1
|
Bianchini A, Wood CM. Potency and specificity of amiloride and its analogues on branchial sodium fluxes in freshwater trout and goldfish. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111715. [PMID: 39089444 DOI: 10.1016/j.cbpa.2024.111715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
There is a consensus that electroneutral Na+/H+ exchangers (NHEs) are important in branchial Na+ uptake in freshwater fish. There is also widespread belief, based on mammalian data, that EIPA [5-(N-ethyl-N-isopropyl)-amiloride]], and HMA [5-(N,N-hexamethylene)-amiloride)] are more potent and specific in blocking Na+ uptake than amiloride. We evaluated this idea by testing the three drugs at 10-7 to 10-4 M, i.e. 0.1 to 100 μM in two model species, rainbow trout (Oncorhynchus mykiss) and goldfish (Carassius auratus), using 22Na+ to measure unidirectional Na+ influx and efflux rates. In both species, the potency order for inhibiting unidirectional Na+ influx was HMA > amiloride > EIPA (IC50 values in the 10-70 μM range), very different from in mammals. At 100 μM, all three drugs inhibited Na+ influx by >90% in both species, except for amiloride in goldfish (65%). However, at 60-100 μM, all three drugs also stimulated unidirectional Na+ efflux rates, indicating non-specific effects. In trout, HMA and EIPA caused significant increases (2.1- to 2.3-fold) in efflux rates, whereas in goldfish, significant efflux elevations were greater (3.1- to 7.2-fold) with all three drugs. We conclude that the inhibitory potency profile established in mammals does not apply to the NHEs in fish gills, that non-specific effects on Na+ efflux rates are a serious concern, and that EIPA and HMA offer no clear benefits in terms of potency or specificity. Considering its much lower cost, we recommend amiloride as the drug of choice for in vivo experiments on freshwater fishes.
Collapse
Affiliation(s)
- Adalto Bianchini
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, 96203-900 Rio Grande, Brazil.
| | - Chris M Wood
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; University of Miami Rosenstiel, School of Marine, Atmospheric, and Earth Science, Miami, FL 33149, USA
| |
Collapse
|
2
|
Acute Stress in Lesser-Spotted Catshark (Scyliorhinus canicula Linnaeus, 1758) Promotes Amino Acid Catabolism and Osmoregulatory Imbalances. Animals (Basel) 2022; 12:ani12091192. [PMID: 35565621 PMCID: PMC9105869 DOI: 10.3390/ani12091192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary In catsharks (Scyliorhinus canicula), air exposure induces amino acid catabolism altogether with osmoregulatory imbalances. This study describes a novel NHE isoform being expressed in gills that may be involved in ammonium excretion. Abstract Acute-stress situations in vertebrates induce a series of physiological responses to cope with the event. While common secondary stress responses include increased catabolism and osmoregulatory imbalances, specific processes depend on the taxa. In this sense, these processes are still largely unknown in ancient vertebrates such as marine elasmobranchs. Thus, we challenged the lesser spotted catshark (Scyliorhinus canicula) to 18 min of air exposure, and monitored their recovery after 0, 5, and 24 h. This study describes amino acid turnover in the liver, white muscle, gills, and rectal gland, and plasma parameters related to energy metabolism and osmoregulatory imbalances. Catsharks rely on white muscle amino acid catabolism to face the energy demand imposed by the stressor, producing NH4+. While some plasma ions (K+, Cl− and Ca2+) increased in concentration after 18 min of air exposure, returning to basal values after 5 h of recovery, Na+ increased after just 5 h of recovery, coinciding with a decrease in plasma NH4+. These changes were accompanied by increased activity of a branchial amiloride-sensitive ATPase. Therefore, we hypothesize that this enzyme may be a Na+/H+ exchanger (NHE) related to NH4+ excretion. The action of an omeprazole-sensitive ATPase, putatively associated to a H+/K+-ATPase (HKA), is also affected by these allostatic processes. Some complementary experiments were carried out to delve a little deeper into the possible branchial enzymes sensitive to amiloride, including in vivo and ex vivo approaches, and partial sequencing of a nhe1 in the gills. This study describes the possible presence of an HKA enzyme in the rectal gland, as well as a NHE in the gills, highlighting the importance of understanding the relationship between acute stress and osmoregulation in elasmobranchs.
Collapse
|
3
|
Clifford AM, Tresguerres M, Goss GG, Wood CM. A novel K + -dependent Na + uptake mechanism during low pH exposure in adult zebrafish (Danio rerio): New tricks for old dogma. Acta Physiol (Oxf) 2022; 234:e13777. [PMID: 34985194 DOI: 10.1111/apha.13777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/27/2021] [Accepted: 01/01/2022] [Indexed: 12/16/2022]
Abstract
AIM To determine whether Na+ uptake in adult zebrafish (Danio rerio) exposed to acidic water adheres to traditional models reliant on Na+ /H+ Exchangers (NHEs), Na+ channels and Na+ /Cl- Cotransporters (NCCs) or if it occurs through a novel mechanism. METHODS Zebrafish were exposed to control (pH 8.0) or acidic (pH 4.0) water for 0-12 hours during which 22 Na+ uptake ( J Na in ), ammonia excretion, net acidic equivalent flux and net K+ flux ( J H net ) were measured. The involvement of NHEs, Na+ channels, NCCs, K+ -channels and K+ -dependent Na+ /Ca2+ exchangers (NCKXs) was evaluated by exposure to Cl- -free or elevated [K+ ] water, or to pharmacological inhibitors. The presence of NCKXs in gill was examined using RT-PCR. RESULTS J Na in was strongly attenuated by acid exposure, but gradually recovered to control rates. The systematic elimination of each of the traditional models led us to consider K+ as a counter substrate for Na+ uptake during acid exposure. Indeed, elevated environmental [K+ ] inhibited J Na in during acid exposure in a concentration-dependent manner, with near-complete inhibition at 10 mM. Moreover, J H net loss increased approximately fourfold at 8-10 hours of acid exposure which correlated with recovered J Na in in 1:1 fashion, and both J Na in and J H net were sensitive to tetraethylammonium (TEA) during acid exposure. Zebrafish gills expressed mRNA coding for six NCKX isoforms. CONCLUSIONS During acid exposure, zebrafish engage a novel Na+ uptake mechanism that utilizes the outwardly directed K+ gradient as a counter-substrate for Na+ and is sensitive to TEA. NKCXs are promising candidates to mediate this K+ -dependent Na+ uptake, opening new research avenues about Na+ uptake in zebrafish and other acid-tolerant aquatic species.
Collapse
Affiliation(s)
- Alexander M. Clifford
- Department of Zoology University of British Columbia Vancouver British Columbia Canada
- Marine Biology Research Division Scripps Institution of Oceanography University of California San Diego La Jolla California USA
| | - Martin Tresguerres
- Marine Biology Research Division Scripps Institution of Oceanography University of California San Diego La Jolla California USA
| | - Greg G. Goss
- Department of Biological Sciences University of Alberta Edmonton Alberta Canada
| | - Chris M. Wood
- Department of Zoology University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
4
|
Zimmer AM, Goss GG, Glover CN. Reductionist approaches to the study of ionoregulation in fishes. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110597. [PMID: 33781928 DOI: 10.1016/j.cbpb.2021.110597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The mechanisms underlying ionoregulation in fishes have been studied for nearly a century, and reductionist methods have been applied at all levels of biological organization in this field of research. The complex nature of ionoregulatory systems in fishes makes them ideally suited to reductionist methods and our collective understanding has been dramatically shaped by their use. This review provides an overview of the broad suite of techniques used to elucidate ionoregulatory mechanisms in fishes, from the whole-animal level down to the gene, discussing some of the advantages and disadvantages of these methods. We provide a roadmap for understanding and appreciating the work that has formed the current models of organismal, endocrine, cellular, molecular, and genetic regulation of ion balance in fishes and highlight the contribution that reductionist techniques have made to some of the fundamental leaps forward in the field throughout its history.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Greg G Goss
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Chris N Glover
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada; Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, AB T9S 3A3, Canada
| |
Collapse
|
5
|
Gallagher EJ, Harter TS, Wilson JM, Brauner CJ. The ontogeny of Na + uptake in larval rainbow trout reared in waters of different Na + content. J Comp Physiol B 2020; 191:29-42. [PMID: 32970174 DOI: 10.1007/s00360-020-01311-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 07/26/2020] [Accepted: 09/09/2020] [Indexed: 01/17/2023]
Abstract
Teleost fish have a remarkable capacity to maintain ion homeostasis against diffusion gradients in hypo-ionic freshwater. In adult teleosts the gills are the primary site for ion uptake; however, in larvae, the gills are underdeveloped, and as ion-regulation is primarily cutaneous, branchial mechanisms of plasticity are not yet available. In larval rainbow trout, the gills become the primary site for Na+ uptake at ~ 15 days post hatch (dph). To address how Na+ uptake develops in response to differences in water [Na+], the present study characterised the ontogeny of Na+ uptake in rainbow trout larvae, at a time when ion regulation transitions from being a primarily cutaneous to a primarily branchial process. Results indicate that initially (0-15 dph), when ion-regulation is cutaneous, low-[Na+] reared larvae had a higher Na+ affinity (lower Km) compared to the high-[Na+] treatment. In addition, larvae reared in low-[Na+] water had a lower internal Na+ content, despite similar Na+-uptake rates ([Formula: see text]) across treatments. But, once the gills became the dominant site for ion-regulation (> 15 dph), larvae in all treatments maintained the same Na+ content, despite large differences in [Formula: see text], indicating plasticity in those mechanisms that control Na+ efflux ([Formula: see text]). The mechanisms of Na+ uptake in larval rainbow trout showed plasticity during all stages of development. However, in young larvae that relied on cutaneous Na+ uptake, the internal Na+ content was significantly affected by the [Na+] in the water, perhaps revealing challenges to ion homeostasis and a period of heightened vulnerability to external stressors during early larval development.
Collapse
Affiliation(s)
- Emily J Gallagher
- Department of Zoology, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Till S Harter
- Department of Zoology, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Jonathan M Wilson
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), 4450-208, Matosinhos, Portugal
| | - Colin J Brauner
- Department of Zoology, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
6
|
Jung EH, Brix KV, Brauner CJ. The effect of temperature acclimation on thermal tolerance, hypoxia tolerance and aerobic scope in two subspecies of sheepshead minnow; Cyprinodon variegatus variegatus and Cyprinodon variegatus hubbsi. Comp Biochem Physiol A Mol Integr Physiol 2019; 232:28-33. [DOI: 10.1016/j.cbpa.2019.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
|
7
|
Lema SC, Carvalho PG, Egelston JN, Kelly JT, McCormick SD. Dynamics of Gene Expression Responses for Ion Transport Proteins and Aquaporins in the Gill of a Euryhaline Pupfish during Freshwater and High-Salinity Acclimation. Physiol Biochem Zool 2019; 91:1148-1171. [PMID: 30334669 DOI: 10.1086/700432] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Pupfishes (genus Cyprinodon) evolved some of the broadest salinity tolerances of teleost fishes, with some taxa surviving in conditions from freshwater to nearly 160 ppt. In this study, we examined transcriptional dynamics of ion transporters and aquaporins in the gill of the desert Amargosa pupfish (Cyprinodon nevadensis amargosae) during rapid salinity change. Pupfish acclimated to 7.5 ppt were exposed to freshwater (0.3 ppt), seawater (35 ppt), or hypersaline (55 ppt) conditions over 4 h and sampled at these salinities over 14 d. Plasma osmolality and Cl- concentration became elevated 8 h after the start of exposure to 35 or 55 ppt but returned to baseline levels after 14 d. Osmolality recovery was paralleled by increased gill Na+/K+-ATPase activity and higher relative levels of messenger RNAs (mRNAs) encoding cystic fibrosis transmembrane conductance regulator (cftr) and Na+/K+/2Cl- cotransporter-1 (nkcc1). Transcripts encoding one Na+-HCO3- cotransporter-1 isoform (nbce1.1) also increased in the gills at higher salinities, while a second isoform (nbce1.2) increased expression in freshwater. Pupfish in freshwater also had lower osmolality and elevated gill mRNAs for Na+/H+ exchanger isoform-2a (nhe2a) and V-type H+-ATPase within 8 h, followed by increases in Na+/H+ exchanger-3 (nhe3), carbonic anhydrase 2 (ca2), and aquaporin-3 (aqp3) within 1 d. Gill mRNAs for Na+/Cl- cotransporter-2 (ncc2) also were elevated 14 d after exposure to 0.3 ppt. These results offer insights into how coordinated transcriptional responses for ion transporters in the gill facilitate reestablishment of osmotic homeostasis after changes in environmental salinity and provide evidence that the teleost gill expresses two Na+-HCO3- cotransporter-1 isoforms with different roles in freshwater and seawater acclimation.
Collapse
|
8
|
Brauner CJ, Shartau RB, Damsgaard C, Esbaugh AJ, Wilson RW, Grosell M. Acid-base physiology and CO2 homeostasis: Regulation and compensation in response to elevated environmental CO2. FISH PHYSIOLOGY 2019. [DOI: 10.1016/bs.fp.2019.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Zimmer AM, Shir-Mohammadi K, Kwong RWM, Perry SF. Reassessing the contribution of the Na+/H+ exchanger Nhe3b to Na+ uptake in zebrafish (Danio rerio) using CRISPR/Cas9 gene editing. J Exp Biol 2019; 223:jeb.215111. [DOI: 10.1242/jeb.215111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022]
Abstract
Freshwater fishes absorb Na+ from their dilute environment using ion-transporting cells. In larval zebrafish (Danio rerio), Na+ uptake is coordinated by (1) Na+/H+-exchanger 3b (Nhe3b) and (2) H+-ATPase-powered electrogenic uptake in H+-ATPase-rich (HR) cells and by (3) Na+-Cl−-cotransporter (Ncc) expressed in NCC cells. The present study aimed to better understand the roles of these 3 proteins in Na+ uptake by larval zebrafish under ‘normal’ (800 µmol/L) and ‘low’ (10 µmol/L) Na+ conditions. We hypothesized that Na+ uptake would be reduced by CRISPR/Cas9 knockout (KO) of slc9a3.2 (encoding Nhe3b), particularly in low Na+ where Nhe3b is believed to play a dominant role. Contrary to this hypothesis, Na+ uptake was sustained in nhe3b KO larvae under both Na+ conditions, which led to the exploration of whether compensatory regulation of H+-ATPase or Ncc was responsible for maintaining Na+ uptake in nhe3b KO larvae. mRNA expression of the genes encoding H+-ATPase and Ncc were not altered in nhe3b KO. Moreover, morpholino knockdown of H+-ATPase, which significantly reduced H+ flux by HR cells, did not reduce Na+ uptake in nhe3b KO larvae, nor did rearing larvae in chloride-free conditions, thereby eliminating any driving force for Na+-Cl−-cotransport via Ncc. Finally, simultaneously treating nhe3b KO larvae with H+-ATPase morpholino and chloride-free conditions did not reduce Na+ uptake under normal or low Na+. These findings highlight the flexibility of the Na+ uptake system and demonstrate that Nhe3b is expendable to Na+ uptake in zebrafish and that our understanding of Na+ uptake mechanisms in this species is incomplete.
Collapse
Affiliation(s)
- Alex M. Zimmer
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | - Steve F. Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Maugars G, Manirafasha MC, Grousset E, Boulo V, Lignot JH. The effects of acute transfer to freshwater on ion transporters of the pharyngeal cavity in European seabass (Dicentrarchus labrax). FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1393-1408. [PMID: 29923042 DOI: 10.1007/s10695-018-0529-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Gene expression of key ion transporters (the Na+/K+-ATPase NKA, the Na+, K+-2Cl- cotransporter NKCC1, and CFTR) in the gills, opercular inner epithelium, and pseudobranch of European seabass juveniles (Dicentrarchus labrax) were studied after acute transfer up to 4 days from seawater (SW) to freshwater (FW). The functional remodeling of these organs was also studied. Handling stress (SW to SW transfer) rapidly induced a transcript level decrease for the three ion transporters in the gills and operculum. NKA and CFTR relative expression level were stable, but in the pseudobranch, NKCC1 transcript levels increased (up to 2.4-fold). Transfer to FW induced even more organ-specific responses. In the gills, a 1.8-fold increase for NKA transcript levels occurs within 4 days post transfer with also a general decrease for CFTR and NKCC1. In the operculum, transcript levels are only slightly modified. In the pseudobranch, there is a transient NKCC1 increase followed by 0.6-fold decrease and 0.8-fold CFTR decrease. FW transfer also induced a density decrease for the opercular ionocytes and goblet cells. Therefore, gills and operculum display similar trends in SW-fish but have different responses in FW-transferred fish. Also, the pseudobranch presents contrasting response both in SW and in FW, most probably due to the high density of a cell type that is morphologically and functionally different compared to the typical gill-type ionocyte. This pseudobranch-type ionocyte could be involved in blood acid-base regulation masking a minor osmotic regulatory capacity of this organ compared to the gills.
Collapse
Affiliation(s)
- Gersende Maugars
- University of Montpellier, UMR MARBEC, MARBEC (IRD - Ifremer - Univ. Montpellier - CNRS), Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Marie-Chanteuse Manirafasha
- University of Montpellier, UMR MARBEC, MARBEC (IRD - Ifremer - Univ. Montpellier - CNRS), Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Evelyse Grousset
- University of Montpellier, UMR MARBEC, MARBEC (IRD - Ifremer - Univ. Montpellier - CNRS), Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Viviane Boulo
- Ifremer, UR Lagons, Ecosystèmes et Aquaculture Durable, Nouvelle-Calédonie, France
| | - Jehan-Hervé Lignot
- University of Montpellier, UMR MARBEC, MARBEC (IRD - Ifremer - Univ. Montpellier - CNRS), Place Eugène Bataillon, 34095, Montpellier Cedex 5, France.
| |
Collapse
|
11
|
Brix KV, Brauner CJ, Schluter D, Wood CM. Pharmacological evidence that DAPI inhibits NHE2 in Fundulus heteroclitus acclimated to freshwater. Comp Biochem Physiol C Toxicol Pharmacol 2018; 211:1-6. [PMID: 29763692 DOI: 10.1016/j.cbpc.2018.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 11/21/2022]
Abstract
Ionoregulation in the euryhaline killifish Fundulus heteroclitus has been intensively studied over the last two decades using a variety of techniques. However, there has been limited use of pharmacological inhibitors to identify proteins involved in ion transport for this species. In this study, we used a range of pharmacological inhibitors (EIPA, DAPI, ethoxzolamide, bumetanide, bafilomycin, phenamil, hydrochlorothiazide) to investigate the proteins involved in Na+ transport in freshwater (1 mM Na+) acclimated F. heteroclitus. Our results indicate that Na+ uptake under these conditions is sensitive to both EIPA (NHE-specific inhibitor) and DAPI (putative ASIC-specific inhibitor), but not to any of the other inhibitors. Results for EIPA are consistent with previous studies indicating F. heteroclitus relies solely on NHE2 for Na+ transport across the apical membrane of ionocytes. In contrast, results for DAPI are surprising given previous studies that have indicated the H+-ATPase is basolaterally located in F. heteroclitus and so cannot contribute to Na+ uptake via ASIC. The lack of bafilomycin sensitivity in the current study is consistent with a basolaterally located H+-ATPase. This suggests that DAPI is not an ASIC-specific inhibitor as has been previously assumed, and that it may also inhibit NHE2. Finally, we did not observe Na+ uptake to be sensitive to ethoxzolamide, suggesting that carbonic anhydrase may not be involved in generating the H+ needed to maintain NHE activity in freshwater as has been previously proposed.
Collapse
Affiliation(s)
- Kevin V Brix
- EcoTox, Miami, FL, United States; University of Miami, RSMAS, Miami, FL, United States.
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Dolph Schluter
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Gibbons TC, Metzger DCH, Healy TM, Schulte PM. Gene expression plasticity in response to salinity acclimation in threespine stickleback ecotypes from different salinity habitats. Mol Ecol 2017; 26:2711-2725. [DOI: 10.1111/mec.14065] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Taylor C. Gibbons
- Biodiversity Research Centre and Department of Zoology; University of British Columbia; 6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - David C. H. Metzger
- Biodiversity Research Centre and Department of Zoology; University of British Columbia; 6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Timothy M. Healy
- Biodiversity Research Centre and Department of Zoology; University of British Columbia; 6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Patricia M. Schulte
- Biodiversity Research Centre and Department of Zoology; University of British Columbia; 6270 University Blvd Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
13
|
Shartau RB, Brix KV, Brauner CJ. Characterization of Na+ transport to gain insight into the mechanism of acid-base and ion regulation in white sturgeon (Acipenser transmontanus). Comp Biochem Physiol A Mol Integr Physiol 2017; 204:197-204. [PMID: 27923711 DOI: 10.1016/j.cbpa.2016.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022]
|
14
|
Con P, Nitzan T, Cnaani A. Salinity-Dependent Shift in the Localization of Three Peptide Transporters along the Intestine of the Mozambique Tilapia ( Oreochromis mossambicus). Front Physiol 2017; 8:8. [PMID: 28167916 PMCID: PMC5253378 DOI: 10.3389/fphys.2017.00008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/05/2017] [Indexed: 12/15/2022] Open
Abstract
The peptide transporter (PepT) systems are well-known for their importance to protein absorption in all vertebrate species. These symporters use H+ gradient at the apical membrane of the intestinal epithelial cells to mediate the absorption of small peptides. In fish, the intestine is a multifunctional organ, involved in osmoregulation, acid-base regulation, and nutrient absorption. Therefore, we expected environmental stimuli to affect peptide absorption. We examined the effect of three environmental factors; salinity, pH and feeding, on the expression, activity and localization of three PepT transporters (PepT1a, PepT1b, PepT2) along the intestine of the Mozambique tilapia (Oreochromis mossambicus). Quantitative real time PCR (qPCR) analysis demonstrated that the two PepT1 variants are typical to the proximal intestinal section while PepT2 is typical to the distal intestinal sections. Immunofluorescence analysis with custom-made antibodies supported the qPCR results, localized both transporters on the apical membrane of enterocytes and provided the first evidence for the participation of PepT2 in nutrient absorption. This first description of segment-specific expression and localization points to a complementary role of the different peptide transporters, corresponding to the changes in nutrient availability along the intestine. Both gene expression and absorption activity assays showed that an increase in water salinity shifted the localization of the PepT genes transcription and activity down along the intestinal tract. Additionally, an unexpected pH effect was found on the absorption of small peptides, with increased activity at higher pH levels. This work emphasizes the relationships between different functions of the fish intestine and how they are affected by environmental conditions.
Collapse
Affiliation(s)
- Pazit Con
- Agricultural Research Organization, Institute of Animal ScienceRishon Letziyon, Israel; Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Tali Nitzan
- Agricultural Research Organization, Institute of Animal Science Rishon Letziyon, Israel
| | - Avner Cnaani
- Agricultural Research Organization, Institute of Animal Science Rishon Letziyon, Israel
| |
Collapse
|
15
|
Boyle D, Blair SD, Chamot D, Goss GG. Characterization of developmental Na(+) uptake in rainbow trout larvae supports a significant role for Nhe3b. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:30-36. [PMID: 27350321 DOI: 10.1016/j.cbpa.2016.06.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 11/26/2022]
Abstract
Developing freshwater fish must compensate for the loss of ions, including sodium (Na(+)), to the environment. In this study, we used a radiotracer flux approach and pharmacological inhibitors to investigate the role of sodium/hydrogen exchange proteins (Nhe) in Na(+) uptake in rainbow trout (Oncorhynchus mykiss) reared from fertilization in soft water (0.1mM Na(+)). For comparison, a second group of embryos/larvae reared in hard water (2.2mM Na(+), higher pH and [Ca(2+)]) were also included in the experiment but were fluxed in soft water, only. Unidirectional rates of Na(+) uptake increased throughout development and were significantly higher in embryos/larvae reared in soft water. However, the mechanisms of Na(+) uptake in both groups of larvae were not significantly different, either in larvae immediately post-hatch or later in development: the broad spectrum Na(+) channel blocker amiloride inhibited 85-90% of uptake and the Nhe-inhibitor EIPA also caused near maximal inhibitions of Na(+) uptake. These data indicated Na(+) uptake was Nhe-mediated in soft water. A role of Nhe3b (but not Nhe2 or Nhe3a) in Na(+) uptake in soft water was also supported through gene expression analyses: expression of nhe3b increased throughout development in whole embryos/larvae in both groups and was significantly higher in those reared in soft water. This pattern of expression correlated well with measurements of Na(+) uptake. Together these data indicate that in part, rainbow trout embryos/larvae reared in low Na(+) soft water maintained Na(+) homeostasis by an EIPA sensitive component of Na(+) uptake, and support a primary role for Nhe3b.
Collapse
Affiliation(s)
- David Boyle
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Salvatore D Blair
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Danuta Chamot
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.
| |
Collapse
|
16
|
Martin CH, Crawford JE, Turner BJ, Simons LH. Diabolical survival in Death Valley: recent pupfish colonization, gene flow and genetic assimilation in the smallest species range on earth. Proc Biol Sci 2016; 283:20152334. [PMID: 26817777 PMCID: PMC4795021 DOI: 10.1098/rspb.2015.2334] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/05/2016] [Indexed: 12/11/2022] Open
Abstract
One of the most endangered vertebrates, the Devils Hole pupfish Cyprinodon diabolis, survives in a nearly impossible environment: a narrow subterranean fissure in the hottest desert on earth, Death Valley. This species became a conservation icon after a landmark 1976 US Supreme Court case affirming federal groundwater rights to its unique habitat. However, one outstanding question about this species remains unresolved: how long has diabolis persisted in this hellish environment? We used next-generation sequencing of over 13 000 loci to infer the demographic history of pupfishes in Death Valley. Instead of relicts isolated 2-3 Myr ago throughout repeated flooding of the entire region by inland seas as currently believed, we present evidence for frequent gene flow among Death Valley pupfish species and divergence after the most recent flooding 13 kyr ago. We estimate that Devils Hole was colonized by pupfish between 105 and 830 years ago, followed by genetic assimilation of pelvic fin loss and recent gene flow into neighbouring spring systems. Our results provide a new perspective on an iconic endangered species using the latest population genomic methods and support an emerging consensus that timescales for speciation are overestimated in many groups of rapidly evolving species.
Collapse
Affiliation(s)
| | - Jacob E Crawford
- Department of Integrative Biology, University of California, Berkeley, CA, USA Center for Theoretical Evolutionary Genomics, University of California, Berkeley, CA, USA
| | - Bruce J Turner
- Department of Biological Sciences, Virginia Tech, VA, USA
| | - Lee H Simons
- US Fish and and Wildlife Service, Las Vegas, NV, USA
| |
Collapse
|
17
|
Brix KV, Esbaugh AJ, Mager EM, Grosell M. Comparative evaluation of Na+ uptake in Cyprinodon variegatus variegatus (Lacepede) and Cyprinodon variegatus hubbsi (Carr) (Cyprinodontiformes, Teleostei): Evaluation of NHE function in high and low Na+ freshwater. Comp Biochem Physiol A Mol Integr Physiol 2015; 185:115-24. [DOI: 10.1016/j.cbpa.2015.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 03/17/2015] [Accepted: 04/02/2015] [Indexed: 01/20/2023]
|
18
|
Watson CJ, Nordi WM, Esbaugh AJ. Osmoregulation and branchial plasticity after acute freshwater transfer in red drum, Sciaenops ocellatus. Comp Biochem Physiol A Mol Integr Physiol 2014; 178:82-9. [PMID: 25152533 DOI: 10.1016/j.cbpa.2014.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/21/2014] [Accepted: 08/13/2014] [Indexed: 11/27/2022]
Abstract
Red drum, Sciaenops ocellatus, is an estuarine-dependent fish species commonly found in the Gulf of Mexico and along the coast of the southeastern United States. This economically important species has demonstrated freshwater tolerance; however, the physiological mechanisms and costs related to freshwater exposure remain poorly understood. The current study therefore investigated the physiological response of red drum using an acute freshwater transfer protocol. Plasma osmolality, Cl⁻, Mg²⁺ and Ca²⁺ were all significantly reduced by 24h post-transfer; Cl⁻ and Mg²⁺ recovered to control levels by 7days post-transfer. No effect of transfer was observed on muscle water content; however, muscle Cl⁻ was significantly reduced. Interestingly, plasma and muscle Na⁺ content was unaffected by freshwater transfer. Intestinal fluid was absent by 24h post-transfer indicating cessation of drinking. Branchial gene expression analysis showed that both CFTR and NKCC1 exhibited significant down-regulation at 8 and 24h post-transfer, respectively, although transfer had no impact on NHE2, NHE3 or Na⁺, K⁺ ATPase (NKA) activity. These general findings are supported by immunohistochemical analysis, which revealed no apparent NKCC containing cells in the gills at 7days post transfer while NKA cells localization was unaffected. The results of the current study suggest that red drum can effectively regulate Na⁺ balance upon freshwater exposure using already present Na⁺ uptake pathways while also down-regulating ion excretion mechanisms.
Collapse
Affiliation(s)
| | - Wiolene M Nordi
- University of Texas Marine Science Institute, Austin, TX 78373, USA
| | - Andrew J Esbaugh
- University of Texas Marine Science Institute, Austin, TX 78373, USA.
| |
Collapse
|
19
|
Wood CM, Robertson LM, Johannsson OE, Val AL. Mechanisms of Na+ uptake, ammonia excretion, and their potential linkage in native Rio Negro tetras (Paracheirodon axelrodi, Hemigrammus rhodostomus, and Moenkhausia diktyota). J Comp Physiol B 2014; 184:877-90. [PMID: 25106686 DOI: 10.1007/s00360-014-0847-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/10/2014] [Accepted: 07/19/2014] [Indexed: 12/13/2022]
Abstract
Mechanisms of Na(+) uptake, ammonia excretion, and their potential linkage were investigated in three characids (cardinal, hemigrammus, moenkhausia tetras), using radiotracer flux techniques to study the unidirectional influx (J in), efflux (J out), and net flux rates (J net) of Na(+) and Cl(-), and the net excretion rate of ammonia (J Amm). The fish were collected directly from the Rio Negro, and studied in their native "blackwater" which is acidic (pH 4.5), ion-poor (Na(+), Cl(-) ~20 µM), and rich in dissolved organic matter (DOM 11.5 mg C l(-1)). J in (Na) , J in (Cl) , and J Amm were higher than in previous reports on tetras obtained from the North America aquarium trade and/or studied in low DOM water. In all three species, J in (Na) was unaffected by amiloride (10(-4) M, NHE and Na(+) channel blocker), but both J in (Na) and J in (Cl) were virtually eliminated (85-99 % blockade) by AgNO3 (10(-7) M). A time course study on cardinal tetras demonstrated that J in (Na) blockade by AgNO3 was very rapid (<5 min), suggesting inhibition of branchial carbonic anhydrase (CA), and exposure to the CA-blocker acetazolamide (10(-4) M) caused a 50 % reduction in J in (Na) .. Additionally, J in (Na) was unaffected by phenamil (10(-5) M, Na(+) channel blocker), bumetanide (10(-4) M, NKCC blocker), hydrochlorothiazide (5 × 10(-3) M, NCC blocker), and exposure to an acute 3 unit increase in water pH. None of these treatments, including partial or complete elimination of J in (Na) (by acetazolamide and AgNO3 respectively), had any inhibitory effect on J Amm. Therefore, Na(+) uptake in Rio Negro tetras depends on an internal supply of H(+) from CA, but does not fit any of the currently accepted H(+)-dependent models (NHE, Na(+) channel/V-type H(+)-ATPase), or co-transport schemes (NCC, NKCC), and ammonia excretion does not fit the current "Na(+)/NH4 (+) exchange metabolon" paradigm. Na(+), K(+)-ATPase and V-type H(+)-ATPase activities were present at similar levels in gill homogenates, Acute exposure to high environmental ammonia (NH4Cl, 10(-3) M) significantly increased J in (Na) , and NH4 (+) was equally or more effective than K(+) in activating branchial Na(+),(K(+)) ATPase activity in vitro. We propose that ammonia excretion does not depend on Na(+) uptake, but that Na(+) uptake (by an as yet unknown H(+)-dependent apical mechanism) depends on ammonia excretion, driven by active NH4 (+) entry via basolateral Na(+),(K(+))-ATPase.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada,
| | | | | | | |
Collapse
|
20
|
Dymowska AK, Schultz AG, Blair SD, Chamot D, Goss GG. Acid-sensing ion channels are involved in epithelial Na+ uptake in the rainbow trout Oncorhynchus mykiss. Am J Physiol Cell Physiol 2014; 307:C255-65. [PMID: 24898589 DOI: 10.1152/ajpcell.00398.2013] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A role for acid-sensing ion channels (ASICs) to serve as epithelial channels for Na(+) uptake by the gill of freshwater rainbow trout was investigated. We found that the ASIC inhibitors 4',6-diamidino-2-phenylindole and diminazene decreased Na(+) uptake in adult rainbow trout in a dose-dependent manner, with IC50 values of 0.12 and 0.96 μM, respectively. Furthermore, we cloned the trout ASIC1 and ASIC4 homologs and demonstrated that they are expressed differentially in the tissues of the rainbow trout, including gills and isolated mitochondrion-rich cells. Immunohistochemical analysis using custom-made anti-zASIC4.2 antibody and the Na(+)-K(+)-ATPase (α5-subunit) antibody demonstrated that the trout ASIC localizes to Na(+)/K(+)-ATPase-rich cells in the gill. Moreover, three-dimensional rendering of confocal micrographs demonstrated that ASIC is found in the apical region of mitochondrion-rich cells. We present a revised model whereby ASIC4 is proposed as one mechanism for Na(+) uptake from dilute freshwater in the gill of rainbow trout.
Collapse
Affiliation(s)
- Agnieszka K Dymowska
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Aaron G Schultz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Salvatore D Blair
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Danuta Chamot
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
21
|
Larsen EH, Deaton LE, Onken H, O'Donnell M, Grosell M, Dantzler WH, Weihrauch D. Osmoregulation and Excretion. Compr Physiol 2014; 4:405-573. [DOI: 10.1002/cphy.c130004] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Esophageal desalination is mediated by Na⁺, H⁺ exchanger-2 in the gulf toadfish (Opsanus beta). Comp Biochem Physiol A Mol Integr Physiol 2014; 171:57-63. [PMID: 24548910 DOI: 10.1016/j.cbpa.2014.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/30/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
Abstract
Esophageal desalination is a crucial step in the gastrointestinal water absorption pathway, as this pre-intestinal processing establishes the osmotic conditions necessary for water absorption. Previous work has shown that esophageal Na(+) absorption is amiloride sensitive; however, it is as yet unclear if Na(+), H(+) exchangers (NHE) or Na(+) channels (ENaC) are responsible. The purpose of the current study was therefore to investigate the roles that NHE isoforms may play in this process in a marine teleost, the gulf toadfish (Opsanus beta), as well as what role NHE isoforms may play in the downstream intestinal Na(+) transport. A combination of symmetrical current clamp and asymmetrical voltage clamp experiments showed the esophagus to contain both an ion absorptive current (I(sc)=0.83±0.68) and serosal side negative transepithelial potential (TEP=-4.9±0.6). (22)Na uptake (J(Na)(m→s)) was inhibited by 0.5 mM EIPA, with no effect of 0.1 mM amiloride, 1 mM furosemide or 1 mM thiazide. A Cl(-) free saline reduced J(Na)(m→s) by 40% while also reducing conductance and reversing TEP. These results suggest that both transcellular and paracellular components contribute to esophageal Na(+) transport, with transcellular transport mediated by NHE. The NHE1, NHE2 and NHE3 genes were amplified and tissue distribution analysis by real-time PCR showed high NHE2 expression levels in the esophagus and stomach. Little NHE3 expression was observed throughout the gastrointestinal tract, and NHE2 expression was absent from the intestine. Hypersalinity (60 ppt) had no effect on the expression profile of NHE2, slc4a2, scl26a6, CAc or V-type ATPase (β-subunit), suggesting that esophageal desalination is less flexible in response to osmotic stress than the intestine.
Collapse
|
23
|
Scott GR, Brix KV. Evolution of salinity tolerance from transcriptome to physiological system. Mol Ecol 2014; 22:3656-8. [PMID: 24003453 DOI: 10.1111/mec.12372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The relationship between microevolution and macroevolution is a topic of fundamental importance in evolutionary biology. The increasing accessibility of genomic tools is making the hunt for genes that underlie evolutionary divergence more tractable and, when combined with physiological approaches, provides exceptional power to elucidate the causal mechanisms of the relationship. In this issue of Molecular Ecology, Whitehead et al. (2013) employ this strategy to show that common physiological and genomic mechanisms lead to divergence in salinity tolerance across micro- and macroevolutionary timescales. They compare two killifish species from the genus Fundulus, F. majalis, which inhabits primarily marine and brackish environments and represents the ancestral state of the genus, and F. heteroclitus, which has derived an osmotic niche that expands into freshwater. Corresponding to the differences in osmotic niche, the species differ strikingly in how the structure of the ion-transporting epithelium and the transcriptome of the gills respond to osmotic challenge. These inter-specific differences were similar to but more pronounced than the differences associated with the more subtle intra-specific variation in osmotic niche within each species. It appears that a progression of the same functional adjustments first allowed expansion of the osmotic niche of F. heteroclitus into freshwater and then further expanded the niche of select F. heteroclitus populations towards more dilute freshwater environments. The work of Whitehead et al. therefore emphasizes how the mechanisms of adaptive divergence between populations can be expanded over time to produce the more complex differences that can exist between species.
Collapse
Affiliation(s)
- Graham R Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| | | |
Collapse
|
24
|
Brix KV, Grosell M. Evaluation of pre- and post-zygotic mating barriers, hybrid fitness and phylogenetic relationship between Cyprinodon variegatus variegatus and Cyprinodon variegatus hubbsi (Cyprinodontiformes, Teleostei). J Evol Biol 2013; 26:854-66. [PMID: 23480788 DOI: 10.1111/jeb.12099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/29/2012] [Accepted: 12/06/2012] [Indexed: 12/01/2022]
Abstract
The euryhaline fish Cyprinodon variegatus variegatus (Cvv) is capable of tolerating ambient salinities ranging from 0.3 to 167 g l(-1) , but incapable of long-term survival in freshwater (< 2 mM Na(+) ). However, a population of this species, now designated as a subspecies (Cyprinodon variegatus hubbsi; Cvh), has been isolated in several freshwater (0.4-1 mM Na(+) ) lakes in central Florida for the past ~150 ky. We previously demonstrated that Cvh has a significantly higher affinity for Na(+) uptake suggesting that it has adapted to its dilute freshwater environment. We here evaluate whether Cvh should be considered a separate species by characterizing pre- and post-zygotic isolation, Na(+) transport characteristics of the two populations and their hybrids, and developing a molecular phylogeny of Cvv and Cvh populations in Florida using mtDNA sequence data. We found evidence of partial prezygotic isolation with Cvv females mating almost exclusively (89%) with con-specific males in choice mating experiments. Partial post-zygotic isolation was also observed with significant (59-89%) reductions in hatching success of hybrid embryos compared with con-specific embryos. Na(+) uptake kinetics in hybrids (both Cvv x Cvh and Cvh x Cvv) bred and raised under common garden conditions were intermediate to Cvh (high affinity) and Cvv (low affinity) indicating that observed differences are genetically based. Similar observations were made with respect to short-term (96 h) survival of juveniles acutely transferred from 7 mM Na(+) to a range of more dilute (0.1-2 mM Na(+) ) freshwater. Finally, although phylogenetic analysis of Cvv and Cvh populations using mtDNA sequence for ND2 were unable to fully resolve a polytomy between Cvh and Cvv populations from northeastern Florida, these data do not falsify the hypothesis that Cvh is of monophyletic origin. Overall, the available data suggest that Cvh should be considered a separate species or at a minimum an evolutionarily significant unit.
Collapse
Affiliation(s)
- K V Brix
- Department of Biology, McMaster Univeristy, Hamilton, Ontario, Canada.
| | | |
Collapse
|
25
|
Brix KV, Grosell M. Characterization of Na(+) uptake in the endangered desert pupfish, Cyprinodon macularius (Baird and Girard). CONSERVATION PHYSIOLOGY 2013; 1:cot005. [PMID: 27293589 PMCID: PMC4806610 DOI: 10.1093/conphys/cot005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/14/2013] [Indexed: 05/03/2023]
Abstract
This study provided an initial characterization of Na(+) uptake in saline freshwater by the endangered pupfish, Cyprinodon macularius. This species occurs only in several saline water systems in the southwestern USA and northern Mexico, where salinity is largely controlled by water-management practices. Consequently, understanding the osmoregulatory capacity of this species is important for their conservation. The lower acclimation limit of C. macularius in freshwater was found to be 2 mM Na(+). Fish acclimated to 2 or 7 mM Na(+) displayed similar Na(+) uptake kinetics, with K m values of 4321 and 3672 μM and V max values of 4771 and 3602 nmol g(-1) h(-1), respectively. A series of experiments using pharmacological inhibitors indicated that Na(+) uptake in C. macularius was not sensitive to bumetanide, metolazone, or phenamil. These results indicate the Na(+)-K(+)-2Cl(-) cotransporter, Na(+)-Cl(-) cotransporter, and the Na(+) channel-H(+)-ATPase system are likely not to be involved in Na(+) uptake at the apical membrane of fish gill ionocytes in fish acclimated to 2 or 7 mM Na(+). However, Na(+) uptake was sensitive to 1 × 10(-3) M amiloride (not 1 × 10(-4) or 1 × 10(-5) M), 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), and ethoxzolamide. These data suggest that C. macularius relies on a low-affinity Na(+)-H(+) exchanger for apical Na(+) uptake and that H(+) ions generated via carbonic anhydrase-mediated CO2 hydration are important for the function of this protein.
Collapse
Affiliation(s)
- Kevin V. Brix
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
- The Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
- Corresponding author: Tel: +1 905 979 0836.
| | - Martin Grosell
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
26
|
Measuring titratable alkalinity by single versus double endpoint titration: An evaluation in two cyprinodont species and implications for characterizing net H+ flux in aquatic organisms. Comp Biochem Physiol A Mol Integr Physiol 2012; 164:221-8. [PMID: 23000354 DOI: 10.1016/j.cbpa.2012.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/14/2012] [Accepted: 09/14/2012] [Indexed: 01/21/2023]
Abstract
In this study, Na(+) uptake and acid-base balance in the euryhaline pupfish Cyprinodon variegatus variegatus were characterized when fish were exposed to pH 4.5 freshwater (7mM Na(+)). Similar to the related cyprinodont, Fundulus heteroclitus, Na(+) uptake was significantly inhibited when exposed to low pH water. However, it initially appeared that C. v. variegatus increased apparent net acid excretion at low pH relative to circumneutral pH. This result is opposite to previous observations for F. heteroclitus under similar conditions where fish were observed to switch from apparent net H(+) excretion at circumneutral pH to apparent net H(+) uptake at low pH. Further investigation revealed disparate observations between these studies were the result of using double endpoint titrations to measure titratable alkalinity fluxes in the current study, while the earlier study utilized single endpoint titrations to measure these fluxes (i.e.,. Cyprinodon acid-base transport is qualitatively similar to Fundulus when characterized using single endpoint titrations). This led to a comparative investigation of these two methods. We hypothesized that either the single endpoint methodology was being influenced by a change in the buffer capacity of the water (e.g., mucus being released by the fish) at low pH, or the double endpoint methodology was not properly accounting for ammonia flux by the fish. A series of follow-up experiments indicated that buffer capacity of the water did not change significantly, that excretion of protein (a surrogate for mucus) was actually reduced at low pH, and that the double endpoint methodology does not properly account for NH(3) excretion by fish under low pH conditions. As a result, it overestimates net H(+) excretion during low pH exposure. After applying the maximum possible correction for this error (i.e., assuming that all ammonia is excreted as NH(3)), the double endpoint methodology indicates that net H(+) transport was reduced to effectively zero in both species at pH 4.5. However, significant differences between the double endpoint (no net H(+) transport at low pH) and single endpoint titrations (net H(+) uptake at low pH) remain to be explained.
Collapse
|
27
|
Kwong RWM, Kumai Y, Perry SF. Evidence for a role of tight junctions in regulating sodium permeability in zebrafish (Danio rerio) acclimated to ion-poor water. J Comp Physiol B 2012; 183:203-13. [PMID: 22843140 DOI: 10.1007/s00360-012-0700-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 07/07/2012] [Accepted: 07/14/2012] [Indexed: 11/29/2022]
Abstract
Freshwater teleosts are challenged by diffusive ion loss across permeable epithelia including gills and skin. Although the mechanisms regulating ion loss are poorly understood, a significant component is thought to involve paracellular efflux through pathways formed via tight junction proteins. The mammalian orthologue (claudin-4) of zebrafish (Danio rerio) tight junction protein, claudin-b, has been proposed to form a cation-selective barrier regulating the paracellular loss of Na(+). The present study investigated the cellular localization and regulation of claudin-b, as well as its potential contribution to Na(+) homeostasis in adult zebrafish acclimated to ion-poor water. Using a green fluorescent protein-expressing line of transgenic zebrafish, we found that claudin-b was expressed along the lamellar epithelium as well as on the filament in the inter-lamellar regions. Co-localization of claudin-b and Na(+)/K(+)-ATPase was observed, suggesting its interaction with mitochondrion-rich cells. Claudin-b also appeared to be associated with other cell types, including the pavement cells. In the kidney, claudin-b was expressed predominantly in the collecting tubules. In addition, exposure to ion-poor water caused a significant increase in claudin-b abundance as well as a decrease in Na(+) efflux, suggesting a possible role for claudin-b in regulating paracellular Na(+) loss. Interestingly, the whole-body uptake of a paracellular permeability marker, polyethylene glycol-400, increased significantly after prolonged exposure to ion-poor water, indicating that an increase in epithelial permeability is not necessarily coupled with an increase in passive Na(+) loss. Overall, our study suggests that in ion-poor conditions, claudin-b may contribute to a selective reduction in passive Na(+) loss in zebrafish.
Collapse
|
28
|
Edwards SL, Marshall WS. Principles and Patterns of Osmoregulation and Euryhalinity in Fishes. FISH PHYSIOLOGY 2012. [DOI: 10.1016/b978-0-12-396951-4.00001-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|