kubicki K, McDonald MD. Do Gulf Toadfish Use Pulsatile Urea Excretion to Chemically Communicate Reproductive Status? Physiol Biochem Zool 2019; 92:125-139. [PMID: 30657409 DOI: 10.1086/701497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gulf toadfish (Opsanus beta) are exceptionally capable of switching from excreting ammonia as their primary nitrogenous waste to excreting predominantly urea in distinct pulses across the gill. Previous studies suggest that these urea pulses may be used for intraspecific chemical communication. To determine whether pulsatile urea excretion communicates reproductive status, toadfish were sexed using ultrasound and delivered conspecific-conditioned seawater (CC-SW) that previously housed a conspecific of the opposite sex, a conspecific chemical alarm cue (avoidance control), or a prey cue (attraction control). Swim behavior, attraction to or avoidance of the cues, and changes in the pattern of pulsatile urea excretion were monitored during and after delivery. Gulf toadfish did not spend more time in zones that were delivered CC-SW or prey cue. However, male toadfish spent significantly more time swimming after the delivery of female cues than control seawater (SW). In contrast, toadfish did not appear to have an immediate avoidance response to the conspecific alarm cue. Additionally, significantly more toadfish pulsed within 7 h of CC-SW and prey cue delivery compared to control SW, and pulse frequency was 1.6 times greater in response to CC-SW than control SW. These results, in combination with increased urea production and excretion the during breeding season, suggest that toadfish may use pulsatile urea excretion to communicate with conspecifics when exposed to chemosensory cues from the opposite sex.
Collapse
|
7
|
Amador MHB, McDonald MD. The serotonin transporter and nonselective transporters are involved in peripheral serotonin uptake in the Gulf toadfish, Opsanus beta. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1154-R1166. [PMID: 30303705 DOI: 10.1152/ajpregu.00137.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In mammals, circulating serotonin [5-hydroxytryptamine (5-HT)] is sequestered by platelets via the 5-HT transporter (SERT) to prevent unintended signaling by this potent signaling molecule. Teleost fish appear to lack a similar circulating storage pool, although the diverse effects of 5-HT in teleosts likely necessitate an alternative method of tight regulation, such as uptake by peripheral tissues. Here, a 5-HT radiotracer was used to explore the 5-HT uptake capacity of peripheral tissues in the Gulf toadfish, Opsanus beta, and to elucidate the primary excretion routes of 5-HT and its metabolites. Pharmacological inhibition of SERT and other transporters enabled assessment of the SERT dependence of peripheral 5-HT uptake and excretion. The results indicated a rapid and substantial uptake of 5-HT by the heart atrium, heart ventricle, and gill that was at least partly SERT dependent. The results also supported the presence of a partial blood-brain barrier that prevented rapid changes in brain 5-HT content despite fluctuating plasma 5-HT concentrations. The renal pathway appeared to be the dominant excretory route for 5-HT and its metabolites over shorter time frames (up to ~30 min), but hepatic excretion was substantial over several hours. SERT inhibition ultimately reduced the excretion of 5-HT and its metabolites by urinary, biliary, and/or intestinal pathways. In addition, branchial excretion of 5-HT and its metabolites could not be ruled out. In summary, this study reveals that the toadfish heart and gill play active roles in regulating circulating 5-HT and yields important insights into the control of peripheral 5-HT in this teleost fish.
Collapse
Affiliation(s)
- Molly H B Amador
- Rosenstiel School of Marine and Atmospheric Science, University of Miami , Miami, Florida
| | - M Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami , Miami, Florida
| |
Collapse
|
8
|
Amador MHB, McDonald MD. Molecular and functional characterization of the Gulf toadfish serotonin transporter (SERT; SLC6A4). J Exp Biol 2018; 221:jeb.170928. [DOI: 10.1242/jeb.170928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/19/2018] [Indexed: 01/06/2023]
Abstract
The serotonin transporter (SERT) functions in the uptake of the neurotransmitter serotonin (5-HT) from the extracellular milieu and is the molecular target of the selective serotonin reuptake inhibitors (SSRIs), a common group of antidepressants. The current study comprehensively assesses the sequence, tissue distribution, transport kinetics, and physiological function of a teleost SERT. The 2,022-bp toadfish SERT sequence encodes a protein of 673 amino acids, which shows 83% similarity to zebrafish SERT and groups with SERT of other teleosts in phylogenetic analysis. SERT mRNA is ubiquitous in tissues and is expressed at high levels in the heart and, within the brain, in the cerebellum. SERT cRNA expressed in Xenopus laevis oocytes demonstrates a Km value of 2.08±0.45 µM, similar to previously reported Km values for zebrafish and human SERT. Acute systemic blockade of SERT by intraperitoneal administration of the SSRI fluoxetine (FLX) produces a dose-dependent increase in plasma 5-HT, indicating effective inhibition of 5-HT uptake from the circulation. As teleosts lack platelets, which are important 5-HT sequestration sites in mammals, the FLX-induced increase in plasma 5-HT suggests that toadfish tissues may normally be responsible for maintaining low 5-HT concentrations in the bloodstream.
Collapse
Affiliation(s)
- Molly H. B. Amador
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - M. Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| |
Collapse
|
9
|
Cartolano MC, Amador MHB, Tzaneva V, Milsom WK, McDonald MD. Extrinsic nerves are not involved in branchial 5-HT dynamics or pulsatile urea excretion in Gulf toadfish, Opsanus beta. Comp Biochem Physiol A Mol Integr Physiol 2017; 214:58-65. [PMID: 28887162 DOI: 10.1016/j.cbpa.2017.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 10/18/2022]
Abstract
Gulf toadfish (Opsanus beta) can switch from continuously excreting ammonia as their primary nitrogenous waste to excreting predominantly urea in distinct pulses. Previous studies have shown that the neurotransmitter serotonin (5-HT) is involved in controlling this process, but it is unknown if 5-HT availability is under central nervous control or if the 5-HT signal originates from a peripheral source. Following up on a previous study, cranial nerves IX (glossopharyngeal) and X (vagus) were sectioned to further characterize their role in controlling pulsatile urea excretion and 5-HT release within the gill. In contrast to an earlier study, nerve sectioning did not result in a change in urea pulse frequency. Total urea excretion, average pulse size, total nitrogen excretion, and percent ureotely were reduced the first day post-surgery in nerve-sectioned fish but recovered by 72h post-surgery. Nerve sectioning also had no effect on toadfish urea transporter (tUT), 5-HT transporter (SERT), or 5-HT2A receptor mRNA expression or 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) abundance in the gill, all of which were found consistently across the three gill arches except 5-HIAA, which was undetectable in the first gill arch. Our findings indicate that the central nervous system does not directly control pulsatile urea excretion or local changes in gill 5-HT and 5-HIAA abundance.
Collapse
Affiliation(s)
- Maria C Cartolano
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.
| | - Molly H B Amador
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Velislava Tzaneva
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - M Danielle McDonald
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| |
Collapse
|
10
|
Fulton J, LeMoine CMR, Bucking C, Brix KV, Walsh PJ, McDonald MD. A waterborne chemical cue from Gulf toadfish, Opsanus beta, prompts pulsatile urea excretion in conspecifics. Physiol Behav 2017; 171:92-99. [PMID: 28040487 DOI: 10.1016/j.physbeh.2016.12.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 11/25/2022]
Abstract
The Gulf toadfish (Opsanus beta) has a fully functional ornithine urea cycle (O-UC) that allows it to excrete nitrogenous waste in the form of urea. Interestingly, urea is excreted in a pulse across the gill that lasts 1-3h and occurs once or twice a day. Both the stress hormone, cortisol, and the neurotransmitter, serotonin (5-HT) are involved in the control of pulsatile urea excretion. This and other evidence suggests that urea pulsing may be linked to toadfish social behavior. The hypothesis of the present study was that toadfish urea pulses can be triggered by waterborne chemical cues from conspecifics. Our findings indicate that exposure to seawater that held a donor conspecific for up to 48h (pre-conditioned seawater; PC-SW) induced a urea pulse within 7h in naïve conspecifics compared to a pulse latency of 20h when exposed to seawater alone. Factors such as PC-SW intensity and donor body mass influenced the pulse latency response of naïve conspecifics. Fractionation and heat treatment of PC-SW to narrow possible signal candidates revealed that the active chemical was both water-soluble and heat-stable. Fish exposed to urea, cortisol or 5-HT in seawater did not have a pulse latency that was significantly different than seawater alone; however, ammonia, perhaps in the form of NH4Cl, was found to be a factor in the pulse latency response of toadfish to PC-SW and could be one component of a multi-component cue used for chemical communication in toadfish. Further studies are needed to fully identify the chemical cue as well as determine its adaptive significance in this marine teleost fish.
Collapse
Affiliation(s)
- Jeremy Fulton
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Christophe M R LeMoine
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Department of Biology, Brandon University, Brandon, MB R7A 6A9, Canada
| | - Carol Bucking
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Kevin V Brix
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Patrick J Walsh
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - M Danielle McDonald
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA.
| |
Collapse
|
11
|
Medeiros LR, Cartolano MC, McDonald MD. Crowding stress inhibits serotonin 1A receptor-mediated increases in corticotropin-releasing factor mRNA expression and adrenocorticotropin hormone secretion in the Gulf toadfish. J Comp Physiol B 2013; 184:259-71. [PMID: 24362954 DOI: 10.1007/s00360-013-0793-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 11/18/2013] [Accepted: 11/23/2013] [Indexed: 01/20/2023]
Abstract
Stimulation of the serotonin 1A (5-HT1A) receptor subtype by 5-HT has been shown to result in an elevation in plasma corticosteroid levels in both mammals and several species of teleost fish, including the Gulf toadfish (Opsanus beta); however, in the case of teleost fish, it is not clearly known at which level of the hypothalamic-pituitary-interrenal axis the 5-HT1A receptor is stimulated. Additionally, previous investigations have revealed that chronic elevations of plasma cortisol mediate changes in brain 5-HT1A receptor mRNA and protein levels via the glucocorticoid receptor (GR); thus, we hypothesized that the function of centrally activated 5-HT1A receptors is reduced or abolished as a result of chronically elevated plasma cortisol levels and that this response is GR mediated. Our results are the first to demonstrate that intravenous injection of the 5-HT1A receptor agonist, 8-OH-DPAT, stimulates a significant increase in corticotropin-releasing factor (CRF) precursor mRNA expression in the hypothalamic region and the release of adrenocorticotropic hormone (ACTH) from the pituitary of teleost fish compared to saline-injected controls. We also provide evidence that cortisol, acting via GRs, attenuates the 5-HT1A receptor-mediated secretion of both CRF and ACTH.
Collapse
Affiliation(s)
- Lea R Medeiros
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33149-1098, USA,
| | | | | |
Collapse
|
12
|
Lim JE, Porteus CS, Bernier NJ. Serotonin directly stimulates cortisol secretion from the interrenals in goldfish. Gen Comp Endocrinol 2013; 192:246-55. [PMID: 24013027 DOI: 10.1016/j.ygcen.2013.08.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 12/16/2022]
Abstract
While serotonin (5-HT) can stimulate the hypothalamic-pituitary-interrenal stress axis in fish, the specific site(s) of 5-HT action are poorly understood. In this study, goldfish (Carassius auratus) were injected intraperitoneally with either saline or the 5-HT1A/7 receptor agonist 8-OH-DPAT at a dose of 100 or 400 μg/kg body weight and sampled 1.5 and 8 h post-injection. Relative to unhandled controls, the saline and 100 μg/kg 8-OH-DPAT treatments elicited similar transient 5- to 7-fold increases in plasma cortisol and the 400 μg/kg 8-OH-DPAT dosage resulted in a sustained 16-fold increase in cortisol levels. Although the 5-HT1A receptor is expressed in the brain preoptic area (POA), the pituitary and the head kidney, neither the saline nor the 8-OH-DPAT treatments affected the mRNA abundance of POA corticotropin-releasing factor and pituitary pro-opiomelanocortin or plasma adrenocorticotropic hormone (ACTH) levels. To assess the direct actions of 5-HT on cortisol secretion relative to those of ACTH, head kidney tissue were superfused with 10(-7)M 5-HT, ACTH or a combined 5-HT/ACTH treatment. Overall, the ACTH and 5-HT/ACTH treatments resulted in higher peak cortisol and total cortisol release than in the 5-HT treatment but the response time to peak cortisol release was shorter in the combined treatment than in either the 5-HT or ACTH alone treatments. Both 8-OH-DPAT and cisapride, a 5-HT4 receptor agonist, also stimulated cortisol release in vitro and their actions were reversed by selective 5-HT1A and 5-HT4 receptor antagonists, respectively. Finally, double-labeling with anti-tyrosine hydroxylase and anti-5-HT revealed that the chromaffin cells of the head kidney contain 5-HT. Thus, in goldfish, 5-HT can directly stimulate cortisol secretion from the interrenals via multiple 5-HT receptor subtypes and the chromaffin cells may be involved in the paracrine regulation of cortisol secretion via 5-HT.
Collapse
Affiliation(s)
- Jan E Lim
- Department of Integrative Biology, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
13
|
Medeiros LR, McDonald MD. Cortisol-mediated downregulation of the serotonin 1A receptor subtype in the Gulf toadfish, Opsanus beta. Comp Biochem Physiol A Mol Integr Physiol 2013; 164:612-21. [DOI: 10.1016/j.cbpa.2013.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/20/2013] [Accepted: 01/22/2013] [Indexed: 12/15/2022]
|
14
|
Frere AW, McDonald MD. The effect of stress on gill basolateral membrane binding kinetics of 5-ht2 receptor ligands: potential implications for urea excretion mechanisms. ACTA ACUST UNITED AC 2013; 319:237-48. [PMID: 23495168 DOI: 10.1002/jez.1788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 11/13/2012] [Accepted: 02/06/2013] [Indexed: 11/07/2022]
Abstract
The goal of this study was to determine the relationship between cortisol and the toadfish serotonin 2A (5-HT2A ) receptor, which is believed to be responsible for the activation of the toadfish urea transporter, tUT. We hypothesize that elevations in cortisol would play a role in the regulation of the 5-HT2A receptor at the level of mRNA expression, ligand binding, and/or function. To test this idea, cortisol levels were manipulated by either crowding or through treatment with the cortisol synthesis blocker, metyrapone. Crowded fish had significantly higher circulating cortisol levels compared to uncrowded fish and cortisol levels in metyrapone-treated fish were significantly lower than saline-treated controls. No significant difference was measured in gill 5-HT2A mRNA expression levels between uncrowded and crowded, control- or metyrapone-treated fish. Furthermore, no significant difference was measured in [(3) H]-5-HT binding kinetics or in the competitive binding of the 5-HT2 agonist, α-methyl 5-HT, to isolated gill basolateral membranes of uncrowded or crowded toadfish. However, the binding maximum (Bmax ) of the 5-HT2A receptor antagonist, [(3) H]-ketanserin, was significantly different between all four groups of fish (metyrapone > control > crowded > uncrowded). Furthermore, metyrapone-treated fish excreted approximately twofold more urea compared to controls when injected with α-methyl 5-HT, a 5-HT2 receptor agonist shown to stimulate urea excretion. Our results suggest that cortisol may have differential effects on 5-HT receptor binding, which could have potential implications on the control of pulsatile urea excretion in toadfish.
Collapse
Affiliation(s)
- Alexander W Frere
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | | |
Collapse
|
15
|
5-Hydroxytryptamine initiates pulsatile urea excretion from perfused gills of the gulf toadfish (Opsanus beta). Comp Biochem Physiol A Mol Integr Physiol 2012; 163:30-7. [DOI: 10.1016/j.cbpa.2012.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/25/2012] [Accepted: 04/25/2012] [Indexed: 11/22/2022]
|
16
|
Mager EM, Medeiros LR, Lange AP, McDonald MD. The toadfish serotonin 2A (5-HT(2A)) receptor: molecular characterization and its potential role in urea excretion. Comp Biochem Physiol A Mol Integr Physiol 2012; 163:319-26. [PMID: 22884998 DOI: 10.1016/j.cbpa.2012.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022]
Abstract
Based on early pharmacological work, the serotonin 2A (5-HT(2A)) receptor subtype is believed to be involved in the regulation of toadfish pulsatile urea excretion. The goal of the following study was to characterize the toadfish 5-HT(2A) receptor at a molecular level, to determine the tissues in which this receptor is predominantly expressed and to further investigate the pharmacological specificity of toadfish pulsatile urea excretion by examining the effect of ketanserin, a 5-HT(2A) receptor antagonist, on resting rates of pulsatile urea excretion. The full-length toadfish 5-HT(2A) receptor encodes a 496 amino acid sequence and shares 57-80% sequence identity to 5-HT(2A) receptors of other organisms, with 100% conservation among important ligand-binding residues. Toadfish 5-HT(2A) receptor mRNA expression was highest in the swim bladder and gonad, followed by the whole brain. All other tissues tested (esophagus, stomach, anterior intestine, posterior intestine, rectum, liver, kidney, heart, muscle and gill) had mRNA expression levels that were significantly less than whole brain. Toadfish 5-HT(2A) receptor mRNA expression within the brain was highest in the hindbrain, telencephalon and midbrain/diencephalon regions. Treatment with the 5-HT(2A) receptor antagonist, ketanserin, resulted in a significant decrease in the pulsatile component of spontaneous urea excretion due to a reduction in urea pulse size with no significant change in pulse frequency. These results lend further support for the 5-HT(2A) receptor in the regulation of pulsatile urea excretion in toadfish.
Collapse
Affiliation(s)
- Edward M Mager
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | | | | | | |
Collapse
|
17
|
McDonald MD, Gilmour KM, Walsh PJ. New insights into the mechanisms controlling urea excretion in fish gills. Respir Physiol Neurobiol 2012; 184:241-8. [PMID: 22684040 DOI: 10.1016/j.resp.2012.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/31/2012] [Accepted: 06/01/2012] [Indexed: 12/28/2022]
Abstract
Not long ago, urea was believed to freely diffuse across plasma membranes. The discovery of specialized proteins to facilitate the movement of urea across the fish gill, similar to those found in mammalian kidney, was exciting, and at the same time, perplexing; especially considering the fact that, aside from elasmobranchs, most fish do not produce urea as their primary nitrogenous waste. Increasingly, it has become apparent that many fish do indeed produce at least a small amount of urea through various processes and continued work on branchial urea transporters in teleost and elasmobranch fishes has led to recent advances in the regulation of these mechanisms. The following review outlines the substantial progress that has been made towards understanding environmental and developmental impacts on fish gill urea transport. This review also outlines the work that has been done regarding endocrine and neural control of urea excretion, most of which has been collected from only a handful of teleost fish. It is evident that more research is needed to establish the endocrine and neural control of urea excretion in fish, including fish representative of more ancient lineages (hagfish and lamprey), and elasmobranch fish.
Collapse
Affiliation(s)
- M Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA.
| | | | | |
Collapse
|
18
|
Rodela TM, McDonald MD, Walsh PJ, Gilmour KM. Interactions between cortisol and Rhesus glycoprotein expression in ureogenic toadfish, Opsanus beta. J Exp Biol 2012; 215:314-23. [DOI: 10.1242/jeb.061895] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
SUMMARY
In their native environment, gulf toadfish excrete equal quantities of ammonia and urea. However, upon exposure to stressful conditions in the laboratory (i.e. crowding, confinement or air exposure), toadfish decrease branchial ammonia excretion and become ureotelic. The objective of this study was to determine the influences of cortisol and ammonia on ammonia excretion relative to expression of Rhesus (Rh) glycoproteins and the ammonia-fixing enzyme, glutamine synthetase (GS). In vivo infusions and/or injections were used to manipulate corticosteroid activity and plasma ammonia concentrations in ureotelic toadfish. Metyrapone treatment to lower circulating cortisol levels resulted in a 3.5-fold elevation of ammonia excretion rates, enhanced mRNA expression of two of the toadfish Rh isoforms (Rhcg1 and Rhcg2), and decreased branchial and hepatic GS activity. Correspondingly, cortisol infusion decreased ammonia excretion 2.5-fold, a change that was accompanied by reduced branchial expression of all toadfish Rh isoforms (Rhag, Rhbg, Rhcg1 and Rhcg2) and a twofold increase in hepatic GS activity. In contrast, maintenance of high circulating ammonia levels by ammonia infusion enhanced ammonia excretion and Rh expression (Rhag, Rhbg and Rhcg2). Toadfish treated with cortisol showed an attenuated response to ammonia infusion with no change in Rh mRNA expression or GS activity. In summary, the evidence suggests that ammonia excretion in toadfish is modulated by cortisol-induced changes in both Rh glycoprotein expression and GS activity.
Collapse
Affiliation(s)
- Tamara M. Rodela
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - M. Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149-1098, USA
| | - Patrick J. Walsh
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Kathleen M. Gilmour
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
19
|
Rodela TM, Esbaugh AJ, McDonald MD, Gilmour KM, Walsh PJ. Evidence for transcriptional regulation of the urea transporter in the gill of the Gulf toadfish, Opsanus beta. Comp Biochem Physiol B Biochem Mol Biol 2011; 160:72-80. [PMID: 21740977 DOI: 10.1016/j.cbpb.2011.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 06/24/2011] [Accepted: 06/24/2011] [Indexed: 02/01/2023]
Abstract
Ureotelic Gulf toadfish (Opsanus beta) do not excrete urea continuously; instead, urea is accumulated internally until a branchial urea transport mechanism is activated to facilitate the excretion of urea in distinct pulses. This unusual pulsatile urea excretion pattern is regulated, in part, by permissive declines in circulating cortisol concentrations. The current study examined toadfish urea transporter (tUT) and glucocorticoid receptor (GR) transcript levels in toadfish gill following chronic (days) and acute (hours) changes in corticosteroid activity. Experimentally lowering circulating cortisol did not significantly alter tUT mRNA abundance but increased GR mRNA. On an acute timescale, a 6.2-fold upregulation of tUT mRNA occurred 12 to 18 h following a urea pulse event with no change in GR mRNA. In silico analysis of an isolated 1.2 kb fragment, upstream promoter region of the tUT gene, revealed 6 putative glucocorticoid response element (GRE) half sites. In vivo reporter assays of the tUT promoter fragment demonstrated relative luciferase activity was enhanced 3.4- and 9.8-fold following exposure to moderate (via a 48 h crowding stress) and high (via infusion for 48 h) cortisol. We conclude that a GRE-mediated upregulation of mRNA may be required to maintain tUT activity by offsetting post-transcriptional and/or post-translational changes that may be associated with chronically elevated plasma cortisol.
Collapse
Affiliation(s)
- Tamara M Rodela
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | | | |
Collapse
|
20
|
Braun MH, Perry SF. Ammonia and urea excretion in the Pacific hagfish Eptatretus stoutii: Evidence for the involvement of Rh and UT proteins. Comp Biochem Physiol A Mol Integr Physiol 2010; 157:405-15. [PMID: 20732439 DOI: 10.1016/j.cbpa.2010.08.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 01/14/2023]
Abstract
The nature of ammonia and urea excretion was examined in the Pacific hagfish (Eptatretus stoutii), which, under resting conditions, excreted similar quantities of nitrogen as either ammonia or urea. In the presence of high external ammonia (HEA) concentrations, ammonia was taken up at high rates and then excreted at similarly high rates upon return to normal water. However, although elevated by HEA, plasma ammonia levels were maintained at approximately 1-4 μmolNg⁻¹, reflecting time-dependent decreases in the rates of ammonia uptake, the possible conversion of ammonia to urea, and the potential active excretion of ammonia against a gradient. Internal injections of NH₄Cl caused marked increases in the rate of ammonia excretion and a delayed increase in urea excretion that may have resulted from increasing urea levels in the plasma. Conversely, when the rate of urea excretion was reduced in the presence of 0.1 mM phloretin, ammonia excretion was significantly elevated. Rates of urea excretion were initially increased by approximately 1000-fold following internal urea injections while the presence of high external urea levels (5-100 mM final concentration) resulted in associated linear increases in plasma urea levels. Using hagfish skin mounted in Ussing chambers, the rate of diffusion of ammonia across the skin exceeded that of urea by approximately four times when equivalent gradients were imposed. Based on western blotting and immunocytochemistry, hagfish gill appears to possess Rh proteins (Rhag, Rhbg and Rhcg1) and urea transporter proteins. Despite the tolerance of hagfish to high levels of ammonia and urea, it is suggested that the presence of ammonia and urea transporter proteins may be required during the period of time hagfish spend in burrows or while feeding, when conditions of high ammonia and/or urea might be encountered.
Collapse
Affiliation(s)
- Marvin H Braun
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Canada ON K1N 6N5
| | | |
Collapse
|
21
|
Barimo JF, Walsh PJ, McDonald MD. Diel Patterns of Nitrogen Excretion, Plasma Constituents, and Behavior in the Gulf Toadfish (Opsanus beta) in Laboratory versus Outdoor Mesocosm Settings. Physiol Biochem Zool 2010; 83:958-72. [DOI: 10.1086/656427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Medeiros LR, Mager EM, Grosell M, McDonald MD. The serotonin subtype 1A receptor regulates cortisol secretion in the Gulf toadfish, Opsanus beta. Gen Comp Endocrinol 2010; 168:377-87. [PMID: 20488186 DOI: 10.1016/j.ygcen.2010.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 02/26/2010] [Accepted: 05/12/2010] [Indexed: 11/16/2022]
Abstract
It is well established that serotonin (5-HT; 5-hydroxytryptamine) plays a role in mammalian regulation of the hypothalamic-pituitary-adrenal (HPA) axis via the 5-HT receptor subtype 1A (5-HT(1A)). To date, there has not been a comprehensive investigation of the molecular, pharmacological and physiological aspects of the 5-HT(1A) receptor and its role in the activation of the hypothalamic-pituitary-interrenal (HPI) axis in teleost fish. The 5-HT(1A) receptor of the Gulf toadfish (Opsanus beta) was cloned and sequenced, showing 67.5% amino acid similarity to the human homologue. The 5-HT(1A) receptor was distributed throughout the brain, with the whole brain containing significantly higher levels of 5-HT(1A) mRNA compared to all other tissues and the midbrain/diencephalon region containing significantly higher levels of transcript than any other brain region. Substantial levels of transcript were also found in the pituitary, while very low levels were in the kidney that contains the interrenal cells. Xenopus oocytes injected with toadfish 5-HT(1A) receptor cRNA displayed significantly higher binding of [(3)H]5-HT that was abolished by the mammalian 5-HT(1A) receptor agonist, 8-OH-DPAT, indicating a conserved binding site of the toadfish 5-HT(1A) receptor and a high specificity for the agonist. Supporting this, binding of [(3)H]5-HT was not affected by the mammalian 5-HT(1B) receptor agonist, 5-nonyloxytryptamine, the 5-HT(7) receptor antagonist, SB269970, or the 5-HT(2) receptor agonist, alpha-methylserotonin. Confirming these molecular and pharmacological findings, intravenous injection of 8-OH-DPAT stimulated the HPI axis to cause a 2-fold increase in circulating levels of cortisol. The present study of the 5-HT(1A) receptor in a single teleost species illustrates the high conservation of this 5-HT receptor amongst vertebrates.
Collapse
Affiliation(s)
- Lea R Medeiros
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149-1098, USA.
| | | | | | | |
Collapse
|
23
|
McDonald MD, Gilmour KM, Walsh PJ, Perry SF. Cardiovascular and respiratory reflexes of the gulf toadfish (Opsanus beta) during acute hypoxia. Respir Physiol Neurobiol 2010; 170:59-66. [DOI: 10.1016/j.resp.2009.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Revised: 12/11/2009] [Accepted: 12/26/2009] [Indexed: 10/20/2022]
|
24
|
Morando MB, Medeiros LR, McDonald MD. Fluoxetine treatment affects nitrogen waste excretion and osmoregulation in a marine teleost fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 95:164-71. [PMID: 20225343 DOI: 10.1016/j.aquatox.2009.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Measurable quantities of the selective serotonin reuptake inhibitor (SSRI), fluoxetine, have been found in surface waters and more recently in the tissues of fish. This highly prescribed pharmaceutical inhibits the reuptake of the monoamine, serotonin (5-HT; 5-hydroxytryptamine), causing a local amplification of 5-HT concentrations. Serotonin is involved in the regulation of many physiological processes in teleost fish including branchial nitrogen excretion and intestinal osmoregulation. Since the gill and intestine are directly exposed to the environment, environmental exposure to fluoxetine has the potential of affecting both these mechanisms. In the present study, we test the potential sensitivity of these processes to fluoxetine by implanting gulf toadfish, Opsanus beta, intraperitoneally with different concentrations of fluoxetine (0 (control), 25, 50, 75 and 100 microgg(-1). Fluoxetine treatments of 25 and 50 microgg(-1) were sublethal and were used in subsequent experiments. Fish treated with both 25 and 50 microgg(-1) fluoxetine had significantly higher circulating levels of 5-HT than control fish, suggesting that any 5-HT sensitive physiological process could potentially be affected by these two fluoxetine doses. However, only fish treated with 25 microgg(-1) fluoxetine showed a significant increase in urea excretion. A similar increase was not measured in fish treated with 50 microgg(-1) fluoxetine, likely because of their high circulating levels of cortisol which inhibits urea excretion in toadfish. Intestinal fluid absorption appeared to be stimulated in fish treated with 25g microgg(-1) fluoxetine but inhibited in 50 microgg(-1) treated fish. Despite these differing responses, both doses of fluoxetine resulted in lowered plasma osmolality values, which was expected based on the stimulation of fluid absorption in the 25 microgg(-1) fluoxetine-treated fish but is surprising with the 50 microgg(-1) treated fish. In the case of the latter, the corresponding stress response invoked by this level of fluoxetine may have resulted in an additional osmoregulatory response which accounts for the lowered plasma osmolality. Our findings suggest that branchial urea excretion and intestinal osmoregulation are responsive to the SSRI, fluoxetine, and further investigation is needed to determine the sensitivity of these processes to chronic waterborne fluoxetine contamination.
Collapse
Affiliation(s)
- Michael B Morando
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149-1098, USA
| | | | | |
Collapse
|
25
|
Rodela TM, Gilmour KM, Walsh PJ, McDonald MD. Cortisol-sensitive urea transport across the gill basolateral membrane of the gulf toadfish (Opsanus beta). Am J Physiol Regul Integr Comp Physiol 2009; 297:R313-22. [DOI: 10.1152/ajpregu.90894.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gulf toadfish ( Opsanus beta) use a unique pulsatile urea excretion mechanism that allows urea to be voided in large pulses via the periodic insertion or activation of a branchial urea transporter. The precise cellular and subcellular location of the facilitated diffusion mechanism(s) remains unclear. An in vitro basolateral membrane vesicle (BLMV) preparation was used to test the hypothesis that urea movement across the gill basolateral membrane occurs through a cortisol-sensitive carrier-mediated mechanism. Toadfish BLMVs demonstrated two components of urea uptake: a linear element at high external urea concentrations, and a phloretin-sensitive saturable constituent ( Km = 0.24 mmol/l; Vmax = 6.95 μmol·mg protein−1·h−1) at low urea concentrations (<1 mmol/l). BLMV urea transport in toadfish was unaffected by in vitro treatment with ouabain, N-ethylmaleimide, or the absence of sodium, conditions that are known to inhibit sodium-coupled and proton-coupled urea transport in vertebrates. Transport kinetics were temperature sensitive with a Q10 > 2, further suggestive of carrier-mediated processes. Our data provide evidence that a basolateral urea facilitated transporter accelerates the movement of urea between the plasma and gills to enable the pulsatile excretion of urea. Furthermore, in vivo infusion of cortisol caused a significant 4.3-fold reduction in BLMV urea transport capacity in lab-crowded fish, suggesting that cortisol inhibits the recruitment of urea transporters to the basolateral membrane, which may ultimately affect the size of the urea pulse event in gulf toadfish.
Collapse
|
26
|
Morando MB, Medeiros LR, McDonald MD. Fluoxetine treatment affects nitrogen waste excretion and osmoregulation in a marine teleost fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 93:253-60. [PMID: 19443054 DOI: 10.1016/j.aquatox.2009.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/12/2009] [Accepted: 03/20/2009] [Indexed: 05/27/2023]
Abstract
Measurable quantities of the selective serotonin reuptake inhibitor (SSRI), fluoxetine, have been found in surface waters and more recently in the tissues of fish. This highly prescribed pharmaceutical inhibits the reuptake of the monoamine, serotonin (5-HT; 5-hydroxytryptamine), causing a local amplification of 5-HT concentrations. Serotonin is involved in the regulation of many physiological processes in teleost fish including branchial nitrogen excretion and intestinal osmoregulation. Since the gill and intestine are directly exposed to the environment, environmental exposure to fluoxetine has the potential of affecting both these mechanisms. In the present study, we test the potential sensitivity of these processes to fluoxetine by implanting gulf toadfish, Opsanus beta, intraperitoneally with different concentrations of fluoxetine (0 (control), 25, 50, 75 and 100 microgg(-1)). Fluoxetine treatments of 25 and 50 microgg(-1) were sub-lethal and were used in subsequent experiments. Fish treated with both 25 and 50 microgg(-1) fluoxetine had significantly higher circulating levels of 5-HT than control fish, suggesting that any 5-HT sensitive physiological process could potentially be affected by these two fluoxetine doses. However, only fish treated with 25 microgg(-1) fluoxetine showed a significant increase in urea excretion. A similar increase was not measured in fish treated with 50 microgg(-1) fluoxetine, likely because of their high circulating levels of cortisol which inhibits urea excretion in toadfish. Intestinal fluid absorption appeared to be stimulated in fish treated with 25 microgg(-1) fluoxetine but inhibited in 50 microgg(-1) treated fish. Despite these differing responses, both doses of fluoxetine resulted in lowered plasma osmolality values, which was expected based on the stimulation of fluid absorption in the 25 microgg(-1) fluoxetine-treated fish but is surprising with the 50 microgg(-1) treated fish. In the case of the latter, the corresponding stress response invoked by this level of fluoxetine may have resulted in an additional osmoregulatory response which accounts for the lowered plasma osmolality. Our findings suggest that branchial urea excretion and intestinal osmoregulation are responsive to the SSRI, fluoxetine, and further investigation is needed to determine the sensitivity of these processes to chronic waterborne fluoxetine contamination.
Collapse
|
27
|
Rodela TM, McDonald MD, Walsh PJ, Gilmour KM. The regulatory role of glucocorticoid and mineralocorticoid receptors in pulsatile urea excretion of the gulf toadfish,Opsanus beta. J Exp Biol 2009; 212:1849-58. [DOI: 10.1242/jeb.026997] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYGulf toadfish, Opsanus beta, are one among a group of unusual teleosts that excrete urea as their predominant nitrogen end product in response to stressful conditions. Under conditions of crowding or confinement,fasted toadfish excrete the majority of their nitrogen waste in large pulses of urea (>90% of total nitrogen) lasting up to 3 h. An earlier study demonstrated that cortisol has an inhibitory influence on urea pulse size. The present study tested the hypothesis that cortisol mediates changes in urea pulse size in ureotelic toadfish through the glucocorticoid receptor (GR) and not the mineralocorticoid receptor (MR). In vivo pharmacological investigations were used to manipulate the corticosteroid system in crowded toadfish, including experimentally lowering plasma cortisol levels by the injection of metyrapone, blocking cortisol receptors through exposure to either RU-486 (GR antagonist) and spironolactone (MR antagonist), or through exogenous infusion of the tetrapod mineralocorticoid aldosterone (tetrapod MR agonist). The data demonstrate that lowering the activity of cortisol, either by inhibiting its synthesis or by blocking its receptor, resulted in a two- to threefold increase in pulse size with no accompanying change in pulse frequency. Treatment with spironolactone elicited a minor (∼1.5-fold)reduction in pulse size, as did aldosterone treatment, suggesting that the anti-mineralocorticoid spironolactone has an agonistic effect in a piscine system. In summary, the evidence suggests that urea transport mechanisms in pulsing toadfish are upregulated in response to low cortisol, mediated primarily by GRs, and to a lesser extent MRs.
Collapse
Affiliation(s)
- Tamara M. Rodela
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - M. Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami,Miami, FL 33149, USA
| | - Patrick J. Walsh
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Kathleen M. Gilmour
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
28
|
McDonald MD, Vulesevic B, Perry SF, Walsh PJ. Urea transporter and glutamine synthetase regulation and localization in gulf toadfish gill. J Exp Biol 2009; 212:704-12. [PMID: 19218522 DOI: 10.1242/jeb.015875] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The goal of the present study was to investigate the role of circulating cortisol and urea in the transcriptional regulation of branchial glutamine synthetase (GS), which incorporates NH(3) into glutamate to form glutamine, and the toadfish urea transporter, tUT, which is involved in urea excretion across the gill of the gulf toadfish. GS (of which there are two isoforms, LGS and GGS) and tUT mRNA expression and activity were measured in toadfish exposed to treatments that would induce variable stress responses. In addition, the role of circulating urea in tUT regulation was investigated by infusing toadfish with urea alone or in combination with intraperitoneal injection of RU486, a corticosteroid type II receptor antagonist. There was a 4.8-fold upregulation in the mRNA expression of the gill-specific GS isoform (GGS) in response to cortisol infusion and a similar upregulation in the more ubiquitous isoform (LGS). Furthermore, there was a significant 1.9-fold and 3.3-fold upregulation in the mRNA expression of the toadfish urea transporter, tUT, in response to stress through crowding or exogenous cortisol loading through infusion, respectively. In addition, tUT was found to have a urea-sensitive component to transcriptional regulation that was independent of circulating cortisol concentrations. However, the changes measured in mRNA expression of GGS, LGS and tUT did not correspond with changes in protein activity. To determine the cell type(s) involved in glutamine production and urea excretion, we attempted to localize GGS, LGS and tUT using in situ hybridization. This study is the first to show that GGS and tUT expression appear to occur in gill mitochondria-rich cells of toadfish, suggesting that these cells play a combined glutamine production and urea excretion role, which may have implications for predator avoidance.
Collapse
Affiliation(s)
- M Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149 USA.
| | | | | | | |
Collapse
|
29
|
Smith GT, Combs N. Serotonergic activation of 5HT1A and 5HT2 receptors modulates sexually dimorphic communication signals in the weakly electric fish Apteronotus leptorhynchus. Horm Behav 2008; 54:69-82. [PMID: 18336816 DOI: 10.1016/j.yhbeh.2008.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 01/20/2008] [Accepted: 01/24/2008] [Indexed: 11/17/2022]
Abstract
Serotonin modulates agonistic and reproductive behavior across vertebrate species. 5HT(1A) and 5HT(1B) receptors mediate many serotonergic effects on social behavior, but other receptors, including 5HT(2) receptors, may also contribute. We investigated serotonergic regulation of electrocommunication signals in the weakly electric fish Apteronotus leptorhynchus. During social interactions, these fish modulate their electric organ discharges (EODs) to produce signals known as chirps. Males chirp more than females and produce two chirp types. Males produce high-frequency chirps as courtship signals; whereas both sexes produce low-frequency chirps during same-sex interactions. Serotonergic innervation of the prepacemaker nucleus, which controls chirping, is more robust in females than males. Serotonin inhibits chirping and may contribute to sexual dimorphism and individual variation in chirping. We elicited chirps with EOD playbacks and pharmacologically manipulated serotonin receptors to determine which receptors regulated chirping. We also asked whether serotonin receptor activation generally modulated chirping or more specifically targeted particular chirp types. Agonists and antagonists of 5HT(1B/1D) receptors (CP-94253 and GR-125743) did not affect chirping. The 5HT(1A) receptor agonist 8OH-DPAT specifically increased production of high-frequency chirps. The 5HT(2) receptor agonist DOI decreased chirping. Receptor antagonists (WAY-100635 and MDL-11939) opposed the effects of their corresponding agonists. These results suggest that serotonergic inhibition of chirping may be mediated by 5HT(2) receptors, but that serotonergic activation of 5HT(1A) receptors specifically increases the production of high-frequency chirps. The enhancement of chirping by 5HT(1A) receptors may result from interactions with cortisol and/or arginine vasotocin, which similarly enhance chirping and are influenced by 5HT(1A) activity in other systems.
Collapse
Affiliation(s)
- G Troy Smith
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
30
|
Allee SJ, Markham MR, Salazar VL, Stoddard PK. Opposing actions of 5HT1A and 5HT2-like serotonin receptors on modulations of the electric signal waveform in the electric fish Brachyhypopomus pinnicaudatus. Horm Behav 2008; 53:481-8. [PMID: 18206154 PMCID: PMC2561899 DOI: 10.1016/j.yhbeh.2007.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 12/01/2007] [Accepted: 12/04/2007] [Indexed: 12/12/2022]
Abstract
Serotonin (5-HT) is an indirect modulator of the electric organ discharge (EOD) in the weakly electric gymnotiform fish, Brachyhypopomus pinnicaudatus. Injections of 5-HT enhance EOD waveform "masculinity", increasing both waveform amplitude and the duration of the second phase. This study investigated the pharmacological identity of 5-HT receptors that regulate the electric waveform and their effects on EOD amplitude and duration. We present evidence that two sets of serotonin receptors modulate the EOD in opposite directions. We found that the 5HT1AR agonist 8-OH-DPAT diminishes EOD duration and amplitude while the 5HT1AR antagonist WAY100635 increases these parameters. In contrast, the 5HT2R agonist alpha-Me-5-HT increases EOD amplitude but not duration, yet 5-HT-induced increases in EOD duration can be inhibited by blocking 5HT2A/2C-like receptors with ketanserin. These results show that 5-HT exerts bi-directional control of EOD modulations in B. pinnicaudatus via action at receptors similar to mammalian 5HT1A and 5HT2 receptors. The discordant amplitude and duration response suggests separate mechanisms for modulating these waveform parameters.
Collapse
Affiliation(s)
- Susan J Allee
- Department of Biological Sciences, Florida International University, Miami FL 33199, USA.
| | | | | | | |
Collapse
|
31
|
McDonald MD, Gilmour KM, Barimo JF, Frezza PE, Walsh PJ, Perry SF. Is urea pulsing in toadfish related to environmental O2 or CO2 levels? Comp Biochem Physiol A Mol Integr Physiol 2007; 146:366-74. [PMID: 17196858 DOI: 10.1016/j.cbpa.2006.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/12/2006] [Accepted: 11/14/2006] [Indexed: 11/17/2022]
Abstract
The neurochemical, serotonin (5-hydroxytryptamine; 5-HT) is involved in the regulation of toadfish pulsatile urea excretion as well as the teleost hypoxia response. Thus, the goal of this study was to determine whether environmental conditions that activate branchial chemoreceptors also trigger pulsatile urea excretion in toadfish, since environmental dissolved oxygen levels in a typical toadfish habitat show significant diel fluctuations, often reaching hypoxic conditions at dawn. Toadfish were fitted with arterial, venous and/or buccal catheters and were exposed to various environmental conditions, and/or injected with the O(2) chemoreceptor agonist NaCN or the 5-HT(2) receptor agonist alpha-methyl-5HT. Arterial PO(2), as well as ammonia and urea excretion were monitored. Natural fluctuations in arterial PO(2) levels in toadfish did not correlate with the occurrence of a urea pulse. Chronic exposure (24 h) of toadfish to hyperoxia was without effect on nitrogen excretion, however, exposure to hypoxia caused a significant reduction in the frequency of urea pulses, and exposure to hypercapnia resulted in a reduction in the percentage of nitrogen waste excreted as urea. Of toadfish exposed acutely to hypoxia, 20% pulsed within 1 h, whereas none pulsed after normoxic or hypercapnic treatments. Furthermore, 20% of fish injected intravenously with NaCN pulsed within 1 h of injection, but no fish pulsed after injection of NaCN into the buccal cavity. To test whether environmental conditions affected 5-HT(2) receptors, toadfish were injected with alpha-methyl-5HT, which elicits urea pulses in toadfish. No significant differences in pulse size occurred among the various environmental treatments. Our findings suggest that neither the environmental conditions of hypoxia, hyperoxia or hypercapnia, nor direct branchial chemoreceptor activation by NaCN play a major role in the regulation of pulsatile urea excretion in toadfish.
Collapse
Affiliation(s)
- M Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, 33149-1098, USA.
| | | | | | | | | | | |
Collapse
|
32
|
McDonald MD, Smith CP, Walsh PJ. The physiology and evolution of urea transport in fishes. J Membr Biol 2007; 212:93-107. [PMID: 17264987 DOI: 10.1007/s00232-006-0869-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 07/20/2006] [Indexed: 11/25/2022]
Abstract
This review summarizes what is currently known about urea transporters in fishes in the context of their physiology and evolution within the vertebrates. The existence of urea transporters has been investigated in red blood cells and hepatocytes of fish as well as in renal and branchial cells. Little is known about urea transport in red blood cells and hepatocytes, in fact, urea transporters are not believed to be present in the erythrocytes of elasmobranchs nor in teleost fish. What little physiological evidence there is for urea transport across fish hepatocytes is not supported by molecular evidence and could be explained by other transporters. In contrast, early findings on elasmobranch renal urea transporters were the impetus for research in other organisms. Urea transport in both the elasmobranch kidney and gill functions to retain urea within the animal against a massive concentration gradient with the environment. Information on branchial and renal urea transporters in teleost fish is recent in comparison but in teleosts urea transporters appear to function for excretion and not retention as in elasmobranchs. The presence of urea transporters in fish that produce a copious amount of urea, such as elasmobranchs and ureotelic teleosts, is reasonable. However, the existence of urea transporters in ammoniotelic fish is curious and could likely be due to their ability to manufacture urea early in life as a means to avoid ammonia toxicity. It is believed that the facilitated diffusion urea transporter (UT) gene family has undergone major evolutionary changes, likely in association with the role of urea transport in the evolution of terrestriality in the vertebrates.
Collapse
Affiliation(s)
- M D McDonald
- NIEHS Marine and Freshwater Biomedical Sciences Center, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida 33149-1098, USA.
| | | | | |
Collapse
|
33
|
Rodela TM, Wright PA. Metabolic and neuroendocrine effects on diurnal urea excretion in the mangrove killifish Rivulus marmoratus. ACTA ACUST UNITED AC 2006; 209:2704-12. [PMID: 16809461 DOI: 10.1242/jeb.02289] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mangrove killifish Rivulus marmoratus, urea excretion (J(urea)) follows a distinct diurnal pattern with the highest rates between 12:00 h and 18:00 h. We investigated the regulating mechanisms that underlie temporal rhythms in J(urea) in R. marmoratus. We hypothesized that the daily pattern of J(urea) in R. marmoratus is (1) due to diurnal changes in urea synthesis rates and ultimately metabolic rate and/or (2) controlled by neuroendocrine messengers. Oxygen consumption and whole body urea content in R. marmoratus demonstrated a clear diurnal pattern with maximum rates for both parameters occurring at 12:00 h. A strong synchrony between diurnal patterns of oxygen consumption, whole body urea content and J(urea) implicated metabolic regulation of the diurnal J(urea) pattern. Ketanserin, a 5-HT(2) receptor antagonist, and RU-486, a cortisol receptor antagonist, were used to test the second hypothesis. Increasing antagonist concentrations of either ketanserin or RU-486 resulted in dose-dependent decreases in J(urea). Application of a single dose of either antagonist significantly decreases J(urea) for up to 12 and 6 h for ketanserin and RU-48, respectively. Repeated exposure to doses of either ketanserin or RU-486 did not abolish the diurnal pattern in J(urea); however, there was a significant decrease in the amplitude of the rates. Taken together, these findings indicate that the diurnal pattern of J(urea) in R. marmoratus are regulated by both metabolic and neuroendocrine factors. We propose that cortisol and 5-HT influence the absolute rate of urea excretion by altering the permeability of the gill membrane to urea and/or the rate of urea synthesis.
Collapse
Affiliation(s)
- Tammy M Rodela
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | |
Collapse
|
34
|
Gilmour KM, Wilson RW, Sloman KA. The Integration of Behaviour into Comparative Physiology. Physiol Biochem Zool 2005; 78:669-78. [PMID: 16047293 DOI: 10.1086/432144] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2005] [Indexed: 11/03/2022]
Abstract
Comparative physiology has traditionally focused on the physiological responses of animals to their physicochemical environment. In recent years, awareness has increased among physiologists of the potential for behavioural factors, such as the social environment of the animal, to affect physiological condition and responses. This recognition has led to an emerging trend within the field toward using multidisciplinary approaches that incorporate both behavioural and physiological techniques. Research areas in which the integrated study of behaviour and physiology has been particularly fruitful include the physiology of the social environment, sensory physiology and behaviour, and physiological constraints on behavioural ecology. The manner in which incorporating behavioural considerations has informed the physiological data collected is discussed for each of these areas using specific examples.
Collapse
Affiliation(s)
- K M Gilmour
- Department of Biology, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada.
| | | | | |
Collapse
|
35
|
Sloman KA, McDonald MD, Barimo JF, Lepage O, Winberg S, Wood CM, Walsh PJ. Does Pulsatile Urea Excretion Serve as a Social Signal in the Gulf ToadfishOpsanus beta? Physiol Biochem Zool 2005; 78:724-35. [PMID: 16086266 DOI: 10.1086/432140] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2005] [Indexed: 11/03/2022]
Abstract
This study evaluated the hypothesis that the pulsatile excretion of urea by toadfish could serve as a social signal. In the first experiment, physiological parameters were measured in pairs of dominant and subordinate toadfish. Subordinate toadfish had elevated concentrations of circulating plasma cortisol, an effect maintained even after cannulation. In the second experiment, one fish of a pair was injected with 14C-urea, and the occurrence of urea pulses during social encounters was documented. Social status did not influence the order of pulsing, that is, whether a dominant or subordinate fish pulsed first during a social encounter. However, in seven out of eight pairs, both toadfish pulsed within 2 h of each other, indicating some form of communication between fish. In the third and final experiment, the response of toadfish to urea (natural or synthetic) was observed. There was a tendency for toadfish to avoid synthetic urea but there was no apparent behavioural response to water containing toadfish urea. Pulsing events do not appear to play an integral role during social encounters as previously hypothesised, but the close timing of pulses in toadfish pairs suggests some transfer of information.
Collapse
Affiliation(s)
- Katherine A Sloman
- School of Biological Sciences, University of Plymouth, Plymouth, Devon PL4 8AA, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
36
|
McDonald MD, Wood CM, Grosell M, Walsh PJ. Glucocorticoid receptors are involved in the regulation of pulsatile urea excretion in toadfish. J Comp Physiol B 2004; 174:649-58. [PMID: 15517282 DOI: 10.1007/s00360-004-0456-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2004] [Indexed: 10/26/2022]
Abstract
The objectives of this study were to characterize the pattern of pulsatile urea excretion in the gulf toadfish in the wake of exogenous cortisol loading and to determine the receptors involved in the regulation of this mechanism. Toadfish were fitted with indwelling arterial catheters and were infused with isosmotic NaCl for 48 h after which fish were treated with cortisol alone, cortisol + peanut oil, cortisol + RU486 (a glucocorticoid receptor antagonist) or cortisol + spironolactone (a mineralocorticoid receptor antagonist). Upon cortisol loading, fish treated with cortisol alone, cortisol + oil or cortisol + spironolactone experienced a two- to threefold reduction in pulsatile urea excretion. This reduction was due to a decrease in urea pulse size with no effect on pulse frequency compared to values measured during the control NaCl infusion period. In addition, these fish showed an increase in plasma urea concentrations upon treatment. These apparent effects of cortisol treatment were abolished in fish treated with cortisol + RU486. In contrast, these fish showed an increase in pulsatile urea excretion mediated by a twofold increase in pulse size with no change in frequency. Likewise, fish treated with cortisol + RU486 showed a significant decrease in plasma urea concentrations over the course of the experiment. The findings of this study indicate that high levels of cortisol reduce pulsatile urea excretion by decreasing pulse size. In addition, it appears that glucocorticoid receptors and not mineralocorticoid receptors are involved in the regulation of the toadfish pulsatile urea excretion mechanism.
Collapse
Affiliation(s)
- M D McDonald
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | | | | | | |
Collapse
|
37
|
Phillips K. SPECIAL COLLECTION: DOGMAS AND CONTROVERSIES IN THE HANDLING OF NITROGENOUS WASTES. J Exp Biol 2004. [DOI: 10.1242/jeb.01038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|