1
|
Arias AA, Azizi E. Modulation of limb mechanics in alligators moving across varying grades. J Exp Biol 2023; 226:jeb246025. [PMID: 37930362 DOI: 10.1242/jeb.246025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Graded substrates require legged animals to modulate their limb mechanics to meet locomotor demands. Previous work has elucidated strategies used by cursorial animals with upright limb posture, but it remains unclear how sprawling species such as alligators transition between grades. We measured individual limb forces and 3D kinematics as alligators walked steadily across level, 15 deg incline and 15 deg decline conditions. We compared our results with the literature to determine how limb posture alters strategies for managing the energetic variation that accompanies shifts in grade. We found that juvenile alligators maintain spatiotemporal characteristics of gait and locomotor speed while selectively modulating craniocaudal impulses (relative to level) when transitioning between grades. Alligators seem to accomplish this using a variety of kinematic strategies, but consistently sprawl both limb pairs outside of the parasagittal plane during decline walking. This latter result suggests alligators and other sprawling species may use movements outside of the parasagittal plane as an axis of variation to modulate limb mechanics when transitioning between graded substrates. We conclude that limb mechanics during graded locomotion are fairly predictable across quadrupedal species, regardless of body plan and limb posture, with hindlimbs playing a more propulsive role and forelimbs functioning to dissipate energy. Future work will elucidate how shifts in muscle properties or function underlie such shifts in limb kinematics.
Collapse
Affiliation(s)
- Adrien A Arias
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| | - Emanuel Azizi
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Ozone K, Minegishi Y, Oka Y, Sato M, Kanemura N. The Effects of Downhill Running and Maturation on Histological and Morphological Properties of Tendon and Enthesis in Mice. BIOLOGY 2023; 12:biology12030456. [PMID: 36979148 PMCID: PMC10045940 DOI: 10.3390/biology12030456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
To date, it remains unclear how overuse affects the tendons and entheses at different stages of maturation. Therefore, we evaluated histological and morphological changes in the tendons and entheses in adolescent (4-week-old) and adult mice (8-week-old) by performing flat-land and downhill running exercises. The mice were divided into the Sedentary, High Flat (flat-land high-speed running; concentric-contraction exercise), Low Down (downhill low-speed running; eccentric-contraction exercise), and High Down (downhill high-speed running; eccentric-contraction exercise) groups. Histological changes and inflammatory factor expressions were compared in the entheses and tendons after 4 weeks of exercise. Downhill, but not flat-land high-speed running, induced muscle–tendon complex hypertrophy in both adolescent and adult mice. Histological enthesis changes were induced in both groups during downhill running but were less pronounced in adult mice. Conversely, no significant cell aggregation or fiber orientation changes were observed in the tendon, but increased inflammatory factors were observed in both groups, with significantly higher expression in the tendons of adult mice. Downhill running induced histological and morphological enthesis changes and inflammatory factor increase in the tendons, regardless of running speed variations. These results may help elucidate the pathogenesis of enthesopathy and tendinopathy, which have different pathophysiologies despite having the same pathogenetic factors.
Collapse
Affiliation(s)
- Kaichi Ozone
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Koshigaya 343-8540, Japan; (K.O.)
- Department of Rehabilitation, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Yuki Minegishi
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Koshigaya 343-8540, Japan; (K.O.)
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Yuichiro Oka
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Koshigaya 343-8540, Japan; (K.O.)
| | - Michiaki Sato
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Koshigaya 343-8540, Japan; (K.O.)
| | - Naohiko Kanemura
- Department of Physical Therapy, Health and Social Services, Saitama Prefectural University, Koshigaya 343-8540, Japan
- Correspondence: ; Tel.: +81-48-971-0500
| |
Collapse
|
3
|
Tian W, Zhang J, Zhou K, Wang Z, Dang R, Jiang L, Wang J, Cong Q. The Limb Kinetics of Goat Walking on the Slope with Different Angles. Biomimetics (Basel) 2022; 7:biomimetics7040220. [PMID: 36546920 PMCID: PMC9776361 DOI: 10.3390/biomimetics7040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
The study aimed to assess the gait adjustment techniques of limbs on different slopes and investigate the relationship between forelimb and hindlimb kinetics and the center of mass (COM) during the uphill movement of a specific Boer goat using a pressure-sensitive walkway (PSW). During the uphill and downhill movements at a comfortable walking speed, we measured the ground reaction force (GRF) of the forelimbs and hindlimbs on the slope, the change in the included angle of the propulsive force direction of the forelimbs and hindlimbs, and the impulse relationship between GRF and propulsive force. According to the study, since the forelimbs of the goat were nearer the COM, they were primarily adjusted during the movement on the slope. By lowering the initial included angle of the propulsive force and the angle variation range, the forelimbs and hindlimbs could walk steadily. The forelimbs and hindlimbs exhibited completely different adjustment strategies during uphill and downhill movements. In particular, the forelimbs performed braking and the hindlimbs performed driving. In addition, we discovered that the goat altered its adjustment strategy when climbing the steep slope. All findings of this study indicate the need to understand the gait adjustment mode of the Boer goat during movement on the slope to thoroughly comprehend the driving strategy of quadrupeds with the ability to walk on specialized terrains.
Collapse
Affiliation(s)
- Weijun Tian
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Jinhua Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Kuiyue Zhou
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Zhirui Wang
- North-Vehicle Research, Fengtai District, Beijing 100072, China
| | - Ruina Dang
- North-Vehicle Research, Fengtai District, Beijing 100072, China
| | - Lei Jiang
- North-Vehicle Research, Fengtai District, Beijing 100072, China
| | - Ju Wang
- Pujiang Agricultural and Rural Bureau, Chengdu 322200, China
| | - Qian Cong
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
- Correspondence:
| |
Collapse
|
4
|
Weihmann T. The Smooth Transition From Many-Legged to Bipedal Locomotion—Gradual Leg Force Reduction and its Impact on Total Ground Reaction Forces, Body Dynamics and Gait Transitions. Front Bioeng Biotechnol 2022; 9:769684. [PMID: 35186911 PMCID: PMC8855104 DOI: 10.3389/fbioe.2021.769684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Most terrestrial animals move with a specific number of propulsive legs, which differs between clades. The reasons for these differences are often unknown and rarely queried, despite the underlying mechanisms being indispensable for understanding the evolution of multilegged locomotor systems in the animal kingdom and the development of swiftly moving robots. Moreover, when speeding up, a range of species change their number of propulsive legs. The reasons for this behaviour have proven equally elusive. In animals and robots, the number of propulsive legs also has a decisive impact on the movement dynamics of the centre of mass. Here, I use the leg force interference model to elucidate these issues by introducing gradually declining ground reaction forces in locomotor apparatuses with varying numbers of leg pairs in a first numeric approach dealing with these measures’ impact on locomotion dynamics. The effects caused by the examined changes in ground reaction forces and timing thereof follow a continuum. However, the transition from quadrupedal to a bipedal locomotor system deviates from those between multilegged systems with different numbers of leg pairs. Only in quadrupeds do reduced ground reaction forces beneath one leg pair result in increased reliability of vertical body oscillations and therefore increased energy efficiency and dynamic stability of locomotion.
Collapse
|
5
|
Pechette Markley A, Shoben AB, Kieves NR. Internet Survey of Risk Factors Associated With Training and Competition in Dogs Competing in Agility Competitions. Front Vet Sci 2022; 8:791617. [PMID: 35059455 PMCID: PMC8764449 DOI: 10.3389/fvets.2021.791617] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To describe risk factors associated with training and competition in relation to frequency and severity of injuries experienced by agility dogs. Procedures: An internet-based survey collected data on competition level variables and training level variables. The primary outcome was history of any injury and a secondary outcome considered history of severe injury (injury lasting > 3 months). Logistic regression was used to estimate associations and final models were obtained via backward selection to identify the strongest associations within variables. Results: There were 4,197 dogs included in this analysis. Injury was reported for 1,737 (41.4%) dogs and severe injury was reported for 629 (15.0%). In the model with competition level factors, jumping 4” (OR: 1.50) or 2–4” (OR: 1.31) over shoulder height compared to jumping 0–2” lower and competing at national events was associated with increased injury risk, while competing 6+ times on rubber matting was associated with lower risk (OR: 0.62). Training level variables associated with injury risk were age starting jump, teeter, and weave training, with the highest risk observed for dogs starting jump training between 3 and 18 months but starting weave and teeter training after 18 months of age. Conclusion and Clinical Relevance: Many variables thought to be associated with injury risk were not significant in the final model. Starting jump training at an earlier age was associated with greater risk of injury relative to starting after 18 months. It is possible that the high impact of jump training before skeletal maturity may increase the risk of injuries or musculoskeletal conditions. The increased risk of injury in dogs that jump 2–4, or 4+ inches higher than shoulder height may be due to increased biomechanical forces during takeoff and landing. Faster dogs may be at higher risk of injury; handlers planning competition around big events or competing at the national level are likely to have faster dogs, and may be less likely to compete on rubber matting. These data provide valuable current insight into the possible effects that training and competition variables may have on injury risk in agility dogs.
Collapse
Affiliation(s)
| | - Abigail B Shoben
- Division of Biostatistics, The Ohio State University College of Public Health, Columbus, OH, United States
| | - Nina R Kieves
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, United States
| |
Collapse
|
6
|
Goto R, Yamada K, Nakano Y. Differences in the vertical components of substrate reaction forces between two modes of infant carrying in Japanese macaques (
Macaca fuscata fuscata
). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021. [DOI: 10.1002/ajpa.24436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ryosuke Goto
- Faculty of Health Sciences Gunma Pas University Takasaki Japan
| | - Kazunori Yamada
- Laboratory of Ethology, Graduate school of Human Sciences Osaka University Suita Japan
| | - Yoshihiko Nakano
- Laboratory of Biological Anthropology, Graduate School of Human Sciences Osaka University Suita Japan
| |
Collapse
|
7
|
Ozone K, Oka Y, Minegishi Y, Kano T, Kokubun T, Murata K, Kanemura N. Effect of Various Types of Muscle Contraction with Different Running Conditions on Mouse Humerus Morphology. Life (Basel) 2021; 11:life11040284. [PMID: 33801768 PMCID: PMC8065967 DOI: 10.3390/life11040284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 12/01/2022] Open
Abstract
How various types of muscle contraction during exercises affect bone formation remains unclear. This study aimed to determine how exercises with different muscle contraction types affect bone morphology. In total, 20 mice were used and divided into four groups: Control, Level, Down Slow, and Down. Different types of muscle contraction were induced by changing the running angle of the treadmill. After the intervention, micro-computed tomography (Micro-CT), tartrate-resistant acid phosphatase/alkaline phosphatase (ALP) staining, and immunohistochemical staining were used to analyze the humerus head, tendon-to-bone attachment, and humerus diaphyseal region. Micro-CT found that the volume ratio of the humeral head, the volume of the tendon-to-bone attachment region, and the area of the humeral diaphyseal region increased in the Down group. However, no difference was detected in bone morphology between the Level and Down Slow groups. In addition, histology showed activation of ALP in the subarticular subchondral region in the Down Slow and Down groups and the fibrocartilage region in the tendon-to-bone attachment. Moreover, Osterix increased predominantly in the Down Slow and Down groups.Overall bone morphological changes in the humerus occur only when overuse is added to EC-dominant activity. Furthermore, different type of muscle contractile activities might promote bone formation in a site-specific manner.
Collapse
Affiliation(s)
- Kaichi Ozone
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, Saitama 343-8540, Japan; (K.O.); (Y.O.); (Y.M.); (T.K.)
- Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Yuichiro Oka
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, Saitama 343-8540, Japan; (K.O.); (Y.O.); (Y.M.); (T.K.)
| | - Yuki Minegishi
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, Saitama 343-8540, Japan; (K.O.); (Y.O.); (Y.M.); (T.K.)
- Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Takuma Kano
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, Saitama 343-8540, Japan; (K.O.); (Y.O.); (Y.M.); (T.K.)
| | - Takanori Kokubun
- Department of Health and Social Services, Saitama Prefectural University, Saitama 343-8540, Japan; (T.K.); (K.M.)
| | - Kenji Murata
- Department of Health and Social Services, Saitama Prefectural University, Saitama 343-8540, Japan; (T.K.); (K.M.)
| | - Naohiko Kanemura
- Department of Health and Social Services, Saitama Prefectural University, Saitama 343-8540, Japan; (T.K.); (K.M.)
- Correspondence: ; Tel.: +81-48-971-0500
| |
Collapse
|
8
|
Bradley SS, Howe E, Bent LR, Vickaryous MK. Cutaneous tactile sensitivity before and after tail loss and regeneration in the leopard gecko (Eublepharis macularius). J Exp Biol 2021; 224:jeb.234054. [DOI: 10.1242/jeb.234054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/20/2021] [Indexed: 12/23/2022]
Abstract
ABSTRACT
Amongst tetrapods, mechanoreceptors on the feet establish a sense of body placement and help to facilitate posture and biomechanics. Mechanoreceptors are necessary for stabilizing the body while navigating through changing terrains or responding to a sudden change in body mass and orientation. Lizards such as the leopard gecko (Eublepharis macularius) employ autotomy – a voluntary detachment of a portion of the tail – to escape predation. Tail autotomy represents a natural form of significant (and localized) mass loss. Semmes–Weinstein monofilaments were used to investigate the effect of tail autotomy (and subsequent tail regeneration) on tactile sensitivity of each appendage of the leopard gecko. Prior to autotomy, we identified site-specific differences in tactile sensitivity across the ventral surfaces of the hindlimbs, forelimbs and tail. Repeated monofilament testing of both control (tail-intact) and tail-loss geckos had a significant sensitization effect (i.e. decrease in tactile threshold, maintained over time) in all regions of interest except the palmar surfaces of the forelimbs in post-autotomy geckos, compared with baseline testing. Although the regenerated tail is not an exact replica of the original, tactile sensitivity is shown to be effectively restored at this site. Re-establishment of tactile sensitivity on the ventral surface of the regenerate tail points towards a (continued) role in predator detection.
Collapse
Affiliation(s)
- Stefanie S. Bradley
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, N1G2W1, Canada
| | - Erika Howe
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, N1G2W1, Canada
| | - Leah R. Bent
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, N1G2W1, Canada
| | - Matthew K. Vickaryous
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, N1G2W1, Canada
| |
Collapse
|
9
|
Li G, Zhang R, Han D, Pang H, Yu G, Cao Q, Wang C, Kong L, Chengjin W, Dong W, Li T, Li J. Forelimb joints contribute to locomotor performance in reindeer ( Rangifer tarandus) by maintaining stability and storing energy. PeerJ 2020; 8:e10278. [PMID: 33240627 PMCID: PMC7666566 DOI: 10.7717/peerj.10278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
Reindeer (Rangifer tarandus) have lengthy seasonal migrations on land and their feet possess excellent locomotor characteristics that can adapt to complex terrains. In this study, the kinematics and vertical ground reaction force (GRF) of reindeer forelimb joints (interphalangeal joint b, metacarpophalangeal joint c, and wrist joint d) under walk, trot 1, and trot 2 were measured using a motion tracking system and Footscan pressure plates. Significant differences among different locomotor activities were observed in the joint angles, but not in changes of the joint angles (αb, αc, αd) during the stance phase. Peak vertical GRF increased as locomotor speed increased. Net joint moment, power, and work at the forelimb joints were calculated via inverse dynamics. The peak joint moment and net joint power related to the vertical GRF increased as locomotor speed increased. The feet absorbed and generated more energy at the joints. During different locomotor activities, the contribution of work of the forelimbs changed with both gait and speed. In the stance phase, the metacarpophalangeal joint absorbed more energy than the other two joints while trotting and thus performed better in elastic energy storage. The joint angles changed very little (∼5°) from 0 to 75% of the stance phase, which reflected the stability of reindeer wrist joints. Compared to typical ungulates, reindeer toe joints are more stable and the stability and energy storage of forelimb joints contribute to locomotor performance in reindeer.
Collapse
Affiliation(s)
- Guoyu Li
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, People's Republic of China
| | - Rui Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, People's Republic of China
| | - Dianlei Han
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, People's Republic of China
| | - Hao Pang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, People's Republic of China
| | - Guolong Yu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, People's Republic of China
| | - Qingqiu Cao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, People's Republic of China
| | - Chen Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, People's Republic of China
| | - Lingxi Kong
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, People's Republic of China
| | - Wang Chengjin
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, People's Republic of China
| | - Wenchao Dong
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, People's Republic of China
| | - Tao Li
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, People's Republic of China
| | - Jianqiao Li
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
10
|
Portier H, Benaitreau D, Pallu S. Does Physical Exercise Always Improve Bone Quality in Rats? Life (Basel) 2020; 10:life10100217. [PMID: 32977460 PMCID: PMC7598192 DOI: 10.3390/life10100217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
For decades, the osteogenic effect from different physical activities on bone in rodents remained uncertain. This literature review presents for the first time the effects on five exercise models (treadmill running, wheel running, swimming, resistance training and vibration modes) in three different experimental rat groups (males, females, osteopenic) on bone quality. The bone parameters presented are bone mineral density, micro-architectural and mechanical properties, and osteoblast/osteocyte and osteoclast parameters. This review shows that physical activities have a positive effect (65% of the results) on bone status, but we clearly observed a difference amongst the different protocols. Even if treadmill running is the most used protocol, the resistance training constitutes the first exercise model in term of osteogenic effects (87% of the whole results obtained on this model). The less osteogenic model is the vibration mode procedure (31%). It clearly appears that the gender plays a role on the bone response to swimming and wheel running exercises. Besides, we did not observe negative results in the osteopenic population with impact training, wheel running and vibration activities. Moreover, about osteoblast/osteocyte parameters, we conclude that high impact and resistance exercise (such jumps and tower climbing) seems to increase bone formation more than running or aerobic exercise. Among the different protocols, literature has shown that the treadmill running procedure mainly induces osteogenic effects on the viability of the osteocyte lineage in both males and females or ovariectomized rats; running in voluntary wheels contributes to a negative effect on bone metabolism in older male models; whole-body vertical vibration is not an osteogenic exercise in female and ovariectomized rats; whereas swimming provides controversial results in female models. For osteoclast parameters only, running in a voluntary wheel for old males, the treadmill running program at high intensity in ovariectomized rats, and the swimming program in a specific ovariectomy condition have detrimental consequences.
Collapse
Affiliation(s)
- Hugues Portier
- Laboratoire de Biologie Bioingénierie et Bioimagerie Ostéo-Articulaire (B3OA), Université Paris, UMR CNRS 7052, INSERM U1273, 10 Av de Verdun, 75010 Paris, France;
- Collegium Science & Technique, 2 allée du château, Université d’Orléans. 45100 Orléans, France;
- Correspondence: ; Tel.: +33-782-309-433
| | - Delphine Benaitreau
- Collegium Science & Technique, 2 allée du château, Université d’Orléans. 45100 Orléans, France;
| | - Stéphane Pallu
- Laboratoire de Biologie Bioingénierie et Bioimagerie Ostéo-Articulaire (B3OA), Université Paris, UMR CNRS 7052, INSERM U1273, 10 Av de Verdun, 75010 Paris, France;
- Collegium Science & Technique, 2 allée du château, Université d’Orléans. 45100 Orléans, France;
| |
Collapse
|
11
|
Foster AD, Butcher MT, Smith GA, Russo GA, Thalluri R, Young JW. Ontogeny of effective mechanical advantage in eastern cottontail rabbits ( Sylvilagus floridanus). ACTA ACUST UNITED AC 2019; 222:jeb.205237. [PMID: 31350298 DOI: 10.1242/jeb.205237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/23/2019] [Indexed: 11/20/2022]
Abstract
Juvenile animals must survive in the same environment as adults despite smaller sizes, immature musculoskeletal tissues, general ecological naïveté and other limits of performance. Developmental changes in muscle leverage could constitute one mechanism to promote increased performance in juveniles despite ontogenetic limitations. We tested this hypothesis using a holistic dataset on growth and locomotor development in wild eastern cottontail rabbits (Sylvilagus floridanus) to examine ontogenetic changes in hindlimb muscle effective mechanical advantage (EMA). EMA is a dimensionless index of muscle leverage, equal to the quotient of average muscle lever length and the load arm length of the ground reaction force (GRF), effectively representing the magnitude of output force arising from a given muscle force. We found that EMA at the hip and ankle joints, as well as overall hindlimb EMA, significantly declined across ontogeny in S. floridanus, whereas EMA at the knee joint remained unchanged. Ontogenetic decreases in EMA were due to isometric scaling of muscle lever arm lengths alongside positive ontogenetic allometry of GRF load arm lengths - which in turn was primarily related to positive allometry of hindlimb segment lengths. Greater EMA limits the estimated volume of hindlimb extensor muscle that has to be activated in young rabbits, likely mitigating the energetic cost of locomotion and saving metabolic resources for other physiological functions, such as growth and tissue differentiation. An additional examination of limb growth allometry across a diverse sample of mammalian taxa suggests that ontogenetic decreases in limb joint EMA may be a common mammalian trend.
Collapse
Affiliation(s)
- Adam D Foster
- Department of Anatomy, School of Osteopathic Medicine, Campbell University, Buies Creek, NC 27506, USA
| | - Michael T Butcher
- Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555, USA
| | - Gregory A Smith
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH 44720, USA
| | - Gabrielle A Russo
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-436, USA
| | - Rajaa Thalluri
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| |
Collapse
|
12
|
Greve L, Dyson S. What can we learn from visual and objective assessment of non‐lame and lame horses in straight lines, on the lunge and ridden? EQUINE VET EDUC 2018. [DOI: 10.1111/eve.13016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- L. Greve
- Centre for Equine Studies Animal Health Trust Newmarket Suffolk UK
| | - S. Dyson
- Centre for Equine Studies Animal Health Trust Newmarket Suffolk UK
| |
Collapse
|
13
|
Jagnandan K, Higham TE. How rapid changes in body mass affect the locomotion of terrestrial vertebrates: ecology, evolution and biomechanics of a natural perturbation. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Kevin Jagnandan
- Life Sciences Department, San Diego City College, San Diego, CA, USA
| | - Timothy E Higham
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| |
Collapse
|
14
|
Granatosky MC, Fitzsimons A, Zeininger A, Schmitt D. Mechanisms for the functional differentiation of the propulsive and braking roles of the forelimbs and hindlimbs during quadrupedal walking in primates and felines. ACTA ACUST UNITED AC 2018; 221:jeb.162917. [PMID: 29170258 DOI: 10.1242/jeb.162917] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/20/2017] [Indexed: 11/20/2022]
Abstract
During quadrupedal walking in most animals, the forelimbs play a net braking role, whereas the hindlimbs are net propulsive. However, the mechanism by which this differentiation occurs remains unclear. Here, we test two models to explain this pattern using primates and felines: (1) the horizontal strut effect (in which limbs are modeled as independent struts), and (2) the linked strut model (in which limbs are modeled as linked struts with a center of mass in between). Video recordings were used to determine point of contact, timing of mid-stance, and limb protraction/retraction duration. Single-limb forces were used to calculate contact time, impulses and the proportion of the stride at which the braking-to-propulsive transition (BP) occurred for each limb. We found no association between the occurrence of the BP and mid-stance, little influence of protraction and retraction duration on the braking-propulsive function of a limb, and a causative relationship between vertical force distribution between limbs and the patterns of horizontal forces. These findings reject the horizontal strut effect, and provide some support for the linked strut model, although predictions were not perfectly matched. We suggest that the position of the center of mass relative to limb contact points is a very important, but not the only, factor driving functional differentiation of the braking and propulsive roles of the limbs in quadrupeds. It was also found that primates have greater differences in horizontal impulse between their limbs compared with felines, a pattern that may reflect a fundamental arboreal adaptation in primates.
Collapse
Affiliation(s)
- Michael C Granatosky
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Aidan Fitzsimons
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Angel Zeininger
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Daniel Schmitt
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
15
|
Jagnandan K, Higham TE. Neuromuscular control of locomotion is altered by tail autotomy in geckos. J Exp Biol 2018; 221:jeb.179564. [DOI: 10.1242/jeb.179564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/16/2018] [Indexed: 11/20/2022]
Abstract
Animal locomotion is driven by underlying axial and appendicular musculature. In order for locomotion to be effective, these muscles must be able to rapidly respond to changes in environmental and physiological demands. Although virtually unstudied, muscles must also respond to morphological changes, such as those that occur with tail autotomy in lizards. Tail autotomy in leopard geckos (Eublepharis macularius) results in a 25% loss of caudal mass and significant kinematic alterations to maintain stability. To elucidate how motor control of the locomotor muscles is modulated with these shifts, we used electromyography (EMG) to quantify patterns of in vivo muscle activity in fore- and hind limb muscles before and after autotomy. Forelimb muscles (biceps brachii and triceps brachii) exhibited no changes in motor recruitment, consistent with unaltered kinematics after autotomy. Amplitude of activity of propulsive muscles of the hind limbs (caudofemoralis and gastrocnemius) was significantly reduced and coincided with decreases in the propulsive phases of femur retraction and ankle extension, respectively. The puboischiotibialis did not exhibit these changes, despite significant reductions in femur depression and knee angle, suggesting that reduction in mass and vertical ground-reaction force by autotomy allows for the maintenance of a more sprawled and stable posture without increasing motor recruitment of the support muscles. These results highlight the significant neuromuscular shifts that occur to accommodate dramatic changes in body size and mass distribution, and illuminate the utility of tail autotomy as a system for studying the neuromuscular control of locomotion.
Collapse
Affiliation(s)
- Kevin Jagnandan
- Life Sciences Department, San Diego City College, 1313 Park Boulevard, San Diego, CA 92101, USA
| | - Timothy E. Higham
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
16
|
Kopec NL, Williams JM, Tabor GF. Kinematic analysis of the thoracic limb of healthy dogs during descending stair and ramp exercises. Am J Vet Res 2018; 79:33-41. [DOI: 10.2460/ajvr.79.1.33] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Frigon A. The neural control of interlimb coordination during mammalian locomotion. J Neurophysiol 2017; 117:2224-2241. [PMID: 28298308 DOI: 10.1152/jn.00978.2016] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/02/2017] [Accepted: 03/15/2017] [Indexed: 01/06/2023] Open
Abstract
Neuronal networks within the spinal cord directly control rhythmic movements of the arms/forelimbs and legs/hindlimbs during locomotion in mammals. For an effective locomotion, these networks must be flexibly coordinated to allow for various gait patterns and independent use of the arms/forelimbs. This coordination can be accomplished by mechanisms intrinsic to the spinal cord, somatosensory feedback from the limbs, and various supraspinal pathways. Incomplete spinal cord injury disrupts some of the pathways and structures involved in interlimb coordination, often leading to a disruption in the coordination between the arms/forelimbs and legs/hindlimbs in animal models and in humans. However, experimental spinal lesions in animal models to uncover the mechanisms coordinating the limbs have limitations due to compensatory mechanisms and strategies, redundant systems of control, and plasticity within remaining circuits. The purpose of this review is to provide a general overview and critical discussion of experimental studies that have investigated the neural mechanisms involved in coordinating the arms/forelimbs and legs/hindlimbs during mammalian locomotion.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
18
|
The magnitude of muscular activation of four canine forelimb muscles in dogs performing two agility-specific tasks. BMC Vet Res 2017; 13:68. [PMID: 28270140 PMCID: PMC5341356 DOI: 10.1186/s12917-017-0985-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/22/2017] [Indexed: 12/22/2022] Open
Abstract
Background The purpose of this study was to measure the muscular activation in four forelimb muscles while dogs performed agility tasks (i.e., jumping and A-frame) and to provide insight into potential relationships between level of muscular activation and risk of injury. Muscle activation in eight healthy, client-owned agility dogs was measured using ultrasound-guided fine-wire electromyography of four specific forelimb muscles: Biceps Brachii, Supraspinatus, Infraspinatus, and Triceps Brachii – Long Head, while dogs performed a two jump sequence and while dogs ascended and descended an A-frame obstacle at two different competition heights. Results The peak muscle activations during these agility tasks were between 1.7 and 10.6 fold greater than walking. Jumping required higher levels of muscle activation compared to ascending and descending an A-frame, for all muscles of interest. There was no significant difference in muscle activation between the two A-frame heights. Conclusions Compared to walking, all of the muscles were activated at high levels during the agility tasks and our findings indicate that jumping is an especially demanding activity for dogs in agility. This information is broadly relevant to understanding the pathophysiology of forelimb injuries related to canine athletic activity.
Collapse
|
19
|
Birn-Jeffery AV, Higham TE. Geckos decouple fore- and hind limb kinematics in response to changes in incline. Front Zool 2016; 13:11. [PMID: 26941828 PMCID: PMC4776376 DOI: 10.1186/s12983-016-0144-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 02/25/2016] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Terrestrial animals regularly move up and down surfaces in their natural habitat, and the impacts of moving uphill on locomotion are commonly examined. However, if an animal goes up, it must go down. Many morphological features enhance locomotion on inclined surfaces, including adhesive systems among geckos. Despite this, it is not known whether the employment of the adhesive system results in altered locomotor kinematics due to the stereotyped motions that are necessary to engage and disengage the system. Using a generalist pad-bearing gecko, Chondrodactylus bibronii, we determined whether changes in slope impact body and limb kinematics. RESULTS Despite the change in demand, geckos did not change speed on any incline. This constant speed was achieved by adjusting stride frequency, step length and swing time. Hind limb, but not forelimb, kinematics were altered on steep downhill conditions, thus resulting in significant de-coupling of the limbs. CONCLUSIONS Unlike other animals on non-level conditions, the geckos in our study only minimally alter the movements of distal limb elements, which is likely due to the constraints associated with the need for rapid attachment and detachment of the adhesive system. This suggests that geckos may experience a trade-off between successful adhesion and the ability to respond dynamically to locomotor perturbations.
Collapse
Affiliation(s)
- Aleksandra V. Birn-Jeffery
- />Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK
- />Department of Biology, University of California, 900 University Avenue, Riverside, CA 92521 USA
| | - Timothy E. Higham
- />Department of Biology, University of California, 900 University Avenue, Riverside, CA 92521 USA
| |
Collapse
|
20
|
Birn-Jeffery AV, Higham TE. Geckos significantly alter foot orientation to facilitate adhesion during downhill locomotion. Biol Lett 2015; 10:20140456. [PMID: 25319816 DOI: 10.1098/rsbl.2014.0456] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Geckos employ their adhesive system when moving up an incline, but the directionality of the system may limit function on downhill surfaces. Here, we use a generalist gecko to test whether limb modulation occurs on downhill slopes to allow geckos to take advantage of their adhesive system. We examined three-dimensional limb kinematics for geckos moving up and down a 45° slope. Remarkably, the hind limbs were rotated posteriorly on declines, resulting in digit III of the pes facing a more posterior direction (opposite to the direction of travel). No significant changes in limb orientation were found in any other condition. This pes rotation leads to a dramatic shift in foot function that facilitates the use of the adhesive system as a brake/stabilizer during downhill locomotion and, although this rotation is not unique to geckos, it is significant for the deployment of adhesion. Adhesion is not just advantageous for uphill locomotion but can be employed to help deal with the effects of gravity during downhill locomotion, highlighting the incredible multi-functionality of this key innovation.
Collapse
Affiliation(s)
| | - Timothy E Higham
- Department of Biology, University of California, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
21
|
Wang Z, Dai Z, Li W, Ji A, Wang W. How do the substrate reaction forces acting on a gecko's limbs respond to inclines? Naturwissenschaften 2015; 102:1259. [PMID: 25645733 DOI: 10.1007/s00114-015-1259-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/09/2015] [Accepted: 01/15/2015] [Indexed: 11/27/2022]
Abstract
Locomotion is an essential character of animals, and excellent moving ability results from the delicate sensing of the substrate reaction forces (SRF) acting on body and modulating the behavior to adapt the motion requirement. The inclined substrates present in habitats pose a number of functional challenges to locomotion. In order to effectively overcome these challenges, climbing geckos execute complex and accurate movements that involve both the front and hind limbs. Few studies have examined gecko's SRF on steeper inclines of greater than 90°. To reveal how the SRFs acting on the front and hind limbs respond to angle incline changes, we obtained detailed measurements of the three-dimensional SRFs acting on the individual limbs of the tokay gecko while it climbed on an inclined angle of 0-180°. The fore-aft forces acting on the front and hind limbs show opposite trends on inverted inclines of greater than 120°, indicating propulsion mechanism changes in response to inclines. When the incline angles change, the forces exerted in the normal and fore-aft directions by gecko's front and hind limbs are reassigned to take full advantage of limbs' different roles in overcoming resistance and in propelling locomotion. This also ensures that weight acts in the angle range between the forces generated by the front and hind limbs. The change in the distribution of SRF with a change in the incline angle is directly linked to the favorable trade-off between locomotive maneuverability and stability.
Collapse
Affiliation(s)
- Zhouyi Wang
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, Jiangsu, 210016, China
| | | | | | | | | |
Collapse
|
22
|
Birn-Jeffery AV, Higham TE. The Scaling of Uphill and Downhill Locomotion in Legged Animals. Integr Comp Biol 2014; 54:1159-72. [DOI: 10.1093/icb/icu015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Zhang Z, Yu H, Yang J, Wang L, Yang L. How cat lands: insights into contribution of the forelimbs and hindlimbs to attenuating impact force. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0328-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Arnold AS, Lee DV, Biewener AA. Modulation of joint moments and work in the goat hindlimb with locomotor speed and surface grade. ACTA ACUST UNITED AC 2013; 216:2201-12. [PMID: 23470662 DOI: 10.1242/jeb.082495] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Goats and other quadrupeds must modulate the work output of their muscles to accommodate the changing mechanical demands associated with locomotion in their natural environments. This study examined which hindlimb joint moments goats use to generate and absorb mechanical energy on level and sloped surfaces over a range of locomotor speeds. Ground reaction forces and the three-dimensional locations of joint markers were recorded as goats walked, trotted and galloped over 0, +15 and -15 deg sloped surfaces. Net joint moments, powers and work were estimated at the goats' hip, knee, ankle and metatarsophalangeal joints throughout the stance phase via inverse dynamics calculations. Differences in locomotor speed on the level, inclined and declined surfaces were characterized and accounted for by fitting regression equations to the joint moment, power and work data plotted versus non-dimensionalized speed. During level locomotion, the net work generated by moments at each of the hindlimb joints was small (less than 0.1 J kg(-1) body mass) and did not vary substantially with gait or locomotor speed. During uphill running, by contrast, mechanical energy was generated at the hip, knee and ankle, and the net work at each of these joints increased dramatically with speed (P<0.05). The greatest increases in positive joint work occurred at the hip and ankle. During downhill running, mechanical energy was decreased in two main ways: goats generated larger knee extension moments in the first half of stance, absorbing energy as the knee flexed, and goats generated smaller ankle extension moments in the second half of stance, delivering less energy. The goats' hip extension moment in mid-stance was also diminished, contributing to the decrease in energy. These analyses offer new insight into quadrupedal locomotion, clarifying how the moments generated by hindlimb muscles modulate mechanical energy at different locomotor speeds and grades, as needed to accommodate the demands of variable terrain.
Collapse
Affiliation(s)
- Allison S Arnold
- Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, Bedford, MA 01730, USA.
| | | | | |
Collapse
|
25
|
Foster KL, Higham TE. How forelimb and hindlimb function changes with incline and perch diameter in the green anole, Anolis carolinensis. J Exp Biol 2012; 215:2288-300. [DOI: 10.1242/jeb.069856] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The range of inclines and perch diameters in arboreal habitats poses a number of functional challenges for locomotion. To effectively overcome these challenges, arboreal lizards execute complex locomotor behaviors involving both the forelimbs and the hindlimbs. However, few studies have examined the role of forelimbs in lizard locomotion. To characterize how the forelimbs and hindlimbs differentially respond to changes in substrate diameter and incline, we obtained three-dimensional high-speed video of green anoles (Anolis carolinensis) running on flat (9 cm wide) and narrow (1.3 cm) perches inclined at 0, 45 and 90 deg. Changes in perch diameter had a greater effect on kinematics than changes in incline, and proximal limb variables were primarily responsible for these kinematic changes. In addition, a number of joint angles exhibited greater excursions on the 45 deg incline compared with the other inclines. Anolis carolinensis adopted strategies to maintain stability similar to those of other arboreal vertebrates, increasing limb flexion, stride frequency and duty factor. However, the humerus and femur exhibited several opposite kinematic trends with changes in perch diameter. Further, the humerus exhibited a greater range of motion than the femur. A combination of anatomy and behavior resulted in differential kinematics between the forelimb and the hindlimb, and also a potential shift in the propulsive mechanism with changes in external demand. This suggests that a better understanding of single limb function comes from an assessment of both forelimbs and hindlimbs. Characterizing forelimb and hindlimb movements may reveal interesting functional differences between Anolis ecomorphs. Investigations into the physiological mechanisms underlying the functional differences between the forelimb and the hindlimb are needed to fully understand how arboreal animals move in complex habitats.
Collapse
Affiliation(s)
- Kathleen L. Foster
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Timothy E. Higham
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
26
|
Ontogeny of limb force distribution in squirrel monkeys (Saimiri boliviensis): Insights into the mechanical bases of primate hind limb dominance. J Hum Evol 2012; 62:473-85. [DOI: 10.1016/j.jhevol.2012.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 11/03/2011] [Accepted: 01/13/2012] [Indexed: 11/20/2022]
|
27
|
Deban SM, Schilling N, Carrier DR. Activity of extrinsic limb muscles in dogs at walk, trot and gallop. J Exp Biol 2012; 215:287-300. [DOI: 10.1242/jeb.063230] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The extrinsic limb muscles perform locomotor work and must adapt their activity to changes in gait and locomotor speed, which can alter the work performed by, and forces transmitted across, the proximal fulcra of the limbs where these muscles operate. We recorded electromyographic activity of 23 extrinsic forelimb and hindlimb muscles and one trunk muscle in dogs while they walked, trotted and galloped on a level treadmill. Muscle activity indicates that the basic functions of the extrinsic limb muscles – protraction, retraction and trunk support – are conserved among gaits. The forelimb retains its strut-like behavior in all gaits, as indicated by both the relative inactivity of the retractor muscles (e.g. the pectoralis profundus and the latissimus dorsi) during stance and the protractor muscles (e.g. the pectoralis superficialis and the omotransversarius) in the first half of stance. The hindlimb functions as a propulsive lever in all gaits, as revealed by the similar timing of activity of retractors (e.g. the biceps femoris and the gluteus medius) during stance. Excitation increased in many hindlimb muscles in the order walk–trot–gallop, consistent with greater propulsive impulses in faster gaits. Many forelimb muscles, in contrast, showed the greatest excitation at trot, in accord with a shorter limb oscillation period, greater locomotor work performed by the forelimb and presumably greater absorption of collisional energy.
Collapse
Affiliation(s)
- Stephen M. Deban
- Department of Integrative Biology, 4202 East Fowler Avenue, SCA 110, University of South Florida, Tampa, FL 33620, USA
| | - Nadja Schilling
- Institute of Systematic Zoology and Evolutionary Biology, Friedrich-Schiller-University, Erbertstrasse 1, 07743 Jena, Germany
- Small Animal Clinic, University of Veterinary Medicine Hannover Foundation, Bünteweg 9, 30559 Hannover, Germany
| | - David R. Carrier
- Department of Biology, 201 South Biology Building, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
28
|
Lees J, Folkow L, Stokkan KA, Codd J. The metabolic cost of incline locomotion in the Svalbard rock ptarmigan (Lagopus muta hyperborea): the effects of incline grade and seasonal fluctuations in body mass. J Exp Biol 2012; 216:1355-63. [DOI: 10.1242/jeb.078709] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
In a terrestrial environment animals must locomote over different terrain; despite this, the majority of studies focus on level locomotion. The influence moving up an inclined surface has on the metabolic cost of locomotion and the efficiency with which animals perform positive work against gravity is still not well understood. Generally speaking, existing data sets lack consistency in the use of grades, further compounded by differences between species in terms of morphology and locomotor gait. Here we investigated the metabolic cost of locomotion using respirometry in the Svalbard ptarmigan (Lagopus muta hyperborea). The Svalbard ptarmigan provides a unique opportunity to investigate the cost of incline locomotion as it undergoes a seasonal fluctuation in body mass, which doubles in winter, meaning the requirement for positive mechanical work also fluctuates with season. We demonstrate that at the same degree of incline, the cost of lifting 1 kg by 1 vertical metre remains relatively constant between seasons despite the large differences in body mass from summer to winter. These findings are consistent with the notion that positive mechanical work alone dictates the cost of lifting above a certain body mass. However, our data indicate that this cost may vary according to the degree of incline and gait.
Collapse
|