1
|
Egelhaaf M, Lindemann JP. Path integration and optic flow in flying insects: a review of current evidence. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025; 211:375-401. [PMID: 40053081 DOI: 10.1007/s00359-025-01734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 05/16/2025]
Abstract
Path integration is a key navigation mechanism used by many animals, involving the integration of direction and distance of path segments to form a goal vector that allows an animal to return directly to its starting point. While well established for animals walking on solid ground, evidence for path integration in animals moving without ground contact, such as flying insects, is less clear. The review focuses on flying Hymenoptera, particularly bees, which are extensively studied. Although bees can use flight distance and direction information, evidence for genuine path integration is limited. Accurately assessing distance travelled is a major challenge for flying animals, because it relies on optic flow-the movement of visual patterns across the eye caused by locomotion. Optic flow depends on both the animal's speed and the spatial layout of the environment, making it ambiguous for precise distance measurement. While path integration is crucial for animals like desert ants navigating sparse environments with few navigational cues, we argue that flying Hymenopterans in visually complex environments, rich in objects and textures, rely on additional navigational cues rather than precise path integration. As they become more familiar with an environment, they may iteratively refine unreliable distance estimates derived from optic flow. By combining this refined information with directional cues, they could determine a goal vector and improve their ability to navigate efficiently between key locations. In the case of honeybees, this ability also enables them to communicate these refined goal vectors to other bees through the waggle dance.
Collapse
Affiliation(s)
- Martin Egelhaaf
- Neurobiology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany.
| | - Jens P Lindemann
- Neurobiology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
2
|
Jesusanmi OO, Amin AA, Domcsek N, Knight JC, Philippides A, Nowotny T, Graham P. Investigating visual navigation using spiking neural network models of the insect mushroom bodies. Front Physiol 2024; 15:1379977. [PMID: 38841209 PMCID: PMC11151298 DOI: 10.3389/fphys.2024.1379977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Ants are capable of learning long visually guided foraging routes with limited neural resources. The visual scene memory needed for this behaviour is mediated by the mushroom bodies; an insect brain region important for learning and memory. In a visual navigation context, the mushroom bodies are theorised to act as familiarity detectors, guiding ants to views that are similar to those previously learned when first travelling along a foraging route. Evidence from behavioural experiments, computational studies and brain lesions all support this idea. Here we further investigate the role of mushroom bodies in visual navigation with a spiking neural network model learning complex natural scenes. By implementing these networks in GeNN-a library for building GPU accelerated spiking neural networks-we were able to test these models offline on an image database representing navigation through a complex outdoor natural environment, and also online embodied on a robot. The mushroom body model successfully learnt a large series of visual scenes (400 scenes corresponding to a 27 m route) and used these memories to choose accurate heading directions during route recapitulation in both complex environments. Through analysing our model's Kenyon cell (KC) activity, we were able to demonstrate that KC activity is directly related to the respective novelty of input images. Through conducting a parameter search we found that there is a non-linear dependence between optimal KC to visual projection neuron (VPN) connection sparsity and the length of time the model is presented with an image stimulus. The parameter search also showed training the model on lower proportions of a route generally produced better accuracy when testing on the entire route. We embodied the mushroom body model and comparator visual navigation algorithms on a Quanser Q-car robot with all processing running on an Nvidia Jetson TX2. On a 6.5 m route, the mushroom body model had a mean distance to training route (error) of 0.144 ± 0.088 m over 5 trials, which was performance comparable to standard visual-only navigation algorithms. Thus, we have demonstrated that a biologically plausible model of the ant mushroom body can navigate complex environments both in simulation and the real world. Understanding the neural basis of this behaviour will provide insight into how neural circuits are tuned to rapidly learn behaviourally relevant information from complex environments and provide inspiration for creating bio-mimetic computer/robotic systems that can learn rapidly with low energy requirements.
Collapse
Affiliation(s)
| | - Amany Azevedo Amin
- Sussex AI, School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom
| | - Norbert Domcsek
- Sussex AI, School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom
| | - James C. Knight
- Sussex AI, School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom
| | - Andrew Philippides
- Sussex AI, School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom
| | - Thomas Nowotny
- Sussex AI, School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom
| | - Paul Graham
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
3
|
Freas CA, Spetch ML. Route retracing: way pointing and multiple vector memories in trail-following ants. J Exp Biol 2024; 227:jeb246695. [PMID: 38126715 PMCID: PMC10906666 DOI: 10.1242/jeb.246695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Maintaining positional estimates of goal locations is a fundamental task for navigating animals. Diverse animal groups, including both vertebrates and invertebrates, can accomplish this through path integration. During path integration, navigators integrate movement changes, tracking both distance and direction, to generate a spatial estimate of their start location, or global vector, allowing efficient direct return travel without retracing the outbound route. In ants, path integration is accomplished through the coupling of pedometer and celestial compass estimates. Within path integration, it has been theorized navigators may use multiple vector memories for way pointing. However, in many instances, these navigators may instead be homing via view alignment. Here, we present evidence that trail-following ants can attend to segments of their global vector to retrace their non-straight pheromone trails, without the confound of familiar views. Veromessor pergandei foragers navigate to directionally distinct intermediate sites via path integration by orienting along separate legs of their inbound route at unfamiliar locations, indicating these changes are not triggered by familiar external cues, but by vector state. These findings contrast with path integration as a singular memory estimate in ants and underscore the system's ability to way point to intermediate goals along the inbound route via multiple vector memories, akin to trapline foraging in bees visiting multiple flower patches. We discuss how reliance on non-straight pheromone-marked trails may support attending to separate vectors to remain on the pheromone rather than attempting straight-line shortcuts back to the nest.
Collapse
Affiliation(s)
- Cody A. Freas
- Department of Psychology, University of Alberta, Edmonton, AB, Canada, T6G 2E9
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Marcia L. Spetch
- Department of Psychology, University of Alberta, Edmonton, AB, Canada, T6G 2E9
| |
Collapse
|
4
|
Goulard R, Heinze S, Webb B. Emergent spatial goals in an integrative model of the insect central complex. PLoS Comput Biol 2023; 19:e1011480. [PMID: 38109465 PMCID: PMC10760860 DOI: 10.1371/journal.pcbi.1011480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/02/2024] [Accepted: 12/01/2023] [Indexed: 12/20/2023] Open
Abstract
The insect central complex appears to encode and process spatial information through vector manipulation. Here, we draw on recent insights into circuit structure to fuse previous models of sensory-guided navigation, path integration and vector memory. Specifically, we propose that the allocentric encoding of location provided by path integration creates a spatially stable anchor for converging sensory signals that is relevant in multiple behavioural contexts. The allocentric reference frame given by path integration transforms a goal direction into a goal location and we demonstrate through modelling that it can enhance approach of a sensory target in noisy, cluttered environments or with temporally sparse stimuli. We further show the same circuit can improve performance in the more complex navigational task of route following. The model suggests specific functional roles for circuit elements of the central complex that helps explain their high preservation across insect species.
Collapse
Affiliation(s)
- Roman Goulard
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Barbara Webb
- Institute for Perception, Action, and Behaviour, School of Informatics, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
5
|
Gilad T, Bahar O, Hasan M, Bar A, Subach A, Scharf I. The combined role of visual and olfactory cues in foraging by Cataglyphis ants in laboratory mazes. Curr Zool 2023; 69:401-408. [PMID: 37614920 PMCID: PMC10443614 DOI: 10.1093/cz/zoac058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/28/2022] [Indexed: 08/25/2023] Open
Abstract
Foragers use several senses to locate food, and many animals rely on vision and smell. It is beneficial not to rely on a single sense, which might fail under certain conditions. We examined the contribution of vision and smell to foraging and maze exploration under laboratory conditions using Cataglyphis desert ants as a model. Foraging intensity, measured as the number of workers entering the maze and arriving at the target as well as target arrival time, were greater when food, blue light, or both were offered or presented in contrast to a control. Workers trained to forage for a combined food and light cue elevated their foraging intensity with experience. However, foraging intensity was not higher when using both cues simultaneously than in either one of the two alone. Following training, we split between the two cues and moved either the food or the blue light to the opposite maze corner. This manipulation impaired foraging success by either leading to fewer workers arriving at the target cell (when the light stayed and the food was moved) or to more workers arriving at the opposite target cell, empty of food (when the food stayed and the light was moved). This result indicates that ant workers use both senses when foraging for food and readily associate light with food.
Collapse
Affiliation(s)
- Tomer Gilad
- School of Zoology, George S Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ori Bahar
- School of Zoology, George S Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Malak Hasan
- School of Zoology, George S Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Adi Bar
- School of Zoology, George S Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Aziz Subach
- School of Zoology, George S Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Inon Scharf
- School of Zoology, George S Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
6
|
Ortega-Escobar J, Hebets EA, Bingman VP, Wiegmann DD, Gaffin DD. Comparative biology of spatial navigation in three arachnid orders (Amblypygi, Araneae, and Scorpiones). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023:10.1007/s00359-023-01612-2. [PMID: 36781447 DOI: 10.1007/s00359-023-01612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 02/15/2023]
Abstract
From both comparative biology and translational research perspectives, there is escalating interest in understanding how animals navigate their environments. Considerable work is being directed towards understanding the sensory transduction and neural processing of environmental stimuli that guide animals to, for example, food and shelter. While much has been learned about the spatial orientation behavior, sensory cues, and neurophysiology of champion navigators such as bees and ants, many other, often overlooked animal species possess extraordinary sensory and spatial capabilities that can broaden our understanding of the behavioral and neural mechanisms of animal navigation. For example, arachnids are predators that often return to retreats after hunting excursions. Many of these arachnid central-place foragers are large and highly conducive to scientific investigation. In this review we highlight research on three orders within the Class Arachnida: Amblypygi (whip spiders), Araneae (spiders), and Scorpiones (scorpions). For each, we describe (I) their natural history and spatial navigation, (II) how they sense the world, (III) what information they use to navigate, and (IV) how they process information for navigation. We discuss similarities and differences among the groups and highlight potential avenues for future research.
Collapse
Affiliation(s)
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Verner P Bingman
- Department of Psychology and J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Daniel D Wiegmann
- Department of Biological Sciences and J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Douglas D Gaffin
- Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
7
|
Egelhaaf M. Optic flow based spatial vision in insects. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023:10.1007/s00359-022-01610-w. [PMID: 36609568 DOI: 10.1007/s00359-022-01610-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/06/2022] [Accepted: 12/24/2022] [Indexed: 01/09/2023]
Abstract
The optic flow, i.e., the displacement of retinal images of objects in the environment induced by self-motion, is an important source of spatial information, especially for fast-flying insects. Spatial information over a wide range of distances, from the animal's immediate surroundings over several hundred metres to kilometres, is necessary for mediating behaviours, such as landing manoeuvres, collision avoidance in spatially complex environments, learning environmental object constellations and path integration in spatial navigation. To facilitate the processing of spatial information, the complexity of the optic flow is often reduced by active vision strategies. These result in translations and rotations being largely separated by a saccadic flight and gaze mode. Only the translational components of the optic flow contain spatial information. In the first step of optic flow processing, an array of local motion detectors provides a retinotopic spatial proximity map of the environment. This local motion information is then processed in parallel neural pathways in a task-specific manner and used to control the different components of spatial behaviour. A particular challenge here is that the distance information extracted from the optic flow does not represent the distances unambiguously, but these are scaled by the animal's speed of locomotion. Possible ways of coping with this ambiguity are discussed.
Collapse
Affiliation(s)
- Martin Egelhaaf
- Neurobiology and Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany.
| |
Collapse
|
8
|
Walking is like slithering: A unifying, data-driven view of locomotion. Proc Natl Acad Sci U S A 2022; 119:e2113222119. [PMID: 36067311 PMCID: PMC9477242 DOI: 10.1073/pnas.2113222119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Legged movement is ubiquitous in nature and of increasing interest for robotics. Most legged animals routinely encounter foot slipping, yet detailed modeling of multiple contacts with slipping exceeds current simulation capacity. Here we present a principle that unifies multilegged walking (including that involving slipping) with slithering and Stokesian (low Reynolds number) swimming. We generated data-driven principally kinematic models of locomotion for walking in low-slip animals (Argentine ant, 4.7% slip ratio of slipping to total motion) and for high-slip robotic systems (BigANT hexapod, slip ratio 12 to 22%; Multipod robots ranging from 6 to 12 legs, slip ratio 40 to 100%). We found that principally kinematic models could explain much of the variability in body velocity and turning rate using body shape and could predict walking behaviors outside the training data. Most remarkably, walking was principally kinematic irrespective of leg number, foot slipping, and turning rate. We find that grounded walking, with or without slipping, is governed by principally kinematic equations of motion, functionally similar to frictional swimming and slithering. Geometric mechanics thus leads to a unified model for swimming, slithering, and walking. Such commonality may shed light on the evolutionary origins of animal locomotion control and offer new approaches for robotic locomotion and motion planning.
Collapse
|
9
|
Yuan X, Liebelt MJ, Shi P, Phillips BJ. Cognitive decisions based on a rule-based fuzzy system. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.03.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Gaffin DD, Muñoz MG, Hoefnagels MH. Evidence of learning walks related to scorpion home burrow navigation. J Exp Biol 2022; 225:275795. [PMID: 35638243 PMCID: PMC9250797 DOI: 10.1242/jeb.243947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/20/2022] [Indexed: 11/29/2022]
Abstract
The navigation by chemo-textural familiarity hypothesis (NCFH) suggests that scorpions use their midventral pectines to gather chemical and textural information near their burrows and use this information as they subsequently return home. For NCFH to be viable, animals must somehow acquire home-directed ‘tastes’ of the substrate, such as through path integration (PI) and/or learning walks. We conducted laboratory behavioral trials using desert grassland scorpions (Paruroctonus utahensis). Animals reliably formed burrows in small mounds of sand we provided in the middle of circular, sand-lined behavioral arenas. We processed overnight infrared video recordings with a MATLAB script that tracked animal movements at 1–2 s intervals. In all, we analyzed the movements of 23 animals, representing nearly 1500 h of video recording. We found that once animals established their home burrows, they immediately made one to several short, looping excursions away from and back to their burrows before walking greater distances. We also observed similar excursions when animals made burrows in level sand in the middle of the arena (i.e. no mound provided). These putative learning walks, together with recently reported PI in scorpions, may provide the crucial home-directed information requisite for NCFH. Highlighted Article: Evidence that sand scorpions perform looping walks immediately after establishing a burrow and the possible significance of these putative learning walks in terms of scorpion navigation.
Collapse
Affiliation(s)
- Douglas D Gaffin
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Maria G Muñoz
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Mariëlle H Hoefnagels
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
11
|
Robustness of collective scenting in the presence of physical obstacles. ARTIFICIAL LIFE AND ROBOTICS 2021. [DOI: 10.1007/s10015-021-00712-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Behbahani AH, Palmer EH, Corfas RA, Dickinson MH. Drosophila re-zero their path integrator at the center of a fictive food patch. Curr Biol 2021; 31:4534-4546.e5. [PMID: 34450090 PMCID: PMC8551043 DOI: 10.1016/j.cub.2021.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022]
Abstract
The ability to keep track of one's location in space is a critical behavior for animals navigating to and from a salient location, and its computational basis is now beginning to be unraveled. Here, we tracked flies in a ring-shaped channel as they executed bouts of search triggered by optogenetic activation of sugar receptors. Unlike experiments in open field arenas, which produce highly tortuous search trajectories, our geometrically constrained paradigm enabled us to monitor flies' decisions to move toward or away from the fictive food. Our results suggest that flies use path integration to remember the location of a food site even after it has disappeared, and flies can remember the location of a former food site even after walking around the arena one or more times. To determine the behavioral algorithms underlying Drosophila search, we developed multiple state transition models and found that flies likely accomplish path integration by combining odometry and compass navigation to keep track of their position relative to the fictive food. Our results indicate that whereas flies re-zero their path integrator at food when only one feeding site is present, they adjust their path integrator to a central location between sites when experiencing food at two or more locations. Together, this work provides a simple experimental paradigm and theoretical framework to advance investigations of the neural basis of path integration.
Collapse
Affiliation(s)
- Amir H Behbahani
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Emily H Palmer
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Román A Corfas
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael H Dickinson
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
13
|
Ng L, Garcia JE, Dyer AG, Stuart-Fox D. The ecological significance of time sense in animals. Biol Rev Camb Philos Soc 2020; 96:526-540. [PMID: 33164298 DOI: 10.1111/brv.12665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 11/29/2022]
Abstract
Time is a fundamental dimension of all biological events and it is often assumed that animals have the capacity to track the duration of experienced events (known as interval timing). Animals can potentially use temporal information as a cue during foraging, communication, predator avoidance, or navigation. Interval timing has been traditionally investigated in controlled laboratory conditions but its ecological relevance in natural environments remains unclear. While animals may time events in artificial and highly controlled conditions, they may not necessarily use temporal information in natural environments where they have access to other cues that may have more relevance than temporal information. Herein we critically evaluate the ecological contexts where interval timing has been suggested to provide adaptive value for animals. We further discuss attributes of interval timing that are rarely considered in controlled laboratory studies. Finally, we encourage consideration of ecological relevance when designing future interval-timing studies and propose future directions for such experiments.
Collapse
Affiliation(s)
- Leslie Ng
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.,Bio-Inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC, 3001, Australia
| | - Jair E Garcia
- Bio-Inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC, 3001, Australia
| | - Adrian G Dyer
- Bio-Inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC, 3001, Australia.,Department of Physiology, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
14
|
Homing in the arachnid taxa Araneae and Amblypygi. Anim Cogn 2020; 23:1189-1204. [PMID: 32894371 DOI: 10.1007/s10071-020-01424-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 01/06/2023]
Abstract
Adequate homing is essential for the survival of any animal when it leaves its home to find prey or a mate. There are several strategies by which homing can be carried out: (a) retrace the outbound path; (b) use a 'cognitive map'; or (c) use path integration (PI). Here, I review the state of the art of research on spiders (Araneae) and whip spiders (Amblypygi) homing behaviour. The main strategy described in the literature as being used by these arachnids is PI. Behavioural and neural substrates of PI are described in a small group of spider families (Agelenidae, Lycosidae, Gnaphosidae, Ctenidae and Theraphosidae) and a whip spider family (Phrynidae). In spiders, the cues used to detect the position of the animal relative to its home are the position of the sun, polarized light patterns, web elasticity and landmarks. In whip spiders, the cues used are olfactory, tactile and, with a more minor role, visual. The use of a magnetic field in whip spiders has been rejected both with field and laboratory studies. Concerning the distance walked in PI, the possibility of using optic flow and idiothetic information in spiders is considered. The studies about outbound and inbound paths in whip spiders seem to suggest they do not follow the PI rules. As a conclusion, these arachnids' navigation relies on multimodal cues. We have detailed knowledge about the sensory origin (visual, olfactory, mechanosensory receptors) of neural information, but we are far from knowing the central neural structures where sensory information is integrated.
Collapse
|
15
|
Sehadova H, Guerra PA, Sauman I, Reppert SM. A re-evaluation of silk measurement by the cecropia caterpillar (Hyalophora cecropia) during cocoon construction reveals use of a silk odometer that is temporally regulated. PLoS One 2020; 15:e0228453. [PMID: 32074121 PMCID: PMC7029867 DOI: 10.1371/journal.pone.0228453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/15/2020] [Indexed: 11/18/2022] Open
Abstract
The late 5th instar caterpillar of the cecropia silk moth (Hyalophora cecropia) spins a silken cocoon with a distinct, multilayered architecture. The cocoon construction program, first described by the seminal work of Van der Kloot and Williams, consists of a highly ordered sequence of events. We perform behavioral experiments to re-evaluate the original cecropia work, which hypothesized that the length of silk that passes through the spinneret controls the orderly execution of each of the discrete events of cocoon spinning. We confirm and extend by three-dimensional scanning and quantitative measurements of silk weights that if cocoon construction is interrupted, upon re-spinning, the caterpillar continues the cocoon program from where it left off. We also confirm and extend by quantitative measurements of silk weights that cecropia caterpillars will not bypass any of the sections of the cocoon during the construction process, even if presented with a pre-spun section of a cocoon spun by another caterpillar. Blocking silk output inhibits caterpillars from performing normal spinning behaviors used for cocoon construction. Surprisingly, unblocking silk output 24-hr later did not restart the cocoon construction program, suggesting the involvement of a temporally-defined interval timer. We confirm with surgical reductions of the silk glands that it is the length of silk itself that matters, rather than the total amount of silk extracted by individuals. We used scanning electron microscopy to directly show that either mono- or dual-filament silk (i.e., equal silk lengths but which vary in their total amount of silk extracted) can be used to construct equivalent cocoons of normal size and that contain the relevant layers. We propose that our findings, taken together with the results of prior studies, strongly support the hypothesis that the caterpillar uses a silk "odometer" to measure the length of silk extracted during cocoon construction but does so in a temporally regulated manner. We further postulate that our examination of the anatomy of the silk spinning apparatus and ablating spinneret sensory output provides evidence that silk length measurement occurs upstream of output from the spinneret.
Collapse
Affiliation(s)
- Hana Sehadova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska, Ceske Budejovice, Czech Republic
| | - Patrick A. Guerra
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States of America
| | - Ivo Sauman
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska, Ceske Budejovice, Czech Republic
| | - Steven M. Reppert
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States of America
| |
Collapse
|
16
|
Abstract
Preference for spatial locations to maximize favorable outcomes and minimize aversive experiences helps animals survive and adapt to the changing environment. Both visual and non-visual cues play a critical role in spatial navigation and memory of a place supports and guides these strategies. Here we present the neural, genetic and behavioral processes involved in place memory formation using Drosophila melanogaster with a focus on non-visual cue based spatial memories. The work presented here highlights the work done by Dr. Troy Zars and his colleagues with an emphasis on role of biogenic amines in learning, cell biological mechanisms of neural systems and behavioral plasticity of place conditioning.
Collapse
Affiliation(s)
- Divya Sitaraman
- Department of Psychology, College of Science, California State University-East Bay, Hayward, CA, USA
| | - Holly LaFerriere
- Department of Biology, Bemidji State University, Bemidji, MN, USA
| |
Collapse
|
17
|
Knaden M. Learning and processing of navigational cues in the desert ant. Curr Opin Neurobiol 2019; 54:140-145. [DOI: 10.1016/j.conb.2018.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/04/2018] [Indexed: 11/25/2022]
|
18
|
Wolf H, Wittlinger M, Pfeffer SE. Two distance memories in desert ants-Modes of interaction. PLoS One 2018; 13:e0204664. [PMID: 30304010 PMCID: PMC6179223 DOI: 10.1371/journal.pone.0204664] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/12/2018] [Indexed: 11/18/2022] Open
Abstract
Navigation plays an essential role for many animals leading a mobile mode of life, and for central place foragers in particular. One important prerequisite for navigation is the ability to estimate distances covered during locomotion. It has been shown that Cataglyphis desert ants, well-established model organisms in insect navigation, use two odometer mechanisms, namely, stride and optic flow integration. Although both mechanisms are well established, their mode of interaction to build one odometer output remains enigmatic. We tackle this problem by selectively covering the ventral eye parts in Cataglyphis fortis foragers, the eye regions responsible for optic flow input in odometry. Exclusion of optic flow cues was implemented during different sections of outbound and inbound travel. This demonstrated that the two odometers have separate distance memories that interact in determining homing distance. Possible interpretations posit that the two odometer memories (i) take on different relative weights according to context or (ii) compete in a winner-take-all mode. Explanatory values and implications of such interpretations are discussed. We are able to provide a rough quantitative assessment of odometer cue interaction. An understanding of the interaction of different odometer mechanisms appears valuable not only for animal navigation research but may inform discussions on sensor fusion in both behavioural contexts and potential technical applications.
Collapse
Affiliation(s)
- Harald Wolf
- Institute for Neurobiology, University of Ulm, Ulm, Germany
- * E-mail:
| | - Matthias Wittlinger
- Institute of Biology I, Neurobiology and Behaviour, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
19
|
Lobecke A, Kern R, Egelhaaf M. Taking a goal-centred dynamic snapshot as a possibility for local homing in initially naïve bumblebees. ACTA ACUST UNITED AC 2018; 221:jeb.168674. [PMID: 29150448 DOI: 10.1242/jeb.168674] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/13/2017] [Indexed: 11/20/2022]
Abstract
It is essential for central place foragers, such as bumblebees, to return reliably to their nest. Bumblebees, leaving their inconspicuous nest hole for the first time need to gather and learn sufficient information about their surroundings to allow them to return to their nest at the end of their trip, instead of just flying away to forage. Therefore, we assume an intrinsic learning programme that manifests itself in the flight structure immediately after leaving the nest for the first time. In this study, we recorded and analysed the first outbound flight of individually marked naïve bumblebees in an indoor environment. We found characteristic loop-like features in the flight pattern that appear to be necessary for the bees to acquire environmental information and might be relevant for finding the nest hole after a foraging trip. Despite common features in their spatio-temporal organisation, first departure flights from the nest are characterised by a high level of variability in their loop-like flight structure across animals. Changes in turn direction of body orientation, for example, are distributed evenly across the entire area used for the flights without any systematic relationship to the nest location. By considering the common flight motifs and this variability, we came to the hypothesis that a kind of dynamic snapshot is taken during the early phase of departure flights centred at the nest location. The quality of this snapshot is hypothesised to be 'tested' during the later phases of the departure flights concerning its usefulness for local homing.
Collapse
Affiliation(s)
- Anne Lobecke
- Department of Neurobiology and Cluster of Excellence 'Cognitive Interaction Technology' (CITEC), Bielefeld University, 33615 Bielefeld, Germany
| | - Roland Kern
- Department of Neurobiology and Cluster of Excellence 'Cognitive Interaction Technology' (CITEC), Bielefeld University, 33615 Bielefeld, Germany
| | - Martin Egelhaaf
- Department of Neurobiology and Cluster of Excellence 'Cognitive Interaction Technology' (CITEC), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
20
|
Silva NFDS, Fowler-Finn K, Ribeiro Mortara S, Hirata Willemart R. A Neotropical armored harvestman (Arachnida, Opiliones) uses proprioception and vision for homing. BEHAVIOUR 2018. [DOI: 10.1163/1568539x-00003503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Animals use external and/or internal cues to navigate and can show flexibility in cue use if one type of cue is unavailable. We studied the homing ability of the harvestman Heteromitobates discolor (Arachnida, Opiliones) by moving egg-guarding females from their clutches. We tested the importance of vision, proprioception, and olfaction. We predicted that homing would be negatively affected in the absence of these cues, with success being measured by the return of females to their clutches. We restricted proprioception by not allowing females to walk, removed vision by painting the eyes, and removed the odours by removing the clutch and cleaning its surroundings. We found that vision is important for homing, and in the absence of visual cues, proprioception is important. Finally, we found increased homing when eggs were present, and that the time of the day also influenced homing. We highlight vision as a previously overlooked sensory modality in Opiliones.
Collapse
Affiliation(s)
- Norton Felipe dos Santos Silva
- aLaboratório de Ecologia Sensorial e Comportamento de Artrópodes, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Avenida Arlindo Béttio 1000, Ermelino Matarazzo, São Paulo, SP 03828-000, Brazil
- bPrograma de Pós-Graduação em Ecologia e Evolução, Universidade Federal de São Paulo, Campus Diadema, Rua Professor Artur Riedel. 275, Jardim Eldorado, Diadema, SP 09972-270, Brazil
| | - Kasey Fowler-Finn
- cDepartment of Biology, Saint Louis University, 3507 Laclede Avenue, Saint Louis, MO, USA
| | - Sara Ribeiro Mortara
- dPrograma de Pós-Graduação em Ecologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 321, Travessa 14, São Paulo, SP 05508-090, Brazil
| | - Rodrigo Hirata Willemart
- aLaboratório de Ecologia Sensorial e Comportamento de Artrópodes, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Avenida Arlindo Béttio 1000, Ermelino Matarazzo, São Paulo, SP 03828-000, Brazil
- bPrograma de Pós-Graduação em Ecologia e Evolução, Universidade Federal de São Paulo, Campus Diadema, Rua Professor Artur Riedel. 275, Jardim Eldorado, Diadema, SP 09972-270, Brazil
- ePrograma de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 101, Travessa 14, São Paulo, SP 05508-090, Brazil
| |
Collapse
|
21
|
Li J, Lindemann JP, Egelhaaf M. Local motion adaptation enhances the representation of spatial structure at EMD arrays. PLoS Comput Biol 2017; 13:e1005919. [PMID: 29281631 PMCID: PMC5760083 DOI: 10.1371/journal.pcbi.1005919] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 01/09/2018] [Accepted: 11/13/2017] [Indexed: 11/18/2022] Open
Abstract
Neuronal representation and extraction of spatial information are essential for behavioral control. For flying insects, a plausible way to gain spatial information is to exploit distance-dependent optic flow that is generated during translational self-motion. Optic flow is computed by arrays of local motion detectors retinotopically arranged in the second neuropile layer of the insect visual system. These motion detectors have adaptive response characteristics, i.e. their responses to motion with a constant or only slowly changing velocity decrease, while their sensitivity to rapid velocity changes is maintained or even increases. We analyzed by a modeling approach how motion adaptation affects signal representation at the output of arrays of motion detectors during simulated flight in artificial and natural 3D environments. We focused on translational flight, because spatial information is only contained in the optic flow induced by translational locomotion. Indeed, flies, bees and other insects segregate their flight into relatively long intersaccadic translational flight sections interspersed with brief and rapid saccadic turns, presumably to maximize periods of translation (80% of the flight). With a novel adaptive model of the insect visual motion pathway we could show that the motion detector responses to background structures of cluttered environments are largely attenuated as a consequence of motion adaptation, while responses to foreground objects stay constant or even increase. This conclusion even holds under the dynamic flight conditions of insects.
Collapse
Affiliation(s)
- Jinglin Li
- Department of Neurobiology and Cluster of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
- * E-mail:
| | - Jens P. Lindemann
- Department of Neurobiology and Cluster of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Martin Egelhaaf
- Department of Neurobiology and Cluster of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
22
|
Ortega-Escobar J, Ruiz MA. Role of the different eyes in the visual odometry in the wolf spider Lycosa tarantula (Araneae, Lycosidae). ACTA ACUST UNITED AC 2017; 220:259-265. [PMID: 28100804 DOI: 10.1242/jeb.145763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/22/2016] [Indexed: 11/20/2022]
Abstract
The wolf spider Lycosa tarantula returns home by means of path integration. Previous studies demonstrated: (i) that the angular component of the outbound run is measured using a polarized-light compass associated with the anterior median eyes; (ii) changes in direction of the substratum are detected by the anterior lateral eyes (ALEs); and (iii) in relation to the linear component of the outbound run, an increase of optic flow, in either the lateral or ventral fields of view, caused spiders to search for the burrow at a point nearer to the goal. However, the role of the secondary eyes [ALEs, posterior lateral eyes (PLEs) and posterior median eyes (PMEs)] in the perception of this optic flow and the importance of them for gauging the distance walked is still unknown. In this study, lateral or ventral gratings of wavelength λ=1 cm were used, with two groups of spiders in each setup: (1) PLEs+PMEs covered and (2) ALEs covered. The largest reduction in the distance walked to return to the burrow was observed with the ventral grating/ALEs covered. These results show the importance of the previously neglected ALEs for the visual behavior of these spiders. The possibility of gathering information for locomotion from the three pairs of secondary eyes in the mushroom bodies is discussed.
Collapse
Affiliation(s)
| | - Miguel A Ruiz
- School of Psychology, University Autónoma of Madrid, Madrid 28049, Spain
| |
Collapse
|
23
|
|
24
|
Zutshi I, Leutgeb JK, Leutgeb S. Theta sequences of grid cell populations can provide a movement-direction signal. Curr Opin Behav Sci 2017; 17:147-154. [PMID: 29333481 DOI: 10.1016/j.cobeha.2017.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been proposed that path integration in mammals is performed by the convergence of internally generated speed and directional inputs onto grid cells. Although this hypothesis has been supported by the discovery that head direction, speed, and grid cells are intermixed within entorhinal cortex and by the recent finding that head-direction inputs are necessary for grid firing, many details on how grid cells are generated have remained elusive. For example, analysis of recording data suggests that substituting head direction for movement direction accrues errors that preclude the formation of grid patterns. To address this discrepancy, we propose that the organization of grid networks makes it plausible that movement-direction signals are an output from grid cells and that temporally precise grid cell sequences provide a robust directional signal to other spatial and directional cell types.
Collapse
Affiliation(s)
- Ipshita Zutshi
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jill K Leutgeb
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stefan Leutgeb
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
25
|
Spectral Skyline Separation: Extended Landmark Databases and Panoramic Imaging. SENSORS 2016; 16:s16101614. [PMID: 27690053 PMCID: PMC5087402 DOI: 10.3390/s16101614] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 11/23/2022]
Abstract
Evidence from behavioral experiments suggests that insects use the skyline as a cue for visual navigation. However, changes of lighting conditions, over hours, days or possibly seasons, significantly affect the appearance of the sky and ground objects. One possible solution to this problem is to extract the “skyline” by an illumination-invariant classification of the environment into two classes, ground objects and sky. In a previous study (Insect models of illumination-invariant skyline extraction from UV (ultraviolet) and green channels), we examined the idea of using two different color channels available for many insects (UV and green) to perform this segmentation. We found out that for suburban scenes in temperate zones, where the skyline is dominated by trees and artificial objects like houses, a “local” UV segmentation with adaptive thresholds applied to individual images leads to the most reliable classification. Furthermore, a “global” segmentation with fixed thresholds (trained on an image dataset recorded over several days) using UV-only information is only slightly worse compared to using both the UV and green channel. In this study, we address three issues: First, to enhance the limited range of environments covered by the dataset collected in the previous study, we gathered additional data samples of skylines consisting of minerals (stones, sand, earth) as ground objects. We could show that also for mineral-rich environments, UV-only segmentation achieves a quality comparable to multi-spectral (UV and green) segmentation. Second, we collected a wide variety of ground objects to examine their spectral characteristics under different lighting conditions. On the one hand, we found that the special case of diffusely-illuminated minerals increases the difficulty to reliably separate ground objects from the sky. On the other hand, the spectral characteristics of this collection of ground objects covers well with the data collected in the skyline databases, increasing, due to the increased variety of ground objects, the validity of our findings for novel environments. Third, we collected omnidirectional images, as often used for visual navigation tasks, of skylines using an UV-reflective hyperbolic mirror. We could show that “local” separation techniques can be adapted to the use of panoramic images by splitting the image into segments and finding individual thresholds for each segment. Contrarily, this is not possible for ‘global’ separation techniques.
Collapse
|
26
|
Zhang W, Cao Y, Zhang X, Liu Z. Sky light polarization detection with linear polarizer triplet in light field camera inspired by insect vision. APPLIED OPTICS 2015; 54:8962-8970. [PMID: 26560386 DOI: 10.1364/ao.54.008962] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
Stable information of a sky light polarization pattern can be used for navigation with various advantages such as better performance of anti-interference, no "error cumulative effect," and so on. But the existing method of sky light polarization measurement is weak in real-time performance or with a complex system. Inspired by the navigational capability of a Cataglyphis with its compound eyes, we introduce a new approach to acquire the all-sky image under different polarization directions with one camera and without a rotating polarizer, so as to detect the polarization pattern across the full sky in a single snapshot. Our system is based on a handheld light field camera with a wide-angle lens and a triplet linear polarizer placed over its aperture stop. Experimental results agree with the theoretical predictions. Not only real-time detection but simple and costless architecture demonstrates the superiority of the approach proposed in this paper.
Collapse
|
27
|
Gui J, Gu D, Wang S, Hu H. A review of visual inertial odometry from filtering and optimisation perspectives. Adv Robot 2015. [DOI: 10.1080/01691864.2015.1057616] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Differt D, Möller R. Insect models of illumination-invariant skyline extraction from UV and green channels. J Theor Biol 2015; 380:444-62. [PMID: 26113191 DOI: 10.1016/j.jtbi.2015.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/27/2015] [Accepted: 06/09/2015] [Indexed: 11/28/2022]
Abstract
Experiments have shown that the skyline is an important visual cue for navigating insects. However, the comparison between two snapshots collected at different times of day is a complex task due to possible illumination changes. In this study we examine whether the information from two different color channels (UV and green, which are also available for many insects) can be used to obtain an illumination-invariant separation between the sky and ground. We collected UV and green images of seven different scenes over entire days, in which natural and artificial objects are visible in front of the sky. With the collected data we want to find answers to the following two questions: 'Does UV/green contrast vision increase the quality of separation compared to UV-only vision?' and 'What yields a better performance: separation methods based on a fixed threshold (global separation techniques) or separation methods which adapt the threshold dependent on the input image (local separation techniques)?' We implemented several linear separation techniques and found that UV/green contrast only marginally increases the quality of global separation in comparison to UV-only, and that local separation techniques are superior to global separation techniques.
Collapse
Affiliation(s)
- Dario Differt
- Computer Engineering Group, Faculty of Technology, Bielefeld University, D-33594 Bielefeld, Germany.
| | - Ralf Möller
- Computer Engineering Group, Faculty of Technology, Bielefeld University, D-33594 Bielefeld, Germany; Center of Excellence 'Cognitive Interaction Technology', Bielefeld University, D-33594 Bielefeld, Germany.
| |
Collapse
|
29
|
Where paths meet and cross: navigation by path integration in the desert ant and the honeybee. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:533-46. [PMID: 25971358 DOI: 10.1007/s00359-015-1000-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
Animals that travel large distances in search of food need to be equipped with navigation systems that are capable of keeping track of the distance and direction of travel throughout their outbound journey, so that they may return home expeditiously and without losing their way. The challenge of homing is especially acute when the environment is devoid of landmarks. Desert ants and honeybees are able to meet this challenge, despite their minuscule brains and restricted computational capacity. This article reviews some of the processes and mechanisms that underlie the homing abilities of these creatures, which are among the best-understood navigators in the animal kingdom.
Collapse
|
30
|
Kamran M, Moore PA. Comparative Homing Behaviors in Two Species of Crayfish,Fallicambarus FodiensandOrconectes Rusticus. Ethology 2015. [DOI: 10.1111/eth.12392] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Maryam Kamran
- Laboratory for Sensory Ecology; Department of Biological Sciences and J.P. Scott Center for Neuroscience, Mind and Behavior; Bowling Green State University; Bowling Green OH USA
| | - Paul A. Moore
- Laboratory for Sensory Ecology; Department of Biological Sciences and J.P. Scott Center for Neuroscience, Mind and Behavior; Bowling Green State University; Bowling Green OH USA
| |
Collapse
|
31
|
Geva-Sagiv M, Las L, Yovel Y, Ulanovsky N. Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation. Nat Rev Neurosci 2015; 16:94-108. [PMID: 25601780 DOI: 10.1038/nrn3888] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Spatial orientation and navigation rely on the acquisition of several types of sensory information. This information is then transformed into a neural code for space in the hippocampal formation through the activity of place cells, grid cells and head-direction cells. These spatial representations, in turn, are thought to guide long-range navigation. But how the representations encoded by these different cell types are integrated in the brain to form a neural 'map and compass' is largely unknown. Here, we discuss this problem in the context of spatial navigation by bats and rats. We review the experimental findings and theoretical models that provide insight into the mechanisms that link sensory systems to spatial representations and to large-scale natural navigation.
Collapse
Affiliation(s)
- Maya Geva-Sagiv
- 1] Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel. [2] Edmond and Lily Safra Center for Brain Research, Hebrew University, Jerusalem 91904, Israel
| | - Liora Las
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yossi Yovel
- Department of Zoology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nachum Ulanovsky
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
32
|
Path integration, views, search, and matched filters: the contributions of Rüdiger Wehner to the study of orientation and navigation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:517-32. [DOI: 10.1007/s00359-015-0984-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/11/2015] [Accepted: 01/27/2015] [Indexed: 10/24/2022]
|
33
|
Egelhaaf M, Kern R, Lindemann JP. Motion as a source of environmental information: a fresh view on biological motion computation by insect brains. Front Neural Circuits 2014; 8:127. [PMID: 25389392 PMCID: PMC4211400 DOI: 10.3389/fncir.2014.00127] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/05/2014] [Indexed: 11/13/2022] Open
Abstract
Despite their miniature brains insects, such as flies, bees and wasps, are able to navigate by highly erobatic flight maneuvers in cluttered environments. They rely on spatial information that is contained in the retinal motion patterns induced on the eyes while moving around ("optic flow") to accomplish their extraordinary performance. Thereby, they employ an active flight and gaze strategy that separates rapid saccade-like turns from translatory flight phases where the gaze direction is kept largely constant. This behavioral strategy facilitates the processing of environmental information, because information about the distance of the animal to objects in the environment is only contained in the optic flow generated by translatory motion. However, motion detectors as are widespread in biological systems do not represent veridically the velocity of the optic flow vectors, but also reflect textural information about the environment. This characteristic has often been regarded as a limitation of a biological motion detection mechanism. In contrast, we conclude from analyses challenging insect movement detectors with image flow as generated during translatory locomotion through cluttered natural environments that this mechanism represents the contours of nearby objects. Contrast borders are a main carrier of functionally relevant object information in artificial and natural sceneries. The motion detection system thus segregates in a computationally parsimonious way the environment into behaviorally relevant nearby objects and-in many behavioral contexts-less relevant distant structures. Hence, by making use of an active flight and gaze strategy, insects are capable of performing extraordinarily well even with a computationally simple motion detection mechanism.
Collapse
Affiliation(s)
- Martin Egelhaaf
- Department of Neurobiology and Center of Excellence “Cognitive Interaction Technology” (CITEC), Bielefeld UniversityBielefeld, Germany
| | - Roland Kern
- Department of Neurobiology and Center of Excellence “Cognitive Interaction Technology” (CITEC), Bielefeld UniversityBielefeld, Germany
| | - Jens Peter Lindemann
- Department of Neurobiology and Center of Excellence “Cognitive Interaction Technology” (CITEC), Bielefeld UniversityBielefeld, Germany
| |
Collapse
|
34
|
Mertes M, Dittmar L, Egelhaaf M, Boeddeker N. Visual motion-sensitive neurons in the bumblebee brain convey information about landmarks during a navigational task. Front Behav Neurosci 2014; 8:335. [PMID: 25309374 PMCID: PMC4173878 DOI: 10.3389/fnbeh.2014.00335] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/07/2014] [Indexed: 11/13/2022] Open
Abstract
Bees use visual memories to find the spatial location of previously learnt food sites. Characteristic learning flights help acquiring these memories at newly discovered foraging locations where landmarks—salient objects in the vicinity of the goal location—can play an important role in guiding the animal's homing behavior. Although behavioral experiments have shown that bees can use a variety of visual cues to distinguish objects as landmarks, the question of how landmark features are encoded by the visual system is still open. Recently, it could be shown that motion cues are sufficient to allow bees localizing their goal using landmarks that can hardly be discriminated from the background texture. Here, we tested the hypothesis that motion sensitive neurons in the bee's visual pathway provide information about such landmarks during a learning flight and might, thus, play a role for goal localization. We tracked learning flights of free-flying bumblebees (Bombus terrestris) in an arena with distinct visual landmarks, reconstructed the visual input during these flights, and replayed ego-perspective movies to tethered bumblebees while recording the activity of direction-selective wide-field neurons in their optic lobe. By comparing neuronal responses during a typical learning flight and targeted modifications of landmark properties in this movie we demonstrate that these objects are indeed represented in the bee's visual motion pathway. We find that object-induced responses vary little with object texture, which is in agreement with behavioral evidence. These neurons thus convey information about landmark properties that are useful for view-based homing.
Collapse
Affiliation(s)
- Marcel Mertes
- Department of Neurobiology, Center of Excellence 'Cognitive Interaction Technology' (CITEC), Bielefeld University Bielefeld, Germany
| | - Laura Dittmar
- Department of Neurobiology, Center of Excellence 'Cognitive Interaction Technology' (CITEC), Bielefeld University Bielefeld, Germany
| | - Martin Egelhaaf
- Department of Neurobiology, Center of Excellence 'Cognitive Interaction Technology' (CITEC), Bielefeld University Bielefeld, Germany
| | - Norbert Boeddeker
- Department of Neurobiology, Center of Excellence 'Cognitive Interaction Technology' (CITEC), Bielefeld University Bielefeld, Germany
| |
Collapse
|
35
|
Ortega-Escobar J, Ruiz MA. Visual odometry in the wolf spider Lycosa tarantula (Araneae: Lycosidae). ACTA ACUST UNITED AC 2014; 217:395-401. [PMID: 24477612 DOI: 10.1242/jeb.091868] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The wolf spider Lycosa tarantula homes using path integration. The angular component of the displacement is measured using a polarized-light compass associated with the functioning of the anterior median eyes. However, how L. tarantula estimates the linear component of the displacement was not known prior to this investigation. The ability of L. tarantula to gauge the distance walked after being displaced from its burrow was investigated using experimental channels placed in an indoor setup. Firstly, we manipulated the perception of visual stimuli by covering all the spider's eyes. Secondly, we changed the optic flow supplied by a black-and-white grating (λ=2 cm) perceived either in the lateral or in the ventral field of view. Finally, the period of the lateral or ventral grating was changed from λ=2 cm to λ=1 cm. Our results indicate that visual information contributes to distance estimation because when the spider's eyes were covered, the spiders tended to search for the burrow at very variable distances. This visual information is created by the motion of the image as the spider walks, the motion in the lateral field of view being the most important. The preference of a lateral optic flow over the ventral flow can be explained by the difference in the resolution capacity of the posterior lateral eyes and the anterior lateral eyes.
Collapse
Affiliation(s)
- J Ortega-Escobar
- Faculty of Psychology, University Autónoma of Madrid, 28049-Madrid, Spain
| | | |
Collapse
|
36
|
Rodrigues PAP, Oliveira PS. Visual navigation in the Neotropical ant Odontomachus hastatus (Formicidae, Ponerinae), a predominantly nocturnal, canopy-dwelling predator of the Atlantic rainforest. Behav Processes 2014; 109 Pt A:48-57. [PMID: 24969268 DOI: 10.1016/j.beproc.2014.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 11/25/2022]
Abstract
The arboreal ant Odontomachus hastatus nests among roots of epiphytic bromeliads in the sandy forest at Cardoso Island (Brazil). Crepuscular and nocturnal foragers travel up to 8m to search for arthropod prey in the canopy, where silhouettes of leaves and branches potentially provide directional information. We investigated the relevance of visual cues (canopy, horizon patterns) during navigation in O. hastatus. Laboratory experiments using a captive ant colony and a round foraging arena revealed that an artificial canopy pattern above the ants and horizon visual marks are effective orientation cues for homing O. hastatus. On the other hand, foragers that were only given a tridimensional landmark (cylinder) or chemical marks were unable to home correctly. Navigation by visual cues in O. hastatus is in accordance with other diurnal arboreal ants. Nocturnal luminosity (moon, stars) is apparently sufficient to produce contrasting silhouettes from the canopy and surrounding vegetation, thus providing orientation cues. Contrary to the plain floor of the round arena, chemical cues may be important for marking bifurcated arboreal routes. This experimental demonstration of the use of visual cues by a predominantly nocturnal arboreal ant provides important information for comparative studies on the evolution of spatial orientation behavior in ants. "This article is part of a Special Issue entitled: Neotropical Behaviour".
Collapse
Affiliation(s)
- Pedro A P Rodrigues
- Graduate Program in Ecology, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil
| | - Paulo S Oliveira
- Departamento de Biologia Animal, C.P. 6109, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
37
|
Abstract
The problem sandhoppers face when they find themselves on the dry sand is to reach as quickly as possible the belt of moist sand near the water. In the present study, I ask whether, alongside many other orienting factors, sandhoppers use the optic flow they experience to maintain their bearing relative to the sea-land axis. Adult individuals of Talitrus saltator were released in a transparent Plexiglas bowl, horizontally placed between four walls with a pattern of vertical black and white stripes. The orientation of one pair of opposite walls was south-north, orthogonal to the sea-land axis of the home beach, whilst the second pair of walls was oriented east-west. The black and white striped pattern of opposite walls could be moved in pairs and in the same direction (speed=4.8 cm s(-1)). The results demonstrate that the optic flow sandhoppers experience when moving on the sea-land axis of their home beach influences their direction of travel and could help sandhoppers in maintaining a straight path to reach favourable ground by the shortest route.
Collapse
Affiliation(s)
- Alberto Ugolini
- Università di Firenze, Dipartimento di Biologia, Via Romana 17, 50125 Firenze, Italy
| |
Collapse
|
38
|
Way-finding in displaced clock-shifted bees proves bees use a cognitive map. Proc Natl Acad Sci U S A 2014; 111:8949-54. [PMID: 24889633 DOI: 10.1073/pnas.1408039111] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mammals navigate by means of a metric cognitive map. Insects, most notably bees and ants, are also impressive navigators. The question whether they, too, have a metric cognitive map is important to cognitive science and neuroscience. Experimentally captured and displaced bees often depart from the release site in the compass direction they were bent on before their capture, even though this no longer heads them toward their goal. When they discover their error, however, the bees set off more or less directly toward their goal. This ability to orient toward a goal from an arbitrary point in the familiar environment is evidence that they have an integrated metric map of the experienced environment. We report a test of an alternative hypothesis, which is that all the bees have in memory is a collection of snapshots that enable them to recognize different landmarks and, associated with each such snapshot, a sun-compass-referenced home vector derived from dead reckoning done before and after previous visits to the landmark. We show that a large shift in the sun-compass rapidly induced by general anesthesia does not alter the accuracy or speed of the homeward-oriented flight made after the bees discover the error in their initial postrelease flight. This result rules out the sun-referenced home-vector hypothesis, further strengthening the now extensive evidence for a metric cognitive map in bees.
Collapse
|
39
|
Multiple sources of celestial compass information in the Central Australian desert ant Melophorus bagoti. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:591-601. [DOI: 10.1007/s00359-014-0899-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/30/2014] [Accepted: 03/07/2014] [Indexed: 10/25/2022]
|
40
|
Harrison SJ, Kuznetsov N, Breheim S. Flexible kinesthetic distance perception: when do your arms tell you how far you have walked? J Mot Behav 2013; 45:239-47. [PMID: 23663188 DOI: 10.1080/00222895.2013.785925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Given the flexible organization of locomotion evidenced in the many ways the limbs can be coordinated, the authors explored the potentially correspondingly flexible organization of nonvisual (kinesthetic) distance perception. As kinesthetic distance perception is known to be affected by how the limbs are coordinated, the authors probed the potential perceptual contribution of the arms during locomotion by manipulating arm-leg coordination patterns in blind-walked distance-matching tasks. Whereas manipulation of arm-leg coordination for walking with free-swinging arms had no observable perceptual consequences, comparable manipulation for walking with hiking poles did affect distance matching. These results suggest that under conditions in which the arms act to propel the body (e.g., crawling or stair-climbing) a person's nonvisual sense of movement is conveyed in the coordinated actions of all four limbs.
Collapse
Affiliation(s)
- Steven J Harrison
- Department of Psychology, University of Cincinnati, Ohio 45221, USA.
| | | | | |
Collapse
|
41
|
|
42
|
Diard J, Bessière P, Berthoz A. Spatial Memory of Paths Using Circular Probability Distributions: Theoretical Properties, Navigation Strategies and Orientation Cue Combination. SPATIAL COGNITION AND COMPUTATION 2013. [DOI: 10.1080/13875868.2012.756490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Reynolds AM, Schultheiss P, Cheng K. Are Lévy flight patterns derived from the Weber–Fechner law in distance estimation? Behav Ecol Sociobiol 2013. [DOI: 10.1007/s00265-013-1549-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Grabowski LM, Bryson DM, Dyer FC, Pennock RT, Ofria C. A case study of the de novo evolution of a complex odometric behavior in digital organisms. PLoS One 2013; 8:e60466. [PMID: 23577113 PMCID: PMC3620120 DOI: 10.1371/journal.pone.0060466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/26/2013] [Indexed: 11/18/2022] Open
Abstract
Investigating the evolution of animal behavior is difficult. The fossil record leaves few clues that would allow us to recapitulate the path that evolution took to build a complex behavior, and the large population sizes and long time scales required prevent us from re-evolving such behaviors in a laboratory setting. We present results of a study in which digital organisms-self-replicating computer programs that are subject to mutations and selection-evolved in different environments that required information about past experience for fitness-enhancing behavioral decisions. One population evolved a mechanism for step-counting, a surprisingly complex odometric behavior that was only indirectly related to enhancing fitness. We examine in detail the operation of the evolved mechanism and the evolutionary transitions that produced this striking example of a complex behavior.
Collapse
Affiliation(s)
- Laura M Grabowski
- Department of Computer Science, University of Texas-Pan American, Edinburg, Texas, USA.
| | | | | | | | | |
Collapse
|
45
|
Chinea A, Korutcheva E. Intelligence and embodiment: A statistical mechanics approach. Neural Netw 2013; 40:52-72. [DOI: 10.1016/j.neunet.2013.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 01/11/2013] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
|
46
|
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP. Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action. Front Neural Circuits 2012; 6:108. [PMID: 23269913 PMCID: PMC3526811 DOI: 10.3389/fncir.2012.00108] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/03/2012] [Indexed: 11/30/2022] Open
Abstract
Insects such as flies or bees, with their miniature brains, are able to control highly aerobatic flight maneuvres and to solve spatial vision tasks, such as avoiding collisions with obstacles, landing on objects, or even localizing a previously learnt inconspicuous goal on the basis of environmental cues. With regard to solving such spatial tasks, these insects still outperform man-made autonomous flying systems. To accomplish their extraordinary performance, flies and bees have been shown by their characteristic behavioral actions to actively shape the dynamics of the image flow on their eyes ("optic flow"). The neural processing of information about the spatial layout of the environment is greatly facilitated by segregating the rotational from the translational optic flow component through a saccadic flight and gaze strategy. This active vision strategy thus enables the nervous system to solve apparently complex spatial vision tasks in a particularly efficient and parsimonious way. The key idea of this review is that biological agents, such as flies or bees, acquire at least part of their strength as autonomous systems through active interactions with their environment and not by simply processing passively gained information about the world. These agent-environment interactions lead to adaptive behavior in surroundings of a wide range of complexity. Animals with even tiny brains, such as insects, are capable of performing extraordinarily well in their behavioral contexts by making optimal use of the closed action-perception loop. Model simulations and robotic implementations show that the smart biological mechanisms of motion computation and visually-guided flight control might be helpful to find technical solutions, for example, when designing micro air vehicles carrying a miniaturized, low-weight on-board processor.
Collapse
Affiliation(s)
- Martin Egelhaaf
- Neurobiology and Centre of Excellence “Cognitive Interaction Technology”Bielefeld University, Germany
| | | | | | | | | |
Collapse
|
47
|
Krieger J, Grandy R, Drew MM, Erland S, Stensmyr MC, Harzsch S, Hansson BS. Giant robber crabs monitored from space: GPS-based telemetric studies on Christmas Island (Indian Ocean). PLoS One 2012; 7:e49809. [PMID: 23166774 PMCID: PMC3498180 DOI: 10.1371/journal.pone.0049809] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/15/2012] [Indexed: 11/18/2022] Open
Abstract
We investigated the navigational capabilities of the world's largest land-living arthropod, the giant robber crab Birgus latro (Anomura, Coenobitidae); this crab reaches 4 kg in weight and can reach an age of up to 60 years. Populations are distributed over small Indo-Pacific islands of the tropics, including Christmas Island (Indian Ocean). Although this species has served as a crustacean model to explore anatomical, physiological, and ecological aspects of terrestrial adaptations, few behavioral analyses of it exist. We used a GPS-based telemetric system to analyze movements of freely roaming robber crabs, the first large-scale study of any arthropod using GPS technology to monitor behavior. Although female robber crabs are known to migrate to the coast for breeding, no such observations have been recorded for male animals. In total, we equipped 55 male robber crabs with GPS tags, successfully recording more than 1,500 crab days of activity, and followed some individual animals for as long as three months. Besides site fidelity with short-distance excursions, our data reveal long-distance movements (several kilometers) between the coast and the inland rainforest. These movements are likely related to mating, saltwater drinking and foraging. The tracking patterns indicate that crabs form route memories. Furthermore, translocation experiments show that robber crabs are capable of homing over large distances. We discuss if the search behavior induced in these experiments suggests path integration as another important navigation strategy.
Collapse
Affiliation(s)
- Jakob Krieger
- Ernst-Moritz-Arndt-University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, Greifswald, Germany.
| | | | | | | | | | | | | |
Collapse
|
48
|
Dacke M, Byrne M, Smolka J, Warrant E, Baird E. Dung beetles ignore landmarks for straight-line orientation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 199:17-23. [PMID: 23076443 DOI: 10.1007/s00359-012-0764-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/11/2012] [Accepted: 09/30/2012] [Indexed: 11/25/2022]
Abstract
Upon locating a suitable dung pile, ball-rolling dung beetles shape a piece of dung into a ball and roll it away in a straight line. This guarantees that they will not return to the dung pile, where they risk having their ball stolen by other beetles. Dung beetles are known to use celestial compass cues such as the sun, the moon and the pattern of polarised light formed around these light sources to roll their balls of dung along straight paths. Here, we investigate whether terrestrial landmarks have any influence on straight-line orientation in dung beetles. We find that the removal or re-arrangement of landmarks has no effect on the beetle's orientation precision. Celestial compass cues dominate straight-line orientation in dung beetles so strongly that, under heavily overcast conditions or when prevented from seeing the sky, the beetles can no longer orient along straight paths. To our knowledge, this is the only animal with a visual compass system that ignores the extra orientation precision that landmarks can offer.
Collapse
Affiliation(s)
- Marie Dacke
- Department of Biology, Lund Vision Group, Lund University, Sölvegatan 35, 223 62 Lund, Sweden.
| | | | | | | | | |
Collapse
|