1
|
Campinho MA. Teleost Metamorphosis: The Role of Thyroid Hormone. Front Endocrinol (Lausanne) 2019; 10:383. [PMID: 31258515 PMCID: PMC6587363 DOI: 10.3389/fendo.2019.00383] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023] Open
Abstract
In most teleosts, metamorphosis encompasses a dramatic post-natal developmental process where the free-swimming larvae undergo a series of morphological, cellular and physiological changes that enable the larvae to become a fully formed, albeit sexually immature, juvenile fish. In all teleosts studied to date thyroid hormones (TH) drive metamorphosis, being the necessary and sufficient factors behind this developmental transition. During metamorphosis, negative regulation of thyrotropin by thyroxine (T4) is relaxed allowing higher whole-body levels of T4 that enable specific responses at the tissue/cellular level. Higher local thyroid cellular signaling leads to cell-specific responses that bring about localized developmental events. TH orchestrate in a spatial-temporal manner all local developmental changes so that in the end a fully functional organism arises. In bilateral teleost species, the most evident metamorphic morphological change underlies a transition to a more streamlined body. In the pleuronectiform lineage (flatfishes), these metamorphic morphological changes are more dramatic. The most evident is the migration of one eye to the opposite side of the head and the symmetric pelagic larva development into an asymmetric benthic juvenile. This transition encompasses a dramatic loss of the embryonic derived dorsal-ventral and left-right axis. The embryonic dorsal-ventral axis becomes the left-right axis, whereas the embryonic left-right axis becomes, irrespectively, the dorsal-ventral axis of the juvenile animal. This event is an unparalleled morphological change in vertebrate development and a remarkable display of the capacity of TH-signaling in shaping adaptation and evolution in teleosts. Notwithstanding all this knowledge, there are still fundamental questions in teleost metamorphosis left unanswered: how the central regulation of metamorphosis is achieved and the neuroendocrine network involved is unclear; the detailed cellular and molecular events that give rise to the developmental processes occurring during teleost metamorphosis are still mostly unknown. Also in flatfish, comparatively little is still known about the developmental processes behind asymmetric development. This review summarizes the current knowledge on teleost metamorphosis and explores the gaps that still need to be challenged.
Collapse
|
2
|
Aidos L, Pinheiro Valente LM, Sousa V, Lanfranchi M, Domeneghini C, Di Giancamillo A. Effects of different rearing temperatures on muscle development and stress response in the early larval stages of Acipenser baerii. Eur J Histochem 2017; 61:2850. [PMID: 29313594 PMCID: PMC5745384 DOI: 10.4081/ejh.2017.2850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 01/03/2023] Open
Abstract
The present study aims at investigating muscle development and stress response in early stages of Siberian sturgeon when subjected to different rearing temperatures, by analysing growth and development of the muscle and by assessing the stress response of yolk-sac larvae. Siberian sturgeon larvae were reared at 16°C, 19°C and 22°C until the yolk-sac was completely absorbed. Sampling timepoints were: hatching, schooling and complete yolk-sac absorption stage. Histometrical, histochemical and immunohistochemical analyses were performed in order to characterize muscle growth (total muscle area, TMA; slow muscle area, SMA; fast muscle area, FMA), development (anti-proliferating cell nuclear antigen -PCNA or anticaspase) as well as stress conditions by specific stress biomarkers (heat shock protein 70 or 90, HSP70 or HSP90). Larvae subjected to the highest water temperature showed a faster yolk-sac absorption. Histometry revealed that both TMA and FMA were larger in the schooling stage at 19°C while no differences were observed in the SMA at any of the tested rearing temperatures. PCNA quantification revealed a significantly higher number of proliferating cells in the yolk-sac absorption phase at 22°C than at 16°C. HSP90 immunopositivity seems to be particularly evident at 19°C. HPS70 immunopositivity was never observed in the developing lateral muscle.
Collapse
Affiliation(s)
- Lucia Aidos
- University of Milan, Department of Health, Animal Science and Food Safety.
| | | | | | | | | | | |
Collapse
|
3
|
Chauvigné F, Fjelldal PG, Cerdà J, Finn RN. Auto-Adhesion Potential of Extraocular Aqp0 during Teleost Development. PLoS One 2016; 11:e0154592. [PMID: 27153052 PMCID: PMC4859563 DOI: 10.1371/journal.pone.0154592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/17/2016] [Indexed: 11/25/2022] Open
Abstract
AQP0 water channels are the most abundant proteins expressed in the mammalian lens fiber membranes where they are essential for lens development and transparency. Unlike other aquaporin paralogs, mammalian AQP0 has a low intrinsic water permeability, but can form cell-to-cell junctions between the lens fibers. It is not known whether the adhesive properties of AQP0 is a derived feature found only in mammals, or exists as a conserved ancestral trait in non-mammalian vertebrates. Here we show that a tetraploid teleost, the Atlantic salmon, expresses four Aqp0 paralogs in the developing lens, but also expresses significant levels of aqp0 mRNAs and proteins in the epithelia of the pronephros, presumptive enterocytes, gill filament and epidermis. Quantitative PCR reveals that aqp0 mRNA titres increase by three orders of magnitude between the onset of somitogenesis and pigmentation of the eye. Using in situ hybridization and specific antisera, we show that at least two of the channels (Aqp0a1, -0b1 and/or -0b2) are localized in the extraocular basolateral and apical membranes, while Aqp0a2 is lens-specific. Heterologous expression of the Aqp0 paralogs in adhesion-deficient mouse fibolast L-cells reveals that, as for human AQP0, each intact salmon channel retains cell-to-cell adhesive properties. The strongest Aqp0 interactions are auto-adhesion, suggesting that homo-octamers likely form the intercellular junctions of the developing lens and epithelial tissues. The present data are thus the first to show the adhesion potential of Aqp0 channels in a non-mammalian vertebrate, and further uncover a novel extraocular role of the channels during vertebrate development.
Collapse
Affiliation(s)
- François Chauvigné
- Department of Biology, Bergen High Technology Centre, University of Bergen, 5020 Bergen, Norway
- Institute of Marine Research, Nordnes, 5817 Bergen, Norway
- * E-mail: (RNF); (FC)
| | | | - Joan Cerdà
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| | - Roderick Nigel Finn
- Department of Biology, Bergen High Technology Centre, University of Bergen, 5020 Bergen, Norway
- Institute of Marine Research, Nordnes, 5817 Bergen, Norway
- * E-mail: (RNF); (FC)
| |
Collapse
|
4
|
Alzaid A, Castro R, Wang T, Secombes CJ, Boudinot P, Macqueen DJ, Martin SAM. Cross Talk Between Growth and Immunity: Coupling of the IGF Axis to Conserved Cytokine Pathways in Rainbow Trout. Endocrinology 2016; 157:1942-55. [PMID: 27035654 DOI: 10.1210/en.2015-2024] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although disease and infection is associated with attenuated growth, the molecular pathways involved are poorly characterized. We postulated that the IGF axis, a central governor of vertebrate growth, is repressed during infection to promote resource reallocation towards immunity. This hypothesis was tested in rainbow trout (Oncorhynchus mykiss) challenged by Aeromonas salmonicida (AS), a Gram-negative bacterial pathogen, or viral hemorrhagic septicemia virus (VHSv) at hatch, first feeding, and 3 weeks after first feeding. Quantitative transcriptional profiling was performed for genes encoding both IGF hormones, 19 salmonid IGF binding proteins (IGFBPs) and a panel of marker genes for growth and immune status. There were major differences in the developmental response of the IGF axis to AS and VHSv, with the VHSv challenge causing strong down-regulation of many genes. Despite this, IGFBP-1A1 and IGFBP-6A2 subtypes, each negative regulators of IGF signaling, were highly induced by AS and VHSv in striking correlation with host defense genes regulated by cytokine pathways. Follow-up experiments demonstrated a highly significant coregulation of IGFBP-1A1 and IGFBP-6A2 with proinflammatory cytokine genes in primary immune tissues (spleen and head kidney) when trout were challenged by a different Gram-negative bacterium, Yersinia ruckeri. Based on our findings, we propose a model where certain IGFBP subtypes are directly regulated by cytokine signaling pathways, allowing immediate modulation of growth and/or immune system phenotypes according to the level of activation of immunity. Our findings provide new and comprehensive insights into cross talk between conserved pathways regulating teleost growth, development, and immunity.
Collapse
Affiliation(s)
- Abdullah Alzaid
- Institute of Biological and Environmental Sciences (A.A., T.W., C.J.S., D.J.M., S.A.M.M.), University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; and Virologie et Immunologie Moléculaires (R.C., P.B.), Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas, France
| | - Rosario Castro
- Institute of Biological and Environmental Sciences (A.A., T.W., C.J.S., D.J.M., S.A.M.M.), University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; and Virologie et Immunologie Moléculaires (R.C., P.B.), Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas, France
| | - Tiehui Wang
- Institute of Biological and Environmental Sciences (A.A., T.W., C.J.S., D.J.M., S.A.M.M.), University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; and Virologie et Immunologie Moléculaires (R.C., P.B.), Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas, France
| | - Christopher J Secombes
- Institute of Biological and Environmental Sciences (A.A., T.W., C.J.S., D.J.M., S.A.M.M.), University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; and Virologie et Immunologie Moléculaires (R.C., P.B.), Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas, France
| | - Pierre Boudinot
- Institute of Biological and Environmental Sciences (A.A., T.W., C.J.S., D.J.M., S.A.M.M.), University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; and Virologie et Immunologie Moléculaires (R.C., P.B.), Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas, France
| | - Daniel J Macqueen
- Institute of Biological and Environmental Sciences (A.A., T.W., C.J.S., D.J.M., S.A.M.M.), University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; and Virologie et Immunologie Moléculaires (R.C., P.B.), Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas, France
| | - Samuel A M Martin
- Institute of Biological and Environmental Sciences (A.A., T.W., C.J.S., D.J.M., S.A.M.M.), University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; and Virologie et Immunologie Moléculaires (R.C., P.B.), Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas, France
| |
Collapse
|
5
|
Advances in research on the prenatal development of skeletal muscle in animals in relation to the quality of muscle-based food. I. Regulation of myogenesis and environmental impact. Animal 2011; 5:703-17. [DOI: 10.1017/s1751731110002089] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
6
|
Silva P, Power DM, Valente LMP, Silva N, Monteiro RAF, Rocha E. Expression of the myosin light chains 1, 2 and 3 in the muscle of blackspot seabream (Pagellus bogaraveo, Brunnich), during development. FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:1125-1132. [PMID: 20237954 DOI: 10.1007/s10695-010-9390-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 03/01/2010] [Indexed: 05/28/2023]
Abstract
Previous studies on the histochemistry and immunoreactivity of fibres in lateral muscle of blackspot seabream indicated that there is a developmental transition in the composition of myofibrillar proteins, which presumably reflects changes in contractile function as the fish grows. We hypothesize that the phenomenon underscores age and spatial differences in the expression of myosin light chains (MLC), not studied yet in this species. In this study, we examined selected stages in the post-hatching development of the muscle of blackspot seabream: hatching (0 days), mouth opening (5 days), weaning (40 days) and juveniles (70 days). The spatial expression of embryonic MLC 1 (MLC1), 2 (MLC2) and 3 (MLC3) was studied by in situ hybridization. Overall, MLC expression patterns were overlapping and restricted to the fast muscle. At hatching and mouth opening, all MLC types were highly expressed throughout the musculature in fast muscle. The expression levels in fast muscle remained high until weaning when germinal zones appeared on the dorsal and ventral areas. The germinal zones were characterized by small-diameter fast fibres with high levels of MLC expression. This pattern persisted up to day 70, when the germinal zones disappeared and expression of MLCs was observed only in the smaller cells of the fast muscle mosaic. These results support our hypothesis and, together with previous imuno- and histochemistry results, allow a better understanding of the mechanism of muscle differentiation and growth in fish beyond larval stages, and form- the basis for further comparative and experimental studies with this economically relevant species.
Collapse
Affiliation(s)
- P Silva
- ICBAS-Institute of Biomedical Sciences Abel Salazar, Largo Prof. Abel Salazar 2, 4099-003, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
7
|
Rescan PY. New insights into skeletal muscle development and growth in teleost fishes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:541-8. [PMID: 18666123 DOI: 10.1002/jez.b.21230] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent research has significantly broadened our understanding of how the teleost somite is patterned to achieve embryonic and postembryonic myogenesis. Medial (adaxial) cells and posterior cells of the early epithelial somite generate embryonic superficial slow and deep fast muscle fibers, respectively, whereas anterior somitic cells move laterally to form an external cell layer of undifferentiated Pax7-positive myogenic precursors surrounding the embryonic myotome. In late embryo and in larvae, some of the cells contained in the external cell layer incorporate into the myotome and differentiate into new muscle fibers, thus contributing to medio-lateral expansion of the myotome. This supports the suggestion that the teleost external cell layer is homologous to the amniote dermomyotome. Some of the signalling molecules that promote lateral movement or regulate the myogenic differentiation of external cell precursors have been identified and include stromal cell-derived factor 1 (Sdf1), hedgehog proteins, and fibroblast growth factor 8 (Fgf8). Recent studies have shed light on gene activations that underlie the differentiation and maturation of slow and fast muscle fibers, pointing out that both adaxially derived embryonic slow fibers and slow fibers formed during the myotome expansion of larvae initially and transiently bear features of the fast fiber phenotype.
Collapse
Affiliation(s)
- Pierre-Yves Rescan
- INRA (National Institute for Agricultural Research), Joint Research Unit for Fish Physiology, Biodiversity and Environment, Rennes, France.
| |
Collapse
|
8
|
Muscle differentiation in blackspot seabream (Pagellus bogaraveo, Brunnich): Histochemical and immunohistochemical study of the fibre types. Tissue Cell 2008; 40:447-58. [DOI: 10.1016/j.tice.2008.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2007] [Revised: 05/05/2008] [Accepted: 05/22/2008] [Indexed: 01/31/2023]
|
9
|
Steinbacher P, Haslett JR, Obermayer A, Marschallinger J, Bauer HC, Sänger AM, Stoiber W. MyoD and Myogenin expression during myogenic phases in brown trout: a precocious onset of mosaic hyperplasia is a prerequisite for fast somatic growth. Dev Dyn 2007; 236:1106-14. [PMID: 17315228 DOI: 10.1002/dvdy.21103] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Muscle cell recruitment (hyperplasia) during myogenesis in the vertebrate embryo is known to occur in three consecutive phases. In teleost fish (including zebrafish), however, information on myogenic precursor cell activation is largely fragmentary, and comprehensive characterization of the myogenic phases has only been fully undertaken in a single slow-growing cyprinid species by examination of MEF2D expression. Here, we use molecular techniques to provide a comprehensive characterization of MyoD and Myogenin expression during myogenic cell activation in embryos and larvae of brown trout, a fast-growing salmonid with exceptionally large embryos. Results confirm the three-phase pattern, but also demonstrate that the second and third phases begin simultaneously and progress vigorously, which is different from the previously described consecutive activation of these phases. Furthermore, we suggest that Pax7 is expressed in myogenic progenitor cells that account for second- and third-phase myogenesis. These findings are discussed in relation to teleost myotome development and to teleost growth strategies.
Collapse
Affiliation(s)
- P Steinbacher
- Division of Zoology and Functional Anatomy, Department of Organismic Biology, University of Salzburg, Salzburg, Austria.
| | | | | | | | | | | | | |
Collapse
|
10
|
Campinho MA, Sweeney GE, Power DM. Regulation of troponin T expression during muscle development in sea bream Sparus auratus Linnaeus: the potential role of thyroid hormones. ACTA ACUST UNITED AC 2007; 209:4751-67. [PMID: 17114408 DOI: 10.1242/jeb.02555] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In the sea bream Sparus auratus three stage-specific fast troponin T (fTnT) isoforms have been cloned and correspond to embryonic-, larval- and adult-specific isoforms. Characterisation, using database searches, of the putative genomic organisation of Fugu rubripes and Tetraodon nigroviridis fTnT indicates that alternative exon splicing in the 5 region of the gene generates the different isoforms. Moreover, comparison of teleost fTnTs suggests that alternative splicing of fTnT appears to be common in teleosts. A different temporal expression pattern for each fTnT splice varotnt is found during sea bream development and probably relates to differing functional demands, as a highly acidic embryonic form (pI 5.16) is substituted by a basic larval form (pI 9.57). Thyroid hormones (THs), which play an important regulatory role in muscle development in flatfish and tetrapods, appear also to influence TnT gene expression in the sea bream. However, THs have a divergent action on different sea bream TnT genes and although the slow isoform (sTnT1) is TH-responsive, fTnT, sTnT2 and the itronless isoform (iTnT) are unaffected. The present results taken together with those published for flatfish seem to suggest differences may exist in the regulation of larval muscle development in teleosts.
Collapse
Affiliation(s)
- M A Campinho
- CCMAR, FERN, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | |
Collapse
|
11
|
Troponin T isoform expression is modulated during Atlantic halibut metamorphosis. BMC DEVELOPMENTAL BIOLOGY 2007; 7:71. [PMID: 17577411 PMCID: PMC1919359 DOI: 10.1186/1471-213x-7-71] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 06/18/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND Flatfish metamorphosis is a thyroid hormone (TH) driven process which leads to a dramatic change from a symmetrical larva to an asymmetrical juvenile. The effect of THs on muscle and in particular muscle sarcomer protein genes is largely unexplored in fish. The change in Troponin T (TnT), a pivotal protein in the assembly of skeletal muscles sarcomeres and a modulator of calcium driven muscle contraction, during flatfish metamophosis is studied. RESULTS In the present study five cDNAs for halibut TnT genes were cloned; three were splice variants arising from a single fast TnT (fTnT) gene; a fourth encoded a novel teleost specific fTnT-like cDNA (AfTnT) expressed exclusively in slow muscle and the fifth encoded the teleost specific sTnT2. THs modified the expression of halibut fTnT isoforms which changed from predominantly basic to acidic isoforms during natural and T4 induced metamorphosis. In contrast, expression of red muscle specific genes, AfTnT and sTnT2, did not change during natural metamorphosis or after T4 treatment. Prior to and after metamorphosis no change in the dorso-ventral symmetry or temporal-spatial expression pattern of TnT genes and muscle fibre organization occurred in halibut musculature. CONCLUSION Muscle organisation in halibut remains symmetrical even after metamorphosis suggesting TH driven changes are associated with molecular adaptations. We hypothesize that species specific differences in TnT gene expression in teleosts underlies different larval muscle developmental programs which better adapts them to the specific ecological constraints.
Collapse
|