1
|
Hollings J, Kagan D, Batabyal A, Lukowiak K. How to reduce fear in a snail: Take an aspirin, call me in the morning. Comp Biochem Physiol C Toxicol Pharmacol 2024; 284:109978. [PMID: 39094989 DOI: 10.1016/j.cbpc.2024.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Accepted: 07/14/2024] [Indexed: 08/04/2024]
Abstract
Aspirin (Acetylsalicylic acid, ASA), one of the widely used non-steroid anti-inflammatory drugs can easily end up in sewage effluents and thus it becomes necessary to investigate the effects of aspirin on behaviour of aquatic organisms. Previous studies in mammals have shown ASA to alter fear and anxiety-like behaviours. In the great pond snail Lymnaea stagnalis, ASA has been shown to block a 'sickness state' induced by lipopolysaccharide injection which upregulates immune and stress-related genes thus altering behavioural responses. In Lymnaea, eliciting physiological stress may enhance memory formation or block its retrieval depending on the stimulus type and intensity. Here we examine whether ASA will alter two forms of associative-learning memory in crayfish predator-experienced Lymnaea when ASA exposure accompanies predator-cue-induced stress during the learning procedure. The two trainings procedures are: 1) operant conditioning of aerial respiration; and 2) a higher form of learning, called configural learning, which here is dependent on evoking a fear response. We show here that ASA alone does not alter homeostatic aerial respiration, feeding behaviour or long-term memory (LTM) formation of operantly conditioned aerial respiration. However, ASA blocked the enhancement of LTM formation normally elicited by training snails in predator cue. ASA also blocked configural learning, which makes use of the fear response elicited by the predator cue. Thus, ASA alters how Lymnaea responds cognitively to predator detection.
Collapse
Affiliation(s)
- Jasper Hollings
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Diana Kagan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Anuradha Batabyal
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Department of Physical and Natural Sciences, FLAME University, Pune, India
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
2
|
Rivi V, Rigillo G, Batabyal A, Lukowiak K, Pani L, Tascedda F, Benatti C, Blom JMC. Different stressors uniquely affect the expression of endocannabinoid-metabolizing enzymes in the central ring ganglia of Lymnaea stagnalis. J Neurochem 2024; 168:2848-2867. [PMID: 38922726 DOI: 10.1111/jnc.16147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024]
Abstract
The endocannabinoid system (ECS) plays an important role in neuroprotection, neuroplasticity, energy balance, modulation of stress, and inflammatory responses, acting as a critical link between the brain and the body's peripheral regions, while also offering promising potential for novel therapeutic strategies. Unfortunately, in humans, pharmacological inhibitors of different ECS enzymes have led to mixed results in both preclinical and clinical studies. As the ECS has been highly conserved throughout the eukaryotic lineage, the use of invertebrate model organisms like the pond snail Lymnaea stagnalis may provide a flexible tool to unravel unexplored functions of the ECS at the cellular, synaptic, and behavioral levels. In this study, starting from the available genome and transcriptome of L. stagnalis, we first identified putative transcripts of all ECS enzymes containing an open reading frame. Each predicted protein possessed a high degree of sequence conservation to known orthologues of other invertebrate and vertebrate organisms. Sequences were confirmed by qualitative PCR and sequencing. Then, we investigated the transcriptional effects induced by different stress conditions (i.e., bacterial LPS injection, predator scent, food deprivation, and acute heat shock) on the expression levels of the enzymes of the ECS in Lymnaea's central ring ganglia. Our results suggest that in Lymnaea as in rodents, the ECS is involved in mediating inflammatory and anxiety-like responses, promoting energy balance, and responding to acute stressors. To our knowledge, this study offers the most comprehensive analysis so far of the ECS in an invertebrate model organism.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanna Rigillo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anuradha Batabyal
- Department of Physical and Natural Sciences, FLAME University, Pune, India
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Luca Pani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, Florida, USA
| | - Fabio Tascedda
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- CIB, Consorzio Interuniversitario Biotecnologie, Trieste, Italy
| | - Cristina Benatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Johanna M C Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
3
|
Rivi V, Batabyal A, Benatti C, Sarti P, Blom JMC, Tascedda F, Lukowiak K. A translational and multidisciplinary approach to studying the Garcia effect, a higher form of learning with deep evolutionary roots. J Exp Biol 2024; 227:jeb247325. [PMID: 38639079 DOI: 10.1242/jeb.247325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Animals, including humans, learn and remember to avoid a novel food when its ingestion is followed, hours later, by sickness - a phenomenon initially identified during World War II as a potential means of pest control. In the 1960s, John Garcia (for whom the effect is now named) demonstrated that this form of conditioned taste aversion had broader implications, showing that it is a rapid but long-lasting taste-specific food aversion with a fundamental role in the evolution of behaviour. From the mid-1970s onward, the principles of the Garcia effect were translated to humans, showing its role in different clinical conditions (e.g. side-effects linked to chemotherapy). However, in the last two decades, the number of studies on the Garcia effect has undergone a considerable decline. Since its discovery in rodents, this form of learning was thought to be exclusive to mammals; however, we recently provided the first demonstration that a Garcia effect can be formed in an invertebrate model organism, the pond snail Lymnaea stagnalis. Thus, in this Commentary, after reviewing the experiments that led to the first characterization of the Garcia effect in rodents, we describe the recent evidence for the Garcia effect in L. stagnalis, which may pave the way for future studies in other invertebrates and mammals. This article aims to inspire future translational and ecological studies that characterize the conserved mechanisms underlying this form of learning with deep evolutionary roots, which can be used to address a range of different biological questions.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Anuradha Batabyal
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 1N4
- Department of Physical and Natural Sciences, FLAME University, Pune - 412115, Maharashtra, India
| | - Cristina Benatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Pierfrancesco Sarti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Johanna Maria Catharina Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Fabio Tascedda
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- CIB, Consorzio Interuniversitario Biotecnologie, 34148 Trieste, Italy
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 1N4
| |
Collapse
|
4
|
Rivi V, Benatti C, Rigillo G, Blom JMC. Invertebrates as models of learning and memory: investigating neural and molecular mechanisms. J Exp Biol 2023; 226:jeb244844. [PMID: 36719249 DOI: 10.1242/jeb.244844] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this Commentary, we shed light on the use of invertebrates as model organisms for understanding the causal and conserved mechanisms of learning and memory. We provide a condensed chronicle of the contribution offered by mollusks to the studies on how and where the nervous system encodes and stores memory and describe the rich cognitive capabilities of some insect species, including attention and concept learning. We also discuss the use of planarians for investigating the dynamics of memory during brain regeneration and highlight the role of stressful stimuli in forming memories. Furthermore, we focus on the increasing evidence that invertebrates display some forms of emotions, which provides new opportunities for unveiling the neural and molecular mechanisms underlying the complex interaction between stress, emotions and cognition. In doing so, we highlight experimental challenges and suggest future directions that we expect the field to take in the coming years, particularly regarding what we, as humans, need to know for preventing and/or delaying memory loss. This article has an associated ECR Spotlight interview with Veronica Rivi.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanna Rigillo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Joan M C Blom
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
5
|
Kotsyuba E, Dyachuk V. Role of the Neuroendocrine System of Marine Bivalves in Their Response to Hypoxia. Int J Mol Sci 2023; 24:ijms24021202. [PMID: 36674710 PMCID: PMC9865615 DOI: 10.3390/ijms24021202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Mollusks comprise one of the largest phylum of marine invertebrates. With their great diversity of species, various degrees of mobility, and specific behavioral strategies, they haveoccupied marine, freshwater, and terrestrial habitats and play key roles in many ecosystems. This success is explained by their exceptional ability to tolerate a wide range of environmental stresses, such as hypoxia. Most marine bivalvemollusksare exposed to frequent short-term variations in oxygen levels in their marine or estuarine habitats. This stressfactor has caused them to develop a wide variety of adaptive strategies during their evolution, enabling to mobilize rapidly a set of behavioral, physiological, biochemical, and molecular defenses that re-establishing oxygen homeostasis. The neuroendocrine system and its related signaling systems play crucial roles in the regulation of various physiological and behavioral processes in mollusks and, hence, can affect hypoxiatolerance. Little effort has been made to identify the neurotransmitters and genes involved in oxygen homeostasis regulation, and the molecular basis of the differences in the regulatory mechanisms of hypoxia resistance in hypoxia-tolerant and hypoxia-sensitive bivalve species. Here, we summarize current knowledge about the involvement of the neuroendocrine system in the hypoxia stress response, and the possible contributions of various signaling molecules to this process. We thusprovide a basis for understanding the molecular mechanisms underlying hypoxic stress in bivalves, also making comparisons with data from related studies on other species.
Collapse
|
6
|
Komatsuzaki Y, Lukowiak K. Epicatechin Alters the Activity of a Neuron Necessary for Long-Term Memory of Aerial Respiratory Behavior in Lymnaea stagnalis. Zoolog Sci 2022; 39. [DOI: 10.2108/zs220008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/16/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Yoshimasa Komatsuzaki
- College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308, Japan
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| |
Collapse
|
7
|
Chihab AW, Andrianov VV, Bogodvid TK, Deryabina IB, Sylantyeva DI, Gainutdinov KL. Serotonin Synthesis Inhibition by Para-Chlorophenylalanine Impairs Defensive Reactions of Aversive Learning and Long-term Sensitization in Terrestrial Snails. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-020-00814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Deryabina IB, Andrianov VV, Muranova LN, Bogodvid TK, Gainutdinov KL. Effects of Thryptophan Hydroxylase Blockade by P-Chlorophenylalanine on Contextual Memory Reconsolidation after Training of Different Intensity. Int J Mol Sci 2020; 21:E2087. [PMID: 32197439 PMCID: PMC7139692 DOI: 10.3390/ijms21062087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 01/09/2023] Open
Abstract
The processes of memory formation and its storage are extremely dynamic. Therefore, the determination of the nature and temporal evolution of the changes that underlie the molecular mechanisms of retrieval and cause reconsolidation of memory is the key to understanding memory formation. Retrieval induces the plasticity, which may result in reconsolidation of the original memory and needs critical molecular events to stabilize the memory or its extinction. 4-Chloro-DL-phenylalanine (P-chlorophenylalanine-PCPA) depresses the most limiting enzyme of serotonin synthesis the tryptophan hydroxylase. It is known that PCPA reduces the serotonin content in the brain up to 10 times in rats (see Methods). We hypothesized that the PCPA could behave the similar way in snails and could reduce the content of serotonin in snails. Therefore, we investigated the effect of PCPA injection on contextual memory reconsolidation using a protein synthesis blocker in snails after training according to two protocols of different intensities. The results obtained in training according to the first protocol using five electrical stimuli per day for 5 days showed that reminding the training environment against the background of injection of PCPA led to a significant decrease in contextual memory. At the same time, the results obtained in training according to the second protocol using three electrical stimuli per day for 5 days showed that reminding the training environment against the injection of PCPA did not result in a significant change in contextual memory. The obtain results allowed us to conclude that the mechanisms of processes developed during the reconsolidation of contextual memory after a reminding depend both on the intensity of learning and on the state of the serotonergic system.
Collapse
Affiliation(s)
- Irina B. Deryabina
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (I.B.D.); (V.V.A.); (L.N.M.); (T.K.B.)
| | - Viatcheslav V. Andrianov
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (I.B.D.); (V.V.A.); (L.N.M.); (T.K.B.)
- Laboratory of Spin Physics and Spin Chemistry, Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, 420000 Kazan, Russia
| | - Lyudmila N. Muranova
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (I.B.D.); (V.V.A.); (L.N.M.); (T.K.B.)
| | - Tatiana K. Bogodvid
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (I.B.D.); (V.V.A.); (L.N.M.); (T.K.B.)
- Department of Biomedical Sciences, Volga Region State Academy of Physical Culture, Sport and Tourism, 420000 Kazan, Russia
| | - Khalil L. Gainutdinov
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (I.B.D.); (V.V.A.); (L.N.M.); (T.K.B.)
- Laboratory of Spin Physics and Spin Chemistry, Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, 420000 Kazan, Russia
| |
Collapse
|
9
|
Swinton E, Swinton C, Lukowiak K. Shell damage leads to enhanced memory formation in Lymnaea. ACTA ACUST UNITED AC 2019; 222:jeb.207571. [PMID: 31431472 DOI: 10.1242/jeb.207571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/11/2019] [Indexed: 12/14/2022]
Abstract
Ecologically relevant stressors alter the ability of the pond snail, Lymnaea stagnalis, to form long-term memory (LTM). Here, we show that an environmentally relevant stressor, shell damage, has a dramatic effect on the enhancement of LTM formation. Damage in the form of a shell clip 24 h before operant conditioning training resulted in long-term memory (LTM) formation following a single 0.5 h training session (TS). Typically, in these snails, two 0.5 h TSs with a 1 h interval between the sessions are required to cause LTM formation. We show here that even with a 72 h interval between shell clip and training, memory enhancement still occurred. The stress associated with shell clip could be mitigated by an ongoing high-Ca2 + pond water environment, an injection of propranolol and a DNA methylation blocker. However, use of an anaesthetic (MgCl2) during the clip or intermittent exposure to the high-Ca2 + pond water environment did not mitigate the stress associated with the shell clip. Shell clip was also sufficient to cause juvenile snails, which neither learn nor form memory, to gain the capacity to form LTM. Together, the experiments demonstrate that shell clipping is an environmentally relevant stressor that can cause enhancement of LTM formation.
Collapse
Affiliation(s)
- Erin Swinton
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Cayley Swinton
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 4N1
| |
Collapse
|
10
|
Totani Y, Aonuma H, Oike A, Watanabe T, Hatakeyama D, Sakakibara M, Lukowiak K, Ito E. Monoamines, Insulin and the Roles They Play in Associative Learning in Pond Snails. Front Behav Neurosci 2019; 13:65. [PMID: 31001093 PMCID: PMC6454038 DOI: 10.3389/fnbeh.2019.00065] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/14/2019] [Indexed: 12/28/2022] Open
Abstract
Molluscan gastropods have long been used for studying the cellular and molecular mechanisms underlying learning and memory. One such gastropod, the pond snail Lymnaea stagnalis, exhibits long-term memory (LTM) following both classical and operant conditioning. Using Lymnaea, we have successfully elucidated cellular mechanisms of learning and memory utilizing an aversive classical conditioning procedure, conditioned taste aversion (CTA). Here, we present the behavioral changes following CTA training and show that the memory score depends on the duration of food deprivation. Then, we describe the relationship between the memory scores and the monoamine contents of the central nervous system (CNS). A comparison of learning capability in two different strains of Lymnaea, as well as the filial 1 (F1) cross from the two strains, presents how the memory scores are correlated in these populations with monoamine contents. Overall, when the memory scores are better, the monoamine contents of the CNS are lower. We also found that as the insulin content of the CNS decreases so does the monoamine contents which are correlated with higher memory scores. The present review deepens the relationship between monoamine and insulin contents with the memory score.
Collapse
Affiliation(s)
- Yuki Totani
- Department of Biology, Waseda University, Tokyo, Japan
| | - Hitoshi Aonuma
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Akira Oike
- Department of Biology, Waseda University, Tokyo, Japan
| | - Takayuki Watanabe
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Dai Hatakeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Manabu Sakakibara
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Etsuro Ito
- Department of Biology, Waseda University, Tokyo, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Abstract
Gastropod diversity is substantial in marine and freshwater habitats, and many aquatic slugs and snails use olfactory cues to guide their navigation behaviour. Examples include finding prey or avoiding predators based on kairomones, or finding potential mates using pheromones. Here, I review the diversity of navigational behaviours studied across the major aquatic taxa of gastropods. I then synthesize evidence for the different theoretical navigation strategies the animals may use. It is likely that gastropods regularly use either chemotaxis or odour-gated rheotaxis (or both) during olfactory-based navigation. Finally, I collate the patchwork of research conducted on relevant proximate mechanisms that could produce navigation behaviours. Although the tractability of several gastropod species for neurophysiological experimentation has generated some valuable insight into how turning behaviour is triggered by contact chemoreception, there remain many substantial gaps in our understanding for how navigation relative to more distant odour sources is controlled in gastropods. These gaps include little information on the chemoreceptors and mechanoreceptors (for detecting flow) found in the peripheral nervous system and the central (or peripheral) processing circuits that integrate that sensory input. In contrast, past studies do provide information on motor neurons that control the effectors that produce crawling (both forward locomotion and turning). Thus, there is plenty of scope for further research on olfactory-based navigation, exploiting the tractability of gastropods for neuroethology to better understand how the nervous system processes chemosensory input to generate movement towards or away from distant odour sources.
Collapse
Affiliation(s)
- Russell C Wyeth
- Biology Department, St Francis Xavier University, 2321 Notre Dame Avenue, Antigonish, NS, Canada B2G 2W5
| |
Collapse
|
12
|
Swinton C, Swinton E, Shymansky T, Hughes E, Zhang J, Kakadiya CRM, Lukowiak K. Configural learning: a higher form of learning in Lymnaea. J Exp Biol 2019; 222:jeb.190405. [DOI: 10.1242/jeb.190405] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/03/2019] [Indexed: 01/05/2023]
Abstract
Events typically occur in a specific context and the ability to assign importance to this occurrence plays a significant role in memory formation and recall. When the scent of a crayfish predator (CE) is encountered in Lymnaea strains known to be predator-experienced (e.g. the W-strain), enhancement of memory formation and depression of feeding occurs, which are part of a suite of anti-predator behaviours. We hypothesized that Lymnaea possess a form of higher-order conditioning, namely configural learning. We tested this by simultaneously exposing W-strain Lymnaea to a carrot food-odour (CO) and predator scent (CE). Two hours later we operantly conditioned these snails with a single 0.5h training session in CO to determine whether training in CO results in long-term memory (LTM). In W-strain snails two 0.5h training sessions are required to cause LTM formation. A series of control experiments followed and demonstrated that only the CO+CE snails trained in CO had acquired enhanced memory forming ability. Additionally, following CE+CO pairing, CO no longer elicited an increased feeding response. Hence, snails have the ability to undergo configural learning. Following configural learning, CO becomes risk-signaling and evokes behavioural responses phenotypically similar to those elicited by exposure to CE.
Collapse
Affiliation(s)
- Cayley Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Erin Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tamila Shymansky
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Emily Hughes
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jack Zhang
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Aonuma H, Totani Y, Sakakibara M, Lukowiak K, Ito E. Comparison of brain monoamine content in three populations of Lymnaea that correlates with taste-aversive learning ability. Biophys Physicobiol 2018; 15:129-135. [PMID: 29955564 PMCID: PMC6018436 DOI: 10.2142/biophysico.15.0_129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/20/2018] [Indexed: 12/01/2022] Open
Abstract
To find a causal mechanism of learning and memory is a heuristically important topic in neuroscience. In the pond snail Lymnaea stagnalis, the following experimental facts have accrued regarding a classical conditioning procedure known as conditioned taste aversion (CTA): (1) one-day food-deprived Dutch snails have superior CTA memory formation; (2) the one-day food-deprived snails have a low monoamine content (e.g., serotonin, dopamine, octopamine) in their central nervous system (CNS); (3) fed or five-day food-deprived snails have poorer CTA memory and a higher monoamine content; (4) the Dutch snails form better CTA memory than the Canadian TC1 strain; and, (5) the F1 cross snails between the Dutch and Canadian TC1 strains also form poor CTA memory. Here, in one-day food-deprived snails, we measured the monoamine content in the CNSs of the 3 populations. In most instances, the monoamine content of the Dutch strain was lower than in the other two populations. The F1 cross snails had the highest monoamine content. A lower monoamine content is correlated with the better CTA memory formation.
Collapse
Affiliation(s)
- Hitoshi Aonuma
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 060-0811, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Yuki Totani
- Department of Biology, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Manabu Sakakibara
- Research Organization for Nano and Life Innovation, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Etsuro Ito
- Department of Biology, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan.,Research Organization for Nano and Life Innovation, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan.,WASEDA Bioscience Research Institute in Singapore, 138667, Singapore.,Graduate Institute of Medicine and Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
14
|
Deryabina IB, Muranova LN, Andrianov VV, Gainutdinov KL. Impairing of Serotonin Synthesis by P-Chlorphenylanine Prevents the Forgetting of Contextual Memory After Reminder and the Protein Synthesis Inhibition. Front Pharmacol 2018; 9:607. [PMID: 29946257 PMCID: PMC6005873 DOI: 10.3389/fphar.2018.00607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/21/2018] [Indexed: 12/16/2022] Open
Abstract
HIGHLIGHTSThe injection of p-chlorophenylalanine, specific blocker of 5-HT synthesis 3 days before reminder with anisomycin administration prevented forgetting.
It is known that the reminder cause reactivation of the long-term memory and it leads to reconsolidation of memory. We showed earlier that the disruption of the reconsolidation of contextual memory in terrestrial snail was caused by anisomycin, the inhibitor of protein syntheses (Gainutdinova et al., 2005; Balaban et al., 2014). In this paper we investigated the possible changes of the memory reconsolidation under the conditions of serotonin deficit, caused by administration of p-chlorophenylalanine, the inhibitor of tryptophan hydroxylase synthesis (intermediate stage of the synthesis of serotonin). It was shown that the forgetting process for contextual memory after reminder and inhibition of protein synthesis did not occur if the serotonin transmission in nervous system was impaired. This effect was significantly different from the direct action of anisomycin, which blocked the reconsolidation of contextual memory. We concluded that the serotonin system was included to the process of memory reconsolidation.
Collapse
Affiliation(s)
- Irina B Deryabina
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Lyudmila N Muranova
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Vyatcheslav V Andrianov
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Khalil L Gainutdinov
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
15
|
Hedgespeth ML, Karasek T, Ahlgren J, Berglund O, Brönmark C. Behaviour of freshwater snails (Radix balthica) exposed to the pharmaceutical sertraline under simulated predation risk. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:144-153. [PMID: 29349647 PMCID: PMC5847023 DOI: 10.1007/s10646-017-1880-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/15/2017] [Indexed: 05/18/2023]
Abstract
Due to their potential for affecting the modulation of behaviour, effects of selective serotonin reuptake inhibitors (SSRIs) in the environment are particularly interesting regarding interspecies interactions and non-consumptive effects (NCEs) induced by predator cues in prey organisms. We evaluated the effects of sertraline (0.4, 40 ng/L, 40 µg/L) over 8 days on activity and habitat choice in the freshwater snail Radix balthica, on snails' boldness in response to mechanical stimulation (simulating predator attack), and their activity/habitat choice in response to chemical cues from predatory fish. We hypothesised that sertraline exposure would detrimentally impact NCEs elicited by predator cues, increasing predation risk. Although there were no effects of sertraline on NCEs, there were observed effects of chemical cue from predatory fish on snail behaviour independent of sertraline exposure. Snails reduced their activity in which the percentage of active snails decreased by almost 50% after exposure to fish cue. Additionally, snails changed their habitat use by moving away from open (exposed) areas. The general lack of effects of sertraline on snails' activity and other behaviours in this study is interesting considering that other SSRIs have been shown to induce changes in gastropod behaviour. This raises questions on the modes of action of various SSRIs in gastropods, as well as the potential for a trophic "mismatch" of effects between fish predators and snail prey in aquatic systems.
Collapse
Affiliation(s)
- Melanie Lea Hedgespeth
- Aquatic Ecology, Department of Biology, Lund University, Ecology Building, Lund, 223 62, Sweden.
| | - Tomasz Karasek
- Aquatic Ecology, Department of Biology, Lund University, Ecology Building, Lund, 223 62, Sweden
- Department of Hydrobiology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw, 02-089, Poland
| | - Johan Ahlgren
- Aquatic Ecology, Department of Biology, Lund University, Ecology Building, Lund, 223 62, Sweden
| | - Olof Berglund
- Aquatic Ecology, Department of Biology, Lund University, Ecology Building, Lund, 223 62, Sweden
| | - Christer Brönmark
- Aquatic Ecology, Department of Biology, Lund University, Ecology Building, Lund, 223 62, Sweden
| |
Collapse
|
16
|
Effects of Serotonin Receptor Antagonist Methiothepin on Membrane Potential of Premotor Interneurons of Naïve and Learned Snails. BIONANOSCIENCE 2018. [DOI: 10.1007/s12668-017-0498-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Aonuma H, Totani Y, Kaneda M, Nakamura R, Watanabe T, Hatakeyama D, Dyakonova VE, Lukowiak K, Ito E. Effects of 5-HT and insulin on learning and memory formation in food-deprived snails. Neurobiol Learn Mem 2018; 148:20-29. [DOI: 10.1016/j.nlm.2017.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 12/08/2017] [Accepted: 12/29/2017] [Indexed: 01/20/2023]
|
18
|
Tan R, Lukowiak K. Combining Factors That Individually Enhance Memory in Lymnaea. THE BIOLOGICAL BULLETIN 2018; 234:37-44. [PMID: 29694801 DOI: 10.1086/697197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
When applied individually, thermal stress (1 hour at 30 °C) and (-)epicatechin (a flavonol found in green tea, e.g.) each enhance long-term memory formation following operant conditioning of Lymnaea aerial respiratory behavior. Snails demonstrate enhanced long-term memory formation when trained in epicatechin-treated pond water or when placed in 30 °C pond water for 1 hour, 1 hour prior to training in pond water. We ask here whether the combined application of epicatechin + thermal stress enhances long-term memory retention length beyond the maximal lengths of the individual factors alone. We report that the applied combination of epicatechin + thermal stress has a synergistic memory-enhancing effect; that is, when the two are applied in combination, memory persists longer than when either is applied alone. We then ask whether quercetin, a heat shock protein blocker, will affect the memory enhancement produced by the combined treatment of thermal stress and epicatechin. We report that quercetin does not decrease the memory enhancement of epicatechin, but it does decrease the memory enhancement by thermal stress; and it also decreases the memory persistence of snails exposed to both treatments in combination.
Collapse
|
19
|
Bogodvid TK, Andrianov VV, Deryabina IB, Muranova LN, Silantyeva DI, Vinarskaya A, Balaban PM, Gainutdinov KL. Responses of Withdrawal Interneurons to Serotonin Applications in Naïve and Learned Snails Are Different. Front Cell Neurosci 2017; 11:403. [PMID: 29311833 PMCID: PMC5735116 DOI: 10.3389/fncel.2017.00403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/04/2017] [Indexed: 02/04/2023] Open
Abstract
Long-term changes in membrane potential after associative training were described previously in identified premotor interneurons for withdrawal of the terrestrial snail Helix. Serotonin was shown to be a major transmitter involved in triggering the long-term changes in mollusks. In the present study we compared the changes in electrophysiological characteristics of identifiable premotor interneurons for withdrawal in response to bath applications of serotonin (5-HT) or serotonin precursor 5-hydroxytryptophan (5-HTP) in preparations from naïve, neurotoxin-injected or associatively trained snails. It was found that 5-HT or 5-HTP applications caused a significant decrease of membrane potential in premotor interneurons of naïve snails, associatively trained snails and snails with impaired serotonergic system by injection of a selective neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) 1 week before the experiments. Applications of 5-HT or 5-HTP did not cause significant changes in the action potential (AP) threshold potential of these neurons in naïve snails. Conversely, applications of 5-HT or 5-HTP to the premotor interneurons of previously trained or 5,7-DHT-injected snails caused a significant increase in the firing threshold potential in spite of a depolarizing shift of the resting membrane potential. Results demonstrate that responsiveness of premotor interneurons to extracellularly applied 5-HT or 5-HTP changes for days after the associative training or serotonin depletion. Similarity of the effects in trained and 5,7-DHT-injected animals may be due to massive release of serotonin elicited by 5,7-DHT injection. Our results suggest that serotonin release due to aversive conditionining or elicited by the neurotoxin administration triggers similar changes in resting membrane potential and AP threshold in response to bath applications of 5-HT or its precursor 5-HTP.
Collapse
Affiliation(s)
- Tatiana K. Bogodvid
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Department of Biomedical Sciences, Volga Region State Academy of Physical Culture, Sport and Tourism, Kazan, Russia
| | - Vyatcheslav V. Andrianov
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Irina B. Deryabina
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Lyudmila N. Muranova
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Dinara I. Silantyeva
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Aliya Vinarskaya
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel M. Balaban
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Khalil L. Gainutdinov
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
20
|
Mitchell MD, Bairos-Novak KR, Ferrari MCO. Mechanisms underlying the control of responses to predator odours in aquatic prey. J Exp Biol 2017; 220:1937-1946. [DOI: 10.1242/jeb.135137] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ABSTRACT
In aquatic systems, chemical cues are a major source of information through which animals are able to assess the current state of their environment to gain information about local predation risk. Prey use chemicals released by predators (including cues from a predator's diet) and other prey (such as alarm cues and disturbance cues) to mediate a range of behavioural, morphological and life-history antipredator defences. Despite the wealth of knowledge on the ecology of antipredator defences, we know surprisingly little about the physiological mechanisms that control the expression of these defensive traits. Here, we summarise the current literature on the mechanisms known to specifically mediate responses to predator odours, including dietary cues. Interestingly, these studies suggest that independent pathways may control predator-specific responses, highlighting the need for greater focus on predator-derived cues when looking at the mechanistic control of responses. Thus, we urge researchers to tease apart the effects of predator-specific cues (i.e. chemicals representing a predator's identity) from those of diet-mediated cues (i.e. chemicals released from a predator's diet), which are known to mediate different ecological endpoints. Finally, we suggest some key areas of research that would greatly benefit from a more mechanistic approach.
Collapse
Affiliation(s)
- Matthew D. Mitchell
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK, Canada S7N 5B4
| | | | - Maud C. O. Ferrari
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK, Canada S7N 5B4
| |
Collapse
|
21
|
Young A, Protheroe A, Lukowiak K. Silver nanoparticles alter learning and memory formation in an aquatic organism, Lymnaea stagnalis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:403-411. [PMID: 28283412 DOI: 10.1016/j.envpol.2017.02.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/13/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
We tested the effect of silver nanoparticles (AgNPs) on the ability of the pond snail, Lymnaea stagnalis, to learn and form long-term memory (LTM) following operant conditioning of aerial respiration. We hypothesized that the AgNPs would act as a stressor and prevent learning and LTM formation. We tested snails exposed for either 72 h or only during training and testing for memory (i.e. 0.5 h) and found no difference between those treatments. We found that at a low concentration of AgNPs (5 μg/L) neither learning and nor memory formation were altered. When we increased the concentration of AgNPs (10 μg/L) we found that memory formation was enhanced. Finally, at a higher concentration (50 μg/L) memory formation was blocked. To determine if the disassociation of Ag+ from the AgNPs caused the effects on memory we performed similar experiments with AgNO3 and found similar concentration-dependent results. Finally, we found that snails perceive the AgNPs differently from Ag+ as there was context specific memory. That is, snails trained in AgNPs did not show memory when tested in Ag+ and vice-versa. We believe that changes in memory formation may be a more sensitive determination of AgNPs on aquatic organisms than the determination of a LC50.
Collapse
Affiliation(s)
- Austin Young
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Amy Protheroe
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
22
|
Hughes E, Shymansky T, Swinton E, Lukowiak KS, Swinton C, Sunada H, Protheroe A, Phillips I, Lukowiak K. Strain-specific differences of the effects of stress on memory in Lymnaea. J Exp Biol 2017; 220:891-899. [DOI: 10.1242/jeb.149161] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022]
Abstract
ABSTRACT
Stress alters the ability to form, recall and maintain memory according to the Yerkes–Dodson/Hebb (YDH) law. The effects of environmentally relevant stressors, such as low environmental calcium and crowding, on learning and memory have previously been described in a laboratory-reared ‘average’ strain of Lymnaea stagnalis (i.e. the Dutch strain) as well as two strains of freshly collected L. stagnalis with enhanced memory formation abilities (i.e. ‘smart’ snails). Here, we use L. stagnalis to study the effects of other environmentally relevant stressors on memory formation in two other strains of freshly collected snails, one ‘smart’ and one ‘average’. The stressors we examined are thermal, resource restriction combined with food odour, predator detection and, for the first time, tissue injury (shell damage). We show that the same stressor has significantly different effects on memory formation depending on whether snails are ‘smart’ or ‘average’. Specifically, our data suggest that a stressor or a combination of stressors act to enhance memory in ‘average’ snails but obstruct memory formation in ‘smart’ snails. These results are consistent with the YDH law and our hypothesis that ‘smart’ snails are more easily stressed than ‘average’ snails.
Collapse
Affiliation(s)
- Emily Hughes
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Tamila Shymansky
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Erin Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Kai S. Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Cayley Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Hiroshi Sunada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Amy Protheroe
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Iain Phillips
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
23
|
Golovchenko AN, Andrianov VV, Bogodvid TK, Muranova LN, Gainutdinov KL. Serotonin Modulation of Premotor Interneuron Excitability in the Snail during Associative Learning. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0252-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Deryabina IB, Andrianov VV, Bogodvid TK, Muranova LN, Vinarskaya AK, Gainutdinov KL. Serotonin Application Effects on Electrical Characteristics of the Premotor Interneurons in Intact and Trained Snails. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0224-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Impairment of the serotonergic neurons underlying reinforcement elicits extinction of the repeatedly reactivated context memory. Sci Rep 2016; 6:36933. [PMID: 27841309 PMCID: PMC5107893 DOI: 10.1038/srep36933] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022] Open
Abstract
We analyzed changes in the activity of individually identifiable neurons involved in the networks underlying feeding and withdrawal behaviors in snails before, during, and after aversive learning in vitro. Responses to food in the “reinforcing” serotonergic neurons involved in withdrawal changed significantly after training, implying that these serotonergic cells participate in the reactivation of memory and are involved in the reconsolidation process. In behavioral experiments it was shown that impairment of the functioning of the serotonergic system with the selective neurotoxin 5,7-DiHT did not change the memory, when tested once, but resulted in a complete extinction of the contextual memory after repeated reactivation of memory. Conversely, the cued memory to a specific type of food was significantly reduced but still present. Thus, we conclude that it is only for the context memory, that participation of the “reinforcing” serotonergic neurons in memory retrieval may be the gate condition for the choice between extinction/reconsolidation.
Collapse
|
26
|
Fernell M, Swinton C, Lukowiak K. Epicatechin, a component of dark chocolate, enhances memory formation if applied during the memory consolidation period. Commun Integr Biol 2016; 9:e1205772. [PMID: 27574544 PMCID: PMC4988431 DOI: 10.1080/19420889.2016.1205772] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/17/2016] [Accepted: 06/17/2016] [Indexed: 01/15/2023] Open
Abstract
Epicatechin (Epi), a flavanol found in foods such as dark chocolate has previously been shown to enhance memory formation in our model system, operant conditioning of aerial respiration in Lymnaea. In those experiments snails were trained in Epi. Here we ask whether snails exposed to Epi before training, during the consolidation period immediately following training, or 1 h after training would enhance memory formation. We report here that Epi is only able to enhance memory if snails are placed in Epi-containing pond water immediately after training. That is, Epi enhances memory formation if it is applied during the memory consolidation period as well as if snails are trained in Epi-containing pond water.
Collapse
Affiliation(s)
- Maria Fernell
- Hotchkiss Brain Institute Cumming School of Medicine, University of Calgary , Calgary, AB, Canada
| | - Cayley Swinton
- Hotchkiss Brain Institute Cumming School of Medicine, University of Calgary , Calgary, AB, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute Cumming School of Medicine, University of Calgary , Calgary, AB, Canada
| |
Collapse
|
27
|
Forest J, Sunada H, Dodd S, Lukowiak K. Training Lymnaea in the presence of a predator scent results in a long-lasting ability to form enhanced long-term memory. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:399-409. [PMID: 27138222 DOI: 10.1007/s00359-016-1086-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 12/25/2022]
Abstract
Lymnaea exposed to crayfish effluent (CE) gain an enhanced ability to form long-term memory (LTM). We test the hypothesis that a single CE exposure and operant conditioning training leads to long lasting changes in the capability of snails to form LTM when tested in pond water four weeks later. We trained both juvenile and adult snails with a single 0.5 h training session in CE and show that LTM was present 24 h later. Snails trained in a similar manner in just pond water show no LTM. We then asked if such training in CE conferred enhanced memory forming capabilities on these snails four weeks later. That is, would LTM be formed in these snails four weeks later following a single 0.5 h training session in pond water? We found that both adult and juvenile snails previously trained in CE one month previously had enhanced LTM formation abilities. The injection of a DNA methylation blocker, 5-AZA, prior to training in adult snails blocked enhanced LTM formation four weeks later. Finally, this enhanced LTM forming ability was not passed on to the next generation of snails.
Collapse
Affiliation(s)
- Jeremy Forest
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,University Claude Bernard, Lyon, France
| | - Hiroshi Sunada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Shawn Dodd
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
28
|
Andrianov VV, Bogodvid TK, Deryabina IB, Golovchenko AN, Muranova LN, Tagirova RR, Vinarskaya AK, Gainutdinov KL. Modulation of defensive reflex conditioning in snails by serotonin. Front Behav Neurosci 2015; 9:279. [PMID: 26557063 PMCID: PMC4615812 DOI: 10.3389/fnbeh.2015.00279] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/02/2015] [Indexed: 01/24/2023] Open
Abstract
Highlights Daily injection of serotonin before a training session accelerated defensive reflex conditioning in snails.Daily injection of 5-hydroxytryptophan before a training session in snails with a deficiency of serotonin induced by the "neurotoxic" analog of serotonin 5,7-dihydroxytryptamine, restored the ability of snails to learn.After injection of the "neurotoxic" analogs of serotonin 5,6- and 5,7-dihydroxytryptamine as well as serotonin, depolarization of the membrane and decrease of the threshold potential of premotor interneurons was observed. We studied the role of serotonin in the mechanisms of learning in terrestrial snails. To produce a serotonin deficit, the "neurotoxic" analogs of serotonin, 5,6- or 5,7-dihydroxytryptamine (5,6/5,7-DHT) were used. Injection of 5,6/5,7-DHT was found to disrupt defensive reflex conditioning. Within 2 weeks of neurotoxin application, the ability to learn had recovered. Daily injection of serotonin before a training session accelerated defensive reflex conditioning and daily injections of 5-HTP in snails with a deficiency of serotonin induced by 5,7-DHT restored the snail's ability to learn. We discovered that injections of the neurotoxins 5,6/5,7-DHT as well as serotonin, caused a decrease in the resting and threshold potentials of the premotor interneurons LPa3 and RPa3.
Collapse
Affiliation(s)
- Vyatcheslav V. Andrianov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
- Group of Biophysics, Zavoisky Physical-Technical Institute, Russian Academy of SciencesKazan, Russia
| | - Tatiana K. Bogodvid
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
- Department of Biomedical Sciences, Volga Region State Academy of Physical Culture, Sport and TourismKazan, Russia
| | - Irina B. Deryabina
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Aleksandra N. Golovchenko
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Lyudmila N. Muranova
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Roza R. Tagirova
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Aliya K. Vinarskaya
- Laboratory of Cellular Neurobiology of Learning, Institute of High Nerve Activity and Neurophysiology, Russian Academy of SciencesMoscow, Russia
| | - Khalil L. Gainutdinov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
- Group of Biophysics, Zavoisky Physical-Technical Institute, Russian Academy of SciencesKazan, Russia
| |
Collapse
|
29
|
Lukowiak K, Heckler B, Bennett TE, Schriner EK, Wyrick K, Jewett C, Todd RP, Sorg BA. Enhanced memory persistence is blocked by a DNA methyltransferase inhibitor in the snail Lymnaea stagnalis. ACTA ACUST UNITED AC 2014; 217:2920-9. [PMID: 24902747 DOI: 10.1242/jeb.106765] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lymnaea stagnalis provides an excellent model system for studying memory because these snails have a well-described set of neurons, a single one of which controls expression of long-term memory of operantly conditioned respiratory behavior. We have shown that several different manipulations, including pre-training exposure to serotonin (5-HT) or methamphetamine, submersion of snails after training to prevent memory interference, and exposure to effluent from predatory crayfish (CE), enhance memory persistence. Changes in DNA methylation underlie formation of strong memories in mammals and 5-HT-enhanced long-term facilitation in Aplysia. Here we determined the impact of the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5-AZA; 87 μmol l(-1)), on enhanced memory persistence by all four manipulations. We found that 5-HT (100 μmol l(-1)) enhanced memory persistence, which was blocked by 5-AZA pretreatment. Snails pre-exposed to 3.3 μmol l(-1) Meth 4 h prior to training demonstrated memory 72 h later, which was not present in controls. This memory-enhancing effect was blocked by pre-treatment with 87 μmol l(-1) 5-AZA. Similarly, submersion to prevent interference learning as well as training in CE produced memory that was not present in controls, and these effects were blocked by pre-treatment with 87 μmol l(-1) 5-AZA. In contrast, 5-AZA injection did not alter expression of normal (non-enhanced) memory, suggesting that these four stimuli enhance memory persistence by increasing DNA methyltransferase activity, which, in turn, increases expression of memory-enhancing genes and/or inhibits memory suppressor genes. These studies lay important groundwork for delineating gene methylation changes that are common to persistent memory produced by different stimuli.
Collapse
Affiliation(s)
- Ken Lukowiak
- Cumming School of Medicine, University of Calgary, Calgary, AL T2N 4N1, Canada
| | - Benjamin Heckler
- Alcohol and Drug Abuse Research Program and Translational Addiction Research Center, Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| | - Thomas E Bennett
- Alcohol and Drug Abuse Research Program and Translational Addiction Research Center, Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| | - Ellen K Schriner
- Alcohol and Drug Abuse Research Program and Translational Addiction Research Center, Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| | - Kathryn Wyrick
- Alcohol and Drug Abuse Research Program and Translational Addiction Research Center, Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| | - Cynthia Jewett
- Alcohol and Drug Abuse Research Program and Translational Addiction Research Center, Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| | - Ryan P Todd
- Alcohol and Drug Abuse Research Program and Translational Addiction Research Center, Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| | - Barbara A Sorg
- Alcohol and Drug Abuse Research Program and Translational Addiction Research Center, Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| |
Collapse
|
30
|
Lukowiak K, Sunada H, Teskey M, Lukowiak K, Dalesman S. Environmentally relevant stressors alter memory formation in the pond snail Lymnaea. J Exp Biol 2014; 217:76-83. [DOI: 10.1242/jeb.089441] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Stress alters adaptive behaviours such as learning and memory. Stressors can either enhance or diminish learning, memory formation and/or memory recall. We focus attention here on how environmentally relevant stressors alter learning, memory and forgetting in the pond snail, Lymnaea stagnalis. Operant conditioning of aerial respiration causes associative learning that may lead to long-term memory (LTM) formation. However, individual ecologically relevant stressors, combinations of stressors, and bio-active substances can alter whether or not learning occurs or memory forms. While the behavioural memory phenotype may be similar as a result of exposure to different stressors, how each stressor alters memory formation may occur differently. In addition, when a combination of stressors are presented it is difficult to predict ahead of time what the outcome will be regarding memory formation. Thus, how combinations of stressors act is an emergent property of how the snail perceives the stressors.
Collapse
Affiliation(s)
- Ken Lukowiak
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Hiroshi Sunada
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Morgan Teskey
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Kai Lukowiak
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Sarah Dalesman
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| |
Collapse
|
31
|
Knezevic B, Lukowiak K. A flavonol, epicatechin, reverses the suppressive effects of a stressor on LTM formation. J Exp Biol 2014; 217:4004-9. [DOI: 10.1242/jeb.110726] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
Learning and subsequent memory formation are influenced by both environmental and lifestyle factors, such as stress and diet. Epicatechin, a plant flavonol found in cocoa, red wine, and green tea enhances long term memory formation (LTM) in Lymnaea; while an ecologically relevant stressor, low calcium pond water, suppress LTM formation. We tested the hypothesis that epicatechin overcomes the suppressive effects of the stressor on LTM formation in the continued presence of the stressor. Snails trained in low calcium pond water exhibit learning but not LTM. Epicatechin (15 mg/L) in control pond water enhances LTM formation. When epicatechin was added to the low calcium pond water an enhanced LTM similar to that seen in control pond water was observed. Thus, a naturally occurring bioactive plant compound was able to overcome the suppressive effects of an ecologically relevant stressor on LTM formation.
Collapse
|
32
|
Kinney MP, Panting ND, Clark TM. Modulation of appetite and feeding behavior of the larval mosquito Aedes aegypti by the serotonin-selective reuptake inhibitor paroxetine: shifts between distinct feeding modes and the influence of feeding status. ACTA ACUST UNITED AC 2013; 217:935-43. [PMID: 24265428 DOI: 10.1242/jeb.094904] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The effects of the serotonin-selective reuptake inhibitor paroxetine (2×10(-5) mol l(-1)) on behavior of the larval mosquito Aedes aegypti are described. Four discrete behavioral states dominate larval behavior: wriggling, two distinct types of feeding, and quiescence. Feeding behaviors consist of foraging along the bottom of the container (substrate browsing), and stationary filter feeding while suspended from the surface film. Fed larvae respond to paroxetine with increased wriggling, and reductions in both feeding behaviors. In contrast, food-deprived larvae treated with paroxetine show no change in the proportion of time spent wriggling or feeding, but shift from stationary filter feeding to substrate browsing. Thus, actions of paroxetine in fed larvae are consistent with suppression of appetite and stimulation of wriggling, whereas paroxetine causes food-deprived larvae to switch from one feeding behavior to another. Further analysis of unfed larvae revealed that paroxetine decreased the power stroke frequency during wriggling locomotion, but had no effect on the swimming velocity during either wriggling or substrate browsing. These data suggest that: (1) serotonergic pathways may trigger shifts between distinct behaviors by actions on higher level (brain) integrating centers where behaviors such as feeding and locomotion are coordinated; (2) these centers in fed and food-deprived larvae respond differently to serotonergic stimulation suggesting sensory feedback from feeding status; and (3) serotonergic pathways also modulate central pattern generators of the nerve cord where the bursts of action potentials originate that drive the rhythmic muscle contractions of wriggling.
Collapse
Affiliation(s)
- Michael P Kinney
- Department of Biology, Indiana University South Bend, 1700 Mishawaka Avenue, South Bend, IN 46634-7111, USA
| | | | | |
Collapse
|
33
|
Momohara Y, Kanai A, Nagayama T. Aminergic control of social status in crayfish agonistic encounters. PLoS One 2013; 8:e74489. [PMID: 24058575 PMCID: PMC3776855 DOI: 10.1371/journal.pone.0074489] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/02/2013] [Indexed: 12/19/2022] Open
Abstract
Using pairings of male crayfish Procambarus clarkii with a 3–7% difference in size, we confirmed that physically larger crayfish were more likely to win encounters (winning probability of over 80%). Despite a physical disadvantage, small winners of the first pairings were more likely to win their subsequent conflicts with larger naive animals (winning probability was about 70%). By contrast, the losers of the first pairings rarely won their subsequent conflicts with smaller naive animals (winning probability of 6%). These winner and loser effects were mimicked by injection of serotonin and octopamine. Serotonin-injected naive small crayfish were more likely to win in pairings with untreated larger naive crayfish (winning probability of over 60%), while octopamine-injected naive large animals were beaten by untreated smaller naive animals (winning probability of 20%). Furthermore, the winner effects of dominant crayfish were cancelled by the injection of mianserin, an antagonist of serotonin receptors and were reinforced by the injection of fluoxetin, serotonin reuptake inhibitor, just after the establishment of social order of the first pairings. Injection of octopamine channel blockers, phentolamine and epinastine, by contrast, cancelled the loser effects. These results strongly suggested that serotonin and octopamine were responsible for winner and loser effects, respectively.
Collapse
Affiliation(s)
- Yuto Momohara
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Akihiro Kanai
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Toshiki Nagayama
- Department of Biology, Faculty of Science, Yamagata University, Yamagata, Japan
- * E-mail:
| |
Collapse
|
34
|
Fruson L, Dalesman S, Lukowiak K. A flavonol present in cocoa [(-)epicatechin] enhances snail memory. ACTA ACUST UNITED AC 2013; 215:3566-76. [PMID: 23014569 DOI: 10.1242/jeb.070300] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dietary consumption of flavonoids (plant phytochemicals) may improve memory and neuro-cognitive performance, though the mechanism is poorly understood. Previous work has assessed cognitive effects in vertebrates; here we assess the suitability of Lymnaea stagnalis as an invertebrate model to elucidate the effects of flavonoids on cognition. (-)Epicatechin (epi) is a flavonoid present in cocoa, green tea and red wine. We studied its effects on basic snail behaviours (aerial respiration and locomotion), long-term memory (LTM) formation and memory extinction of operantly conditioned aerial respiratory behaviour. We found no significant effect of epi exposure (15 mg l(-1)) on either locomotion or aerial respiration. However, when snails were operantly conditioned in epi for a single 0.5 h training session, which typically results in memory lasting ~3 h, they formed LTM lasting at least 24 h. Snails exposed to epi also showed significantly increased resistance to extinction, consistent with the hypothesis that epi induces a more persistent LTM. Thus training in epi facilitates LTM formation and results in a more persistent and stronger memory. Previous work has indicated that memory-enhancing stressors (predator kairomones and KCl) act via sensory input from the osphradium and are dependent on a serotonergic (5-HT) signalling pathway. Here we found that the effects of epi on LTM were independent of osphradial input and 5-HT, demonstrating that an alternative mechanism of memory enhancement exists in L. stagnalis. Our data are consistent with the notion that dietary sources of epi can improve cognitive abilities, and that L. stagnalis is a suitable model with which to elucidate neuronal mechanisms.
Collapse
Affiliation(s)
- Lee Fruson
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | | | | |
Collapse
|
35
|
Perrot-Minnot MJ, Cézilly F. Investigating candidate neuromodulatory systems underlying parasitic manipulation: concepts, limitations and prospects. J Exp Biol 2013; 216:134-41. [DOI: 10.1242/jeb.074146] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Summary
Studies addressing the functional basis of parasitic manipulation suggest that alteration of the neuromodulatory system is a common feature of manipulated hosts. Screening of the neuromodulatory system has so far been carried out by performing ethopharmacological analysis, biochemical quantification of neurotransmitters and neuromodulators, and/or immunocytochemistry. Here, we review the advantages and limitations of such approaches through the analysis of case studies. We further address whether the analysis of candidate neuromodulatory systems fits the current view of manipulation as being multidimensional. The benefits in combining ethopharmacology with more recent molecular tools to investigate candidate neuromodulatory pathways is also emphasized. We conclude by discussing the value of a multidisciplinary study of parasitic manipulation, combining evolutionary (parasite transmission), behavioural (syndrome of manipulation) and neuroimmunological approaches.
Collapse
Affiliation(s)
- Marie-Jeanne Perrot-Minnot
- Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Frank Cézilly
- Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| |
Collapse
|
36
|
Fernandez VM, Giurfa M, Devaud JM, Farina WM. Latent inhibition in an insect: The role of aminergic signaling. Learn Mem 2012; 19:593-7. [DOI: 10.1101/lm.028167.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Dalesman S, Lukowiak K. Interaction between environmental stressors mediated via the same sensory pathway. Commun Integr Biol 2012; 4:717-9. [PMID: 22446536 DOI: 10.4161/cib.17470] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The great pond snail, Lymnaea stagnalis, is a calciphile, requiring approximately 20 mg/l dissolved calcium for natural populations to live long and prosper. However, despite population survival we have previously demonstrated that acute exposure for 1 week to low environmental calcium (20 mg/l) acts as a stressor on the snail, blocking long-term memory (LTM) formation. This response to calcium availability is mediated by the snail directly sensing the calcium concentration in its environment using a sensory structure called the osphradium. In addition to sensing the calcium environment, the osphradium also mediates the response to predator kairomones which has an opposite effect on memory i.e. kairomone exposure during training enhances LTM formation. Here we demonstrate how these two stressors (low calcium availability and predator kairomones), that alter memory formation in opposing directions via the same sensory system, interact when experienced simultaneously.
Collapse
Affiliation(s)
- Sarah Dalesman
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary; Calgary, AB Canada
| | | |
Collapse
|
38
|
Byzitter J, Lukowiak K, Karnik V, Dalesman S. Acute combined exposure to heavy metals (Zn, Cd) blocks memory formation in a freshwater snail. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:860-868. [PMID: 22218978 DOI: 10.1007/s10646-011-0847-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/17/2011] [Indexed: 05/31/2023]
Abstract
The effect of heavy metals on species survival is well documented; however, sublethal effects on behaviour and physiology are receiving growing attention. Measurements of changes in activity and respiration are more sensitive to pollutants, and therefore a better early indicator of potentially harmful ecological impacts. We assessed the effect of acute exposure (48 h) to two heavy metals at concentrations below those allowable in municipal drinking water (Zn: 1,100 μg/l; Cd: 3 μg/l) on locomotion and respiration using the freshwater snail, Lymnaea stagnalis. In addition we used a novel assessment method, testing the ability of the snail to form memory in the presence of heavy metals in both intact snails, and also snails that had the osphradial nerve severed which connects a chemosensory organ, the osphradium, to the central nervous system. Aerial respiration and locomotion remained unchanged by acute exposure to heavy metals. There was also no effect on memory formation of these metals when administered alone. However, when snails were exposed to these metals in combination memory formation was blocked. Severing the osphradial nerve prevented the memory blocking effect of Zn and Cd, indicating that the snails are sensing these metals in their environment via the osphradium and responding to them as a stressor. Therefore, assessing the ability of this species to form memory is a more sensitive measure of heavy metal pollution than measures of activity, and indicates that the snails' ability to demonstrate behavioural plasticity may be compromised by the presence of these pollutants.
Collapse
Affiliation(s)
- Jovita Byzitter
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, 2104 HSC Hospital Drive NW, Calgary, AB, Canada
| | | | | | | |
Collapse
|
39
|
Dalesman S, Lukowiak K. Social snails: the effect of social isolation on cognition is dependent on environmental context. ACTA ACUST UNITED AC 2012; 214:4179-85. [PMID: 22116760 DOI: 10.1242/jeb.064857] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Social isolation is often considered to have negative effects on cognitive function in a wide range of species. Here we assess how environmental context alters the effect of isolation on long-term memory formation (24 h) in the pond snail Lymnaea stagnalis. We operantly trained snails to reduce aerial respiration in hypoxia following exposure to one of three social conditions: (1) maintained and trained in groups; (2) maintained in groups, trained in isolation; or (3) maintained and trained in isolation. In addition, snails also experienced four stress exposure levels: control, exposure to low calcium availability, predator kairomone exposure during training or a combination of low calcium and predator kairomones. Snails isolated during training alone demonstrated no difference in memory formation compared with the snails trained in groups. Maintaining snails in social isolation for 8 days prior to training had a neutral effect on memory in control conditions or in the presence of predator kairomones alone. However, social isolation enhanced long-term memory formation in snails exposed to low calcium conditions, a stress that blocks memory formation in snails maintained in groups. Conversely, when exposed to low calcium and predator kairomones combined, grouped snails normally demonstrate long-term memory, but following maintenance in isolation long-term memory was blocked. Therefore, the effect of social isolation on cognitive function is highly dependent on the environmental context in which it is experienced.
Collapse
Affiliation(s)
- Sarah Dalesman
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.
| | | |
Collapse
|
40
|
Karnik V, Braun M, Dalesman S, Lukowiak K. Sensory input from the osphradium modulates the response to memory-enhancing stressors in Lymnaea stagnalis. J Exp Biol 2012; 215:536-42. [DOI: 10.1242/jeb.061432] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
SUMMARY
In the freshwater environment species often rely on chemosensory information to modulate behavior. The pond snail, Lymnaea stagnalis, is a model species used to characterize the causal mechanisms of long-term memory (LTM) formation. Chemical stressors including crayfish kairomones and KCl enhance LTM formation (≥24 h) in Lymnaea; however, how these stressors are sensed and the mechanism by which they affect the electrophysiological properties of neurons necessary for memory formation are poorly understood. Here, we assessed whether the osphradium, a primary chemosensory organ in Lymnaea, modulates LTM enhancement. To test this we severed the osphradial nerve proximal to the osphradium, using sham-operated animals as controls, and assessed the behavioral and electrophysiological response to crayfish kairomones and KCl. We operantly conditioned aerial respiratory behavior in intact, sham and osphradially cut animals, and tested for enhanced memory formation after exposure to the chemical stressors. Sham-operated animals displayed the same memory enhancement as intact animals but snails with a severed osphradial nerve did not show LTM enhancement. Extracellular recordings made from the osphradial nerve demonstrate that these stressors evoked afferent sensory activity. Intracellular recordings from right pedal dorsal 1 (RPeD1), a neuron necessary for LTM formation, demonstrate that its electrophysiological activity is altered by input from the osphradium following exposure to crayfish kairomones or KCl in sham and intact animals but no response is seen in RPeD1 in osphradially cut animals. Therefore, sensory input from the osphradium is necessary for LTM enhancement following exposure to these chemical stressors.
Collapse
Affiliation(s)
- Vikram Karnik
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Marvin Braun
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Sarah Dalesman
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 4N1
| |
Collapse
|
41
|
Teskey ML, Lukowiak KS, Riaz H, Dalesman S, Lukowiak K. What's hot: the enhancing effects of thermal stress on long-term memory formation in Lymnaea stagnalis. J Exp Biol 2012; 215:4322-9. [DOI: 10.1242/jeb.075960] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Summary
The pond snail, Lymnaea stagnalis, naturally inhabits slow flowing, shallow and stagnant environments in the northern temperate zone. Consequently, it will experience wide temperature fluctuations dependent on prevailing weather conditions. We hypothesize that periods of warming act as a thermal stressor to alter memory formation. Snails were exposed to an acute 1h period of 30°C pond water and we determined how memory formation following operant conditioning of aerial respiration was affected. In snails used here (the Dutch strain), a single 0.5h training session (TS) results in intermediate-term (3h) but not long-term memory (LTM). Applying the thermal stressor during training caused memory enhancement (i.e. LTM lasting 24 h). However, the breathing rate also increased in warm water, which might explain the enhanced memory. Therefore, we applied the thermal stressor (1h at 30°C) up to 4h before or 1h after training. This did not alter baseline breathing rate during the period when snails would experience training. However, the thermal stressor weather experienced prior to or following the single TS, resulted in an enhanced memory that persisted up to 48h (i.e. LTM). We conclude that memory enhancement is due to the stress associated with the thermal stimulus.
Collapse
|
42
|
Braun MH, Lukowiak K, Karnik V, Lukowiak K. Differences in neuronal activity explain differences in memory forming abilities of different populations of Lymnaea stagnalis. Neurobiol Learn Mem 2011; 97:173-82. [PMID: 22146779 DOI: 10.1016/j.nlm.2011.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 12/20/2022]
Abstract
The ability to learn and form long-term memory (LTM) can enhance an animal's fitness, for example, by allowing them to remember predators, food sources or conspecific interactions. Here we use the pond snail, Lymnaea stagnalis, to assess whether variability between natural populations (i.e., strains) in memory forming capabilities correlates with electrophysiological properties at the level of a single neuron, RPeD1. RPeD1 is a necessary site of LTM formation of aerial respiratory behaviour following operant conditioning. We used strains from two small, separate permanent ponds (TC1 and TC2). A comparison of the two populations showed that the TC1 strain had enhanced memory forming capabilities. Further, the behavioural phenotype of enhanced memory strain was explained, in part, by differences in the electrophysiology of RPeD1. Compared to RPeD1 from the naive TC2 strain, RPeD1 from the TC1 strain has both a decreased resistance and decreased excitability. Moreover, 24h after a single 0.5h training session, those membrane properties, as well as the firing and bursting rate, decrease further in the TC1 strain but not in the TC2 strain. The initial differences in RPeD1 properties in the TC1 strain coupled with their ability to further change these properties with a single training session suggests that RPeD1 neurons from the TC1 strain are "primed" to rapidly form memory.
Collapse
Affiliation(s)
- Marvin H Braun
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| | | | | | | |
Collapse
|
43
|
Dalesman S, Karnik V, Lukowiak K. Sensory mediation of memory blocking stressors in the pond snail Lymnaea stagnalis. J Exp Biol 2011; 214:2528-33. [DOI: 10.1242/jeb.058024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
SUMMARY
The great pond snail, Lymnaea stagnalis, is commonly used as a model species to study how stress affects the ability to form long-term memory (LTM); however, we still have little information about how the snail senses stressful stimuli. The osphradium is an external sensory organ that demonstrates electrophysiological responses to a variety of external chemical stimuli. We examined the role, if any, played by the osphradium in sensing two environmental stressors, crowding and low environmental calcium, both known to block LTM in intact animals. We severed the osphradial nerve, blocking external sensory input from this organ to the central nervous system, and then exposed the snails to low environmental calcium or crowding stress to assess whether these stressors continued to block LTM formation. When exposed to low environmental calcium, snails with their osphradial nerve severed responded as if they were maintained in our standard calcium environment. That is, they did not respond to low calcium as a stressor blocking LTM; therefore, the osphradium plays a crucial role in mediating how snails respond to this stressor. However, following crowding, LTM formation was blocked in both control groups and snails that had the osphradial nerve severed, indicating that sensory information from the osphradium is not required to sense crowded conditions. Together these data show that two stressors that result in the same behavioural phenotype, blocking LTM formation, do so via two distinct sensory pathways.
Collapse
Affiliation(s)
- Sarah Dalesman
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Vikram Karnik
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
44
|
Knezevic B, Dalesman S, Karnik V, Byzitter J, Lukowiak K. Low external environmental calcium levels prevent forgetting in Lymnaea. J Exp Biol 2011; 214:2118-24. [DOI: 10.1242/jeb.054635] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
SUMMARY
Forgetting may allow an animal to react more appropriately to current conditions, rather than continuing to exhibit a previously learned, possibly maladaptive behaviour based on previous experience. One theory is that forgetting is an active process, whereby the previously learnt response is replaced by new learning that interferes with the older memory. Hence, we hypothesized that an appropriately timed environmental stressor that blocks long-term memory (LTM) formation would also block forgetting. Lymnaea stagnalis (L.) is a freshwater snail, which requires environmental calcium of at least 20 mg l–1 to meet its requirements. Low environmental Ca2+ (i.e. 20 mg l–1) in their environment acts as a stressor, and prevents LTM formation. Here, we asked whether a low Ca2+ environment would also prevent forgetting, concordant with the retrograde interference model of Jenkins and Dallenbach. Snails were operantly conditioned to reduce aerial respiration in hypoxia. When maintained in standard conditions (80 mg l–1 Ca2+), snails demonstrated LTM following training lasting 24 h, but not 72 h; however, when trained in standard conditions then exposed to a low Ca2+ environment (20 mg l–1) immediately following training, they retained memory for at least 96 h, indicating that forgetting had been blocked. Thus, when exposed to low environmental Ca2+, Lymnaea will fail to form new memories, but will also continue to retain information previously learned and remembered as the low calcium blocks forgetting.
Collapse
Affiliation(s)
- Bogdan Knezevic
- Hotchkiss Brain Institute, University of Calgary, HSC 2104, 3330 Hospital Drive NW, Calgary, AB, Canada, T2N 4N1
| | - Sarah Dalesman
- Hotchkiss Brain Institute, University of Calgary, HSC 2104, 3330 Hospital Drive NW, Calgary, AB, Canada, T2N 4N1
| | - Vikram Karnik
- Hotchkiss Brain Institute, University of Calgary, HSC 2104, 3330 Hospital Drive NW, Calgary, AB, Canada, T2N 4N1
| | - Jovita Byzitter
- Hotchkiss Brain Institute, University of Calgary, HSC 2104, 3330 Hospital Drive NW, Calgary, AB, Canada, T2N 4N1
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, HSC 2104, 3330 Hospital Drive NW, Calgary, AB, Canada, T2N 4N1
| |
Collapse
|
45
|
Dalesman S, Braun MH, Lukowiak K. Low environmental calcium blocks long-term memory formation in a freshwater pulmonate snail. Neurobiol Learn Mem 2010; 95:393-403. [PMID: 21130174 DOI: 10.1016/j.nlm.2010.11.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/17/2010] [Accepted: 11/28/2010] [Indexed: 01/24/2023]
Abstract
The freshwater snail Lymnaea stagnalis (L.) is considered a calciphile and exhibits reduced growth and survival in environments containing less than 20 mg/l environmental calcium. Although it has no apparent effect on survival at 20 mg/l, reducing environmental calcium increases metabolic demand, and as such we consider that this level of calcium acts as a stressor on the snail. We exposed snails to acute periods of low environmental calcium and tested their ability to form intermediate-term memory (ITM) and long-term memory (LTM) following one trial operant conditioning (1TT) to reduce aerial respiratory activity in hypoxic conditions. We also assessed whether there were changes in the electrophysiological properties of a single neuron, right pedal dorsal 1 (RPeD1), which has been demonstrated to be necessary for LTM formation. Following training in high (80 mg/l) environmental calcium, L. stagnalis formed ITM and LTM lasting 24 h and demonstrated a significant reduction in all activity measured from RPeD1; however when snails were exposed to low (20 mg/l) environmental calcium they were able to form ITM but not LTM. Although no behavioral LTM was formed, a partial reduction in RPeD1 activtiy measured 24 h after training was observed, indicating a residual effect of training. The strong effect that environmental calcium concentration had on physiology and behavior in response to training to reduce aerial respiration in L. stagnalis suggests that it is an element of gastropod husbandry that needs to be carefully considered when studying other traits. This study also indicates that L. stagnalis found naturally in low calcium environments may be less able to adapt to novel stressors than populations found in harder waters.
Collapse
Affiliation(s)
- Sarah Dalesman
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N4N1, Canada.
| | | | | |
Collapse
|