1
|
Íñiguez E, Sambolino A, Escánez Pérez A, Marrero Pérez J, Reis DB, Pimentel A, Weyn M, Fernandez M, Cordeiro N, Pérez Pérez JA, Dinis A, Rodríguez González C, Alves F. Intraspecific variation in the feeding habits of short-finned pilot whales based on blubber fatty acid profiles. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106974. [PMID: 39921225 DOI: 10.1016/j.marenvres.2025.106974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/10/2025]
Abstract
Understanding trophic interactions in deep-sea ecosystems is challenging and still largely unexplored. Here, fatty acid (FA) profiles were used as biochemical tracers to explore intraspecific feeding specialization in a deep-diving apex predator. The FA profiles of free-ranging short-finned pilot whale (Globicephala macrorhynchus) biopsies from two archipelagos (Canary Islands, n = 30; Madeira Island, n = 25) of the Macaronesia biogeographic region were determined to infer the dietary preferences, ecological adaptations, and population dynamics, considering geographic location, sex, and residency patterns (HIA: highly island-associated vs. "others": visitors or transients). Intraspecific variability (inferred through the representation of PERMANOVA analyses) was observed between HIA groups from the two archipelagos which exhibited distinct trophic niches. The "others" FA profiles largely overlapped with both groups, showing significant differences with HIA from the Canary Islands. This suggests that the "others" travel and forage across a broader area, likely encompassing these archipelagos. The differences between archipelagos were mainly attributed to a higher presence of the FA 20:1n-11 and 22:1n-11 in the animals from the Canary Islands, in contrast with a higher presence of 22:6n-3, 22:5n-3 and 20:5n-3 in the animals from Madeira. These findings suggest that short-finned pilot whales in Madeira may prefer a more pelagic diet, likely leveraging on nocturnal migrations of the Deep Scattering Layer and/or performing wider-ranging movements, while the animals in the Canary Islands may forage closer to the bottom and/or occupy a smaller core area. Overall, this study supports intraspecific feeding specialization by a deep-diving apex predator in two geographically related oceanic archipelagos.
Collapse
Affiliation(s)
- Eva Íñiguez
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research Technology and Innovation (ARDITI), Funchal, Madeira, Portugal; Faculty of Life Sciences, University of Madeira, Portugal.
| | - Annalisa Sambolino
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research Technology and Innovation (ARDITI), Funchal, Madeira, Portugal; Faculty of Life Sciences, University of Madeira, Portugal; LB3, Faculty of Exact Sciences and Engineering, University of Madeira, Portugal
| | - Alejandro Escánez Pérez
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research Technology and Innovation (ARDITI), Funchal, Madeira, Portugal; Department of Ecology and Animal Biology, University of Vigo, Spain; Tonina Association (Research and Dissemination of the Marine Environment), Tenerife, Canary Islands, Spain
| | - Jacobo Marrero Pérez
- Tonina Association (Research and Dissemination of the Marine Environment), Tenerife, Canary Islands, Spain
| | - Diana B Reis
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, Tenerife, Spain
| | - Atenary Pimentel
- Tonina Association (Research and Dissemination of the Marine Environment), Tenerife, Canary Islands, Spain
| | - Mieke Weyn
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research Technology and Innovation (ARDITI), Funchal, Madeira, Portugal; Faculty of Life Sciences, University of Madeira, Portugal; Department of Biology, University of Évora, Portugal
| | - Marc Fernandez
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research Technology and Innovation (ARDITI), Funchal, Madeira, Portugal; Faculty of Life Sciences, University of Madeira, Portugal
| | - Nereida Cordeiro
- LB3, Faculty of Exact Sciences and Engineering, University of Madeira, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - José A Pérez Pérez
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, Tenerife, Spain
| | - Ana Dinis
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research Technology and Innovation (ARDITI), Funchal, Madeira, Portugal; Faculty of Life Sciences, University of Madeira, Portugal
| | | | - Filipe Alves
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research Technology and Innovation (ARDITI), Funchal, Madeira, Portugal; Faculty of Life Sciences, University of Madeira, Portugal
| |
Collapse
|
2
|
Adamczak SK, McHuron EA, Christiansen F, Dunkin R, McMahon CR, Noren S, Pirotta E, Rosen D, Sumich J, Costa DP. Growth in marine mammals: a review of growth patterns, composition and energy investment. CONSERVATION PHYSIOLOGY 2023; 11:coad035. [PMID: 37492466 PMCID: PMC10364341 DOI: 10.1093/conphys/coad035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 04/01/2023] [Accepted: 06/05/2023] [Indexed: 07/27/2023]
Abstract
Growth of structural mass and energy reserves influences individual survival, reproductive success, population and species life history. Metrics of structural growth and energy storage of individuals are often used to assess population health and reproductive potential, which can inform conservation. However, the energetic costs of tissue deposition for structural growth and energy stores and their prioritization within bioenergetic budgets are poorly documented. This is particularly true across marine mammal species as resources are accumulated at sea, limiting the ability to measure energy allocation and prioritization. We reviewed the literature on marine mammal growth to summarize growth patterns, explore their tissue compositions, assess the energetic costs of depositing these tissues and explore the tradeoffs associated with growth. Generally, marine mammals exhibit logarithmic growth. This means that the energetic costs related to growth and tissue deposition are high for early postnatal animals, but small compared to the total energy budget as animals get older. Growth patterns can also change in response to resource availability, habitat and other energy demands, such that they can serve as an indicator of individual and population health. Composition of tissues remained consistent with respect to protein and water content across species; however, there was a high degree of variability in the lipid content of both muscle (0.1-74.3%) and blubber (0.4-97.9%) due to the use of lipids as energy storage. We found that relatively few well-studied species dominate the literature, leaving data gaps for entire taxa, such as beaked whales. The purpose of this review was to identify such gaps, to inform future research priorities and to improve our understanding of how marine mammals grow and the associated energetic costs.
Collapse
Affiliation(s)
- Stephanie K Adamczak
- Corresponding author: Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz CA, USA.
| | - Elizabeth A McHuron
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, 3737 Brooklyn Ave NE, Seattle, WA 98105, USA
| | - Fredrik Christiansen
- Department of Ecoscience – Marine Mammal Research, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Robin Dunkin
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, 130 McAlister Way, Santa Cruz, CA 95064, USA
| | - Clive R McMahon
- Sydney Institute of Marine Science, 9 Chowder Bay Road, Mosman, NSW 2088, Australia
| | - Shawn Noren
- Institute of Marine Science, University of California Santa Cruz, Santa Cruz CA, USA
| | - Enrico Pirotta
- Centre for Research into Ecology and Environmental Modelling, University of St. Andrews, St. Andrews, KY16 9LZ, UK
| | - David Rosen
- Marine Mammal Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, 2022 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - James Sumich
- Fisheries, Wildlife, and Conservation Science Department, Oregon State University, Hatfield Marine Science Center, 2030 SE Marine Science Driver, Newport, Oregon 97365, USA
| | - Daniel P Costa
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, 130 McAlister Way, Santa Cruz, CA 95064, USA
- Institute of Marine Science, University of California Santa Cruz, Santa Cruz CA, USA
| |
Collapse
|
3
|
Dannenberger D, Möller R, Westphal L, Moritz T, Dähne M, Grunow B. Fatty Acid Composition in Blubber, Liver, and Muscle of Marine Mammals in the Southern Baltic Sea. Animals (Basel) 2020; 10:ani10091509. [PMID: 32859039 PMCID: PMC7552294 DOI: 10.3390/ani10091509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/07/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Marine mammals play an important role in marine ecosystems. However, as they are less accessible for research, relatively little is known about their physiology compared to terrestrial mammals. The stranding scheme of the Deutsches Meeresmuseum (Stralsund, Germany) continuously collects strandings and by-catches of marine mammals in the Baltic Sea in Mecklenburg-Western Pomerania. In this project, the fatty acid composition of the liver, skeletal muscles, and blubber of harbour porpoises and grey seals from the southern Baltic Sea was investigated for the first time. In the liver and blubber tissue, the values and concentrations measured for both species are consistent with studies on other marine mammals. In a direct comparison of the focus species, the skeletal muscles of harbour porpoises exhibit higher concentrations of fatty acids than those of grey seals. In the future, these studies will be extended to the entire Baltic Sea, as we suspect that fatty acid composition can be used to determine the nutritional status of the animals and thus will allow for an objective assessment of the body condition. Abstract To date, only limited results on the fatty composition in different tissues of the top predators in the Baltic Sea are available. In the current study, tissue samples of blubber, skeletal muscle, and liver from 8 harbour porpoise (Phocoena phocoena) and 17 grey seals (Halichoerus grypus) in the Baltic Sea off Mecklenburg-Western Pomerania were included in the investigation. While the total fatty acid content in liver and blubber tissue revealed no differences between both species, the total fatty acid content of muscle tissue was significantly differentand showed higher concentrations in harbour porpoise muscle compared with grey seals. The most abundant fatty acids in the blubber of grey seals and harbour porpoises (18:1cis-9, 16:1cis-9, 16:0 and 22:6n-3) were present in similar quantities and ratios to each other as known from other marine top predators. If future studies can show that differences in tissue fatty acid content are caused by variation in the nutritional status, and this may lead to the development of a more objective assessment of body condition in seals and porpoises recovered via stranding schemes.
Collapse
Affiliation(s)
- Dirk Dannenberger
- Leibniz Institute for Farm Animal Biology, Institute of Muscle Biology and Growth, 18196 Dummerstorf, Germany;
| | - Ramona Möller
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Faculty of Life Sciences, Humboldt-University Berlin, 10099 Berlin, Germany;
| | - Linda Westphal
- Deutsches Meeresmuseum, Katharinenberg 14-20, 18439 Stralsund, Germany; (L.W.); (T.M.); (M.D.)
| | - Timo Moritz
- Deutsches Meeresmuseum, Katharinenberg 14-20, 18439 Stralsund, Germany; (L.W.); (T.M.); (M.D.)
- Institute of Zoology and Evolutionary Biology, Friedrich-Schiller-University Jena, Erbertstr. 1, 07743 Jena, Germany
| | - Michael Dähne
- Deutsches Meeresmuseum, Katharinenberg 14-20, 18439 Stralsund, Germany; (L.W.); (T.M.); (M.D.)
| | - Bianka Grunow
- Leibniz Institute for Farm Animal Biology, Institute of Muscle Biology and Growth, 18196 Dummerstorf, Germany;
- Correspondence:
| |
Collapse
|
4
|
Penso-Dolfin L, Haerty W, Hindle A, Di Palma F. microRNA profiling in the Weddell seal suggests novel regulatory mechanisms contributing to diving adaptation. BMC Genomics 2020; 21:303. [PMID: 32293246 PMCID: PMC7158035 DOI: 10.1186/s12864-020-6675-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022] Open
Abstract
Background The Weddell Seal (Leptonychotes weddelli) represents a remarkable example of adaptation to diving among marine mammals. This species is capable of diving > 900 m deep and remaining underwater for more than 60 min. A number of key physiological specializations have been identified, including the low levels of aerobic, lipid-based metabolism under hypoxia, significant increase in oxygen storage in blood and muscle; high blood volume and extreme cardiovascular control. These adaptations have been linked to increased abundance of key proteins, suggesting an important, yet still understudied role for gene reprogramming. In this study, we investigate the possibility that post-transcriptional gene regulation by microRNAs (miRNAs) has contributed to the adaptive evolution of diving capacities in the Weddell Seal. Results Using small RNA data across 4 tissues (brain, heart, muscle and plasma), in 3 biological replicates, we generate the first miRNA annotation in this species, consisting of 559 high confidence, manually curated miRNA loci. Evolutionary analyses of miRNA gain and loss highlight a high number of Weddell seal specific miRNAs. Four hundred sixteen miRNAs were differentially expressed (DE) among tissues, whereas 80 miRNAs were differentially expressed (DE) across all tissues between pups and adults and age differences for specific tissues were detected in 188 miRNAs. mRNA targets of these altered miRNAs identify possible protective mechanisms in individual tissues, particularly relevant to hypoxia tolerance, anti-apoptotic pathways, and nitric oxide signal transduction. Novel, lineage-specific miRNAs associated with developmental changes target genes with roles in angiogenesis and vasoregulatory signaling. Conclusions Altogether, we provide an overview of miRNA composition and evolution in the Weddell seal, and the first insights into their possible role in the specialization to diving.
Collapse
Affiliation(s)
- Luca Penso-Dolfin
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ, UK. .,German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ, UK
| | - Allyson Hindle
- Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA.,University of Nevada Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV, 89154, USA
| | - Federica Di Palma
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ, UK
| |
Collapse
|
5
|
Nabi G, Robeck TR, Hao Y, Wang D. Hematologic and Biochemical Reference Interval Development and the Effect of Age, Sex, Season, and Location on Hematologic Analyte Concentrations in Critically Endangered Yangtze Finless Porpoise ( Neophocaena asiaeorientalis ssp. asiaeorientalis). Front Physiol 2019; 10:792. [PMID: 31354505 PMCID: PMC6637261 DOI: 10.3389/fphys.2019.00792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/05/2019] [Indexed: 11/13/2022] Open
Abstract
In this study, references intervals for 49 clinicopathological parameters were established for the critically endangered Yangtze finless porpoise (YFP) (Neophocaena phocaenoides asiaorientalis). Both from the wild (Poyang Lake) and seminatural (Tian-E-Zhou Oxbow) populations, individual blood samples from 188 animals were collected from 2009 to 2017 and from 2002 to 2015, respectively. For reference interval determination, we used a non-parametric bootstrap-based procedure to determine the 95th percentiles and the associated 90% confidence interval for each analyte. Our results indicated a need to partition the analyte concentrations by sex, age group, or pregnancy; however, we did not find a need to partition results by location. We then used a linear mixed model to determine if evidence existed for mean differences between location with sex and season as covariates and age group as the clustered random variable on mean hematological parameters in the YFP. We found that 88% of the analytes were significantly different between locations. Within the covariates, sex and season showed 31 and 69% significant difference in mean distributions, respectively. Additionally, age group provided a significant source of variation in 25% of the analytes. In summary, our finding suggests that analytes should be grouped according to sex, age, and reproductive status (non-pregnant and non-lactating, pregnant and lactating). Furthermore, we have provided the first set of reference intervals for 49 clinicopathological parameters that could provide guidelines for the initial evaluation of individuals during health assessments.
Collapse
Affiliation(s)
- Ghulam Nabi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Todd R. Robeck
- SeaWorld Parks & Entertainment, Orlando, FL, United States
| | - Yujiang Hao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ding Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
6
|
Fowler M, Champagne C, Crocker D. Adiposity and fat metabolism during combined fasting and lactation in elephant seals. J Exp Biol 2018. [DOI: 10.1242/jeb.161554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
ABSTRACT
Animals that fast depend on mobilizing lipid stores to power metabolism. Northern elephant seals (Mirounga angustirostris) incorporate extended fasting into several life-history stages: development, molting, breeding and lactation. The physiological processes enabling fasting and lactation are important in the context of the ecology and life history of elephant seals. The rare combination of fasting and lactation depends on the efficient mobilization of lipid from adipose stores and its direction into milk production. The mother elephant seal must ration her finite body stores to power maintenance metabolism, as well as to produce large quantities of lipid and protein-rich milk. Lipid from body stores must first be mobilized; the action of lipolytic enzymes and hormones stimulate the release of fatty acids into the bloodstream. Biochemical processes affect the release of specific fatty acids in a predictable manner, and the pattern of release from lipid stores is closely reflected in the fatty acid content of the milk lipid. The content of the milk may have substantial developmental, thermoregulatory and metabolic consequences for the pup. The lactation and developmental patterns found in elephant seals are similar in some respects to those of other mammals; however, even within the limited number of mammals that simultaneously fast and lactate, there are important differences in the mechanisms that regulate lipid mobilization and milk lipid content. Although ungulates and humans do not fast during lactation, there are interesting comparisons to these groups regarding lipid mobilization and milk lipid content patterns.
Collapse
|
7
|
Moore CD, Fahlman A, Crocker DE, Robbins KA, Trumble SJ. The degradation of proteins in pinniped skeletal muscle: viability of post-mortem tissue in physiological research. CONSERVATION PHYSIOLOGY 2015; 3:cov019. [PMID: 27293704 PMCID: PMC4778441 DOI: 10.1093/conphys/cov019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/21/2015] [Accepted: 04/11/2015] [Indexed: 06/06/2023]
Abstract
As marine divers, pinnipeds have a high capacity for exercise at depth while holding their breath. With finite access to oxygen, these species need to be capable of extended aerobic exercise and conservation of energy. Pinnipeds must deal with common physiological hurdles, such as hypoxia, exhaustion and acidosis, that are common to all exercising mammals. The physiological mechanisms in marine mammals used for managing oxygen and carbon dioxide have sparked much research, but access to animals and tissues is difficult and requires permits. Deceased animals that are either bycaught or stranded provide one potential source for tissues, but the validity of biochemical data from post-mortem samples has not been rigorously assessed. Tissues collected from stranded diving mammals may be a crucial source to add to our limited knowledge on the physiology of some of these animals and important to the conservation and management of these species. We aim to determine the reliability of biochemical assays derived from post-mortem tissue and to promote the immediate sampling of stranded animals for the purpose of physiological research. In this study, we mapped the temporal degradation of muscle enzymes from biopsied Northern elephant seals (Mirounga angustirostris) and highlight recommendations for storage protocols for the best preservation of tissue. We also compared the enzymatic activity of different muscle groups (pectoral and latissimus dorsi) in relation to locomotion and measured the effects of four freeze-thaw cycles on muscle tissue enzyme function. Results indicate that enzymatic activity fluctuates greatly, especially with varying storage temperature, storage time, species and muscle group being assayed. In contrast, proteins, such as myoglobin, remain relatively continuous in their increase at 4°C for 48 h. Stranded animals can be a valuable source of biochemical data, but enzyme assays should be used only with great caution in post-mortem tissues.
Collapse
Affiliation(s)
- Colby D. Moore
- Department of Biology, Baylor University, One Bear Place, Waco, TX 76706, USA
| | - Andreas Fahlman
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Daniel E. Crocker
- Department of Biology, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA 94928, USA
| | - Kathleen A. Robbins
- Department of Biology, Baylor University, One Bear Place, Waco, TX 76706, USA
| | - Stephen J. Trumble
- Department of Biology, Baylor University, One Bear Place, Waco, TX 76706, USA
| |
Collapse
|
8
|
Pearson LE, Liwanag HEM, Hammill MO, Burns JM. To each its own: Thermoregulatory strategy varies among neonatal polar phocids. Comp Biochem Physiol A Mol Integr Physiol 2014; 178:59-67. [PMID: 25151642 DOI: 10.1016/j.cbpa.2014.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/09/2014] [Accepted: 08/13/2014] [Indexed: 11/18/2022]
Abstract
Cold environmental conditions and small body size promote heat loss and may create thermoregulatory challenges for marine mammals born in polar regions. However, among polar-born phocid seal species there are variations in physical attributes and environmental conditions at birth, allowing for an interesting contrast in thermoregulatory strategy. We compared thermoregulatory strategies through morphometrics, sculp attributes (conductivity and resistance), nonshivering thermogenesis (NST via uncoupling protein 1; UCP1), and muscle thermogenesis (via enzyme activity) in neonatal harp (Pagophilus groenlandicus), hooded (Cystophora cristata), and Weddell seals (Leptonychotes weddellii). Harp seals are the smallest at birth (9.8±0.7 kg), rely on lanugo (82.49±3.70% of thermal resistance), and are capable of NST through expression of UCP1 in brown adipose tissue (BAT). In contrast, hooded seal neonates (26.8±1.3 kg) have 2.06±0.23 cm of blubber, accounting for 38.19±6.07% of their thermal resistance. They are not capable of NST, as UCP1 is not expressed. The large Weddell seal neonates (31.5±4.9 kg) rely on lanugo (89.85±1.25% of thermal resistance) like harp seals, but no evidence of BAT was found. Muscle enzyme activity was highest in Weddell seal neonates, suggesting that they rely primarily on muscle thermogenesis. Similar total thermal resistance, combined with marked differences in thermogenic capacity of NST and ST among species, strongly supports that thermoregulatory strategy in neonatal phocids is more closely tied to pups' surface area to volume ratio (SA:V) and potential for early water immersion rather than mass and ambient environmental conditions.
Collapse
MESH Headings
- Adipose Tissue, Brown/growth & development
- Adipose Tissue, Brown/physiology
- Adiposity
- Animals
- Animals, Newborn/growth & development
- Animals, Newborn/physiology
- Antarctic Regions
- Arctic Regions
- Birth Weight
- Body Temperature Regulation
- Canada
- Female
- Greenland
- Hair/growth & development
- Hair/physiology
- Ion Channels/metabolism
- Male
- Mitochondrial Proteins/metabolism
- Models, Biological
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/physiology
- Seals, Earless/growth & development
- Seals, Earless/physiology
- Skin/growth & development
- Skin Physiological Phenomena
- Species Specificity
- Subcutaneous Fat/growth & development
- Subcutaneous Fat/physiology
- Thermal Conductivity
- Uncoupling Protein 1
Collapse
Affiliation(s)
- Linnea E Pearson
- School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 905N. Koyukuk Dr., Fairbanks, AK 99775-7220, USA; Department of Biology, University of Alaska Anchorage, 3101 Science Cir., Anchorage, AK 99508, USA.
| | - Heather E M Liwanag
- Department of Biology, Adelphi University, 1 South Ave., Garden City, NY 11530, USA
| | - Mike O Hammill
- Department of Fisheries and Oceans, Maurice Lamontagne Institute, 850 route de la Mer, Mont-Joli, Quebec H5H 3Z4, Canada
| | - Jennifer M Burns
- Department of Biology, University of Alaska Anchorage, 3101 Science Cir., Anchorage, AK 99508, USA
| |
Collapse
|
9
|
Moore CD, Crocker DE, Fahlman A, Moore MJ, Willoughby DS, Robbins KA, Kanatous SB, Trumble SJ. Ontogenetic changes in skeletal muscle fiber type, fiber diameter and myoglobin concentration in the Northern elephant seal (Mirounga angustirostris). Front Physiol 2014; 5:217. [PMID: 24959151 PMCID: PMC4050301 DOI: 10.3389/fphys.2014.00217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 05/20/2014] [Indexed: 11/13/2022] Open
Abstract
Northern elephant seals (Mirounga angustirostris) (NES) are known to be deep, long-duration divers and to sustain long-repeated patterns of breath-hold, or apnea. Some phocid dives remain within the bounds of aerobic metabolism, accompanied by physiological responses inducing lung compression, bradycardia, and peripheral vasoconstriction. Current data suggest an absence of type IIb fibers in pinniped locomotory musculature. To date, no fiber type data exist for NES, a consummate deep diver. In this study, NES were biopsied in the wild. Ontogenetic changes in skeletal muscle were revealed through succinate dehydrogenase (SDH) based fiber typing. Results indicated a predominance of uniformly shaped, large type I fibers and elevated myoglobin (Mb) concentrations in the longissimus dorsi (LD) muscle of adults. No type II muscle fibers were detected in any adult sampled. This was in contrast to the juvenile animals that demonstrated type II myosin in Western Blot analysis, indicative of an ontogenetic change in skeletal muscle with maturation. These data support previous hypotheses that the absence of type II fibers indicates reliance on aerobic metabolism during dives, as well as a depressed metabolic rate and low energy locomotion. We also suggest that the lack of type IIb fibers (adults) may provide a protection against ischemia reperfusion (IR) injury in vasoconstricted peripheral skeletal muscle.
Collapse
Affiliation(s)
- Colby D Moore
- Department of Biology, Baylor University Waco, TX, USA
| | - Daniel E Crocker
- Department of Biology, Sonoma State University Rohnert Park, CA, USA
| | - Andreas Fahlman
- Department of Life Sciences, Texas A&M University Corpus Christi, TX, USA
| | - Michael J Moore
- Department of Biology, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| | - Darryn S Willoughby
- Department of Health, Human Performance and Recreation, Baylor University Waco, TX, USA
| | | | - Shane B Kanatous
- Department of Biology, College of Natural Sciences, Colorado State University Fort Collins, CO, USA
| | | |
Collapse
|
10
|
Chicco AJ, Le CH, Schlater AE, Nguyen AD, Kaye SD, Beals JW, Scalzo RL, Bell C, Gnaiger E, Costa DP, Crocker DE, Kanatous SB. High fatty acid oxidation capacity and phosphorylation control despite elevated leak and reduced respiratory capacity in northern elephant seal muscle mitochondria. J Exp Biol 2014; 217:2947-55. [DOI: 10.1242/jeb.105916] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Northern elephant seals (Mirounga angustirostris) are extreme, hypoxia-adapted endotherms that rely largely on aerobic metabolism during extended breath-hold dives in near freezing water temperatures. While many aspects of their physiology have been characterized to account for these remarkable feats, the contribution of adaptations in the aerobic powerhouses of muscle cells, the mitochondria, are unknown. In the present study, the ontogeny and comparative physiology of elephant seal muscle mitochondrial respiratory function was investigated under a variety of substrate conditions and respiratory states. Intact mitochondrial networks were studied by high-resolution respirometry in saponin-permeabilized fiber bundles obtained from primary swimming muscles of pup, juvenile, and adult seals, and compared to fibers from adult human vastus laterais. Results indicate that seal muscle maintains a high capacity for fatty acid oxidation despite a progressive decrease in total respiratory capacity as animals mature from pups to adults. This is explained by a progressive increase in phosphorylation control and fatty acid utilization over pyruvate in adult seals compared to humans and seal pups. Interestingly, despite higher indices of oxidative phosphorylation efficiency, juvenile and adult seals also exhibit a ~50% greater capacity for respiratory leak compared to humans and pups. The ontogeny of this phenotype suggests it is an adaptation of muscle to the prolonged breath-hold exercise and highly variable ambient temperatures experienced by mature elephant seals. These studies highlight the remarkable plasticity of mammalian mitochondria to meet the demands for both efficient ATP production and endothermy in a cold, oxygen-limited environment.
Collapse
|
11
|
Castellini M. Life under water: physiological adaptations to diving and living at sea. Compr Physiol 2013; 2:1889-919. [PMID: 23723028 DOI: 10.1002/cphy.c110013] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review covers the field of diving physiology by following a chronological approach and focusing heavily on marine mammals. Because the study of modern diving physiology can be traced almost entirely to the work of Laurence Irving in the 1930s, this particular field of physiology is different than most in that it did not derive from multiple laboratories working at many locations or on different aspects of a similar problem. Because most of the physiology principles still used today were first formulated by Irving, it is important to the study of this field that the sequence of thought is examined as a progression of theory. The review covers the field in roughly decadal blocks and traces ideas as they were first suggested, tested, modified and in some cases, abandoned. Because diving physiology has also been extremely dependent on new technologies used in the development of diving recorders, a chronological approach fits well with advances in electronics and mechanical innovation. There are many species that dive underwater as part of their natural behavior, but it is mainly the marine mammals (seals, sea lions, and whales) that demonstrate both long duration and dives to great depth. There have been many studies on other diving species including birds, snakes, small aquatic mammals, and humans. This work examines these other diving species as appropriate and a listing of reviews and relevant literature on these groups is included at the end.
Collapse
Affiliation(s)
- Michael Castellini
- School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska.
| |
Collapse
|
12
|
Fowler MA, Debier C, Mignolet E, Linard C, Crocker DE, Costa DP. Fatty acid mobilization and comparison to milk fatty acid content in northern elephant seals. J Comp Physiol B 2013; 184:125-35. [DOI: 10.1007/s00360-013-0787-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 09/08/2013] [Accepted: 09/30/2013] [Indexed: 11/30/2022]
|
13
|
Noren DP, Budge SM, Iverson SJ, Goebel ME, Costa DP, Williams TM. Characterization of blubber fatty acid signatures in northern elephant seals (Mirounga angustirostris) over the postweaning fast. J Comp Physiol B 2013; 183:1065-74. [PMID: 23925408 DOI: 10.1007/s00360-013-0773-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 06/24/2013] [Accepted: 07/10/2013] [Indexed: 11/28/2022]
Abstract
Phocids routinely fast for extended periods. During these fasts, energetic requirements are met primarily through the catabolism of blubber lipid. To assess whether fatty acid (FA) composition changes during the postweaning fast in northern elephant seals, blubber biopsies were acquired longitudinally from 43 pups at 2.3 ± 1.5 and 55.2 ± 3.7 days postweaning in 1999 and 2000. At weaning, short-chain monounsaturated FA (SC-MUFA, ≤18 carbons) dominated the blubber while saturated FA (SFA) were found in the next highest proportion. The major FA (all ≥1 % by mass) comprised approximately 91 % of total blubber FA. In both years, 18:1n-9 and 16:0 were the most prevalent FA. Major FA mobilized during the fast consisted of polyunsaturated FA (PUFA), SFA, and SC-MUFA. Long-chain MUFA (>18 carbons) tended to be conserved. The fractional mobilization value of 20:5n-3 was the highest, resulting in significant reductions of this PUFA. Although concentrations of some blubber FA changed significantly during the postweaning fast, the general FA signature of blubber was similar at weaning and near the end of the fast. Changes in some FA differed across years. For example, the concentration of 20:4n-6, a minor PUFA, was significantly reduced in 1999 but not in 2000. FA mobilization patterns in northern elephant seal pups are somewhat similar to those reported previously for other fasting phocids and terrestrial mammals, though there are some notable differences. Differences in FA mobilization patterns across mammalian species may be related to differences in diets, geographical distribution, environmental factors, physiological adaptations, and life history stage.
Collapse
Affiliation(s)
- Dawn P Noren
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA,
| | | | | | | | | | | |
Collapse
|
14
|
Trumble SJ, Robinson EM, Noren SR, Usenko S, Davis J, Kanatous SB. Assessment of legacy and emerging persistent organic pollutants in Weddell seal tissue (Leptonychotes weddellii) near McMurdo Sound, Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 439:275-83. [PMID: 23085468 DOI: 10.1016/j.scitotenv.2012.09.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/16/2012] [Accepted: 09/06/2012] [Indexed: 05/22/2023]
Abstract
Muscle samples were collected from pup, juvenile and adult Weddell seals (Leptonychotes weddellii) near McMurdo Sound, Antarctica during the austral summer of 2006. Blubber samples were collected from juvenile and adult seals. Samples were analyzed for emerging and legacy persistent organic pollutants (POPs) including current and historic-use organochlorine pesticides, polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Of the 41 target analytes, 28 contaminants were recovered from the Weddell seal blubber, in this order of prevalence: p,p'-DDE, p,p'-DDT, trans-nonachlor, mirex, cis-nonachlor, PCB 153, PCB 138, dieldrin, heptachlor epoxide, nonachlor III, PCB 187, oxychlordane, cis-chlordane, PCB 118, PBDE 47, PCB 156, PCB 149, PCB 180, PCB 101, PCB 170, PCB 105, o,p'-DDT, PCB 99, trans-chlordane, PCB 157, PCB 167, PCB 189, and PCB 114. Fewer POPs were found in the muscle samples, but were similar in the order of prevalence to that of the blubber: p,p'-DDE, o,p'-DDT, trans-nonachlor, nonachlor III, oxychlordane, p,p'-DDT, dieldrin, mirex, cis-nonachlor, PCB 138, and PCB 105. Besides differences in toxicant concentrations reported between the muscle and blubber, we found differences in POP levels according to age class and suggest that differences in blubber storage and/or mobilization of lipids result in age class differences in POPs. To our knowledge, such ontogenetic associations are novel. Importantly, data from this study suggest that p,p'-DDT is becoming less prevalent temporally, resulting in an increased proportion of its metabolite p,p'-DDE in the tissues of this top predator. In addition, this study is among the first to identify a PBDE congener in Weddell seals near the McMurdo Station. This may provide evidence of increased PBDE transport and encroachment in Antarctic wildlife.
Collapse
|
15
|
Trumble SJ, Kanatous SB. Fatty Acid use in Diving Mammals: More than Merely Fuel. Front Physiol 2012; 3:184. [PMID: 22707938 PMCID: PMC3374346 DOI: 10.3389/fphys.2012.00184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/18/2012] [Indexed: 01/08/2023] Open
Abstract
Diving mammals, are under extreme pressure to conserve oxygen as well as produce adequate energy through aerobic pathways during breath-hold diving. Typically a major source of energy, lipids participate in structural and regulatory roles and have an important influence on the physiological functions of an organism. At the stoichiometric level, the metabolism of polyunsaturated fatty acids (PUFAs) utilizes less oxygen than metabolizing either monounsaturated fatty acids or saturated fatty acids (SFAs) and yields fewer ATP per same length fatty acid. However, there is evidence that indicates the cellular metabolic rate is directly correlated to the lipid composition of the membranes such that the greater the PUFA concentration in the membranes the greater the metabolic rate. These findings appear to be incompatible with diving mammals that ingest and metabolize high levels of unsaturated fatty acids while relying on stored oxygen. Growing evidence from birds to mammals including recent evidence in Weddell seals also indicates that at the whole animal level the utilization of PUFAs to fuel their metabolism actually conserves oxygen. In this paper, we make an initial attempt to ascertain the beneficial adaptations or limitations of lipids constituents and potential trade-offs in diving mammals. We discuss how changes in Antarctic climate are predicted to have numerous different environmental effects; such potential shifts in the availability of certain prey species or even changes in the lipid composition (increased SFA) of numerous fish species with increasing water temperatures and how this may impact the diving ability of Weddell seals.
Collapse
|
16
|
De Miranda MA, Schlater AE, Green TL, Kanatous SB. In the face of hypoxia: myoglobin increases in response to hypoxic conditions and lipid supplementation in cultured Weddell seal skeletal muscle cells. ACTA ACUST UNITED AC 2012; 215:806-13. [PMID: 22323203 DOI: 10.1242/jeb.060681] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A key cellular adaptation to diving in Weddell seals is enhanced myoglobin concentrations in their skeletal muscles, which serve to store oxygen to sustain a lipid-based aerobic metabolism. The aim of this study was to determine whether seal muscle cells are inherently adapted to possess the unique skeletal muscle adaptations to diving seen in the whole animal. We hypothesized that the seal skeletal muscle cells would have enhanced concentrations of myoglobin de novo that would be greater than those from a C(2)C(12) skeletal muscle cell line and reflect the concentrations of myoglobin observed in previous studies. In addition we hypothesized that the seal cells would respond to environmental hypoxia similarly to the C(2)C(12) cells in that citrate synthase activity and myoglobin would remain the same or decrease under hypoxia and lactate dehydrogenase activity would increase under hypoxia as previously reported. We further hypothesized that β-hydroxyacyl CoA dehydrogenase activity would increase in response to the increasing amounts of lipid supplemented to the culture medium. Our results show that myoglobin significantly increases in response to environmental hypoxia and lipids in the Weddell seal cells, while appearing similar metabolically to the C(2)C(12) cells. The results of this study suggest the regulation of myoglobin expression is fundamentally different in Weddell seal skeletal muscle cells when compared with a terrestrial mammalian cell line in that hypoxia and lipids initially prime the skeletal muscles for enhanced myoglobin expression. However, the cells need a secondary stimulus to further increase myoglobin to levels seen in the whole animal.
Collapse
|
17
|
D'souza AM, Beaudry JL, Szigiato AA, Trumble SJ, Snook LA, Bonen A, Giacca A, Riddell MC. Consumption of a high-fat diet rapidly exacerbates the development of fatty liver disease that occurs with chronically elevated glucocorticoids. Am J Physiol Gastrointest Liver Physiol 2012; 302:G850-63. [PMID: 22268100 DOI: 10.1152/ajpgi.00378.2011] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronically elevated glucocorticoids (GCs) and a high-fat diet (HFD) independently induce insulin resistance, abdominal obesity, and nonalcoholic fatty liver disease (NAFLD). GCs have been linked to increased food intake, particularly energy-dense "comfort" foods. Thus we examined the synergistic actions of GCs and HFD on hepatic disease development in a new rodent model of chronically elevated GCs. Six-week-old male Sprague-Dawley rats received exogenous GCs, via subcutaneous implantation of four 100-mg corticosterone (Cort) pellets, to elevate basal GC levels for 16 days (n = 8-10 per group). Another subset of animals received wax pellets (placebo) to serve as controls. Animals from each group were randomly assigned to receive a 60% HFD or a standard high-carbohydrate (13% fat and 60% carbohydrate) diet. Cort + HFD resulted in central obesity, despite a relative weight loss, a 4-fold increase in hepatic lipid content, hepatic fibrosis, and a 2.8-fold increase in plasma alanine aminotransferase levels compared with placebo + chow controls. Hepatic injury developed independent of inflammation, as plasma haptoglobin levels were reduced with Cort treatment. Insulin resistance and hepatic steatosis occurred with Cort alone; these outcomes were further exacerbated by the HFD in the presence of elevated Cort. In addition to fatty liver, the Cort + HFD group also developed severe insulin resistance, hyperinsulinemia, hyperglycemia, and hypertriglyceridemia, which were not evident with HFD or Cort alone. Thus a HFD dramatically exacerbates the development of NAFLD and characteristics of the metabolic syndrome in conditions of chronically elevated Cort.
Collapse
Affiliation(s)
- Anna M D'souza
- Muscle Health Research Center and Physical Activity and Chronic Disease Unit, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|