1
|
de Amaral M, Von Dentz MC, Cubas GK, de Oliveira DR, Simões LAR, Model JFA, Oliveira GT, Kucharski LC. Coping with dry spells: Investigating oxidative balance and metabolic responses in the subtropical tree frog Boana pulchella (Hylidae) during dehydration and rehydration exposure. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111728. [PMID: 39147093 DOI: 10.1016/j.cbpa.2024.111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
In the face of climate change, understanding the metabolic responses of vulnerable animals to abiotic stressors like anurans is crucial. Water restriction and subsequent dehydration is a condition that can threaten populations and lead to species decline. This study examines metabolic variations in the subtropical frog Boana pulchella exposed to dehydration resulting in a 40% loss of body water followed by 24 h of rehydration. During dehydration, the scaled mass index decreases, and concentrations of metabolic substrates alter in the brain and liver. The activity of antioxidant enzymes increases in the muscle and heart, emphasizing the importance of catalase in the rehydration period. Glycogenesis increases in the muscle and liver, indicating a strategy to preserve tissue water through glycogen storage. These findings suggest that B. pulchella employs specific metabolic mechanisms to survive exposure to water restriction, highlighting tissue-specific variations in metabolic pathways and antioxidant defenses. These findings contribute to a deeper understanding of anuran adaptation to water stress and emphasize the importance of further research in other species to complement existing knowledge and provide physiological tools to conservation.
Collapse
Affiliation(s)
- Marjoriane de Amaral
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil.
| | - Maiza Cristina Von Dentz
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil
| | - Gustavo Kasper Cubas
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil
| | - Diogo Reis de Oliveira
- Conservation Physiology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, 6681 Ipiranga Avenue, 90619900, Rio Grande do Sul, Brazil
| | - Leonardo Airton Ressel Simões
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil
| | - Jorge Felipe Argenta Model
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil
| | - Guendalina Turcato Oliveira
- Conservation Physiology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, 6681 Ipiranga Avenue, 90619900, Rio Grande do Sul, Brazil
| | - Luiz Carlos Kucharski
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul, 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Storey KB, Storey JM. Mitochondria, metabolic control and microRNA: Advances in understanding amphibian freeze tolerance. Biofactors 2020; 46:220-228. [PMID: 31026112 DOI: 10.1002/biof.1511] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 01/08/2023]
Abstract
Winter survival for many animal species depends freeze tolerance, a capacity to endure the conversion of as much as 65-70% of total body water into extracellular ice while reorganizing metabolism to provide cells with cryoprotection against insults that include prolonged ischemia and hyperosmotic stress. Natural freeze tolerance involves not just de novo preservation mechanisms such as synthesis of high levels of cryoprotectants or novel proteins that manage ice formation, but also requires attention to and co-ordination of many cellular processes. The present review examines recent studies of the freeze-tolerant wood frog (Rana sylvatica) that probed previously unexplored areas of metabolic adaptation for freezing survival, with a particular emphasis on mitochondria. Post-translational controls on enzyme function play a prominent role in resculpting metabolic responses of the wood frog to freezing including reversible phosphorylation control over fuel processing at the pyruvate dehydrogenase locus and modulation of antioxidant defense enzymes (Mn-SOD, catalase). Enzymes involved in mitochondrial nitrogen metabolism (glutamate dehydrogenase, carbamoyl phosphate synthetase) are also differentially regulated during freezing but by different post-translational modifications including ADP-ribosylation, lysine acetylation or glutarylation. The action of microRNAs in mediating post-translational controls on gene expression aid the suppression of energy-expensive (cell cycle) or destructive (apoptosis) processes in the frozen state while also providing storage of transcripts that will be immediately available for repair or reactivation of metabolic processes after thawing. The effects of low temperature in strengthening mRNA-microRNA interactions can also provide a passive mechanism of metabolic suppression in the frozen state.
Collapse
Affiliation(s)
- Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Janet M Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Haramura T, Ikegami T, Wong MKS, Takei Y. Preparatory Mechanisms for Salinity Tolerance in Two Congeneric Anuran Species Inhabiting Distinct Osmotic Habitats. Zoolog Sci 2019; 36:215-222. [PMID: 31251490 DOI: 10.2108/zs180091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/04/2018] [Indexed: 11/17/2022]
Abstract
Anurans occupy a wide variety of habitats of diverse salinities, and their osmoregulatory ability is strongly regulated by hormones. In this study, we compared the adaptability and hormonal responses to osmotic stress between two kajika frogs, Buergeria japonica (B.j.) and B. buergeri, (B.b.), which inhabit coastal brackish waters (BW) in the Ryukyu Islands and freshwater (FW) in the Honshu, respectively. Both hematocrit and plasma Na+ concentration were significantly higher in B.j. than in B.b. when both were kept in FW. After transfer to one-third seawater (simulating the natural BW environment), which is slightly hypertonic to their body fluids, their body mass decreased and plasma Na concentration increased significantly in both species. After transfer, plasma Na+ concentration increased significantly in both species. We examined the gene expression of two major osmoregulatory hormones, arginine vasotocin (AVT) and atrial natriuretic peptide (ANP), after partial cloning of their cDNAs. ANP mRNA levels were more than 10-fold higher in B.j. than in B.b. in FW, but no significant difference was observed for AVT mRNA levels due to high variability, although the mean value of B.j. was twice that of B.b. Both AVT and ANP mRNA levels increased significantly after transfer to BW in B.b. but not in B.j., probably because of the high levels in FW. These results suggest that B.j. maintains high plasma Na+ concentration and anp gene expression to prepare for the future encounter of the high salinity. The unique preparatory mechanism may allow B.j. wide distribution in oceanic islands.
Collapse
Affiliation(s)
- Takashi Haramura
- The Hakubi Center for Advanced Research, Kyoto University, Sakyo, Kyoto 606-8501, Japan,
| | - Taro Ikegami
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| | - Marty K S Wong
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Yoshio Takei
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| |
Collapse
|
4
|
Albecker MA, McCoy MW. Adaptive responses to salinity stress across multiple life stages in anuran amphibians. Front Zool 2017; 14:40. [PMID: 28775757 PMCID: PMC5539974 DOI: 10.1186/s12983-017-0222-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/10/2017] [Indexed: 11/23/2022] Open
Abstract
Background In many regions, freshwater wetlands are increasing in salinity at rates exceeding historic levels. Some freshwater organisms, like amphibians, may be able to adapt and persist in salt-contaminated wetlands by developing salt tolerance. Yet adaptive responses may be more challenging for organisms with complex life histories, because the same environmental stressor can require responses across different ontogenetic stages. Here we investigated responses to salinity in anuran amphibians: a common, freshwater taxon with a complex life cycle. We conducted a meta-analysis to define how the lethality of saltwater exposure changes across multiple life stages, surveyed wetlands in a coastal region experiencing progressive salinization for the presence of anurans, and used common garden experiments to investigate whether chronic salt exposure alters responses in three sequential life stages (reproductive, egg, and tadpole life stages) in Hyla cinerea, a species repeatedly observed in saline wetlands. Results Meta-analysis revealed differential vulnerability to salt stress across life stages with the egg stage as the most salt-sensitive. Field surveys revealed that 25% of the species known to occur in the focal region were detected in salt-intruded habitats. Remarkably, Hyla cinerea was found in large abundances in multiple wetlands with salinity concentrations 450% higher than the tadpole-stage LC50. Common garden experiments showed that coastal (chronically salt exposed) populations of H. cinerea lay more eggs, have higher hatching success, and greater tadpole survival in higher salinities compared to inland (salt naïve) populations. Conclusions Collectively, our data suggest that some species of anuran amphibians have divergent and adaptive responses to salt exposure across populations and across different life stages. We propose that anuran amphibians may be a novel and amenable natural model system for empirical explorations of adaptive responses to environmental change. Electronic supplementary material The online version of this article (doi:10.1186/s12983-017-0222-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Molly A Albecker
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC USA
| | - Michael W McCoy
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC USA
| |
Collapse
|
5
|
Abstract
Freeze tolerance is an amazing winter survival strategy used by various amphibians and reptiles living in seasonally cold environments. These animals may spend weeks or months with up to ∼65% of their total body water frozen as extracellular ice and no physiological vital signs, and yet after thawing they return to normal life within a few hours. Two main principles of animal freeze tolerance have received much attention: the production of high concentrations of organic osmolytes (glucose, glycerol, urea among amphibians) that protect the intracellular environment, and the control of ice within the body (the first putative ice-binding protein in a frog was recently identified), but many other strategies of biochemical adaptation also contribute to freezing survival. Discussed herein are recent advances in our understanding of amphibian and reptile freeze tolerance with a focus on cell preservation strategies (chaperones, antioxidants, damage defense mechanisms), membrane transporters for water and cryoprotectants, energy metabolism, gene/protein adaptations, and the regulatory control of freeze-responsive hypometabolism at multiple levels (epigenetic regulation of DNA, microRNA action, cell signaling and transcription factor regulation, cell cycle control, and anti-apoptosis). All are providing a much more complete picture of life in the frozen state.
Collapse
Affiliation(s)
| | - Janet M. Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Chng YR, Ong JLY, Ching B, Chen XL, Hiong KC, Wong WP, Chew SF, Lam SH, Ip YK. Aestivation Induces Changes in the mRNA Expression Levels and Protein Abundance of Two Isoforms of Urea Transporters in the Gills of the African Lungfish, Protopterus annectens. Front Physiol 2017; 8:71. [PMID: 28261105 PMCID: PMC5311045 DOI: 10.3389/fphys.2017.00071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/26/2017] [Indexed: 11/26/2022] Open
Abstract
The African lungfish, Protopterus annectens, is ammonotelic in water despite being ureogenic. When it aestivates in mucus cocoon on land, ammonia is detoxified to urea. During the maintenance phase of aestivation, urea accumulates in the body, which is subsequently excreted upon arousal. Urea excretion involves urea transporters (UT/Ut). This study aimed to clone and sequence the ut isoforms from the gills of P. annectens, and to test the hypothesis that the mRNA and/or protein expression levels of ut/Ut isoforms could vary in the gills of P. annectens during the induction, maintenance, and arousal phases of aestivation. Two isoforms of ut, ut-a2a and ut-a2b, were obtained from the gills of P. annectens. ut-a2a consisted of 1227 bp and coded for 408 amino acids with an estimated molecular mass of 44.7 kDa, while ut-a2b consisted of 1392 bp and coded for 464 amino acids with an estimated molecular mass of 51.2 kDa. Ut-a2a and Ut-a2b of P. annectens had a closer phylogenetic relationship with Ut/UT of tetrapods than Ut of fishes. While the mRNA expression pattern of ut-a2a and ut-a2b across various tissues of P. annectens differed, the transcript levels of ut-a2a and ut-a2b in the gills were comparable, indicating that they might be equally important for branchial urea excretion during the initial arousal phase of aestivation. During the maintenance phase of aestivation, the transcript level of ut-a2a increased significantly, but the protein abundance of Ut-a2a remained unchanged in the gills of P. annectens. This could be an adaptive feature to prepare for an increase in the production of Ut-a2a upon arousal. Indeed, arousal led to a significant increase in the branchial Ut-a2a protein abundance. Although the transcript level of ut-a2b remained unchanged, there were significant increases in the protein abundance of Ut-a2b in the gills of P. annectens throughout the three phases of aestivation. The increase in the protein abundance of Ut-a2b during the maintenance phase could also be an adaptive feature to prepare for efficient urea excretion when water becomes available.
Collapse
Affiliation(s)
- You R. Chng
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Jasmine L. Y. Ong
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Biyun Ching
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Xiu L. Chen
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Kum C. Hiong
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Wai P. Wong
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological UniversitySingapore, Singapore
| | - Siew H. Lam
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
- NUS Environmental Research Institute, National University of SingaporeSingapore, Singapore
| | - Yuen K. Ip
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| |
Collapse
|
7
|
LeMoine CMR, Walsh PJ. Evolution of urea transporters in vertebrates: adaptation to urea's multiple roles and metabolic sources. J Exp Biol 2015; 218:1936-45. [PMID: 26085670 DOI: 10.1242/jeb.114223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the two decades since the first cloning of the mammalian kidney urea transporter (UT-A), UT genes have been identified in a plethora of organisms, ranging from single-celled bacteria to metazoans. In this review, focusing mainly on vertebrates, we first reiterate the multiple catabolic and anabolic pathways that produce urea, then we reconstruct the phylogenetic history of UTs, and finally we examine the tissue distribution of UTs in selected vertebrate species. Our analysis reveals that from an ancestral UT, three homologues evolved in piscine lineages (UT-A, UT-C and UT-D), followed by a subsequent reduction to a single UT-A in lobe-finned fish and amphibians. A later internal tandem duplication of UT-A occurred in the amniote lineage (UT-A1), followed by a second tandem duplication in mammals to give rise to UT-B. While the expected UT expression is evident in excretory and osmoregulatory tissues in ureotelic taxa, UTs are also expressed ubiquitously in non-ureotelic taxa, and in tissues without a complete ornithine-urea cycle (OUC). We posit that non-OUC production of urea from arginine by arginase, an important pathway to generate ornithine for synthesis of molecules such as polyamines for highly proliferative tissues (e.g. testis, embryos), and neurotransmitters such as glutamate for neural tissues, is an important evolutionary driving force for the expression of UTs in these taxa and tissues.
Collapse
Affiliation(s)
- Christophe M R LeMoine
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5
| | - Patrick J Walsh
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
8
|
Identification and Expression of a Putative Facilitative Urea Transporter in Three Species of True Frogs (Ranidae): Implications for Terrestrial Adaptation. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/148276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Urea transporters (UTs) help mediate the transmembrane movement of urea and therefore are likely important in amphibian osmoregulation. Although UTs contribute to urea reabsorption in anuran excretory organs, little is known about the protein’s distribution and functions in other tissues, and their importance in the evolutionary adaptation of amphibians to their environment remains unclear. To address these questions, we obtained a partial sequence of a putative UT and examined relative abundance of this protein in tissues of the wood frog (Rana sylvatica), leopard frog (R. pipiens), and mink frog (R. septentrionalis), closely related species that are adapted to different habitats. Using immunoblotting techniques, we found the protein to be abundant in the osmoregulatory organs but also present in visceral organs, suggesting that UTs play both osmoregulatory and nonosmoregulatory roles in amphibians. UT abundance seems to relate to the species’ habitat preference, as levels of the protein were higher in the terrestrial R. sylvatica, intermediate in the semiaquatic R. pipiens, and quite low in the aquatic R. septentrionalis. These findings suggest that, in amphibians, UTs are involved in various physiological processes, including solute and water dynamics, and that they have played a role in adaptation to the osmotic challenges of terrestrial environments.
Collapse
|
9
|
Larsen EH, Deaton LE, Onken H, O'Donnell M, Grosell M, Dantzler WH, Weihrauch D. Osmoregulation and Excretion. Compr Physiol 2014; 4:405-573. [DOI: 10.1002/cphy.c130004] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Abstract
A urea transporter protein in the kidney was first proposed in 1987. The first urea transporter cDNA was cloned in 1993. The SLC14a urea transporter family contains two major subgroups: SLC14a1, the UT-B urea transporter originally isolated from erythrocytes; and SLC14a2, the UT-A group originally isolated from kidney inner medulla. Slc14a1, the human UT-B gene, arises from a single locus located on chromosome 18q12.1-q21.1, which is located close to Slc14a2. Slc14a1 includes 11 exons, with the coding region extending from exon 4 to exon 11, and is approximately 30 kb in length. The Slc14a2 gene is a very large gene with 24 exons, is approximately 300 kb in length, and encodes 6 different isoforms. Slc14a2 contains two promoter elements: promoter I is located in the typical position, upstream of exon 1, and drives the transcription of UT-A1, UT-A1b, UT-A3, UT-A3b, and UT-A4; while promoter II is located within intron 12 and drives the transcription of UT-A2 and UT-A2b. UT-A1 and UT-A3 are located in the inner medullary collecting duct, UT-A2 in the thin descending limb and liver, UT-A5 in testis, UT-A6 in colon, UT-B1 primarily in descending vasa recta and erythrocytes, and UT-B2 in rumen.
Collapse
Affiliation(s)
- Jeff M Sands
- Renal Division, Department of Medicine and Department of Physiology, Emory University School of Medicine, WMB Room 338, 1639 Pierce Drive, NE, Atlanta, GA, 30322, USA,
| | | |
Collapse
|
11
|
Konno N, Fujii Y, Imae H, Kaiya H, Mukuda T, Miyazato M, Matsuda K, Uchiyama M. Urotensin II receptor (UTR) exists in hyaline chondrocytes: a study of peripheral distribution of UTR in the African clawed frog, Xenopus laevis. Gen Comp Endocrinol 2013; 185:44-56. [PMID: 23399967 DOI: 10.1016/j.ygcen.2013.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/15/2013] [Accepted: 01/20/2013] [Indexed: 02/07/2023]
Abstract
Urotensin II (UII) and UII-related peptide (URP) exhibit diverse physiological actions including vasoconstriction, locomotor activity, osmoregulation, and immune response through UII receptor (UTR), which is expressed in the central nervous system and peripheral tissues of fish and mammals. In amphibians, only UII has been identified. As the first step toward elucidating the actions of UII and URP in amphibians, we cloned and characterized URP and UTR from the African clawed frog Xenopus laevis. Functional analysis showed that treatment of UII or URP with Chinese hamster ovary cells transfected with the cloned receptor increased the intracellular calcium concentration in a concentration-dependent manner, whereas the administration of the UTR antagonist urantide inhibited UII- or URP-induced Ca(2+) mobilization. An immunohistochemical study showed that UTR was expressed in the splenocytes and leukocytes isolated from peripheral blood, suggesting that UII and URP are involved in the regulation of the immune system. UTR was also localized in the apical membrane of the distal tubule of the kidney and in the transitional epithelial cells of the urinary bladder. This result supports the view that the UII/URP-UTR system plays an important role in osmoregulation of amphibians. Interestingly, immunopositive labeling for UTR was first detected in the chondrocytes of various hyaline cartilages (the lung septa, interphalangeal joint and sternum). The expression of UTR was also observed in the costal cartilage, tracheal cartilages, and xiphoid process of the rat. These novel findings probably suggest that UII and URP mediate the formation of the cartilaginous matrix.
Collapse
Affiliation(s)
- Norifumi Konno
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Ip YK, Loong AM, Lee SML, Ong JLY, Wong WP, Chew SF. The Chinese soft-shelled turtle, Pelodiscus sinensis, excretes urea mainly through the mouth instead of the kidney. J Exp Biol 2012; 215:3723-33. [PMID: 23053366 DOI: 10.1242/jeb.068916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The Chinese soft-shelled turtle, Pelodiscus sinensis, is well adapted to aquatic environments, including brackish swamps and marshes. It is ureotelic, and occasionally submerges its head into puddles of water during emersion, presumably for buccopharyngeal respiration. This study was undertaken to test the hypothesis that the buccophyaryngeal cavity constitutes an important excretory route for urea in P. sinensis. Results indicate that a major portion of urea was excreted through the mouth instead of the kidney during immersion. When restrained on land, P. sinensis occasionally submerged their head into water (20-100 min), during which urea excretion and oxygen extraction occurred simultaneously. These results indicate for the first time that buccopharyngeal villiform processes (BVP) and rhythmic pharyngeal movements were involved in urea excretion in P. sinensis. Urea excretion through the mouth was sensitive to phloretin inhibition, indicating the involvement of urea transporters (UTs). In addition, saliva samples collected from the buccopharyngeal surfaces of P. sinensis injected intraperitoneally with saline contained ~36 mmol N l(-1) urea, significantly higher than that (~2.4 mmol N l(-1)) in the plasma. After intraperitoneal injection with 20 μmol urea g(-1) turtle, the concentration of urea in the saliva collected from the BVP increased to an extraordinarily high level of ~614 μmol N ml(-1), but the urea concentration (~45 μmol N ml(-1)) in the plasma was much lower, indicating that the buccopharyngeal epithelium of P. sinensis was capable of active urea transport. Subsequently, we obtained from the buccopharyngeal epithelium of P. sinensis the full cDNA sequence of a putative UT, whose deduced amino acid sequence had ~70% similarity with human and mouse UT-A2. This UT was not expressed in the kidney, corroborating the proposition that the kidney had only a minor role in urea excretion in P. sinensis. As UT-A2 is known to be a facilitative urea transporter, it is logical to deduce that it was localized in the basolateral membrane of the buccopharyngeal epithelium, and that another type of primary or secondary active urea transporter yet to be identified was present in the apical membrane. The ability to excrete urea through the mouth instead of the kidney might have facilitated the ability of P. sinensis and other soft-shelled turtles to successfully invade the brackish and/or marine environment.
Collapse
Affiliation(s)
- Yuen K Ip
- Department of Biological Science, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore.
| | | | | | | | | | | |
Collapse
|
13
|
Rosendale AJ, Costanzo JP, Lee RE. Seasonal variation and response to osmotic challenge in urea transporter expression in the dehydration- and freeze-tolerant wood frog, Rana sylvatica. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL GENETICS AND PHYSIOLOGY 2012; 317:401-9. [PMID: 22639427 DOI: 10.1002/jez.1733] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 03/20/2012] [Accepted: 04/03/2012] [Indexed: 11/09/2022]
Abstract
Urea accumulation is a universal response to osmotic challenge in anuran amphibians, and facilitative urea transporters (UTs) seem to play an important role in this process by acting in the osmoregulatory organs to mediate urea retention. Although UTs have been implicated in urea reabsorption in anurans, little is known about the physiological regulation of UT protein abundance. We examined seasonal variation in and effects of osmotic challenge on UT protein and mRNA levels in kidney and urinary bladder of the wood frog (Rana sylvatica), a terrestrial species that tolerates both dehydration and tissue freezing. Using immunoblotting techniques to measure relative UT abundance, we found that UT numbers varied seasonally, with a low abundance prevailing in the fall and winter, and higher levels occurring in the spring. Experimental dehydration of frogs increased UT protein abundance in the urinary bladder, whereas experimental urea loading decreased the abundance of UTs in kidney and bladder. Experimental freezing, whether or not followed by thawing, had no effect on UT numbers. UT mRNA levels, assessed using quantitative real-time polymerase chain reaction, did not change seasonally nor in response to any of our experimental treatments. These findings suggest that regulation of UTs depends on the nature and severity of the osmotic stress and apparently occurs posttranscriptionally in response to multiple physiological factors. Additionally, UTs seem to be regulated to meet the physiological need to accumulate urea, with UT numbers increasing to facilitate urea reabsorption and decreasing to prevent retention of excess urea.
Collapse
|
14
|
Jin W, Yao X, Wang T, Ji Q, Li Y, Yang X, Yao L. Effects of hyperosmolality on expression of urea transporter A2 and aquaporin 2 in mouse medullary collecting duct cells. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2012; 32:59-64. [PMID: 22282246 DOI: 10.1007/s11596-012-0010-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Indexed: 12/25/2022]
Abstract
In this study, the effects of hyperosmolality on the expression of urea transporter A2 (UTA2) and aquaporin 2 (AQP2) were investigated in transfected immortalized mouse medullary collecting duct (mIMCD3) cell line. AQP2-GFP-pCMV6 and UTA2-GFP-pCMV6 plasmids were stably transfected into mIMCD3 cells respectively. Transfected mIMCD3 and control cells were cultured in different hypertonic media, which were made by NaCl alone, urea alone, or an equiosmolar mixture of NaCl and urea. The mRNA and protein expression of AQP2 was elevated by the stimulation of NaCl alone, urea alone and NaCl plus urea in AQP2-mIMCD3 cells; whereas NaCl alone and NaCl plus urea rather than urea alone increased the mRNA and protein expression of UTA2 in UTA2-mIMCD3 cells, and all the expression presented an osmolality-dependent manner. Moreover, the mRNA and protein expression of UTA2 rather than AQP2 was found to be synergistically up-regulated by a combination of NaCl and urea in mIMCD3 cells. It is concluded that NaCl and urea synergistically induce the expression of UTA2 rather than AQP2 in mIMCD3 cells, and hyperosmolality probably mediates the expression of AQP2 and UTA2 through different mechanisms.
Collapse
Affiliation(s)
- Wenmin Jin
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xi Yao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Taoxia Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qianqian Ji
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yongxia Li
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Yang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lijun Yao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
15
|
Abstract
Urea transport proteins were initially proposed to exist in the kidney in the late 1980s when studies of urea permeability revealed values in excess of those predicted by simple lipid-phase diffusion and paracellular transport. Less than a decade later, the first urea transporter was cloned. Currently, the SLC14A family of urea transporters contains two major subgroups: SLC14A1, the UT-B urea transporter originally isolated from erythrocytes; and SLC14A2, the UT-A group with six distinct isoforms described to date. In the kidney, UT-A1 and UT-A3 are found in the inner medullary collecting duct; UT-A2 is located in the thin descending limb, and UT-B is located primarily in the descending vasa recta; all are glycoproteins. These transporters are crucial to the kidney's ability to concentrate urine. UT-A1 and UT-A3 are acutely regulated by vasopressin. UT-A1 has also been shown to be regulated by hypertonicity, angiotensin II, and oxytocin. Acute regulation of these transporters is through phosphorylation. Both UT-A1 and UT-A3 rapidly accumulate in the plasma membrane in response to stimulation by vasopressin or hypertonicity. Long-term regulation involves altering protein abundance in response to changes in hydration status, low protein diets, adrenal steroids, sustained diuresis, or antidiuresis. Urea transporters have been studied using animal models of disease including diabetes mellitus, lithium intoxication, hypertension, and nephrotoxic drug responses. Exciting new animal models are being developed to study these transporters and search for active urea transporters. Here we introduce urea and describe the current knowledge of the urea transporter proteins, their regulation, and their role in the kidney.
Collapse
Affiliation(s)
- Janet D Klein
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
16
|
Laurin M, Soler-Gijón R. Osmotic tolerance and habitat of early stegocephalians: indirect evidence from parsimony, taphonomy, palaeobiogeography, physiology and morphology. ACTA ACUST UNITED AC 2010. [DOI: 10.1144/sp339.13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractThere are probably many reasons for the widespread belief that temnospondyls and other early stegocephalians were largely restricted to freshwater, but three of the contributing factors will be discussed below. First, temnospondyls have been called amphibians (and thought to be more closely related to extant amphibians than to amniotes). Some authors may have simply concluded that, like extant amphibians, temnospondyls could not live in oceans and seas. Second, under some phylogenies, temnospondyls are more closely related to anurans (and possibly urodeles) than to gymnophionans and could be expected, for parsimony reasons, to share the intolerance of all extant amphibians to saltwater. Similarly, ‘lepospondyls’ are often thought to be more closely related to gymnophionans than to anurans, and could also be expected to lack saltwater tolerance. Third, extant lungfishes live exclusively in freshwater, and early sarcopterygians have long been thought to share this habitat. These interpretations probably explain the widespread belief that early amphibians and early stem-tetrapods were largely restricted to freshwater. However, these three interpretations have been refuted or questioned by recent investigations. A review of the evidence suggests that several (perhaps most) early stegocephalians tolerated saltwater, even although they also lived in freshwater.
Collapse
Affiliation(s)
- M. Laurin
- CNRS, UMR 7179, Case 19, Université Paris 6, 4 place Jussieu, 75005 Paris, France
- (Present address) UMR 7207, Muséum National d'Histoire Naturelle, Département Histoire de la Terre, Bâtiment de Géologie, Case Postale 48, 43 rue Buffon, 75005 Paris, France
| | - R. Soler-Gijón
- Museum für Naturkunde – Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Section Palaontology, Invalidenstrasse 43, D-10115 Berlin, Germany
| |
Collapse
|
17
|
Konno N, Hyodo S, Yamaguchi Y, Kaiya H, Miyazato M, Matsuda K, Uchiyama M. African lungfish, Protopterus annectens, possess an arginine vasotocin receptor homologous to the tetrapod V2-type receptor. ACTA ACUST UNITED AC 2009; 212:2183-93. [PMID: 19561208 DOI: 10.1242/jeb.029322] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In tetrapods, arginine vasopressin and its counterpart, arginine vasotocin (AVT), are involved in renal water conservation through vascular V1a-type and tubular V2-type receptors, and only the former has thus far been cloned in fish. We successfully cloned the V1a-type and V2-type AVT receptor from the kidney of the African lungfish, Protopterus annectens, and the deduced amino acid sequences exhibited high homology with amphibian V1a- and V2-type receptors, respectively. Functional analysis showed that AVT addition to CHO cells transfected with lungfish V1a-type receptor increased [Ca2+]i in a concentration-dependent manner, whereas CHO cells transfected with lungfish V2-type receptor responded with cAMP accumulation after AVT stimulation. Lungfish V2-type receptor mRNA was strongly expressed in the heart and kidney, while V1a-type receptor mRNA was ubiquitously expressed in all the tissues examined. In the kidney, immunohistochemistry using a specific antibody to lungfish V2-type receptor showed localization in the basolateral area of the cells in the late part of the distal tubules. Artificial estivation (EST) for 90 days significantly increased plasma osmolality and sodium and urea concentrations. There was no significant difference in the V2-type receptor mRNA and protein expression levels in the kidney between the freshwater and EST lungfish, while the AVT precursor mRNA level in the hypothalamus was remarkably higher in the EST lungfish. Our results indicate that African lungfish possess a functional V2-type receptor similar to that in tetrapods, suggesting that elevated plasma AVT during estivation exerts a renal tubular antidiuretic effect through the V2-type receptor expressed in the distal segments of lungfish kidney.
Collapse
Affiliation(s)
- Norifumi Konno
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Kakumura K, Watanabe S, Bell JD, Donald JA, Toop T, Kaneko T, Hyodo S. Multiple urea transporter proteins in the kidney of holocephalan elephant fish (Callorhinchus milii). Comp Biochem Physiol B Biochem Mol Biol 2009; 154:239-47. [PMID: 19559810 DOI: 10.1016/j.cbpb.2009.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/16/2009] [Accepted: 06/19/2009] [Indexed: 11/26/2022]
Abstract
Reabsorption of filtered urea by the kidney is essential for retaining high levels of urea in marine cartilaginous fish. Our previous studies on the shark facilitative urea transporter (UT) suggest that additional UT(s) comprising the urea reabsorption system could exist in the cartilaginous fish kidney. Here, we isolated three cDNAs encoding UTs from the kidney of elephant fish, Callorhinchus milii, and termed them efUT-1, efUT-2 and efUT-3. efUT-1 is orthologous to known elasmobranch UTs, while efUT-2 and efUT-3 are novel UTs in cartilaginous fish. Two variants were found for efUT-1 and efUT-2, in which the NH(2)-terminal intracellular domain was distinct between the variants. Differences in potential phosphorylation sites were found in the variant-specific NH(2)-terminal domains. When expressed in Xenopus oocytes, all five UT transcripts including the efUT-1 and efUT-2 variants induced more than a 10-fold increase in [(14)C] urea uptake. Phloretin inhibited dose-dependently the increase of urea uptake, suggesting that the identified UTs are facilitative UTs. Molecular phylogenetic analysis revealed that efUT-1 and efUT-2 had diverged in the cartilaginous fish lineage, while efUT-3 is distinct from efUT-1 and efUT-2. The present finding of multiple UTs in elephant fish provides a key to understanding the molecular mechanisms of urea reabsorption system in the cartilaginous fish kidney.
Collapse
Affiliation(s)
- Keigo Kakumura
- Laboratory of Physiology, Ocean Research Institute, University of Tokyo, Nakano, Tokyo 164-8639, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Hung CYC, Galvez F, Ip YK, Wood CM. Increased gene expression of a facilitated diffusion urea transporter in the skin of the African lungfish (Protopterus annectens) during massively elevated post-terrestrialization urea excretion. J Exp Biol 2009; 212:1202-11. [PMID: 19329753 DOI: 10.1242/jeb.025239] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The full-length cDNA sequence of a putative urea transporter (lfUT) of the facilitated diffusion UT-A type has been cloned from the African lungfish Protopterus annectens. The lfUT cDNA is 1990 bp in length and its open reading frame encodes a 409 amino acid long protein, with a calculated molecular mass of 44,723 Da. The sequence is closest to those of amphibians ( approximately 65% amino acid homology), followed by mammals and elasmobranchs ( approximately 60%), and then teleosts ( approximately 50%). lfUT was clearly expressed in gill, kidney, liver, skeletal muscle and skin. Upon re-immersion in water after 33 days of air exposure ('terrestrialization'), lungfish exhibited a massive rise in urea-N excretion which peaked at 12-30 h with rates of 2000-5000 micromol-N kg(-1) h(-1) (versus normal aquatic rates of <130 micromol-N kg(-1) h(-1)) and persisted until 70 h. This appears to occur mainly through the skin. Total 'excess' urea-N excretion amounted to approximately 81,000-91,000 micromol-N kg(-1) over 3 days. By real-time PCR, there was no difference in lfUT expression in the ventral abdominal skin between aquatic ammoniotelic controls and terrestrialized lungfish immediately after return to water (0 h), and no elevation of urea-N excretion at this time. However, skin biopsies revealed a significant 2.55-fold elevation of lfUT expression at 14 h, coincident with peak urea-N excretion. At 48 h, there was no longer any significant difference in lfUT mRNA levels from those at 0 and 14 h, or from aquatic fed controls. In accordance with earlier studies, which identified elevated urea-N excretion via the skin of P. dolloi with pharmacology typical of UT-A carriers, these results argue that transcriptional activation of a facilitated diffusion type urea transporter (lfUT) occurs in the skin during re-immersion. This serves to clear the body burden of urea-N accumulated during terrestrialization.
Collapse
Affiliation(s)
- Carrie Y C Hung
- Department of Biology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | | | | | | |
Collapse
|
20
|
Uchiyama M, Kikuchi R, Konno N, Wakasugi T, Matsuda K. Localization and regulation of a facilitative urea transporter in the kidney of the red-eared slider turtle (Trachemys scripta elegans). J Exp Biol 2009; 212:249-56. [PMID: 19112144 DOI: 10.1242/jeb.019703] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Urea is the major excretory end product of nitrogen metabolism in most chelonian reptiles. In the present study, we report the isolation of a 1632 base pair cDNA from turtle kidney with one open reading frame putatively encoding a 403-residue protein, the turtle urea transporter (turtle UT). The first cloned reptilian UT has high homology with UTs (facilitated urea transporters) cloned from vertebrates, and most closely resembles the UT-A subfamily. Injection of turtle UT cRNA into Xenopus oocytes induced a 6-fold increase in [(14)C]urea uptake that was inhibited by phloretin. The turtle UT mRNA expression and tissue distribution were examined by RT-PCR with total RNA from various tissues. Expression of turtle UT mRNA was restricted to the kidney, and no signal was detected in the other tissues, such as brain, heart, alimentary tract and urinary bladder. An approximately 58 kDa protein band was detected in membrane fractions of the kidney by western blot using an affinity-purified antibody that recognized turtle UT expressed in Xenopus oocytes. In an immunohistochemical study using the anti-turtle UT antibody, UT-immunopositive cells were observed along the distal tubule but not in the collecting duct. In turtles under dry conditions, plasma osmolality and urea concentration increased, and using semi-quantitative RT-PCR the UT mRNA expression level in the kidney was found to increase 2-fold compared with control. The present results, taken together, suggest that the turtle UT probably contributes to urea transport in the distal tubule segments of the kidney in response to hyperosmotic stress under dry conditions.
Collapse
Affiliation(s)
- Minoru Uchiyama
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.
| | | | | | | | | |
Collapse
|
21
|
Kumano T, Konno N, Wakasugi T, Matsuda K, Yoshizawa H, Uchiyama M. Cellular localization of a putative Na+/H+ exchanger 3 during ontogeny in the pronephros and mesonephros of the Japanese black salamander (Hynobius nigrescens Stejneger). Cell Tissue Res 2007; 331:675-85. [DOI: 10.1007/s00441-007-0544-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Accepted: 10/24/2007] [Indexed: 11/28/2022]
|
22
|
Konno N, Hyodo S, Matsuda K, Uchiyama M. Arginine vasotocin promotes urea permeability through urea transporter expressed in the toad urinary bladder cells. Gen Comp Endocrinol 2007; 152:281-5. [PMID: 17270186 DOI: 10.1016/j.ygcen.2006.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 11/16/2006] [Accepted: 12/18/2006] [Indexed: 10/23/2022]
Abstract
We previously isolated a cDNA of a urea transporter (Bufo UT) from the kidney of the marine toad, Bufo marinus, and demonstrated that the Bufo UT was specifically localized on the epithelial membrane of the early distal tubules in the kidney and urinary bladder. In the present study, the function of Bufo UT was investigated using a Xenopus oocytes expression system. Further, we examined the effects of arginine vasotocin (AVT) on urea transport in isolated cells from the toad urinary bladder. When expressed in Xenopus oocytes Bufo UT induced more than a 10-fold increase in [(14)C]urea uptake compared with water-injected control oocytes. Phloretin, a urea transport inhibitor, fully blocked the increase of urea uptake. In epithelial cells isolated from the toad urinary bladder, addition of AVT to the medium increased the urea uptake in a concentration-dependent manner (10(-12)-10(-8)M). To examine the relationship between the Bufo UT protein expression and an increase of urea transportability, we analyzed the time course of the Bufo UT expression levels and urea uptake in the cells treated with 10(-8)M AVT. Treatment of 10(-8)M AVT increased the urea uptake in the cells after 24 and 48h incubation, but not after 12h. According to the immunoblot analysis, UT protein expression was coincident with the results of urea uptake in the AVT-treated cells. These results suggest that Bufo UT isolated from the kidney, functions as an AVT-mediated urea transporter in the urinary bladder of the toad.
Collapse
Affiliation(s)
- Norifumi Konno
- Department of Life and Environmental Science, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | | | | | | |
Collapse
|
23
|
Konno N, Hyodo S, Yamada T, Matsuda K, Uchiyama M. Immunolocalization and mRNA expression of the epithelial Na+ channel alpha-subunit in the kidney and urinary bladder of the marine toad, Bufo marinus, under hyperosmotic conditions. Cell Tissue Res 2007; 328:583-94. [PMID: 17333031 DOI: 10.1007/s00441-007-0383-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 01/17/2007] [Indexed: 11/28/2022]
Abstract
The amiloride-sensitive epithelial sodium channel (ENaC) has previously been shown to be involved in the maintenance of body fluid volume and in Na(+) absorption across the skin and urinary bladder in amphibians. However, the function and distribution of ENaC have not been clearly described in amphibian kidney. We therefore cloned the ENaC alpha-subunit cDNA from kidney of the marine toad, Bufo marinus. The ENaC mRNA and protein were abundantly expressed in the kidney and in the urinary bladder and ventral pelvic skin. In an immunohistochemical study, the ENaC alpha-subunit protein was specifically localized to the apical membrane of the principal cells but not the intercalated cells from the late distal tubule to the collecting duct in the kidney or in the apical area of cells of urinary bladder epithelia. When toads were acclimated to dry and hyper-saline environments, the levels of ENaC mRNA expression in the kidney and urinary bladder decreased under hyper-saline acclimation, but not under dry conditions. Immunohistochemical observations indicated that the levels of ENaC protein expression were much lower in the apical area of renal distal tubules and urinary bladder epithelia of hyper-saline acclimated toad compared with controls. The present study suggests that Bufo ENaC is significantly expressed and functions during Na(+) reabsorption in the apical membrane domain in the distal nephron of normal and desiccated toads. Natriuresis may be caused by decreases in ENaC expression and its trafficking to the cell surface in the distal nephron, a response to prevent excessive Na(+) reabsorption in hyper-saline-acclimated toads.
Collapse
Affiliation(s)
- Norifumi Konno
- Department of Life and Environmental Science, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| | | | | | | | | |
Collapse
|
24
|
Abstract
The concept of animal models is well honored, and amphibians have played a prominent part in the success of using key species to discover new information about all animals. As animal models, amphibians offer several advantages that include a well-understood basic physiology, a taxonomic diversity well suited to comparative studies, tolerance to temperature and oxygen variation, and a greater similarity to humans than many other currently popular animal models. Amphibians now account for approximately 1/4 to 1/3 of lower vertebrate and invertebrate research, and this proportion is especially true in physiological research, as evident from the high profile of amphibians as animal models in Nobel Prize research. Currently, amphibians play prominent roles in research in the physiology of musculoskeletal, cardiovascular, renal, respiratory, reproductive, and sensory systems. Amphibians are also used extensively in physiological studies aimed at generating new insights in evolutionary biology, especially in the investigation of the evolution of air breathing and terrestriality. Environmental physiology also utilizes amphibians, ranging from studies of cryoprotectants for tissue preservation to physiological reactions to hypergravity and space exploration. Amphibians are also playing a key role in studies of environmental endocrine disruptors that are having disproportionately large effects on amphibian populations and where specific species can serve as sentinel species for environmental pollution. Finally, amphibian genera such as Xenopus, a genus relatively well understood metabolically and physiologically, will continue to contribute increasingly in this new era of systems biology and "X-omics."
Collapse
Affiliation(s)
- Warren W Burggren
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5220, USA.
| | | |
Collapse
|
25
|
Uchiyama M, Konno N. Hormonal regulation of ion and water transport in anuran amphibians. Gen Comp Endocrinol 2006; 147:54-61. [PMID: 16472810 DOI: 10.1016/j.ygcen.2005.12.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 12/18/2005] [Accepted: 12/29/2005] [Indexed: 10/25/2022]
Abstract
Amphibians occupy a wide variety of ecological habitats, and their adaptation is made possible through the specialization of the epithelia of their osmoregulatory organs, such as the skin, kidney, and urinary bladder, which control the hydromineral and acid-base balance of their internal medium. Amphibians can change drastically plasma Na+, Cl-, and urea levels and excretion rates in response to environmental stimuli such as acute desiccation and changes in external salinity. Several hormones and the autonomic nervous system act to control osmoregulation. Several ion channels including an epithelial sodium channel (ENaC), a urea transporter (UT), and water channels (AQPs) are found in epithelial tissues of their osmoregulatory organs. This mini review examines the currents status of our knowledge about hormone receptors for arginine vasotocin, angiotensin II and aldosterone, and membrane ion channels and transporters, such as ENaC, UT, and AQPs in amphibians.
Collapse
Affiliation(s)
- Minoru Uchiyama
- Department of Biology, Faculty of Science, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.
| | | |
Collapse
|