1
|
Lee J, Park J, Jung KH, Lee S, Lee JJ, Wooh S, Lee DW. Enhancing Resistance to Wetting Transition through the Concave Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2409389. [PMID: 39358940 PMCID: PMC11707565 DOI: 10.1002/adma.202409389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/10/2024] [Indexed: 10/04/2024]
Abstract
Water-repellent superhydrophobic surfaces are ubiquitous in nature. The fundamental understanding of bio/bio-inspired structures facilitates practical applications surmounting metastable superhydrophobicity. Typically, the hierarchical structure and/or reentrant morphology have been employed hitherto to suppress the Cassie-Baxter to Wenzel transition (CWT). Herein, a new design concept is reported, an effect of concave structure, which is vital for the stable superhydrophobic surface. The thermodynamic and kinetic stabilities of the concave pillars are evaluated by continuous exposure to various hydrostatic pressures and sudden impacts of water droplets with various Weber numbers (We), comparing them to the standard superhydrophobic normal pillars. Specifically, the concave pillar exhibits reinforced impact resistance preventing CWT below a critical We of ≈27.6, which is ≈1.6 times higher than that of the normal pillar (≈17.0). Subsequently, the stability of underwater air film (plastron) is investigated at various hydrostatic pressures. The results show that convex air caps formed at the concave cavities generate downward Laplace pressure opposing the exerted hydrostatic pressure between the pillars, thus impeding the hydrostatic pressure-dependent underwater air diffusion. Hence, the effects of trapped air caps contributing to the stable Cassie-Baxter state can offer a pioneering strategy for the exploration and utilization of superhydrophobic surfaces.
Collapse
Affiliation(s)
- Jinhoon Lee
- Ulsan National Institute of Science and Technology50 UNIST‐gil, Ulju‐gunUlsan44919Republic of Korea
| | - Jinwoo Park
- Ulsan National Institute of Science and Technology50 UNIST‐gil, Ulju‐gunUlsan44919Republic of Korea
| | - Kwang Hui Jung
- Ulsan National Institute of Science and Technology50 UNIST‐gil, Ulju‐gunUlsan44919Republic of Korea
| | - Seunghyun Lee
- Ulsan National Institute of Science and Technology50 UNIST‐gil, Ulju‐gunUlsan44919Republic of Korea
| | - Jeong Jun Lee
- School of Life SciencesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Sanghyuk Wooh
- Department of Chemical EngineeringChung‐Ang University84 Heukseok‐ro, Dongjak‐guSeoul06794Republic of Korea
| | - Dong Woog Lee
- Ulsan National Institute of Science and Technology50 UNIST‐gil, Ulju‐gunUlsan44919Republic of Korea
| |
Collapse
|
2
|
Lopez VM, Polidori C, Ferreira RG. Hymenoptera and biomimetic surfaces: insights and innovations. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1333-1352. [PMID: 39530025 PMCID: PMC11552452 DOI: 10.3762/bjnano.15.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
The extraordinary adaptations that Hymenoptera (sawflies, wasps, ants, and bees) exhibit on their body surfaces has long intrigued biologists. These adaptations, which enabled the immense success of these insects in a wide range of environments and habitats, include an amazing array of specialized structures facilitating attachment, penetration of substrates, production of sound, perception of volatiles, and delivery of venoms, among others. These morphological features offer valuable insights for biomimetic and bioinspired technological advancements. Here, we explore the biomimetic potential of hymenopteran body surfaces. We highlight recent advancements and outline potential strategic pathways, evaluating their current functions and applications while suggesting promising avenues for further investigations. By studying these fascinating and biologically diverse insects, researchers could develop innovative materials and devices that replicate the efficiency and functionality of insect body structures, driving progress in medical technology, robotics, environmental monitoring, and beyond.
Collapse
Affiliation(s)
| | - Carlo Polidori
- Department of Environmental Science and Policy (ESP), University of Milan, Via Celoria 26, 20133, Milan, Italy
| | | |
Collapse
|
3
|
Duan W, Yu Z, Cui W, Zhang Z, Zhang W, Tian Y. Bio-inspired switchable soft adhesion for the boost of adhesive surfaces and robotics applications: A brief review. Adv Colloid Interface Sci 2023; 313:102862. [PMID: 36848868 DOI: 10.1016/j.cis.2023.102862] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
In nature, millions of creatures, such as geckos, tree frogs, octopuses, etc., have evolved fantastic switchable adhesion capabilities to climb swiftly on vertical even inverted surfaces or hunt for prey easily, adapting to harsh and unpredictable environments. Notably, these fascinating adhesive behaviors depend on interfacial forces (friction, van der Waals force, capillary force, vacuum suction, etc.), which primarily originate from the interactions between the soft micro/nanostructures evolved in the natural creatures and objects. Over the past few decades, these biological switchable adhesives have inspired scientists to explore and engineer desirable artificial adhesives. In this review, we summarized the state-of-the-art research on the ultra-fast adhesive motion of three types of biological organisms (gecko, tree frog, and octopus). Firstly, the basic adhesion principles in the three representative organisms, including micro/nanostructures, interfacial forces, and fundamental adhesion models, are reviewed. Then, we discussed the adhesion mechanisms of the prominent organisms from the perspective of soft contacts between micro/nanostructures and the substrates. Later, the mechanics-guided design principles of artificial adhesive surfaces, as well as the smart adhesion strategies, are summarized. The applications of these bio-inspired switchable adhesives are demonstrated, including wearable electronic devices, soft grippers, and climbing robots. The challenges and opportunities in this fast-growing field are also discussed.
Collapse
Affiliation(s)
- Weiwang Duan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhilin Yu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wenhui Cui
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zengxin Zhang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wenling Zhang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yu Tian
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Bergmann JB, Moatsou D, Steiner U, Wilts BD. Bio-inspired materials to control and minimise insect attachment. BIOINSPIRATION & BIOMIMETICS 2022; 17:051001. [PMID: 36099911 DOI: 10.1088/1748-3190/ac91b9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
More than three quarters of all animal species on Earth are insects, successfully inhabiting most ecosystems on the planet. Due to their opulence, insects provide the backbone of many biological processes, but also inflict adverse impacts on agricultural and stored products, buildings and human health. To countermeasure insect pests, the interactions of these animals with their surroundings have to be fully understood. This review focuses on the various forms of insect attachment, natural surfaces that have evolved to counter insect adhesion, and particularly features recently developed synthetic bio-inspired solutions. These bio-inspired solutions often enhance the variety of applicable mechanisms observed in nature and open paths for improved technological solutions that are needed in a changing global society.
Collapse
Affiliation(s)
- Johannes B Bergmann
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Dafni Moatsou
- Institute of Organic Chemistry, Karlsruhe Institute for Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Str. 2a, 5020 Salzburg, Austria
| |
Collapse
|
5
|
Boudinot BE, Beutel RG, Gorb SN, Polilov AA. Functional diversity of attachment and grooming leg structures is retained in all but the smallest insects. J Zool (1987) 2020. [DOI: 10.1111/jzo.12840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- B. E. Boudinot
- Department of Entomology & Nematology University of California Davis CA USA
| | - R. G. Beutel
- Institut für Zoologie und Evolutionsforschung Friedrich‐Schiller‐Universität Jena Germany
- Economo Group Okinawa Institute of Science and Technology (OIST) Tancha Japan
| | - S. N. Gorb
- Department Functional Morphology and Biomechanics Zoological Institute of the University of Kiel Kiel Germany
| | - A. A. Polilov
- Department of Entomology Biological faculty Lomonosov Moscow State University Moscow Russia
| |
Collapse
|
6
|
Abstract
In this review, we present a survey on hydrophobic surface treatments of concrete, important protection tools against deterioration and corrosion phenomena. In the frame of a standardized distinction in coatings, pore blockage, and impregnation methods, we highlight the huge variety of compounds and formulations utilized, and the different performances reached in terms of water contact angle, water absorption, chloride penetration, and, rarely reported, anti-icing/icephobic action. Our view covers the spectrum of the surface treatments, but also makes a comparison with hydrophobic bulk modifications of concrete, procedures often utilized as well; further, novel proposals of more sustainable routes are presented. We note that coating and impregnation, preferably when based on polyurethane and silane/siloxane, respectively, appear more effective against water ingress. The achieved wetting character is hydrophobic or, at most, overhydrophobic. Superhydrophobic coatings for concrete have been obtained by embedding nano-powders in hydrophobic emulsions, allowing to add a nanotexture to the preexisting complex roughness of the material. Concrete treated with this type of coating has also recently shown a pronounced icephobic character, a parameter that goes beyond the freeze–thaw characterization usually conducted on cement-based materials.
Collapse
|
7
|
Khanmohammadi Chenab K, Sohrabi B, Rahmanzadeh A. Superhydrophobicity: advanced biological and biomedical applications. Biomater Sci 2019; 7:3110-3137. [DOI: 10.1039/c9bm00558g] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The biological and biomedical applications of superhydrophobic surface.
Collapse
Affiliation(s)
- Karim Khanmohammadi Chenab
- Department of Chemistry
- Surface Chemistry Research Laboratory
- Iran University of Science and Technology
- Tehran
- Iran
| | - Beheshteh Sohrabi
- Department of Chemistry
- Surface Chemistry Research Laboratory
- Iran University of Science and Technology
- Tehran
- Iran
| | - Atyeh Rahmanzadeh
- Department of Chemistry
- Surface Chemistry Research Laboratory
- Iran University of Science and Technology
- Tehran
- Iran
| |
Collapse
|
8
|
Recent Progress in Preparation and Anti-Icing Applications of Superhydrophobic Coatings. COATINGS 2018. [DOI: 10.3390/coatings8060208] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Amador GJ, Endlein T, Sitti M. Soiled adhesive pads shear clean by slipping: a robust self-cleaning mechanism in climbing beetles. J R Soc Interface 2018. [PMID: 28637914 DOI: 10.1098/rsif.2017.0134] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Animals using adhesive pads to climb smooth surfaces face the problem of keeping their pads clean and functional. Here, a self-cleaning mechanism is proposed whereby soiled feet would slip on the surface due to a lack of adhesion but shed particles in return. Our study offers an in situ quantification of self-cleaning performance in fibrillar adhesives, using the dock beetle as a model organism. After beetles soiled their pads by stepping into patches of spherical beads, we found that their gait was significantly affected. Specifically, soiled pads slipped 10 times further than clean pads, with more particles deposited for longer slips. Like previous studies, we found that particle size affected cleaning performance. Large (45 μm) beads were removed most effectively, followed by medium (10 μm) and small (1 μm). Consistent with our results from climbing beetles, force measurements on freshly severed legs revealed larger detachment forces of medium particles from adhesive pads compared to a flat surface, possibly due to interlocking between fibres. By contrast, dock leaves showed an overall larger affinity to the beads and thus reduced the need for cleaning. Self-cleaning through slippage provides a mechanism robust to particle size and may inspire solutions for artificial adhesives.
Collapse
Affiliation(s)
- Guillermo J Amador
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Thomas Endlein
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Metin Sitti
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| |
Collapse
|
10
|
Bayer IS, Krishnan KG, Robison R, Loth E, Berry DH, Farrell TE, Crouch JD. Thermal Alternating Polymer Nanocomposite (TAPNC) Coating Designed to Prevent Aerodynamic Insect Fouling. Sci Rep 2016; 6:38459. [PMID: 27924913 PMCID: PMC5141453 DOI: 10.1038/srep38459] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/09/2016] [Indexed: 11/29/2022] Open
Abstract
Insect residue adhesion to moving surfaces such as turbine blades and aircraft not only causes surface contamination problems but also increases drag on these surfaces. Insect fouling during takeoff, climb and landing can result in increased drag and fuel consumption for aircraft with laminar-flow surfaces. Hence, certain topographical and chemical features of non-wettable surfaces need to be designed properly for preventing insect residue accumulation on surfaces. In this work, we developed a superhydrophobic coating that is able to maintain negligible levels of insect residue after 100 high speed (50 m/s) insect impact events produced in a wind tunnel. The coating comprises alternating layers of a hydrophobic, perfluorinated acrylic copolymer and hydrophobic surface functional silicon dioxide nanoparticles that are infused into one another by successive thermal treatments. The design of this coating was achieved as a result of various experiments conducted in the wind tunnel by using a series of superhydrophobic surfaces made by the combination of the same polymer and nanoparticles in the form of nanocomposites with varying surface texture and self-cleaning hydrophobicity properties. Moreover, the coating demonstrated acceptable levels of wear abrasion and substrate adhesion resistance against pencil hardness, dry/wet scribed tape peel adhesion and 17.5 kPa Taber linear abraser tests.
Collapse
Affiliation(s)
- Ilker S. Bayer
- Smart Materials, Instituto Italiano di Tecnologia, Genoa, Italy
| | | | - Robert Robison
- Mechanical and Aerospace Engineering, University of Virginia, VA, USA
| | - Eric Loth
- Mechanical and Aerospace Engineering, University of Virginia, VA, USA
| | | | | | | |
Collapse
|
11
|
Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing. Proc Natl Acad Sci U S A 2016; 113:1297-302. [PMID: 26787862 DOI: 10.1073/pnas.1519459113] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organismal functions are size-dependent whenever body surfaces supply body volumes. Larger organisms can develop strongly folded internal surfaces for enhanced diffusion, but in many cases areas cannot be folded so that their enlargement is constrained by anatomy, presenting a problem for larger animals. Here, we study the allometry of adhesive pad area in 225 climbing animal species, covering more than seven orders of magnitude in weight. Across all taxa, adhesive pad area showed extreme positive allometry and scaled with weight, implying a 200-fold increase of relative pad area from mites to geckos. However, allometric scaling coefficients for pad area systematically decreased with taxonomic level and were close to isometry when evolutionary history was accounted for, indicating that the substantial anatomical changes required to achieve this increase in relative pad area are limited by phylogenetic constraints. Using a comparative phylogenetic approach, we found that the departure from isometry is almost exclusively caused by large differences in size-corrected pad area between arthropods and vertebrates. To mitigate the expected decrease of weight-specific adhesion within closely related taxa where pad area scaled close to isometry, data for several taxa suggest that the pads' adhesive strength increased for larger animals. The combination of adjustments in relative pad area for distantly related taxa and changes in adhesive strength for closely related groups helps explain how climbing with adhesive pads has evolved in animals varying over seven orders of magnitude in body weight. Our results illustrate the size limits of adhesion-based climbing, with profound implications for large-scale bio-inspired adhesives.
Collapse
|
12
|
Stark AY, Wucinich NA, Paoloni EL, Niewiarowski PH, Dhinojwala A. Self-drying: a gecko's innate ability to remove water from wet toe pads. PLoS One 2014; 9:e101885. [PMID: 25054217 PMCID: PMC4108337 DOI: 10.1371/journal.pone.0101885] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/12/2014] [Indexed: 11/18/2022] Open
Abstract
When the adhesive toe pads of geckos become wet, they become ineffective in enabling geckos to stick to substrates. This result is puzzling given that many species of gecko are endemic to tropical environments where water covered surfaces are ubiquitous. We hypothesized that geckos can recover adhesive capabilities following exposure of their toe pads to water by walking on a dry surface, similar to the active self-cleaning of dirt particles. We measured the time it took to recover maximum shear adhesion after toe pads had become wet in two groups, those that were allowed to actively walk and those that were not. Keeping in mind the importance of substrate wettability to adhesion on wet surfaces, we also tested geckos on hydrophilic glass and an intermediately wetting substrate (polymethylmethacrylate; PMMA). We found that time to maximum shear adhesion recovery did not differ in the walking groups based on substrate wettability (22.7±5.1 min on glass and 15.4±0.3 min on PMMA) but did have a significant effect in the non-walking groups (54.3±3.9 min on glass and 27.8±2.5 min on PMMA). Overall, we found that by actively walking, geckos were able to self-dry their wet toe pads and regain maximum shear adhesion significantly faster than those that did not walk. Our results highlight a unexpected property of the gecko adhesive system, the ability to actively self-dry and recover adhesive performance after being rendered dysfunctional by water.
Collapse
Affiliation(s)
- Alyssa Y. Stark
- Integrated Bioscience Program, University of Akron, Akron, Ohio, United States of America
- * E-mail:
| | - Nicholas A. Wucinich
- Integrated Bioscience Program, University of Akron, Akron, Ohio, United States of America
| | - Eva L. Paoloni
- Integrated Bioscience Program, University of Akron, Akron, Ohio, United States of America
| | - Peter H. Niewiarowski
- Integrated Bioscience Program, University of Akron, Akron, Ohio, United States of America
| | - Ali Dhinojwala
- Department of Polymer Science, University of Akron, Akron, Ohio, United States of America
| |
Collapse
|
13
|
The fabrication, nano/micro-structure, heat- and wear-resistance of the superhydrophobic PPS/PTFE composite coatings. J Colloid Interface Sci 2013; 402:253-8. [PMID: 23642807 DOI: 10.1016/j.jcis.2012.11.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 11/02/2012] [Accepted: 11/06/2012] [Indexed: 11/22/2022]
Abstract
A simple engineering method was used to fabricate stability and wear-resistance of superhydrophobic PPS-based PPS/PTFE surfaces through nano/micro-structure design and modification of the lowest surface energy groups (-CF2-), which was inspired by the biomimic lotus leaves. The hydrophobic properties and wear-resistance of the coatings were measured by a contact angle meter and evaluated on a pin-on-disk friction and wear tester, respectively. Moreover, the surfaces of the PPS/PTFE composite coatings were investigated by means of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), and thermogravimetry (TG) analysis. Results showed that the highest contact angle of the PPS/PTFE surface, with papillae-like randomly distributed double-scale structure, could reach up to 162°. When 1 wt.% PDMS was added, the highest contact angle could hold is 172°. The coatings also retained superhydrophobicity, even under high temperature environment. The investigation also indicated that the coatings were not only superhydrophobic but also oleophobic behavior at room temperature, such as the crude oil, glycerol, and oil-water mixture. The PPS/45%PTFE coatings had more stable friction coefficient and excellent wear-resistance (331,407 cycles) compared with those with less than 45% of PTFE.
Collapse
|
14
|
Crawford N, Endlein T, Barnes WJP. Self-cleaning in tree frog toe pads; a mechanism for recovering from contamination without the need for grooming. ACTA ACUST UNITED AC 2013; 215:3965-72. [PMID: 23100487 DOI: 10.1242/jeb.073809] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tree frogs use adhesive toe pads for climbing on a variety of surfaces. They rely on wet adhesion, which is aided by the secretion of mucus. In nature, the pads will undoubtedly get contaminated regularly through usage, but appear to maintain their stickiness over time. Here, we show in two experiments that the toe pads of White's tree frogs (Litoria caerulea) quickly recover from contamination through a self-cleaning mechanism. We compared adhesive forces prior to and after contamination of (1) the whole animal on a rotatable platform and (2) individual toe pads in restrained frogs mimicking individual steps using a motorised stage. In both cases, the adhesive forces recovered after a few steps but this took significantly longer in single toe pad experiments from restrained frogs, showing that use of the pads increases recovery. We propose that both shear movements and a 'flushing' effect of the secreted mucus play an important role in shedding particles/contaminants.
Collapse
Affiliation(s)
- Niall Crawford
- Centre for Cell Engineering, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | |
Collapse
|
15
|
Clemente CJ, Federle W. Mechanisms of self-cleaning in fluid-based smooth adhesive pads of insects. BIOINSPIRATION & BIOMIMETICS 2012; 7:046001. [PMID: 22750667 DOI: 10.1088/1748-3182/7/4/046001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Pressure-sensitive adhesives such as tapes become easily contaminated by dust particles. By contrast, animal adhesive pads are able to self-clean and can be reused millions of times over a lifetime with little reduction in adhesion. However, the detailed mechanisms underlying this ability are still unclear. Here we test in adhesive pads of stick insects (Carausius morosus) (1) whether self-cleaning is enhanced by the liquid pad secretion, and (2) whether alternating push-pull movements aid the removal of particles. We measured attachment forces of insect pads on glass after contamination with 10 µm polystyrene beads. While the amount of fluid present on the pad showed no effect on the pads' susceptibility to contamination, the recovery of adhesive forces after contamination was faster when higher fluid levels were present. However, this effect does not appear to be based on a faster rate of self-cleaning since the number of spheres deposited with each step did not increase with fluid level. Instead, the fluid may aid the recovery of adhesive forces by filling in the gaps between contaminating particles, similar to the fluid's function on rough surfaces. Further, we found no evidence that an alternation of pushing and pulling movements, as found in natural steps, leads to a more efficient recovery of adhesion than repeated pulling slides.
Collapse
|
16
|
Anyon MJ, Orchard MJ, Buzza DMA, Humphries S, Kohonen MM. Effect of particulate contamination on adhesive ability and repellence in two species of ant (Hymenoptera; Formicidae). J Exp Biol 2012; 215:605-16. [DOI: 10.1242/jeb.063578] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Tarsal adhesive pads are crucial for the ability of insects to traverse their natural environment. Previous studies have demonstrated that for both hairy and smooth adhesive pads, significant reduction in adhesion can occur because of contamination of these pads by wax crystals present on plant surfaces or synthetic microspheres. In this paper, we focus on the smooth adhesive pads of ants and study systematically how particulate contamination and the subsequent loss of adhesion depends on particle size, particle surface energy, humidity and species size. To this end, workers of ant species Polyrhachis dives and Myrmica scabrinodis (Hymenoptera; Formicidae) were presented with loose synthetic powder barriers with a range of powder diameters (1–500 μm) and surface energies (PTFE or glass), which they would have to cross in order to escape the experimental arena. The barrier experiments were conducted for a range of humidities (10–70%). Experimental results and scanning electron microscopy confirm that particulate powders adversely affect the adhesive ability of both species of ant on smooth substrates via contamination of the arolia. Specifically, the loss of adhesion was found to depend strongly on particle diameter, but only weakly on particle type, with the greatest loss occurring for particle diameters smaller than the claw dimensions of each species, and no effect of humidity was found. We also observed that ants were repelled by the powder barriers which led to a decrease of adhesion prior to their eventual crossing, suggesting that insect antennae may play a role in probing the mechanical fragility of substrates before crossing them.
Collapse
Affiliation(s)
- Matthew J. Anyon
- Department of Physics, University of Hull, Hull HU6 7RX, UK
- Surfactant & Colloid Group, Department of Chemistry, University of Hull, Hull HU6 7RX, UK
| | - Michael J. Orchard
- Functional Ecology Group, Department of Biological Sciences, University of Hull, Hull HU6 7RX, UK
| | - David M. A. Buzza
- Department of Physics, University of Hull, Hull HU6 7RX, UK
- Surfactant & Colloid Group, Department of Chemistry, University of Hull, Hull HU6 7RX, UK
| | - Stuart Humphries
- Functional Ecology Group, Department of Biological Sciences, University of Hull, Hull HU6 7RX, UK
| | - Mika M. Kohonen
- Surfactant & Colloid Group, Department of Chemistry, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|