1
|
Shephard AM, Hund AK, Snell-Rood EC. Metabolic stress as a driver of life-history plasticity: flight promotes longevity and antioxidant production in monarch butterflies. Proc Biol Sci 2023; 290:20231616. [PMID: 37817587 PMCID: PMC10565393 DOI: 10.1098/rspb.2023.1616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/15/2023] [Indexed: 10/12/2023] Open
Abstract
Life-history theory predicts that increased investment in traits related to reproduction will be associated with a reduced ability to invest in survival or longevity. One mechanistic explanation for this trade-off is that metabolic stress generated from current fitness activities (e.g. reproduction or locomotion) will increase somatic damage, leading to reduced longevity. Yet, there has been limited support for this damage-based hypothesis. A possible explanation is that individuals can respond to increases in metabolic stress by plastically inducing cellular maintenance responses, which may increase, rather than decrease, longevity. We tested this possibility by experimentally manipulating investment in flight activity (a metabolic stressor) in the migratory monarch butterfly (Danaus plexippus), a species whose reproductive fitness is dependent on survival through a period of metabolically intensive migratory flight. Consistent with the idea that metabolic stress stimulated investment in self-maintenance, increased flight activity enhanced monarch butterfly longevity and somatic tissue antioxidant capacity, likely at a cost to reproductive investment. Our study implicates a role for metabolic stress as a driver of life-history plasticity and supports a model where current engagement in metabolically stressful activities promotes somatic survival by stimulating investment in self-maintenance processes.
Collapse
Affiliation(s)
- Alexander M. Shephard
- Department of Ecology, Evolution, and Behavior, University of Minnesota – Twin Cities, Saint Paul, MN 55108, USA
| | - Amanda K. Hund
- Department of Ecology, Evolution, and Behavior, University of Minnesota – Twin Cities, Saint Paul, MN 55108, USA
| | - Emilie C. Snell-Rood
- Department of Ecology, Evolution, and Behavior, University of Minnesota – Twin Cities, Saint Paul, MN 55108, USA
| |
Collapse
|
2
|
Shephard AM, Zambre AM, Snell‐Rood EC. Evaluating costs of heavy metal tolerance in a widely distributed, invasive butterfly. Evol Appl 2021; 14:1390-1402. [PMID: 34025774 PMCID: PMC8127708 DOI: 10.1111/eva.13208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Organismal tolerance to environmental pollution is thought to be constrained by fitness costs, where variants with higher survival in polluted environments have lower performance in nonpolluted environments. Yet, costs are not always detected in empirical studies. One hypothesis suggests that whether tolerance costs emerge depends on the degree of heterogeneity populations experience with respect to pollution exposure. For instance, in populations confined to local environments where pollution is persistent, selection may favour alleles that enhance pollution tolerance but reduce performance in nonpolluted environments (costs). However, in broadly distributed populations that undergo selection in both polluted and nonpolluted patches, costs should be eroded. Understanding tolerance costs in broadly distributed populations is relevant to management of invasive species, which are highly dispersive, wide ranging, and often colonize disturbed or polluted patches such as agricultural monocultures. Therefore, we conducted a case study quantifying costs of tolerance to zinc pollution (a common heavy metal pollutant) in wild cabbage white butterflies (Pieris rapae). This wide ranging, highly dispersive and invasive pest periodically encounters metal pollution by consuming plants in urban and agricultural settings. In contrast to expected costs of tolerance, we found that cabbage white families with greater zinc tolerance also produced more eggs and had higher reproductive effort under nonpolluted conditions. These results contribute to a more general hypothesis of why costs of pollution tolerance vary across studies: patchy selection with pollutants should erode costs and may favour genotypes that perform well under both polluted and nonpolluted conditions. This might partly explain why widely distributed invasive species are able to thrive in diverse, polluted and nonpolluted habitats.
Collapse
Affiliation(s)
- Alexander M. Shephard
- Department of Ecology, Evolution, and BehaviorUniversity of Minnesota – Twin CitiesSt. PaulMNUSA
| | - Amod M. Zambre
- Department of Ecology, Evolution, and BehaviorUniversity of Minnesota – Twin CitiesSt. PaulMNUSA
| | - Emilie C. Snell‐Rood
- Department of Ecology, Evolution, and BehaviorUniversity of Minnesota – Twin CitiesSt. PaulMNUSA
| |
Collapse
|
3
|
Auer SK, Solowey JR, Rajesh S, Rezende EL. Energetic mechanisms for coping with changes in resource availability. Biol Lett 2020; 16:20200580. [PMID: 33142086 DOI: 10.1098/rsbl.2020.0580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Given current anthropogenic alterations to many ecosystems and communities, it is becoming increasingly important to consider whether and how organisms can cope with changing resources. Metabolic rate, because it represents the rate of energy expenditure, may play a key role in mediating the link between resource conditions and performance and thereby how well organisms can persist in the face of environmental change. Here, we focus on the role that energy metabolism plays in determining organismal responses to changes in food availability over both short-term ecological and longer-term evolutionary timescales. Using a meta-analytical approach encompassing multiple species, we find that individuals with a higher metabolic rate grow faster under high food levels but slower once food levels decline, suggesting that the association between metabolism and life-history traits shifts along resource gradients. We also find that organisms can cope with changing resource availability through both phenotypic plasticity and genetically based evolutionary adaptation in their rates of energy metabolism. However, the metabolic rates of individuals within a population and of species within a lineage do not all respond in the same manner to changes in food availability. This diversity of responses suggests that there are benefits but also costs to changes in metabolic rate. It also underscores the need to examine not just the energy budgets of organisms within the context of metabolic rate but also how energy metabolism changes alongside other physiological and behavioural traits in variable environments.
Collapse
Affiliation(s)
| | | | | | - Enrico L Rezende
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| |
Collapse
|
4
|
Ramos-Pérez VI, Castellanos I, Robinson-Fuentes VA, Macías-Ordóñez R, Mendoza-Cuenca L. Sex-related interannual plasticity in wing morphological design in Heliconius charithonia enhances flight metabolic performance. PLoS One 2020; 15:e0239620. [PMID: 33125377 PMCID: PMC7598497 DOI: 10.1371/journal.pone.0239620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/09/2020] [Indexed: 11/18/2022] Open
Abstract
Flight morphological variations and its consequences on animal performance are common in winged insects. In the butterfly Heliconius charithonia, sex-related differences in the wing morphological design have been described resulting in differences in foraging behavior, daily flight distances and flight aerodynamics. It has been suggested that these differences should be reflected in the metabolic capacities and energetic budgets associated with flight in both sexes. In this study, we analyzed the relationship between wing morphological variation and metabolic performance, flight aerodynamics and energetic reserves in females and males of Heliconius charithonia over two years. The results confirm the presence of wing shape sexual dimorphism, but also show an unexpected sex-related annual variation in wing shape, mirrored in the metabolic condition (resting metabolic rate) of individuals. However, contrary to expectation, intersexual variations in wing shape are not related to differences between the sexes in terms of flight aerodynamics, flight metabolic rates, or energetic reserves (carbohydrates, lipids and proteins). Our results indicate a considerable plasticity in H. charithonia wing shape, which we suggest is determined by a trade-off between environmental pressures and reproductive restriction of each sex, maintaining an optimum flight design. Finally, similarities in metabolic rates between young and older males and females in both years may be a consequence of the ability of Heliconius species to feed on pollen.
Collapse
Affiliation(s)
- Velia I Ramos-Pérez
- Laboratorio de Ecología de la Conducta, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México.,Laboratorio Nacional de Análisis y Síntesis Ecológica, ENES, UNAM, Morelia, México
| | - Ignacio Castellanos
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, México
| | - Virginia A Robinson-Fuentes
- Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | | | - Luis Mendoza-Cuenca
- Laboratorio de Ecología de la Conducta, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México.,Laboratorio Nacional de Análisis y Síntesis Ecológica, ENES, UNAM, Morelia, México
| |
Collapse
|
5
|
Guo S, Wang X, Kang L. Special Significance of Non- Drosophila Insects in Aging. Front Cell Dev Biol 2020; 8:576571. [PMID: 33072758 PMCID: PMC7536347 DOI: 10.3389/fcell.2020.576571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022] Open
Abstract
Aging is the leading risk factor of human chronic diseases. Understanding of aging process and mechanisms facilitates drug development and the prevention of aging-related diseases. Although many aging studies focus on fruit fly as a canonical insect system, minimal attention is paid to the potentially significant roles of other insects in aging research. As the most diverse group of animals, insects provide many aging types and important complementary systems for aging studies. Insect polyphenism represents a striking example of the natural variation in longevity and aging rate. The extreme intraspecific variations in the lifespan of social insects offer an opportunity to study how aging is differentially regulated by social factors. Insect flight, as an extremely high-intensity physical activity, is suitable for the investigation of the complex relationship between metabolic rate, oxidative stress, and aging. Moreover, as a "non-aging" state, insect diapause not only slows aging process during diapause phase but also affects adult longevity during/after diapause. In the past two decades, considerable progress has been made in understanding the molecular basis of aging regulation in insects. Herein, the recent research progress in non-Drosophila insect aging was reviewed, and its potential utilization in aging in the future was discussed.
Collapse
Affiliation(s)
- Siyuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Gangloff EJ, Schwartz TS, Klabacka R, Huebschman N, Liu AY, Bronikowski AM. Mitochondria as central characters in a complex narrative: Linking genomics, energetics, pace-of-life, and aging in natural populations of garter snakes. Exp Gerontol 2020; 137:110967. [DOI: 10.1016/j.exger.2020.110967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/11/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022]
|
7
|
Willink B, Duryea MC, Wheat C, Svensson EI. Changes in gene expression during female reproductive development in a color polymorphic insect. Evolution 2020; 74:1063-1081. [DOI: 10.1111/evo.13979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 03/19/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Beatriz Willink
- Department of Biology, Evolutionary Ecology Unit, Ecology BuildingLund University Lund 223–62 Sweden
- Current Address: School of BiologyUniversity of Costa Rica San José 11501–2060 Costa Rica
| | | | | | - Erik I. Svensson
- Department of Biology, Evolutionary Ecology Unit, Ecology BuildingLund University Lund 223–62 Sweden
| |
Collapse
|
8
|
Effects of flight and food stress on energetics, reproduction, and lifespan in the butterfly Melitaea cinxia. Oecologia 2019; 191:271-283. [PMID: 31440807 PMCID: PMC6763403 DOI: 10.1007/s00442-019-04489-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 08/13/2019] [Indexed: 12/02/2022]
Abstract
Environmental change can have drastic effects on natural populations. To successfully predict such effects, we need to understand how species that follow different life-history strategies respond to stressful conditions. Here I focus on two stressors, increased flight and dietary restriction, and their effects on bioenergetics and life-history. Using the Glanville fritillary butterfly (Melitaea cinxia), I subjected mated females to three treatments: (1) control conditions, (2) repeated forced flight with unlimited food, and (3) repeated forced flight coupled with food restriction. Interestingly, flight increased fecundity: females in both flight treatments initiated oviposition earlier, laid more egg clutches, and had higher total fecundity than control females. However, food-restriction by 50% reduced clutch size and resulted in an approximately 25% decrease in total fecundity compared to flown females with unlimited food. There were no differences in egg wet mass, water content or hatching success. Flown females with unlimited food appeared to exhibit a trade-off between reproduction and lifespan: they had higher mass-independent resting metabolic rate and shorter lifespan than females in the other treatments. Mass-independent flight metabolic rate, reflecting flight capacity, did not differ among the treatments. There were no differences in the rate of metabolic senescence across the treatments. The current findings suggest a mechanistic link between flight and reproduction, potentially mediated by juvenile hormone signalling. It appears that this wing-monomorphic butterfly does not show an oogenesis-flight trade-off often found in wing-dimorphic insects. Nevertheless, nectar-feeding is needed for achieving maximum reproductive output, suggesting that diminishing nectar resources may negatively impact natural populations.
Collapse
|
9
|
|
10
|
Jin Z, Sun L, Yang G, Pei Y. Hydrogen Sulfide Regulates Energy Production to Delay Leaf Senescence Induced by Drought Stress in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:1722. [PMID: 30532763 PMCID: PMC6265512 DOI: 10.3389/fpls.2018.01722] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/06/2018] [Indexed: 05/09/2023]
Abstract
Hydrogen sulfide (H2S) is a novel gasotransmitter in both mammals and plants. H2S plays important roles in various plant developmental processes and stress responses. Leaf senescence is the last developmental stage and is a sequential degradation process that eventually leads to leaf death. A mutation of the H2S-producing enzyme-encoding gene L-cysteine desulfhydrase1 (DES1) leads to premature leaf senescence but the underlying mechanisms are not clear. In this present study, wild-type, DES1 defective mutant (des1) and over-expression (OE-DES1) Arabidopsis plants were used to investigate the underlying mechanism of H2S signaling in energy production and leaf senescence under drought stress. The des1 mutant was more sensitive to drought stress and displayed accelerated leaf senescence, while the leaves of OE-DES1 contained adequate chlorophyll levels, accompanied by significantly increased drought resistance. Under drought stress, the expression levels of ATPβ-1, -2, and -3 were significantly downregulated in des1 and significantly upregulated in OE-DES1, and ATPε showed the opposite trend. Senescence-associated gene (SAG) 12 correlated with age-dependent senescence and participated in the drought resistance of OE-DES1. SAG13, which was induced by environmental factors, responded positively to drought stress in des1 plants, while there was no significant difference in the SAG29 expression between des1 and OE-DES1. Using transmission electron microscopy, the mitochondria of des1 were severely damaged and bubbled in older leaves, while OE-DES1 had complete mitochondrial structures and a homogeneous matrix. Additionally, mitochondria isolated from OE-DES1 increased the H2S production rate, H2S content and ATPase activity level, as well as reduced swelling and lowered the ATP content in contrast with wild-type and des1 significantly. Therefore, at subcellular levels, H2S appeared to determine the ability of mitochondria to regulate energy production and protect against cellular aging, which subsequently delayed leaf senescence under drought-stress conditions in plants.
Collapse
Affiliation(s)
- Zhuping Jin
- School of Life Science, Shanxi University, Taiyuan, China
| | - Limin Sun
- School of Life Science, Shanxi University, Taiyuan, China
| | - Guangdong Yang
- School of Life Science, Shanxi University, Taiyuan, China
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| | - Yanxi Pei
- School of Life Science, Shanxi University, Taiyuan, China
| |
Collapse
|
11
|
Pekny JE, Smith PB, Marden JH. Enzyme polymorphism, oxygen and injury: a lipidomic analysis of flight-induced oxidative damage in a succinate dehydrogenase d ( Sdhd)-polymorphic insect. ACTA ACUST UNITED AC 2018; 221:jeb.171009. [PMID: 29444838 DOI: 10.1242/jeb.171009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 02/04/2018] [Indexed: 12/19/2022]
Abstract
When active tissues receive insufficient oxygen to meet metabolic demand, succinate accumulates and has two fundamental effects: it causes ischemia-reperfusion injury while also activating the hypoxia-inducible factor pathway (HIF). The Glanville fritillary butterfly (Melitaea cinxia) possesses a balanced polymorphism in Sdhd, shown previously to affect HIF pathway activation and tracheal morphology and used here to experimentally test the hypothesis that variation in succinate dehydrogenase affects oxidative injury. We stimulated butterflies to fly continuously in a respirometer (3 min duration), which typically caused episodes of exhaustion and recovery, suggesting a potential for cellular injury from hypoxia and reoxygenation in flight muscles. Indeed, flight muscle from butterflies flown on consecutive days had lipidome profiles similar to those of rested paraquat-injected butterflies, but distinct from those of rested untreated butterflies. Many butterflies showed a decline in flight metabolic rate (FMR) on day 2, and there was a strong inverse relationship between the ratio of day 2 to day 1 FMR and the abundance of sodiated adducts of phosphatidylcholines and co-enzyme Q (CoQ). This result is consistent with elevation of sodiated lipids caused by disrupted intracellular ion homeostasis in mammalian tissues after hypoxia-reperfusion. Butterflies carrying the Sdhd M allele had a higher abundance of lipid markers of cellular damage, but the association was reversed in field-collected butterflies, where focal individuals typically flew for seconds at a time rather than continuously. These results indicate that Glanville fritillary flight muscles can be injured by episodes of high exertion, but injury severity appears to be determined by an interaction between SDH genotype and behavior (prolonged versus intermittent flight).
Collapse
Affiliation(s)
- Julianne E Pekny
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip B Smith
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - James H Marden
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA .,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
12
|
Renault D, Laparie M, McCauley SJ, Bonte D. Environmental Adaptations, Ecological Filtering, and Dispersal Central to Insect Invasions. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:345-368. [PMID: 29029589 DOI: 10.1146/annurev-ento-020117-043315] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Insect invasions, the establishment and spread of nonnative insects in new regions, can have extensive economic and environmental consequences. Increased global connectivity accelerates rates of introductions, while climate change may decrease the barriers to invader species' spread. We follow an individual-level insect- and arachnid-centered perspective to assess how the process of invasion is influenced by phenotypic heterogeneity associated with dispersal and stress resistance, and their coupling, across the multiple steps of the invasion process. We also provide an overview and synthesis on the importance of environmental filters during the entire invasion process for the facilitation or inhibition of invasive insect population spread. Finally, we highlight important research gaps and the relevance and applicability of ongoing natural range expansions in the context of climate change to gain essential mechanistic insights into insect invasions.
Collapse
Affiliation(s)
- David Renault
- University of Rennes 1, UMR CNRS 6553 EcoBio, 35042 Rennes Cedex, France;
- Institut Universitaire de France, 75231 Paris Cedex 05, France
| | - Mathieu Laparie
- URZF, INRA, Forest Zoology Research Unit (0633), 45075 Orléans, France;
| | - Shannon J McCauley
- Department of Biology, University of Toronto, Mississauga, Ontario L5L 1C6, Canada;
| | - Dries Bonte
- Terrestrial Ecology Unit, Department of Biology, Ghent University, B-9090 Ghent, Belgium;
| |
Collapse
|
13
|
Rudolf AM, Dańko MJ, Sadowska ET, Dheyongera G, Koteja P. Age-related changes of physiological performance and survivorship of bank voles selected for high aerobic capacity. Exp Gerontol 2017; 98:70-79. [PMID: 28803134 DOI: 10.1016/j.exger.2017.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 07/20/2017] [Accepted: 08/06/2017] [Indexed: 12/21/2022]
Abstract
Variation in lifespans is an intriguing phenomenon, but how metabolic rate influence this variation remains unclear. High aerobic capacity can result in health benefits, but also in increased oxidative damage and accelerated ageing. We tested these contradictory predictions using bank voles (Myodes=Clethrionomys glareolus) from lines selected for high swim-induced aerobic metabolism (A), which had about 50% higher maximum metabolic rate and a higher basal and routine metabolic rates, than those from unselected control lines (C). We measured sprint speed (VSmax), forced-running maximum metabolic rate (VO2run), maximum long-distance running speed (VLmax), running speed at VO2run (VVO2), and respiratory quotient at VO2run (RQ) at three age classes (I: 3-5, II: 12-14, III: 17-19months), and analysed survivorship. We asked if ageing, understood as the age-related decline of the performance traits, differs between the A and C lines. At age class I, voles from A lines had 19% higher VO2run, and 12% higher VLmax, but tended to have 19% lower VSmax, than those from C lines. RQ was nearly 1.0 for both A and C lines. The pattern of age-related changes differed between the lines mainly between age classes I and II, but not in older animals. VSmax increased by 27% in A lines and by 10% in C lines between age class I and II, but between classes II and III, it increased by 16% in both selection directions. VO2run decreased by 7% between age class I and II in A lines only, but in C lines it remained constant across all age classes. VLmax decreased by 8% and VVO2 by 12% between age classes II and III, but similarly in both selection directions. Mortality was higher in A than in C lines only between the age of 1 and 4months. The only trait for which the changes in old animals differed between the lines was RQ. In A lines, RQ increased between age classes II and III, whereas in C lines such an increase occurred between age classes I and II. Thus, we did not find obvious effects of selection on the pattern of ageing. However, the physiological performance and mortality of bank voles remained surprisingly robust to ageing, at least until the age of 17-19months, similar to the maximum lifespan under natural conditions. Therefore, it is possible that the selection could affect the pattern of ageing in even older individuals when symptoms of senility might be more profound.
Collapse
Affiliation(s)
- Agata Marta Rudolf
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Maciej Jan Dańko
- Max Planck Institute for Demographic Research, Konrad-Zuse-Strasse 1, 18057 Rostock, Germany
| | - Edyta Teresa Sadowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Geoffrey Dheyongera
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| |
Collapse
|
14
|
What modulates animal longevity? Fast and slow aging in bivalves as a model for the study of lifespan. Semin Cell Dev Biol 2017; 70:130-140. [PMID: 28778411 DOI: 10.1016/j.semcdb.2017.07.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
Delineating the physiological and biochemical causes of aging process in the animal kingdom is a highly active area of research not only because of potential benefits for human health but also because aging process is related to life history strategies (growth and reproduction) and to responses of organisms to environmental conditions and stress. In this synthesis, we advocate studying bivalve species as models for revealing the determinants of species divergences in maximal longevity. This taxonomic group includes the longest living metazoan on earth (Arctica islandica), which insures the widest range of maximum life span when shorter living species are also included in the comparative model. This model can also be useful for uncovering factors modulating the pace of aging in given species by taking advantages of the wide disparity of lifespan among different populations of the same species. For example, maximal lifespan in different populations of A islandica range from approximately 36 years to over 500 years. In the last 15 years, research has revealed that either regulation or tolerance to oxidative stress is tightly correlated to longevity in this group which support further investigations on this taxon to unveil putative mechanistic links between Reactive Oxygen Species and aging process.
Collapse
|
15
|
Sex-dependent effects of larval food stress on adult performance under semi-natural conditions: only a matter of size? Oecologia 2017; 184:633-642. [PMID: 28685203 PMCID: PMC5511311 DOI: 10.1007/s00442-017-3903-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/20/2017] [Indexed: 12/12/2022]
Abstract
Organisms with complex life-cycles acquire essential nutrients as juveniles, and hence even a short-term food stress during development can impose serious fitness costs apparent in adults. We used the Glanville fritillary butterfly to investigate the effects of larval food stress on adult performance under semi-natural conditions in a population enclosure. We were specifically interested in whether the negative effects observed were due to body mass reduction only or whether additional effects unrelated to pupal mass were evident. The two sexes responded differently to the larval food stress. In females, larval food stress reduced pupal mass and reproductive performance. The reduced reproductive performance was partially mediated by pupal mass reduction. Food stressed females also had reduced within-patch mobility, and this effect was not dependent on pupal mass. Conversely, food stress had no effect on male pupal mass, suggesting a full compensation via prolonged development time. Nonetheless, food stressed males were less likely to sire any eggs, potentially due to changes in their territorial behavior, as indicated by food stress also increasing male within-patch mobility (i.e., patrolling behavior). When males did sire eggs, the offspring number and viability were unaffected by male food stress treatment. Viability was in general higher for offspring sired by lighter males. Our study highlights how compensatory mechanisms after larval food stress can act in a sex-specific manner and that the alteration in body mass is only partially responsible for the reduced adult performance observed.
Collapse
|
16
|
Niitepõld K, Saastamoinen M. A Candidate Gene in an Ecological Model Species: Phosphoglucose Isomerase (Pgi) in the Glanville Fritillary Butterfly (Melitaea cinxia). ANN ZOOL FENN 2017. [DOI: 10.5735/086.054.0122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kristjan Niitepõld
- Metapopulation Research Centre, P.O. Box 65, FI-00014 University of Helsinki, Finland
| | - Marjo Saastamoinen
- Metapopulation Research Centre, P.O. Box 65, FI-00014 University of Helsinki, Finland
| |
Collapse
|
17
|
Massol F, Altermatt F, Gounand I, Gravel D, Leibold MA, Mouquet N. How life-history traits affect ecosystem properties: effects of dispersal in meta-ecosystems. OIKOS 2017. [DOI: 10.1111/oik.03893] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- François Massol
- CNRS, Univ. de Lille, UMR 8198 Evo-Eco-Paleo, SPICI group; FR-59000 Lille France
| | - Florian Altermatt
- Dept of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology; Dübendorf, Switzerland, and: Dept of Evolutionary Biology and Environmental Studies, Univ. of Zürich; Zürich Switzerland
| | - Isabelle Gounand
- Dept of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology; Dübendorf, Switzerland, and: Dept of Evolutionary Biology and Environmental Studies, Univ. of Zürich; Zürich Switzerland
| | - Dominique Gravel
- Dépt de biologie; Univ. de Sherbrooke, Sherbrooke, Canada, and: Québec Center for Biodiversity Science; Quebec Canada
| | - Mathew A. Leibold
- Dept of Integrative Biology; Univ. of Texas at Austin; Austin TX USA
| | - Nicolas Mouquet
- 7 UMR MARBEC (MARine Biodiversity, Exploitation and Conservation); Univ. de Montpellier; Montpellier France
| |
Collapse
|
18
|
Jimenez AG. Physiological underpinnings in life-history trade-offs in man’s most popular selection experiment: the dog. J Comp Physiol B 2016; 186:813-27. [DOI: 10.1007/s00360-016-1002-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/05/2016] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
|
19
|
A Quantitative Genomic Approach for Analysis of Fitness and Stress Related Traits in a Drosophila melanogaster Model Population. Int J Genomics 2016; 2016:2157494. [PMID: 27274984 PMCID: PMC4853962 DOI: 10.1155/2016/2157494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/29/2016] [Indexed: 12/27/2022] Open
Abstract
The ability of natural populations to withstand environmental stresses relies partly on their adaptive ability. In this study, we used a subset of the Drosophila Genetic Reference Panel, a population of inbred, genome-sequenced lines derived from a natural population of Drosophila melanogaster, to investigate whether this population harbors genetic variation for a set of stress resistance and life history traits. Using a genomic approach, we found substantial genetic variation for metabolic rate, heat stress resistance, expression of a major heat shock protein, and egg-to-adult viability investigated at a benign and a higher stressful temperature. This suggests that these traits will be able to evolve. In addition, we outline an approach to conduct pathway associations based on genomic linear models, which has potential to identify adaptive genes and pathways, and therefore can be a valuable tool in conservation genomics.
Collapse
|
20
|
Wong SC, Oksanen A, Mattila ALK, Lehtonen R, Niitepõld K, Hanski I. Effects of ambient and preceding temperatures and metabolic genes on flight metabolism in the Glanville fritillary butterfly. JOURNAL OF INSECT PHYSIOLOGY 2016; 85:23-31. [PMID: 26658138 PMCID: PMC4739062 DOI: 10.1016/j.jinsphys.2015.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/26/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
Flight is essential for foraging, mate searching and dispersal in many insects, but flight metabolism in ectotherms is strongly constrained by temperature. Thermal conditions vary greatly in natural populations and may hence restrict fitness-related activities. Working on the Glanville fritillary butterfly (Melitaea cinxia), we studied the effects of temperature experienced during the first 2 days of adult life on flight metabolism, genetic associations between flight metabolic rate and variation in candidate metabolic genes, and genotype-temperature interactions. The maximal flight performance was reduced by 17% by 2 days of low ambient temperature (15 °C) prior to the flight trial, mimicking conditions that butterflies commonly encounter in nature. A SNP in phosphoglucose isomerase (Pgi) had a significant association on flight metabolic rate in males and a SNP in triosephosphate isomerase (Tpi) was significantly associated with flight metabolic rate in females. In the Pgi SNP, AC heterozygotes had higher flight metabolic rate than AA homozygotes following low preceding temperature, but the trend was reversed following high preceding temperature, consistent with previous results on genotype-temperature interaction for this SNP. We suggest that these results on 2-day old butterflies reflect thermal effect on the maturation of flight muscles. These results highlight the consequences of variation in thermal conditions on the time scale of days, and they contribute to a better understanding of the complex dynamics of flight metabolism and flight-related activities under conditions that are relevant for natural populations living under variable thermal conditions.
Collapse
Affiliation(s)
- Swee Chong Wong
- Department of Biosciences, P.O. Box 65, 00014 University of Helsinki, Finland.
| | - Alma Oksanen
- Department of Biosciences, P.O. Box 65, 00014 University of Helsinki, Finland; Department of Biology, P.O. Box 111, 80101 University of Eastern Finland, Joensuu, Finland
| | - Anniina L K Mattila
- Department of Biosciences, P.O. Box 65, 00014 University of Helsinki, Finland
| | - Rainer Lehtonen
- Department of Biosciences, P.O. Box 65, 00014 University of Helsinki, Finland; Institute of Biomedicine & Genome-Scale Biology Research Program Biomedicum 1, P.O. Box 63, 00014 University of Helsinki, Finland
| | - Kristjan Niitepõld
- Department of Biosciences, P.O. Box 65, 00014 University of Helsinki, Finland
| | - Ilkka Hanski
- Department of Biosciences, P.O. Box 65, 00014 University of Helsinki, Finland
| |
Collapse
|
21
|
Rosewarne PJ, Wilson JM, Svendsen JC. Measuring maximum and standard metabolic rates using intermittent-flow respirometry: a student laboratory investigation of aerobic metabolic scope and environmental hypoxia in aquatic breathers. JOURNAL OF FISH BIOLOGY 2016; 88:265-283. [PMID: 26768978 DOI: 10.1111/jfb.12795] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
Metabolic rate is one of the most widely measured physiological traits in animals and may be influenced by both endogenous (e.g. body mass) and exogenous factors (e.g. oxygen availability and temperature). Standard metabolic rate (SMR) and maximum metabolic rate (MMR) are two fundamental physiological variables providing the floor and ceiling in aerobic energy metabolism. The total amount of energy available between these two variables constitutes the aerobic metabolic scope (AMS). A laboratory exercise aimed at an undergraduate level physiology class, which details the appropriate data acquisition methods and calculations to measure oxygen consumption rates in rainbow trout Oncorhynchus mykiss, is presented here. Specifically, the teaching exercise employs intermittent flow respirometry to measure SMR and MMR, derives AMS from the measurements and demonstrates how AMS is affected by environmental oxygen. Students' results typically reveal a decline in AMS in response to environmental hypoxia. The same techniques can be applied to investigate the influence of other key factors on metabolic rate (e.g. temperature and body mass). Discussion of the results develops students' understanding of the mechanisms underlying these fundamental physiological traits and the influence of exogenous factors. More generally, the teaching exercise outlines essential laboratory concepts in addition to metabolic rate calculations, data acquisition and unit conversions that enhance competency in quantitative analysis and reasoning. Finally, the described procedures are generally applicable to other fish species or aquatic breathers such as crustaceans (e.g. crayfish) and provide an alternative to using higher (or more derived) animals to investigate questions related to metabolic physiology.
Collapse
Affiliation(s)
- P J Rosewarne
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - J M Wilson
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - J C Svendsen
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| |
Collapse
|
22
|
Xie J, De Clercq P, Pan C, Li H, Zhang Y, Pang H. Physiological effects of compensatory growth during the larval stage of the ladybird, Cryptolaemus montrouzieri. JOURNAL OF INSECT PHYSIOLOGY 2015; 83:37-42. [PMID: 26546057 DOI: 10.1016/j.jinsphys.2015.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
The growth rate of insects may vary in response to shifty environments. They may achieve compensatory growth after a period of food restriction followed by ad libitum food, which may further affect the reproductive performance and lifespan of the resulting phenotypes. However, little is known about the physiological mechanisms associated with such growth acceleration in insects. The present study examined the metabolic rate, the antioxidant enzyme activity and the gene expression of adult Cryptolaemus montrouzieri (Coleoptera: Coccinellidae) after experiencing compensatory growth during its larval stages. Starved C. montrouzieri individuals achieved a similar developmental time and adult body mass as those supplied with ad libitum food during their entire larval stage, indicating that compensatory growth occurred as a result of the switch in larval food regime. Further, the compensatory growth was found to exert effects on the physiological functions of C. montrouzieri, in terms of its metabolic rates and enzyme activities. The adults undergoing compensatory growth were characterized by a higher metabolic rate, a lower activity of the antioxidant enzymes glutathione reductase, catalase, and superoxide dismutase and a lower gene expression of P450 and trehalase. Taken together, the results indicate that although compensatory growth following food restriction in early larval life prevents developmental delay and body mass loss, the resulting adults may encounter physiological challenges affecting their fitness.
Collapse
Affiliation(s)
- Jiaqin Xie
- State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institute, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou 510275, China; Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Patrick De Clercq
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium.
| | - Chang Pan
- State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institute, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou 510275, China
| | - Haosen Li
- State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institute, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuhong Zhang
- Guangdong Entomological Institute, Guangzhou 510260, China
| | - Hong Pang
- State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institute, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
23
|
Mattila ALK. Thermal biology of flight in a butterfly: genotype, flight metabolism, and environmental conditions. Ecol Evol 2015; 5:5539-51. [PMID: 27069604 PMCID: PMC4813115 DOI: 10.1002/ece3.1758] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 09/06/2015] [Accepted: 09/10/2015] [Indexed: 11/08/2022] Open
Abstract
Knowledge of the effects of thermal conditions on animal movement and dispersal is necessary for a mechanistic understanding of the consequences of climate change and habitat fragmentation. In particular, the flight of ectothermic insects such as small butterflies is greatly influenced by ambient temperature. Here, variation in body temperature during flight is investigated in an ecological model species, the Glanville fritillary butterfly (Melitaea cinxia). Attention is paid on the effects of flight metabolism, genotypes at candidate loci, and environmental conditions. Measurements were made under a natural range of conditions using infrared thermal imaging. Heating of flight muscles by flight metabolism has been presumed to be negligible in small butterflies. However, the results demonstrate that Glanville fritillary males with high flight metabolic rate maintain elevated body temperature better during flight than males with a low rate of flight metabolism. This effect is likely to have a significant influence on the dispersal performance and fitness of butterflies and demonstrates the possible importance of intraspecific physiological variation on dispersal in other similar ectothermic insects. The results also suggest that individuals having an advantage in low ambient temperatures can be susceptible to overheating at high temperatures. Further, tolerance of high temperatures may be important for flight performance, as indicated by an association of heat-shock protein (Hsp70) genotype with flight metabolic rate and body temperature at takeoff. The dynamics of body temperature at flight and factors affecting it also differed significantly between female and male butterflies, indicating that thermal dynamics are governed by different mechanisms in the two sexes. This study contributes to knowledge about factors affecting intraspecific variation in dispersal-related thermal performance in butterflies and other insects. Such information is needed for predictive models of the evolution of dispersal in the face of habitat fragmentation and climate change.
Collapse
Affiliation(s)
- Anniina L K Mattila
- Metapopulation Research Centre Department of Biosciences University of Helsinki FI-00014 Helsinki Finland
| |
Collapse
|
24
|
Effects of Increased Flight on the Energetics and Life History of the Butterfly Speyeria mormonia. PLoS One 2015; 10:e0140104. [PMID: 26510164 PMCID: PMC4624906 DOI: 10.1371/journal.pone.0140104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/22/2015] [Indexed: 01/22/2023] Open
Abstract
Movement uses resources that may otherwise be allocated to somatic maintenance or reproduction. How does increased energy expenditure affect resource allocation? Using the butterfly Speyeria mormonia, we tested whether experimentally increased flight affects fecundity, lifespan or flight capacity. We measured body mass (storage), resting metabolic rate and lifespan (repair and maintenance), flight metabolic rate (flight capacity), egg number and composition (reproduction), and food intake across the adult lifespan. The flight treatment did not affect body mass or lifespan. Food intake increased sufficiently to offset the increased energy expenditure. Total egg number did not change, but flown females had higher early-life fecundity and higher egg dry mass than control females. Egg dry mass decreased with age in both treatments. Egg protein, triglyceride or glycogen content did not change with flight or age, but some components tracked egg dry mass. Flight elevated resting metabolic rate, indicating increased maintenance costs. Flight metabolism decreased with age, with a steeper slope for flown females. This may reflect accelerated metabolic senescence from detrimental effects of flight. These effects of a drawdown of nutrients via flight contrast with studies restricting adult nutrient input. There, fecundity was reduced, but flight capacity and lifespan were unchanged. The current study showed that when food resources were abundant, wing-monomorphic butterflies living in a continuous meadow landscape resisted flight-induced stress, exhibiting no evidence of a flight-fecundity or flight-longevity trade-off. Instead, flight changed the dynamics of energy use and reproduction as butterflies adopted a faster lifestyle in early life. High investment in early reproduction may have positive fitness effects in the wild, as long as food is available. Our results help to predict the effect of stressful conditions on the life history of insects living in a changing world.
Collapse
|
25
|
Kvist J, Mattila ALK, Somervuo P, Ahola V, Koskinen P, Paulin L, Salmela L, Fountain T, Rastas P, Ruokolainen A, Taipale M, Holm L, Auvinen P, Lehtonen R, Frilander MJ, Hanski I. Flight-induced changes in gene expression in the Glanville fritillary butterfly. Mol Ecol 2015; 24:4886-900. [DOI: 10.1111/mec.13359] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Jouni Kvist
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 9) Helsinki Finland
| | - Anniina L. K. Mattila
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Panu Somervuo
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 9) Helsinki Finland
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 4) Helsinki Finland
| | - Virpi Ahola
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Patrik Koskinen
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 9) Helsinki Finland
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 4) Helsinki Finland
| | - Lars Paulin
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 4) Helsinki Finland
| | - Leena Salmela
- Department of Computer Science and Helsinki Institute for Information Technology HIIT; University of Helsinki; P.O. Box 68 (Gustaf Hällströmin katu 2b) Helsinki Finland
| | - Toby Fountain
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Pasi Rastas
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Annukka Ruokolainen
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Minna Taipale
- Science for Life Laboratory; Department of Biosciences and Nutrition; Karolinska Institutet (Hälsovägen 7); SE-14157 Huddinge Sweden
| | - Liisa Holm
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 4) Helsinki Finland
| | - Petri Auvinen
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 4) Helsinki Finland
| | - Rainer Lehtonen
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Mikko J. Frilander
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 9) Helsinki Finland
| | - Ilkka Hanski
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| |
Collapse
|
26
|
|
27
|
Takemoto K, Kawakami Y. The proportion of genes in a functional category is linked to mass-specific metabolic rate and lifespan. Sci Rep 2015; 5:10008. [PMID: 25943793 PMCID: PMC4421859 DOI: 10.1038/srep10008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/26/2015] [Indexed: 11/08/2022] Open
Abstract
Metabolic rate and lifespan are important biological parameters that are studied in a wide range of research fields. They are known to correlate with body mass, but their association with gene (protein) functions is poorly understood. In this study, we collected data on the metabolic rate and lifespan of various organisms and investigated the relationship of these parameters with their genomes. We showed that the proportion of genes in a functional category, but not genome size, was correlated with mass-specific metabolic rate and maximal lifespan. In particular, the proportion of genes in oxic reactions (which occur in the presence of oxygen) was significantly associated with these two biological parameters. Additionally, we found that temperature, taxonomy, and mode-of-life traits had little effect on the observed associations. Our findings emphasize the importance of considering the biological functions of genes when investigating the relationships between genome, metabolic rate, and lifespan. Moreover, this provides further insights into these relationships, and may be useful for estimating metabolic rate and lifespan in individuals and the ecosystem using a combination of body mass measurements and genomic data.
Collapse
Affiliation(s)
- Kazuhiro Takemoto
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Yuko Kawakami
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| |
Collapse
|
28
|
Auer SK, Salin K, Rudolf AM, Anderson GJ, Metcalfe NB. The optimal combination of standard metabolic rate and aerobic scope for somatic growth depends on food availability. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12396] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sonya K. Auer
- Institute of Biodiversity Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Karine Salin
- Institute of Biodiversity Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Agata M. Rudolf
- Institute of Environmental Sciences Jagiellonian University Gronostajowa 7 Krakow 30‐387 Poland
| | - Graeme J. Anderson
- Institute of Biodiversity Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Neil B. Metcalfe
- Institute of Biodiversity Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| |
Collapse
|
29
|
Xu L, Snelling EP, Seymour RS. Burrowing energetics of the Giant Burrowing Cockroach Macropanesthia rhinoceros: an allometric study. JOURNAL OF INSECT PHYSIOLOGY 2014; 70:81-87. [PMID: 25257537 DOI: 10.1016/j.jinsphys.2014.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/10/2014] [Accepted: 09/15/2014] [Indexed: 06/03/2023]
Abstract
Burrowing is an important life strategy for many insects, yet the energetic cost of constructing burrows has never been studied in insects of different sizes. Open flow respirometry was used to determine the allometric scaling of standard metabolic rate (MRS) and burrowing metabolic rate (MRB) in the heaviest extant cockroach species, the Giant Burrowing Cockroach Macropanesthia rhinoceros, at different stages of development. At 10 °C, MRS (mW) scales with body mass (M; g) according to the allometric power equation, MRS=0.158M(0.74), at 20 °C the equation is MRS=0.470M(0.53), and at 30 °C the equation is MRS=1.22M(0.49) (overall Q10=2.23). MRS is much lower in M. rhinoceros compared to other insect species, which is consistent with several aspects of their life history, including flightlessness, extreme longevity (>5 years), burrowing, parental behaviour, and an energy-poor diet (dry eucalypt leaf litter). Energy expenditure during burrowing at 25 °C scales according to MRB=16.9M(0.44), and is approximately 17 times higher than resting rates measured at the same temperature, although the metabolic cost over a lifetime is probably low, because the animal does not burrow to find food. The net cost of transport by burrowing (Jm(-1)) scales according to NCOT=120M(0.49), and reflects the energetically demanding task of burrowing compared to other forms of locomotion. The net cost of excavating the soil (J cm(-3)) is statistically independent of body size.
Collapse
Affiliation(s)
- Liangwen Xu
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Edward P Snelling
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Roger S Seymour
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
30
|
Niitepõld K, Perez A, Boggs CL. Aging, life span, and energetics under adult dietary restriction in lepidoptera. Physiol Biochem Zool 2014; 87:684-94. [PMID: 25244380 DOI: 10.1086/677570] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Stressful conditions can affect resource allocation among different life-history traits. The effect of dietary restriction (DR) on longevity and reproduction has been studied in many species, but we know little about its effects on energetics, especially in flying animals that have high energy demand. We assessed the effects of DR on metabolic rate throughout the entire adult life span in two butterfly species, Colias eurytheme and Speyeria mormonia. We cut the food intake of adult females in half and measured resting metabolic rate (RMR) and flight metabolic rate (FMR) together with body mass repeatedly throughout life. In both species, DR reduced body mass, but mass-corrected FMR was not affected, indicating that flight capacity was retained. DR lowered RMR and reduced fecundity but had no effect on life span. FMR declined with age, but the rate of senescence was not affected by DR. In contrast, aging had a strong negative effect on RMR only in control females, whereas food-restricted females had more stable RMR throughout their lives. The results suggest that flight capacity is conserved during nutritional stress but that investment in flight and survival may negatively affect other important physiological processes when resources are limited.
Collapse
Affiliation(s)
- Kristjan Niitepõld
- Department of Biology, Stanford University, Stanford, California 94305; 2Rocky Mountain Biological Laboratory, Crested Butte, Colorado 81224
| | | | | |
Collapse
|
31
|
Mattila ALK, Hanski I. Heritability of flight and resting metabolic rates in the Glanville fritillary butterfly. J Evol Biol 2014; 27:1733-43. [PMID: 24909057 DOI: 10.1111/jeb.12426] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/01/2014] [Accepted: 05/06/2014] [Indexed: 11/29/2022]
Abstract
Dispersal capacity is a key life-history trait especially in species inhabiting fragmented landscapes. Evolutionary models predict that, given sufficient heritable variation, dispersal rate responds to natural selection imposed by habitat loss and fragmentation. Here, we estimate phenotypic variance components and heritability of flight and resting metabolic rates (RMRs) in an ecological model species, the Glanville fritillary butterfly, in which flight metabolic rate (FMR) is known to correlate strongly with dispersal rate. We modelled a two-generation pedigree with the animal model to distinguish additive genetic variance from maternal and common environmental effects. The results show that FMR is significantly heritable, with additive genetic variance accounting for about 40% of total phenotypic variance; thus, FMR has the potential to respond to selection on dispersal capacity. Maternal influences on flight metabolism were negligible. Heritability of flight metabolism was context dependent, as in stressful thermal conditions, environmentally induced variation dominated over additive genetic effects. There was no heritability in RMR, which was instead strongly influenced by maternal effects. This study contributes to a mechanistic understanding of the evolution of dispersal-related traits, a pressing question in view of the challenges posed to many species by changing climate and fragmentation of natural habitats.
Collapse
Affiliation(s)
- A L K Mattila
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
32
|
Glazier DS. Is metabolic rate a universal ‘pacemaker’ for biological processes? Biol Rev Camb Philos Soc 2014; 90:377-407. [DOI: 10.1111/brv.12115] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 12/11/2022]
|
33
|
Svendsen JC, Genz J, Anderson WG, Stol JA, Watkinson DA, Enders EC. Evidence of circadian rhythm, oxygen regulation capacity, metabolic repeatability and positive correlations between forced and spontaneous maximal metabolic rates in lake sturgeon Acipenser fulvescens. PLoS One 2014; 9:e94693. [PMID: 24718688 PMCID: PMC3981817 DOI: 10.1371/journal.pone.0094693] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/17/2014] [Indexed: 11/25/2022] Open
Abstract
Animal metabolic rate is variable and may be affected by endogenous and exogenous factors, but such relationships remain poorly understood in many primitive fishes, including members of the family Acipenseridae (sturgeons). Using juvenile lake sturgeon (Acipenser fulvescens), the objective of this study was to test four hypotheses: 1) A. fulvescens exhibits a circadian rhythm influencing metabolic rate and behaviour; 2) A. fulvescens has the capacity to regulate metabolic rate when exposed to environmental hypoxia; 3) measurements of forced maximum metabolic rate (MMRF) are repeatable in individual fish; and 4) MMRF correlates positively with spontaneous maximum metabolic rate (MMRS). Metabolic rates were measured using intermittent flow respirometry, and a standard chase protocol was employed to elicit MMRF. Trials lasting 24 h were used to measure standard metabolic rate (SMR) and MMRS. Repeatability and correlations between MMRF and MMRS were analyzed using residual body mass corrected values. Results revealed that A. fulvescens exhibit a circadian rhythm in metabolic rate, with metabolism peaking at dawn. SMR was unaffected by hypoxia (30% air saturation (O2sat)), demonstrating oxygen regulation. In contrast, MMRF was affected by hypoxia and decreased across the range from 100% O2sat to 70% O2sat. MMRF was repeatable in individual fish, and MMRF correlated positively with MMRS, but the relationships between MMRF and MMRS were only revealed in fish exposed to hypoxia or 24 h constant light (i.e. environmental stressor). Our study provides evidence that the physiology of A. fulvescens is influenced by a circadian rhythm and suggests that A. fulvescens is an oxygen regulator, like most teleost fish. Finally, metabolic repeatability and positive correlations between MMRF and MMRS support the conjecture that MMRF represents a measure of organism performance that could be a target of natural selection.
Collapse
Affiliation(s)
- Jon C. Svendsen
- Environmental Science, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- * E-mail:
| | - Janet Genz
- Biology Department, University of West Georgia, Carrollton, Georgia, United States of America
| | - W. Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jennifer A. Stol
- Environmental Science, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| | | | - Eva C. Enders
- Environmental Science, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
34
|
Straka J, Černá K, Macháčková L, Zemenová M, Keil P. Life span in the wild: the role of activity and climate in natural populations of bees. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jakub Straka
- Faculty of Science; Department of Zoology; Charles University in Prague; Praha Czech Republic
| | - Kateřina Černá
- Faculty of Science; Department of Zoology; Charles University in Prague; Praha Czech Republic
| | - Lenka Macháčková
- Faculty of Science; Department of Zoology; Charles University in Prague; Praha Czech Republic
| | - Monika Zemenová
- Faculty of Electrical Engineering; Department of Cybernetics; Czech Technical University in Prague; Praha Czech Republic
| | - Petr Keil
- Department of Ecology and Evolutionary Biology; Yale University; New Haven CT USA
- Center for Theoretical Study; Charles University in Prague; Praha Czech Republic
| |
Collapse
|
35
|
Speakman JR, Garratt M. Oxidative stress as a cost of reproduction: Beyond the simplistic trade-off model. Bioessays 2013; 36:93-106. [DOI: 10.1002/bies.201300108] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- John R. Speakman
- Key State Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing China
- Institute of Biological and Environmental sciences; University of Aberdeen; Aberdeen Scotland UK
| | - Michael Garratt
- Evolution and Ecology Research Group and School of Biological, Earth and Environmental Sciences; The University of New South Wales; Sydney NSW Australia
| |
Collapse
|
36
|
Devries ZC, Kells SA, Appel AG. Standard metabolic rate of the bed bug, Cimex lectularius: effects of temperature, mass, and life stage. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:1133-1139. [PMID: 24013075 DOI: 10.1016/j.jinsphys.2013.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 08/25/2013] [Accepted: 08/26/2013] [Indexed: 06/02/2023]
Abstract
Metabolic rates provide important information about the biology of organisms. For ectothermic species such as insects, factors such as temperature and mass heavily influence metabolism, but these effects differ considerably between species. In this study we examined the standard metabolic rate of the bed bug, Cimex lectularius L. We used closed system respirometry and measured both O2 consumption and CO2 production across a range of temperatures (10, 20, 25, 30, 35°C) and life stages, while also accounting for activity. Temperature had a stronger effect on the mass specific .VO2 (mlg(-1)h(-1)) of mated males (Q10=3.29), mated females (Q10=3.19), unmated males (Q10=3.09), and nymphs that hatched (first instars, Q10=3.05) than on unmated females (Q10=2.77) and nymphs that molted (second through fifth instars, Q10=2.78). First instars had significantly lower respiratory quotients (RQ) than all other life stages. RQ of all stages was not affected by temperature. .VO2 (mlh(-1)) scaled more with mass than values previously reported for other arthropods or that would be predicted by the 3/4-power law. The results are used to understand the biology and ecology of the bed bug.
Collapse
Affiliation(s)
- Zachary C Devries
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849, USA.
| | | | | |
Collapse
|
37
|
Butterflies that live fast, die old. Nature 2013. [DOI: 10.1038/496141a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Darveau CA, Billardon F, Bélanger K. Intraspecific variation in flight metabolic rate in the bumblebee Bombus impatiens: repeatability and functional determinants in workers and drones. J Exp Biol 2013; 217:536-44. [DOI: 10.1242/jeb.091892] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
The evolution of flight energetics requires that phenotypes be variable, repeatable and heritable. We studied intraspecific variation in flight energetics in order to assess the repeatability of flight metabolic rate and wingbeat frequency, as well as the functional basis of phenotypic variation in workers and drones of the bumblebee species Bombus impatiens. We showed that flight metabolic rate and wingbeat frequency were highly repeatable in workers, even when controlling for body mass variation using residual analysis. We did not detect significant repeatability in drones, but a smaller range of variation might have prevented us from finding significant values in our sample. Based on our results and previous findings, we associated the high repeatability of flight phenotypes in workers to the functional links between body mass, thorax mass, wing size, wingbeat frequency and metabolic rate. Moreover, differences between workers and drones were as predicted from these functional associations, where drones had larger wings for their size, lower wingbeat frequency and lower flight metabolic rate. We also investigated thoracic muscle metabolic phenotypes by measuring the activity of carbohydrate metabolism enzymes, and we found positive correlations between mass-independent metabolic rate and the activity of all enzymes measured, but in workers only. When comparing workers and drones that differ in flight metabolic rate, only the activity of the enzymes hexokinase and trehalase showed the predicted differences. Overall, our study indicates that there should be correlated evolution among physiological phenotypes at multiple levels of organization and morphological traits associated with flight.
Collapse
|