1
|
Zak H, Rozenfeld E, Levi M, Deng P, Gorelick D, Pozeilov H, Israel S, Paas Y, Paas Y, Li JB, Parnas M, Shohat-Ophir G. A highly conserved A-to-I RNA editing event within the glutamate-gated chloride channel GluClα is necessary for olfactory-based behaviors in Drosophila. SCIENCE ADVANCES 2024; 10:eadi9101. [PMID: 39231215 PMCID: PMC11373593 DOI: 10.1126/sciadv.adi9101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/29/2024] [Indexed: 09/06/2024]
Abstract
A-to-I RNA editing is a cellular mechanism that generates transcriptomic and proteomic diversity, which is essential for neuronal and immune functions. It involves the conversion of specific adenosines in RNA molecules to inosines, which are recognized as guanosines by cellular machinery. Despite the vast number of editing sites observed across the animal kingdom, pinpointing critical sites and understanding their in vivo functions remains challenging. Here, we study the function of an evolutionary conserved editing site in Drosophila, located in glutamate-gated chloride channel (GluClα). Our findings reveal that flies lacking editing at this site exhibit reduced olfactory responses to odors and impaired pheromone-dependent social interactions. Moreover, we demonstrate that editing of this site is crucial for the proper processing of olfactory information in projection neurons. Our results highlight the value of using evolutionary conservation as a criterion for identifying editing events with potential functional significance and paves the way for elucidating the intricate link between RNA modification, neuronal physiology, and behavior.
Collapse
Affiliation(s)
- Hila Zak
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan University, Ramat Gan 5290002, Israel
- The Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Eyal Rozenfeld
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mali Levi
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan University, Ramat Gan 5290002, Israel
- The Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Patricia Deng
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - David Gorelick
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan University, Ramat Gan 5290002, Israel
- The Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Hadar Pozeilov
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan University, Ramat Gan 5290002, Israel
- The Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Shai Israel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan University, Ramat Gan 5290002, Israel
- The Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Yoav Paas
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoav Paas
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Moshe Parnas
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Galit Shohat-Ophir
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan University, Ramat Gan 5290002, Israel
- The Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
2
|
Choquet M, Lenner F, Cocco A, Toullec G, Corre E, Toullec JY, Wallberg A. Comparative Population Transcriptomics Provide New Insight into the Evolutionary History and Adaptive Potential of World Ocean Krill. Mol Biol Evol 2023; 40:msad225. [PMID: 37816123 PMCID: PMC10642690 DOI: 10.1093/molbev/msad225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
Genetic variation is instrumental for adaptation to changing environments but it is unclear how it is structured and contributes to adaptation in pelagic species lacking clear barriers to gene flow. Here, we applied comparative genomics to extensive transcriptome datasets from 20 krill species collected across the Atlantic, Indian, Pacific, and Southern Oceans. We compared genetic variation both within and between species to elucidate their evolutionary history and genomic bases of adaptation. We resolved phylogenetic interrelationships and uncovered genomic evidence to elevate the cryptic Euphausia similis var. armata into species. Levels of genetic variation and rates of adaptive protein evolution vary widely. Species endemic to the cold Southern Ocean, such as the Antarctic krill Euphausia superba, showed less genetic variation and lower evolutionary rates than other species. This could suggest a low adaptive potential to rapid climate change. We uncovered hundreds of candidate genes with signatures of adaptive evolution among Antarctic Euphausia but did not observe strong evidence of adaptive convergence with the predominantly Arctic Thysanoessa. We instead identified candidates for cold-adaptation that have also been detected in Antarctic fish, including genes that govern thermal reception such as TrpA1. Our results suggest parallel genetic responses to similar selection pressures across Antarctic taxa and provide new insights into the adaptive potential of important zooplankton already affected by climate change.
Collapse
Affiliation(s)
- Marvin Choquet
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Felix Lenner
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Arianna Cocco
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gaëlle Toullec
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Erwan Corre
- CNRS, Sorbonne Université, FR 2424, ABiMS Platform, Station Biologique de Roscoff, Roscoff, France
| | - Jean-Yves Toullec
- CNRS, UMR 7144, AD2M, Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Galarza-Muñoz G, Soto-Morales SI, Jiao S, Holmgren M, Rosenthal JJC. Molecular determinants for cold adaptation in an Antarctic Na +/K +-ATPase. Proc Natl Acad Sci U S A 2023; 120:e2301207120. [PMID: 37782798 PMCID: PMC10576127 DOI: 10.1073/pnas.2301207120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 07/28/2023] [Indexed: 10/04/2023] Open
Abstract
Enzymes from ectotherms living in chronically cold environments have evolved structural innovations to overcome the effects of temperature on catalysis. Cold adaptation of soluble enzymes is driven by changes within their primary structure or the aqueous milieu. For membrane-embedded enzymes, like the Na+/K+-ATPase, the situation is different because changes to the lipid bilayer in which they operate may also be relevant. Although much attention has been focused on thermal adaptation within lipid bilayers, relatively little is known about the contribution of structural changes within membrane-bound enzymes themselves. The identification of specific mutations that confer temperature compensation is complicated by the presence of neutral mutations, which can be more numerous. In the present study, we identified specific amino acids in a Na+/K+-ATPase from an Antarctic octopus that underlie cold resistance. Our approach was to generate chimeras between an Antarctic clone and a temperate ortholog and then study their temperature sensitivities in Xenopus oocytes using an electrophysiological approach. We identified 12 positions in the Antarctic Na+/K+-ATPase that, when transferred to the temperate ortholog, were sufficient to confer cold tolerance. Furthermore, although all 12 Antarctic mutations were required for the full phenotype, a single leucine in the third transmembrane segment (M3) imparted most of it. Mutations that confer cold resistance are mostly in transmembrane segments, at positions that face the lipid bilayer. We propose that the interface between a transmembrane enzyme and the lipid bilayer is a critical determinant of temperature sensitivity and, accordingly, has been a prime evolutionary target for thermal adaptation.
Collapse
Affiliation(s)
- Gaddiel Galarza-Muñoz
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR00901
| | - Sonia I. Soto-Morales
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR00901
| | - Song Jiao
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD20892
| | - Miguel Holmgren
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD20892
| | - Joshua J. C. Rosenthal
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR00901
| |
Collapse
|
4
|
Sabatino SJ, Pereira P, Carneiro M, Dilytė J, Archer JP, Munoz A, Nonnis-Marzano F, Murias A. The genetics of adaptation in freshwater Eurasian shad ( Alosa). Ecol Evol 2022; 12:e8908. [PMID: 35646309 PMCID: PMC9130566 DOI: 10.1002/ece3.8908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
Studying the genetics of phenotypic convergence can yield important insights into adaptive evolution. Here, we conducted a comparative genomic study of four lineages (species and subspecies) of anadromous shad (Alosa) that have independently evolved life cycles entirely completed in freshwater. Three naturally diverged (A. fallax lacustris, A. f. killarnensis, and A. macedonica), and the fourth (A. alosa) was artificially landlocked during the last century. To conduct this analysis, we assembled and annotated a draft of the A. alosa genome and generated whole‐genome sequencing for 16 anadromous and freshwater populations of shad. Widespread evidence for parallel genetic changes in freshwater populations within lineages was found. In freshwater A. alosa, which have only been diverging for tens of generations, this shows that parallel adaptive evolution can rapidly occur. However, parallel genetic changes across lineages were comparatively rare. The degree of genetic parallelism was not strongly related to the number of shared polymorphisms between lineages, thus suggesting that other factors such as divergence among ancestral populations or environmental variation may influence genetic parallelism across these lineages. These overall patterns were exemplified by genetic differentiation involving a paralog of ATPase‐α1 that appears to be under selection in just two of the more distantly related lineages studied, A. f. lacustris and A. alosa. Our findings provide insights into the genetic architecture of adaptation and parallel evolution along a continuum of population divergence.
Collapse
Affiliation(s)
- Stephen J Sabatino
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal.,BIOPOLIS - Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal.,Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
| | - Paulo Pereira
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal.,BIOPOLIS - Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal.,Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
| | - Miguel Carneiro
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal.,BIOPOLIS - Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal.,Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
| | - Jolita Dilytė
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal.,BIOPOLIS - Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal
| | - John Patrick Archer
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal.,BIOPOLIS - Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal
| | - Antonio Munoz
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal.,BIOPOLIS - Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal
| | - Francesco Nonnis-Marzano
- Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal.,Department of Chemistry, Life Sciences and Environmental Sustainability Università di Parma Parma Italy
| | - Antonio Murias
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal.,BIOPOLIS - Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal.,Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
| |
Collapse
|
5
|
Abstract
Animals rely on their sensory systems to inform them of ecologically relevant environmental variation. In the Southern Ocean, the thermal environment has remained between −1.9 and 5 °C for 15 Myr, yet we have no knowledge of how an Antarctic marine organism might sense their thermal habitat as we have yet to discover a thermosensitive ion channel that gates (opens/closes) below 10 °C. Here, we investigate the evolutionary dynamics of transient receptor potential (TRP) channels, which are the primary thermosensors in animals, within cryonotothenioid fishes—the dominant fish fauna of the Southern Ocean. We found cryonotothenioids have a similar complement of TRP channels as other teleosts (∼28 genes). Previous work has shown that thermosensitive gating in a given channel is species specific, and multiple channels act together to sense the thermal environment. Therefore, we combined evidence of changes in selective pressure, gene gain/loss dynamics, and the first sensory ganglion transcriptome in this clade to identify the best candidate TRP channels that might have a functional dynamic range relevant for frigid Antarctic temperatures. We concluded that TRPV1a, TRPA1b, and TRPM4 are the likeliest putative thermosensors, and found evidence of diversifying selection at sites across these proteins. We also put forward hypotheses for molecular mechanisms of other cryonotothenioid adaptations, such as reduced skeletal calcium deposition, sensing oxidative stress, and unusual magnesium homeostasis. By completing a comprehensive and unbiased survey of these genes, we lay the groundwork for functional characterization and answering long-standing thermodynamic questions of thermosensitive gating and protein adaptation to low temperatures.
Collapse
Affiliation(s)
- Julia M York
- Department of Integrative Biology, University of Texas at Austin, USA
- Corresponding author: E-mail:
| | - Harold H Zakon
- Department of Integrative Biology, University of Texas at Austin, USA
| |
Collapse
|
6
|
Gantz JD, Spong KE, Seroogy EA, Robertson RM, Lee RE. Effects of brief chilling and desiccation on ion homeostasis in the central nervous system of the migratory locust, Locusta migratoria. Comp Biochem Physiol A Mol Integr Physiol 2020; 249:110774. [PMID: 32712084 DOI: 10.1016/j.cbpa.2020.110774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 01/20/2023]
Abstract
In insects, chilling, anoxia, and dehydration are cues to trigger rapid physiological responses enhancing stress tolerance within minutes. Recent evidence suggests that responses elicited by different cues are mechanistically distinct from each other, though these differences have received little attention. Further, the effects are not well studied in neural tissue. In this study, we examined how brief exposure to desiccation and chilling affect ion homeostatic mechanisms in metathoracic ganglion of the migratory locust, Locusta migratoria. Both desiccation and chilling enhanced resistance to anoxia, though only chilling hastened recovery from anoxic coma. Similarly, only chilling enhanced resistance to pharmacological perturbation of neuronal ion homeostasis. Our results indicate that chilling and desiccation trigger mechanistically distinct responses and, while both may be important for neuronal ion homeostasis, chilling has a larger effect on this tissue. SUMMARY STATEMENT: This is one of few studies to demonstrate the importance of the central nervous system in rapid acclimatory responses in insects.
Collapse
Affiliation(s)
- J D Gantz
- Department of Biology, Miami University, Oxford, OH 45056, USA; Department of Biology and Health Sciences, Hendrix College, Conway, AR 72032, USA.
| | - Kristin E Spong
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Erik A Seroogy
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | | | - Richard E Lee
- Department of Biology, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
7
|
Moreno C, Yano S, Bezanilla F, Latorre R, Holmgren M. Transient Electrical Currents Mediated by the Na +/K +-ATPase: A Tour from Basic Biophysics to Human Diseases. Biophys J 2020; 119:236-242. [PMID: 32579966 PMCID: PMC7376075 DOI: 10.1016/j.bpj.2020.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/06/2020] [Accepted: 06/03/2020] [Indexed: 01/14/2023] Open
Abstract
The Na+/K+-ATPase is a chemical molecular machine responsible for the movement of Na+ and K+ ions across the cell membrane. These ions are moved against their electrochemical gradients, so the protein uses the free energy of ATP hydrolysis to transport them. In fact, the Na+/K+-ATPase is the single largest consumer of energy in most cells. In each pump cycle, the protein sequentially exports 3Na+ out of the cell, then imports 2K+ into the cell at an approximate rate of 200 cycles/s. In each half cycle of the transport process, there is a state in which ions are stably trapped within the permeation pathway of the protein by internal and external gates in their closed states. These gates are required to open alternately; otherwise, passive ion diffusion would be a wasteful end of the cell's energy. Once one of these gates open, ions diffuse from their binding sites to the accessible milieu, which involves moving through part of the electrical field across the membrane. Consequently, ions generate transient electrical currents first discovered more than 30 years ago. They have been studied in a variety of preparations, including native and heterologous expression systems. Here, we review three decades' worth of work using these transient electrical signals to understand the kinetic transitions of the movement of Na+ and K+ ions through the Na+/K+-ATPase and propose the significance that this work might have to the understanding of the dysfunction of human pump orthologs responsible for some newly discovered neurological pathologies.
Collapse
Affiliation(s)
- Cristina Moreno
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Sho Yano
- Medical Genetics and Genomic Medicine Training Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Gordon Center for Integrative Sciences, Chicago, Illinois
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Miguel Holmgren
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
8
|
Ganguly M, Jenkins MW, Jansen ED, Chiel HJ. Thermal block of action potentials is primarily due to voltage-dependent potassium currents: a modeling study. J Neural Eng 2019; 16:036020. [PMID: 30909171 PMCID: PMC11190670 DOI: 10.1088/1741-2552/ab131b] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Thermal block of action potential conduction using infrared lasers is a new modality for manipulating neural activity. It could be used for analysis of the nervous system and for therapeutic applications. We sought to understand the mechanisms of thermal block. APPROACH To analyze the mechanisms of thermal block, we studied both the original Hodgkin/Huxley model, and a version modified to more accurately match experimental data on thermal responses in the squid giant axon. MAIN RESULTS Both the original and modified models suggested that thermal block, especially at higher temperatures, is primarily due to a depolarization-activated hyperpolarization as increased temperature leads to faster activation of voltage-gated potassium ion channels. The minimum length needed to block an axon scaled with the square root of the axon's diameter. SIGNIFICANCE The results suggest that voltage-dependent potassium ion channels play a major role in thermal block, and that relatively short lengths of axon could be thermally manipulated to selectively block fine, unmyelinated axons, such as C fibers, that carry pain and other sensory information.
Collapse
Affiliation(s)
- Mohit Ganguly
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
- Biophotonics Center, Vanderbilt University, Nashville, TN, United States of America
| | - Michael W Jenkins
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - E Duco Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
- Biophotonics Center, Vanderbilt University, Nashville, TN, United States of America
| | - Hillel J Chiel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States of America
| |
Collapse
|
9
|
Hoffstaetter LJ, Bagriantsev SN, Gracheva EO. TRPs et al.: a molecular toolkit for thermosensory adaptations. Pflugers Arch 2018; 470:745-759. [PMID: 29484488 PMCID: PMC5945325 DOI: 10.1007/s00424-018-2120-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/03/2018] [Accepted: 02/05/2018] [Indexed: 12/19/2022]
Abstract
The ability to sense temperature is crucial for the survival of an organism. Temperature influences all biological operations, from rates of metabolic reactions to protein folding, and broad behavioral functions, from feeding to breeding, and other seasonal activities. The evolution of specialized thermosensory adaptations has enabled animals to inhabit extreme temperature niches and to perform specific temperature-dependent behaviors. The function of sensory neurons depends on the participation of various types of ion channels. Each of the channels involved in neuronal excitability, whether through the generation of receptor potential, action potential, or the maintenance of the resting potential have temperature-dependent properties that can tune the neuron's response to temperature stimuli. Since the function of all proteins is affected by temperature, animals need adaptations not only for detecting different temperatures, but also for maintaining sensory ability at different temperatures. A full understanding of the molecular mechanism of thermosensation requires an investigation of all channel types at each step of thermosensory transduction. A fruitful avenue of investigation into how different molecules can contribute to the fine-tuning of temperature sensitivity is to study the specialized adaptations of various species. Given the diversity of molecular participants at each stage of sensory transduction, animals have a toolkit of channels at their disposal to adapt their thermosensitivity to their particular habitats or behavioral circumstances.
Collapse
Affiliation(s)
- Lydia J Hoffstaetter
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA.
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA.
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA.
| |
Collapse
|
10
|
Des Marteaux LE, Khazraeenia S, Yerushalmi GY, Donini A, Li NG, Sinclair BJ. The effect of cold acclimation on active ion transport in cricket ionoregulatory tissues. Comp Biochem Physiol A Mol Integr Physiol 2018; 216:28-33. [PMID: 29146150 DOI: 10.1016/j.cbpa.2017.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 11/19/2022]
Abstract
Cold-acclimated insects defend ion and water transport function during cold exposure. We hypothesized that this is achieved via enhanced active transport. The Malpighian tubules and rectum are likely targets for such transport modifications, and recent transcriptomic studies indicate shifts in Na+-K+ ATPase (NKA) and V-ATPase expression in these tissues following cold acclimation. Here we quantify the effect of cold acclimation (one week at 12°C) on active transport in the ionoregulatory organs of adult Gryllus pennsylvanicus field crickets. We compared primary urine production of warm- and cold-acclimated crickets in excised Malpighian tubules via Ramsay assay at a range of temperatures between 4 and 25°C. We then compared NKA and V-ATPase activities in Malpighian tubule and rectal homogenates from warm- and cold-acclimated crickets via NADH-linked photometric assays. Malpighian tubules of cold-acclimated crickets excreted fluid at lower rates at all temperatures compared to warm-acclimated crickets. This reduction in Malpighian tubule excretion rates may be attributed to increased NKA activity that we observed for cold-acclimated crickets, but V-ATPase activity was unchanged. Cold acclimation had no effect on rectal NKA activity at either 21°C or 6°C, and did not modify rectal V-ATPase activity. Our results suggest that an overall reduction, rather than enhancement of active transport in the Malpighian tubules allows crickets to maintain hemolymph water balance during cold exposure, and increased Malpighian tubule NKA activity may help to defend and/or re-establish ion homeostasis.
Collapse
Affiliation(s)
- Lauren E Des Marteaux
- Department of Biology, University of Western Ontario, 1151 Richmond St., London, Ontario N6A 3K7, Canada.
| | - Soheila Khazraeenia
- Department of Biology, University of Western Ontario, 1151 Richmond St., London, Ontario N6A 3K7, Canada.
| | - Gil Y Yerushalmi
- Department of Biology, York University, 4700 Keele St., Toronto, Ontario M3J 1P3, Canada.
| | - Andrew Donini
- Department of Biology, York University, 4700 Keele St., Toronto, Ontario M3J 1P3, Canada.
| | - Natalia G Li
- Siberian Division of Russian Academy of Sciences, Lenin Ave. 41, Yakutsk 677980, Russia.
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, 1151 Richmond St., London, Ontario N6A 3K7, Canada.
| |
Collapse
|
11
|
Geisler CE, Kentch KP, Renquist BJ. Non-Mammalian Vertebrates: Distinct Models to Assess the Role of Ion Gradients in Energy Expenditure. Front Endocrinol (Lausanne) 2017; 8:224. [PMID: 28919880 PMCID: PMC5585156 DOI: 10.3389/fendo.2017.00224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/18/2017] [Indexed: 12/21/2022] Open
Abstract
Animals store metabolic energy as electrochemical gradients. At least 50% of mammalian energy is expended to maintain electrochemical gradients across the inner mitochondrial membrane (H+), the sarcoplasmic reticulum (Ca++), and the plasma membrane (Na+/K+). The potential energy of these gradients can be used to perform work (e.g., transport molecules, stimulate contraction, and release hormones) or can be released as heat. Because ectothermic species adapt their body temperature to the environment, they are not constrained by energetic demands that are required to maintain a constant body temperature. In fact, ectothermic species expend seven to eight times less energy than similarly sized homeotherms. Accordingly, ectotherms adopt low metabolic rates to survive cold, hypoxia, and extreme bouts of fasting that would result in energy wasting, lactic acidosis and apoptosis, or starvation in homeotherms, respectively. Ectotherms have also evolved unique applications of ion gradients to allow for localized endothermy. Endothermic avian species, which lack brown adipose tissue, have been integral in assessing the role of H+ and Ca++ cycling in skeletal muscle thermogenesis. Accordingly, the diversity of non-mammalian vertebrate species allows them to serve as unique models to better understand the role of ion gradients in heat production, metabolic flux, and adaptation to stressors, including obesity, starvation, cold, and hypoxia.
Collapse
Affiliation(s)
- Caroline E. Geisler
- School of Animal and Comparative Biomedical Science, University of Arizona, Tucson, AZ, United States
| | - Kyle P. Kentch
- School of Animal and Comparative Biomedical Science, University of Arizona, Tucson, AZ, United States
| | - Benjamin J. Renquist
- School of Animal and Comparative Biomedical Science, University of Arizona, Tucson, AZ, United States
- *Correspondence: Benjamin J. Renquist,
| |
Collapse
|
12
|
Stanley CM, Gagnon DG, Bernal A, Meyer DJ, Rosenthal JJ, Artigas P. Importance of the Voltage Dependence of Cardiac Na/K ATPase Isozymes. Biophys J 2016; 109:1852-62. [PMID: 26536262 DOI: 10.1016/j.bpj.2015.09.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/11/2015] [Accepted: 09/10/2015] [Indexed: 11/25/2022] Open
Abstract
Cardiac cells express more than one isoform of the Na, K-ATPase (NKA), the heteromeric enzyme that creates the Na(+) and K(+) gradients across the plasmalemma. Cardiac isozymes contain one catalytic α-subunit isoform (α1, α2, or α3) associated with an auxiliary β-subunit isoform (β1 or β2). Past studies using biochemical approaches have revealed minor kinetic differences between isozymes formed by different α-β isoform combinations; these results make it difficult to understand the physiological requirement for multiple isoforms. In intact cells, however, NKA enzymes operate in a more complex environment, which includes a substantial transmembrane potential. We evaluated the voltage dependence of human cardiac NKA isozymes expressed in Xenopus oocytes, and of native NKA isozymes in rat ventricular myocytes, using normal mammalian physiological concentrations of Na(+)o and K(+)o. We demonstrate that although α1 and α3 pumps are functional at all physiologically relevant voltages, α2β1 pumps and α2β2 pumps are inhibited by ∼75% and ∼95%, respectively, at resting membrane potentials, and only activate appreciably upon depolarization. Furthermore, phospholemman (FXYD1) inhibits pump function without significantly altering the pump's voltage dependence. Our observations provide a simple explanation for the physiological relevance of the α2 subunit (∼20% of total α subunits in rat ventricle): they act as a reserve and are recruited into action for extra pumping during the long-lasting cardiac action potential, where most of the Na(+) entry occurs. This strong voltage dependence of α2 pumps also helps explain how cardiotonic steroids, which block NKA pumps, can be a beneficial treatment for heart failure: by only inhibiting the α2 pumps, they selectively reduce NKA activity during the cardiac action potential, leading to an increase in systolic Ca(2+), due to reduced extrusion through the Na/Ca exchanger, without affecting resting Na(+) and Ca(2+) concentrations.
Collapse
Affiliation(s)
- Christopher M Stanley
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Dominique G Gagnon
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas; Department of Physics, Texas Tech University, Lubbock, Texas
| | - Adam Bernal
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Dylan J Meyer
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Joshua J Rosenthal
- Universidad de Puerto Rico, Recinto de Ciencias Médicas, Instituto de Neurobiología, San Juan, Puerto Rico
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas.
| |
Collapse
|
13
|
Des Marteaux LE, Sinclair BJ. Ion and water balance in Gryllus crickets during the first twelve hours of cold exposure. JOURNAL OF INSECT PHYSIOLOGY 2016; 89:19-27. [PMID: 27039031 DOI: 10.1016/j.jinsphys.2016.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/23/2016] [Accepted: 03/26/2016] [Indexed: 06/05/2023]
Abstract
Insects lose ion and water balance during chilling, but the mechanisms underlying this phenomenon are based on patterns of ion and water balance observed in the later stages of cold exposure (12 or more hours). Here we quantified the distribution of ions and water in the hemolymph, muscle, and gut in adult Gryllus field crickets during the first 12h of cold exposure to test mechanistic hypotheses about why homeostasis is lost in the cold, and how chill-tolerant insects might maintain homeostasis to lower temperatures. Unlike in later chill coma, hemolymph [Na(+)] and Na(+) content in the first few hours of chilling actually increased. Patterns of Na(+) balance suggest that Na(+) migrates from the tissues to the gut lumen via the hemolymph. Imbalance of [K(+)] progressed gradually over 12h and could not explain chill coma onset (a finding consistent with recent studies), nor did it predict survival or injury following 48h of chilling. Gryllus veletis avoided shifts in muscle and hemolymph ion content better than Gryllus pennsylvanicus (which is less chill-tolerant), however neither species defended water, [Na(+)], or [K(+)] balance during the first 12h of chilling. Gryllus veletis better maintained balance of Na(+) content and may therefore have greater tissue resistance to ion leak during cold exposure, which could partially explain faster chill coma recovery for that species.
Collapse
Affiliation(s)
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
14
|
Todgham AE, Crombie TA, Hofmann GE. The effect of temperature adaptation on the ubiquitin-proteasome pathway in notothenioid fishes. J Exp Biol 2016; 220:369-378. [DOI: 10.1242/jeb.145946] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/07/2016] [Indexed: 01/09/2023]
Abstract
There is an accumulating body of evidence suggesting that the sub-zero Antarctic marine environment places physiological constraints on protein homeostasis. Levels of ubiquitin (Ub)-conjugated proteins, 20S proteasome activity and mRNA expression of many proteins involved in both the ubiquitin (Ub) tagging of damaged proteins as well as the different complexes of the 26S proteasome were measured to examine whether there is thermal compensation of the Ub-proteasome pathway in Antarctic fishes to better understand the efficiency of the protein degradation machinery in polar species. Both Antarctic (Trematomus bernacchii, Pagothenia borchgrevinki) and non-Antarctic (Notothenia angustata, Bovichtus variegatus) notothenioids were included in this study to investigate the mechanisms of cold adaptation of this pathway in polar species. Overall, there were significant differences in the levels of Ub-conjugated proteins between the Antarctic notothenioids and B. variegatus, with N. angustata possessing levels very similar to the Antarctic fishes. Proteasome activity in the gills of Antarctic fishes demonstrated a high degree of temperature compensation such that activity levels were similar to activities measured in their temperate relatives at ecologically relevant temperatures. A similar level of thermal compensation of proteasome activity was not present in the liver of two Antarctic fishes. Higher gill proteasome activity is likely due in part to higher cellular levels of proteins involved in the Ub-proteasome pathway, as evidenced by high mRNA expression of relevant genes. Reduced activity of the Ub-proteasome pathway does not appear to be the mechanism responsible for elevated levels of denatured proteins in Antarctic fishes, at least in the gills.
Collapse
Affiliation(s)
- Anne E. Todgham
- Department of Animal Science, University of California, Davis, USA
| | | | - Gretchen E. Hofmann
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, USA
| |
Collapse
|
15
|
Clausen MV, Nissen P, Poulsen H. The α4 isoform of the Na⁺,K⁺-ATPase is tuned for changing extracellular environments. FEBS J 2015; 283:282-93. [PMID: 26476261 DOI: 10.1111/febs.13567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 09/20/2015] [Accepted: 10/15/2015] [Indexed: 11/30/2022]
Abstract
In their journey from the male to the female reproductive tract, spermatozoa are confronted with a constantly changing environment. To cope with the associated challenges, spermatozoa express a distinct set of transporters, channels and pumps. One of the membrane proteins unique to spermatozoa is the α4 isoform of the Na(+) ,K(+) -ATPase. In addition to α4, spermatozoa express the ubiquous α1 variant. To get a detailed understanding of how α1 and α4 differ, and why spermatozoa need an additional Na(+) ,K(+) -ATPase, we have conducted an electrophysiological comparison of the rodent isoforms (rat α4 versus mouse α1-3) using the Xenopus oocyte expression system. We demonstrate isoform-specific differences in the voltage sensitivity of steady-state turnover, with α2 being the more sensitive, and α1 and α2 having faster Na(+) release kinetics than α3 and α4. Our data further show that the α1 and α2 turnover rates are fast compared with those of α3 and α4. Finally, α4 is less influenced by changes in extracellular Na(+) and temperature than α1. Based on these findings, we discuss the possibility that evolution has selected robust activity rather than rapid turnover for α4.
Collapse
Affiliation(s)
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Hanne Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| |
Collapse
|
16
|
MacMillan HA, Ferguson LV, Nicolai A, Donini A, Staples JF, Sinclair BJ. Parallel ionoregulatory adjustments underlie phenotypic plasticity and evolution of Drosophila cold tolerance. ACTA ACUST UNITED AC 2014; 218:423-32. [PMID: 25524989 DOI: 10.1242/jeb.115790] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Low temperature tolerance is the main predictor of variation in the global distribution and performance of insects, yet the molecular mechanisms underlying cold tolerance variation are poorly known, and it is unclear whether the mechanisms that improve cold tolerance within the lifetime of an individual insect are similar to those that underlie evolved differences among species. The accumulation of cold-induced injuries by hemimetabolous insects is associated with loss of Na(+) and K(+) homeostasis. Here we show that this model holds true for Drosophila; cold exposure increases haemolymph [K(+)] in D. melanogaster, and cold-acclimated flies maintain low haemolymph [Na(+)] and [K(+)], both at rest and during a cold exposure. This pattern holds across 24 species of the Drosophila phylogeny, where improvements in cold tolerance have been consistently paired with reductions in haemolymph [Na(+)] and [K(+)]. Cold-acclimated D. melanogaster have low activity of Na(+)/K(+)-ATPase, which may contribute to the maintenance of low haemolymph [Na(+)] and underlie improvements in cold tolerance. Modifications to ion balance are associated with both phenotypic plasticity within D. melanogaster and evolutionary differences in cold tolerance across the Drosophila phylogeny, which suggests that adaptation and acclimation of cold tolerance in insects may occur through similar mechanisms. Cold-tolerant flies maintain haemolymph osmolality despite low haemolymph [Na(+)] and [K(+)], possibly through modest accumulations of organic osmolytes. We propose that this could have served as an evolutionary route by which chill-susceptible insects developed more extreme cold tolerance strategies.
Collapse
Affiliation(s)
- Heath A MacMillan
- Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7
| | - Laura V Ferguson
- Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7
| | - Annegret Nicolai
- Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7
| | - Andrew Donini
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - James F Staples
- Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7
| |
Collapse
|
17
|
MacMillan HA, Findsen A, Pedersen TH, Overgaard J. Cold-induced depolarization of insect muscle: differing roles of extracellular K+ during acute and chronic chilling. ACTA ACUST UNITED AC 2014; 217:2930-8. [PMID: 24902750 DOI: 10.1242/jeb.107516] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Insects enter chill coma, a reversible state of paralysis, at temperatures below their critical thermal minimum (CTmin), and the time required for an insect to recover after a cold exposure is termed chill coma recovery time (CCRT). The CTmin and CCRT are both important metrics of insect cold tolerance that are used interchangeably, although chill coma recovery is not necessarily permitted by a direct reversal of the mechanism causing chill coma onset. Nevertheless, onset and recovery of coma have been attributed to loss of neuromuscular function due to depolarization of muscle fibre membrane potential (Vm). Here we test the hypothesis that muscle depolarization at chill coma onset and repolarization during chill coma recovery are caused by changes in extracellular [K(+)] and/or other effects of low temperature. Using Locusta migratoria, we measured in vivo muscle resting potentials of the extensor tibialis during cooling, following prolonged exposure to -2°C and during chill coma recovery, and related changes in Vm to transmembrane [K(+)] balance and temperature. Although Vm was rapidly depolarized by cooling, hemolymph [K(+)] did not rise until locusts had spent considerable time in the cold. Nonetheless, a rise in hemolymph [K(+)] during prolonged cold exposure further depressed muscle resting potential and slowed recovery from chill coma upon rewarming. Muscle resting potentials had a bimodal distribution, and with elevation of extracellular [K(+)] (but not temperature) muscle resting potentials become unimodal. Thus, a disruption of extracellular [K(+)] does depolarize muscle resting potential and slow CCRT following prolonged cold exposure. However, onset of chill coma at the CTmin relates to an as-yet-unknown effect of temperature on neuromuscular function.
Collapse
Affiliation(s)
| | - Anders Findsen
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Johannes Overgaard
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
18
|
Romano A, Barca A, Storelli C, Verri T. Teleost fish models in membrane transport research: the PEPT1(SLC15A1) H+-oligopeptide transporter as a case study. J Physiol 2013; 592:881-97. [PMID: 23981715 DOI: 10.1113/jphysiol.2013.259622] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human genes for passive, ion-coupled transporters and exchangers are included in the so-called solute carrier (SLC) gene series, to date consisting of 52 families and 398 genes. Teleost fish genes for SLC proteins have also been described in the last two decades, and catalogued in preliminary SLC-like form in 50 families and at least 338 genes after systematic GenBank database mining (December 2010-March 2011). When the kinetic properties of the expressed proteins are studied in detail, teleost fish SLC transporters always reveal extraordinary 'molecular diversity' with respect to the mammalian counterparts, which reflects peculiar adaptation of the protein to the physiology of the species and/or to the environment where the species lives. In the case of the H+ -oligopeptide transporter PEPT1(SLC15A1), comparative analysis of diverse teleost fish orthologs has shown that the protein may exhibit very eccentric properties in terms of pH dependence (e.g., the adaptation of zebrafish PEPT1 to alkaline pH), temperature dependence (e.g., the adaptation of icefish PEPT1 to sub-zero temperatures) and/or substrate specificity (e.g., the species-specificity of PEPT1 for the uptake of l-lysine-containing peptides). The revelation of such peculiarities is providing new contributions to the discussion on PEPT1 in both basic (e.g., molecular structure-function analyses) and applied research (e.g., optimizing diets to enhance growth of commercially valuable fish).
Collapse
Affiliation(s)
- Alessandro Romano
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy.
| | | | | | | |
Collapse
|
19
|
Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter. Proc Natl Acad Sci U S A 2013; 110:7068-73. [PMID: 23569229 DOI: 10.1073/pnas.1220417110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Adaptation of organisms to extreme environments requires proteins to work at thermodynamically unfavorable conditions. To adapt to subzero temperatures, proteins increase the flexibility of parts of, or even the whole, 3D structure to compensate for the lower thermal kinetic energy available at low temperatures. This may be achieved through single-site amino acid substitutions in regions of the protein that undergo large movements during the catalytic cycle, such as in enzymes or transporter proteins. Other strategies of cold adaptation involving changes in the primary amino acid sequence have not been documented yet. In Antarctic icefish (Chionodraco hamatus) peptide transporter 1 (PEPT1), the first transporter cloned from a vertebrate living at subzero temperatures, we came upon a unique principle of cold adaptation. A de novo domain composed of one to six repeats of seven amino acids (VDMSRKS), placed as an extra stretch in the cytosolic COOH-terminal region, contributed per se to cold adaptation. VDMSRKS was in a protein region uninvolved in transport activity and, notably, when transferred to the COOH terminus of a warm-adapted (rabbit) PEPT1, it conferred cold adaptation to the receiving protein. Overall, we provide a paradigm for protein cold adaptation that relies on insertion of a unique domain that confers greater affinity and maximal transport rates at low temperatures. Due to its ability to transfer a thermal trait, the VDMSRKS domain represents a useful tool for future cell biology or biotechnological applications.
Collapse
|
20
|
Armstrong GAB, Rodríguez EC, Meldrum Robertson R. Cold hardening modulates K+ homeostasis in the brain of Drosophila melanogaster during chill coma. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1511-1516. [PMID: 23017334 DOI: 10.1016/j.jinsphys.2012.09.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/10/2012] [Accepted: 09/11/2012] [Indexed: 06/01/2023]
Abstract
Environmental temperature is one of the most important abiotic factors affecting insect behaviour; virtually all physiological processes, including those which regulate nervous system function, are affected. At both low and high temperature extremes insects enter a coma during which individuals do not display behaviour and are unresponsive to stimulation. We investigated neurophysiological correlates of chill and hyperthermic coma in Drosophila melanogaster. Coma resulting from anoxia causes a profound loss of K(+) homeostasis characterized by a surge in extracellular K(+) concentration ([K(+)](o)) in the brain. We recorded [K(+)](o) in the brain during exposure to both low and high temperatures and observed a similar surge in [K(+)](o) which recovered to baseline concentrations following return to room temperature. We also found that rapid cold hardening (RCH) using a cold pretreatment (4°C for 2h; 2h recovery at room temperature) increased the peak brain [K(+)](o) reached during a subsequent chill coma and increased the rates of accumulation and clearance of [K(+)](o). We conclude that RCH preserves K(+) homeostasis in the fly brain during exposure to cold by reducing the temperature sensitivity of the rates of homeostatic processes.
Collapse
Affiliation(s)
- Gary A B Armstrong
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6.
| | | | | |
Collapse
|
21
|
Buhariwalla H, Osmond E, Barnes K, Cozzi R, Robertson G, Marshall W. Control of ion transport by mitochondrion-rich chloride cells of eurythermic teleost fish: Cold shock vs. cold acclimation. Comp Biochem Physiol A Mol Integr Physiol 2012; 162:234-44. [DOI: 10.1016/j.cbpa.2012.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 02/18/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
|
22
|
Bossi E, Cherubino F, Margheritis E, Oyadeyi AS, Vollero A, Peres A. Temperature effects on the kinetic properties of the rabbit intestinal oligopeptide cotransporter PepT1. Pflugers Arch 2012; 464:183-91. [PMID: 22729751 DOI: 10.1007/s00424-012-1125-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/05/2012] [Accepted: 06/05/2012] [Indexed: 11/27/2022]
Abstract
The effects of temperature on the functional properties of the intestinal oligopeptide transporter PepT1 from rabbit have been investigated using electrophysiological methods. The dipeptide Gly-Gln at pH 6.5 or 7.5 was used as substrate. Raising the temperature in the range 20-30 °C causes an increase in the maximal transport-associated current (I (max)) with a Q (10) close to 4. Higher temperatures accelerate the rate of decline of the presteady-state currents observed in the absence of organic substrate. The voltage dependencies of the intramembrane charge movement and of the time constant of decline are both shifted towards more negative potentials by higher temperatures. The shift is due to a stronger action of temperature on the outward rate of charge movement compared to the inward rate, indicating a lower activation energy for the latter process. Consistently, the activation energy for the complete cycle is similar to that of the inward rate of charge movement. Temperature also affects the binding rate of the substrate: the K (0.5) -V curve is shifted to more negative potentials by higher temperatures, resulting in a lower apparent affinity in the physiological range of potentials. The overall efficiency of transport, estimated as the I (max)/K (0.5) ratio is significantly increased at body temperature.
Collapse
Affiliation(s)
- Elena Bossi
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Dymowska AK, Manfredi T, Rosenthal JJC, Seibel BA. Temperature compensation of aerobic capacity and performance in the Antarctic pteropod, Clione antarctica, compared to its northern congener, C. limacina. J Exp Biol 2012; 215:3370-8. [DOI: 10.1242/jeb.070607] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
In ectotherms living in cold waters, locomotory performance is constrained by a slower generation of the ATP that is needed to fuel muscle contraction. Both polar and temperate pteropods of the genus Clione, however, are able to swim continuously by flapping their parapodia (wings) at comparable frequencies, despite the latitudinal temperature gradient. Therefore, we expected polar species to have increased aerobic capacities in their wing muscles. We investigated muscle and mitochondrial ultrastructure of Clione antarctica from the Southern Ocean (-1.8ºC) and populations of a sister species, Clione limacina, from the Arctic (-0.5-3ºC) and from the N. Atlantic (10ºC). We also measured oxygen consumption and the activity of the mitochondrial enzyme citrate synthase (CS), in isolated wings of the two species. The Antarctic species showed a substantial up-regulation of the density of oxidative muscle fibers, but at the expense of fast-twitch muscle fibers. Mitochondrial capacity was also substantially increased in the Antarctic species, with the cristae surface density (58.2±1.3 µm2/µm3) more than twice that found in temperate species (34.3±0.8 µm2/µm3). Arctic C. limacina was intermediate between these two populations (43.7±0.5 µm2/µm3). The values for cold adapted populations are on par with those found in high-performance vertebrates. As a result of oxidative muscle proliferation, CS activity was 4-fold greater in C. antarctica wings than in temperate C. limacina when measured at a common temperature (20°C). Oxygen consumption of isolated wing preparations was comparable in the two species when measured at their respective habitat temperatures. These findings indicate complete compensation of ATP generation in wing muscles across a 10°C temperature range, which supports similar wing-beat frequencies during locomotion at each species' respective temperature. The elevated capacity in the wing muscles is reflected in whole-animal oxygen consumption and feeding rates.
Collapse
|
24
|
Energy landscape of the reactions governing the Na+ deeply occluded state of the Na+/K+-ATPase in the giant axon of the Humboldt squid. Proc Natl Acad Sci U S A 2011; 108:20556-61. [PMID: 22143771 DOI: 10.1073/pnas.1116439108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Na(+)/K(+) pump is a nearly ubiquitous membrane protein in animal cells that uses the free energy of ATP hydrolysis to alternatively export 3Na(+) from the cell and import 2K(+) per cycle. This exchange of ions produces a steady-state outwardly directed current, which is proportional in magnitude to the turnover rate. Under certain ionic conditions, a sudden voltage jump generates temporally distinct transient currents mediated by the Na(+)/K(+) pump that represent the kinetics of extracellular Na(+) binding/release and Na(+) occlusion/deocclusion transitions. For many years, these events have escaped a proper thermodynamic treatment due to the relatively small electrical signal. Here, taking the advantages offered by the large diameter of the axons from the squid Dosidicus gigas, we have been able to separate the kinetic components of the transient currents in an extended temperature range and thus characterize the energetic landscape of the pump cycle and those transitions associated with the extracellular release of the first Na(+) from the deeply occluded state. Occlusion/deocclusion transition involves large changes in enthalpy and entropy as the ion is exposed to the external milieu for release. Binding/unbinding is substantially less costly, yet larger than predicted for the energetic cost of an ion diffusing through a permeation pathway, which suggests that ion binding/unbinding must involve amino acid side-chain rearrangements at the site.
Collapse
|