1
|
Bourgoin C, Barbraud C, Getti T, Delord K, Angelier F, Bodin A, Blanchard P. Brooding duration does not depend on cat predation risk but is related to weather and phenology in the wandering albatross ( Diomedea exulans). Ecol Evol 2024; 14:e70174. [PMID: 39219574 PMCID: PMC11362222 DOI: 10.1002/ece3.70174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Parental investment increases offspring fitness at the expense of the parent's ability to invest in other offspring. In many animal species, parents guard their offspring after birth. The parental decision over the duration of this period is expected to be triggered by the associated fitness costs and benefits for both offspring and parents. Here, we evaluated the relevance of several intrinsic and environmental variables in determining brooding period duration in the wandering albatross (Diomedea exulans) and questioned whether brooding duration was related to chick subsequent survival and biometry prior to fledging. We used a semi-experimental design to increase the variance in cat abundance, a recent predator of albatross chicks, and predicted that an increased predation risk at the nest scale would trigger longer chick brooding and thus, protection. In addition, we questioned the influence of weather conditions, hatching date, and characteristics of chicks (sex and biometry) and parents (sex and age) on brooding duration. We report no effect of predation risk or parental characteristics on brooding duration. However, the probability for a parent to end brooding decreased with forthcoming unfavorable weather. Our data also revealed reduced brooding duration for late-hatched chicks and a positive association between brooding duration and chick structural size, and between the frequency of shifts between parents and chick structural size. Finally, brooding duration was not associated with chick survival or with chick biometry prior to fledging. We discuss these results in light of pre-existing hypotheses on fitness costs and benefits associated with brooding duration for chicks and parents.
Collapse
Affiliation(s)
- Charlotte Bourgoin
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE)Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3)ToulouseFrance
| | - Christophe Barbraud
- Centre d'Études Biologiques de ChizéCNRS – La Rochelle Université, UMR 7372Villiers‐en‐BoisFrance
| | - Tobie Getti
- Réserve Naturelle Nationale des Terres Australes FrançaisesTAAFSaint‐PierreFrance
| | - Karine Delord
- Centre d'Études Biologiques de ChizéCNRS – La Rochelle Université, UMR 7372Villiers‐en‐BoisFrance
| | - Frédéric Angelier
- Centre d'Études Biologiques de ChizéCNRS – La Rochelle Université, UMR 7372Villiers‐en‐BoisFrance
| | - Aymeric Bodin
- Réserve Naturelle Nationale des Terres Australes FrançaisesTAAFSaint‐PierreFrance
| | - Pierrick Blanchard
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE)Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3)ToulouseFrance
- Centre d'Études Biologiques de ChizéCNRS – La Rochelle Université, UMR 7372Villiers‐en‐BoisFrance
| |
Collapse
|
2
|
Blais BR, Shaw CJ, Brocka CW, Johnson SL, Lauger KK. Anthropogenic, environmental and temporal associations with vertebrate road mortality in a wildland-urban interface of a biodiverse desert ecoregion. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240439. [PMID: 39086836 PMCID: PMC11288681 DOI: 10.1098/rsos.240439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Road mortality adversely affects wildlife populations. As urbanization and infrastructure densities expand, transportation and wildlife management aim to mitigate wildlife-vehicle conflicts while conserving biodiversity. Roadways in aridland ecosystems can invariably and adversely impact wildlife differently from temperate and other biomes, yet these rapidly urbanizing regions are understudied as are urban-rural gradients. We conducted road-cruise surveys (n = 204; 2018-2023) to assess anthropogenic, environmental, and temporal factors associated with vertebrate roadkill across the wildland-urban interface of Arizona's biodiverse Sonoran Desert ecoregion-already subjected to increased human development and climate change. Of n = 2019 vertebrates observed, 28.5% were roadkill. Increasing urbanization levels were associated with reduced vertebrate abundance on roads and increased road-killed endothermic vertebrates. Traffic volume was strongly associated with reduced vertebrate abundance and increased roadkill; additive effects on roadkill began at approximately 20 vehicles. Daily low temperature and/or relative humidity were also associated with roadkill across vertebrate groups. We provide empirical evidence to understand wildlife-roadkill associations across expanding wildland-urban interfaces to inform effective roadkill mitigation and wildlife conservation management strategies in biodiverse aridland regions. We recommend that managers mitigate or avoid development in rural areas that possess high biodiversity, valuable waterways or migration corridors, and populations of vulnerable species.
Collapse
Affiliation(s)
- Brian R. Blais
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
- Southwest Zoologists’ League, Tucson, AZ, USA
| | - Corey J. Shaw
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Colin W. Brocka
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Samantha L. Johnson
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
3
|
Gobbens E, Beardsworth CE, Dekinga A, ten Horn J, Toledo S, Nathan R, Bijleveld AI. Environmental factors influencing red knot ( Calidris canutus islandica) departure times of relocation flights within the non-breeding period. Ecol Evol 2024; 14:e10954. [PMID: 38450319 PMCID: PMC10915501 DOI: 10.1002/ece3.10954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 03/08/2024] Open
Abstract
Deciding when to depart on long-distance, sometimes global, movements can be especially important for flying species. Adverse weather conditions can affect energetic flight costs and navigational ability. While departure timings and conditions have been well-studied for migratory flights to and from the breeding range, few studies have focussed on flights within the non-breeding season. Yet in some cases, overwintering ranges can be large enough that ecological barriers, and a lack of resting sites en route, may resist movement, especially in unfavorable environmental conditions. Understanding the conditions that will enable or prohibit flights within an overwintering range is particularly relevant in light of climate change, whereby increases in extreme weather events may reduce the connectivity of sites. We tracked 495 (n = 251 in 2019; n = 244 in 2020) overwintering red knots (Calidris canutus islandica) in the Dutch Wadden Sea and investigated how many departed towards the UK (on westward relocation flights), which requires flying over the North Sea. For those that departed, we used a resource selection model to determine the effect of environmental conditions on the timing of relocation flights. Specifically, we investigated the effects of wind, rain, atmospheric pressure, cloud cover, and migratory timing relative to sunset and tidal cycle, which have all been shown to be crucial to migratory departure conditions. Approximately 37% (2019) and 36% (2020) of tagged red knots departed on westward relocation flights, indicating differences between individuals' space use within the overwintering range. Red knots selected for departures between 1 and 2.5 h after sunset, approximately 4 h before high tide, with tailwinds and little cloud cover. However, rainfall and changes in atmospheric pressure appear unimportant. Our study reveals environmental conditions that are important for relocation flights across an ecological barrier, indicating potential consequences of climate change on connectivity.
Collapse
Affiliation(s)
- Evy Gobbens
- Department of Coastal SystemsNIOZ Royal Netherlands Institute for Sea ResearchDen BurgTexelThe Netherlands
| | - Christine E. Beardsworth
- Department of Coastal SystemsNIOZ Royal Netherlands Institute for Sea ResearchDen BurgTexelThe Netherlands
- School of Biological and Environmental SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Anne Dekinga
- Department of Coastal SystemsNIOZ Royal Netherlands Institute for Sea ResearchDen BurgTexelThe Netherlands
| | - Job ten Horn
- Department of Coastal SystemsNIOZ Royal Netherlands Institute for Sea ResearchDen BurgTexelThe Netherlands
| | - Sivan Toledo
- Blavatnik School of Computer ScienceTel‐Aviv UniversityTel AvivIsrael
| | - Ran Nathan
- Movement Ecology Laboratory, The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Allert I. Bijleveld
- Department of Coastal SystemsNIOZ Royal Netherlands Institute for Sea ResearchDen BurgTexelThe Netherlands
| |
Collapse
|
4
|
Azevedo KEX, Magalhães DM, de Andrade Moral R, Bento JMS. Weathering the hunt: The role of barometric pressure in predator insects' foraging behaviour. Ecol Evol 2023; 13:e10416. [PMID: 37575593 PMCID: PMC10412439 DOI: 10.1002/ece3.10416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023] Open
Abstract
Abiotic factors strongly influence ecological interactions and the spatial distribution of organisms. Despite the essential role of barometric pressure, its influence on insect behaviour remains poorly understood, particularly in predators. The effect of barometric pressure variation can significantly impact biological control programs involving entomophagous insects, as they must efficiently allocate time and energy to search for prey in challenging environments. We investigated how predatory insects from different taxonomic groups (Coleoptera, Dermaptera and Neuroptera) adapt their foraging behaviour in response to variations in barometric pressure (low, medium and high). We also examined the response of different life stages to changes in pressure regimes during foraging activities. Our results showed that the searching time of Doru luteipes (Dermaptera: Forficulidae) was faster in a favourable high-pressure regime, whereas Chrysoperla externa (Neuroptera: Chrysopidae) and Eriopis connexa (Coleoptera: Coccinellidae) had similar searching times under varying pressure regimes. Although no differences in prey feeding time were observed among the studied species, the consumption rate was influenced by low barometric pressure leading to a decrease in the number of preyed eggs. Moreover, we provide novel insights into how hemimetabolous (D. luteipes) and holometabolous (E. connexa) species at different life stages respond to barometric pressure. Doru luteipes nymphs and adults had similar consumption rates across all pressure regimes tested, whereas E. connexa larvae consumed fewer eggs under low barometric pressure, but adults were unaffected. This highlights the importance of investigating how abiotic factors affect insects foraging efficiency and predator-prey interactions. Such studies are especially relevant in the current context of climate change, as even subtle changes in abiotic factors can have strong effects on insect behaviour. Barometric pressure is a key meteorological variable that serve as a warning signal for insects to seek shelter and avoid exposure to weather events that could potentially increase their mortality. Understanding the effects of barometric pressure on predatory insects' behaviour can help us develop more effective pest management strategies and promote the resilience of agroecosystems. We provide new insights into the complex relationship between barometric pressure and predator-prey interactions.
Collapse
Affiliation(s)
- Kamila E. X. Azevedo
- Department of Entomology and Acarology, “Luiz de Queiroz” College of AgricultureUniversity of São PauloPiracicabaBrazil
| | - Diego M. Magalhães
- Department of Entomology and Acarology, “Luiz de Queiroz” College of AgricultureUniversity of São PauloPiracicabaBrazil
| | | | - José Maurício S. Bento
- Department of Entomology and Acarology, “Luiz de Queiroz” College of AgricultureUniversity of São PauloPiracicabaBrazil
| |
Collapse
|
5
|
Wayman JP, Atkinson G, Jahangir M, White D, Matthews TJ, Antoniou M, Reynolds SJ, Sadler JP. L-band radar quantifies major disturbance of birds by fireworks in an urban area. Sci Rep 2023; 13:12085. [PMID: 37495643 PMCID: PMC10372142 DOI: 10.1038/s41598-023-39223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023] Open
Abstract
Fireworks and other pyrotechnics are acknowledged as sources of disturbance to wildlife, with evidence that many species react adversely to their sight and sound at discharge. However, how firework releases impact wildlife within a city landscape is poorly understood. Here, we explore the effect of fireworks on urban birds using an L-band staring radar (90-degree sector out to a 5 km range) to capture bird activity derived from flight tracks (i.e. 3D visualisation of individual flying birds built from radar detections) within the city of Birmingham, UK. Comparing the tracks between baseline periods with no fireworks and periods where fireworks are commonly discharged using a null model indicated that birds flew at higher elevations during firework periods (standardised effect sizes of 17.11, 26.54 and 5.83, for Diwali, Bonfire Night, and New Year's Eve, respectively). Birds also flew in more significant numbers (standardised effect sizes of 23.41, 7.98 and 7.19 for Diwali, Bonfire Night, and New Year's Eve, respectively). Therefore, bird activity was elevated during firework events at a time of night when many would otherwise be roosting. Such disturbance may have implications for avian biology since large public firework events occur at colder times of the year in the UK when birds have elevated thermoregulatory costs.
Collapse
Affiliation(s)
- Joseph P Wayman
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, Edgbaston, UK.
| | - George Atkinson
- Microwave Integrated Systems Laboratory, School of Engineering, University of Birmingham, Birmingham, Edgbaston, UK
| | - Mohammed Jahangir
- Microwave Integrated Systems Laboratory, School of Engineering, University of Birmingham, Birmingham, Edgbaston, UK
| | - Daniel White
- Microwave Integrated Systems Laboratory, School of Engineering, University of Birmingham, Birmingham, Edgbaston, UK
| | - Thomas J Matthews
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, Edgbaston, UK
- CE3C - Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group/CHANGE - Global Change and Sustainability Institute and Universidade dos Açores - Faculty of Agricultural Sciences and Environment, PT-9700042, Angra do Heroísmo, Açores, Portugal
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Michail Antoniou
- Microwave Integrated Systems Laboratory, School of Engineering, University of Birmingham, Birmingham, Edgbaston, UK
| | - S James Reynolds
- Centre for Ornithology, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
- The Army Ornithological Society (AOS), c/o Prince Consort Library, Knollys Road, Aldershot, Hampshire, UK
| | - Jon P Sadler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, Edgbaston, UK
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
- Centre for Ornithology, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
6
|
Cooper NW, Dossman BC, Berrigan LE, Brown JM, Cormier DA, Bégin-Marchand C, Rodewald AD, Taylor PD, Tremblay JA, Marra PP. Atmospheric pressure predicts probability of departure for migratory songbirds. MOVEMENT ECOLOGY 2023; 11:23. [PMID: 37122025 PMCID: PMC10150475 DOI: 10.1186/s40462-022-00356-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/22/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Weather can have both delayed and immediate impacts on animal populations, and species have evolved behavioral adaptions to respond to weather conditions. Weather has long been hypothesized to affect the timing and intensity of avian migration, and radar studies have demonstrated strong correlations between weather and broad-scale migration patterns. How weather affects individual decisions about the initiation of migratory flights, particularly at the beginning of migration, remains uncertain. METHODS Here, we combine automated radio telemetry data from four species of songbirds collected at five breeding and wintering sites in North America with hourly weather data from a global weather model. We use these data to determine how wind profit, atmospheric pressure, precipitation, and cloud cover affect probability of departure from breeding and wintering sites. RESULTS We found that the probability of departure was related to changes in atmospheric pressure, almost completely regardless of species, season, or location. Individuals were more likely to depart on nights when atmospheric pressure had been rising over the past 24 h, which is predictive of fair weather over the next several days. By contrast, wind profit, precipitation, and cloud cover were each only informative predictors of departure probability in a single species. CONCLUSIONS Our results suggest that individual birds actively use weather information to inform decision-making regarding the initiation of departure from the breeding and wintering grounds. We propose that birds likely choose which date to depart on migration in a hierarchical fashion with weather not influencing decision-making until after the departure window has already been narrowed down by other ultimate and proximate factors.
Collapse
Affiliation(s)
- Nathan W Cooper
- Migratory Bird Center, Smithsonian's National Zoo and Conservation Biology Institute, MRC 5503, 3001 Connecticut Ave. NW, Washington, DC, 20013, USA.
| | - Bryant C Dossman
- Department of Biology and McCourt School of Public Policy, Georgetown University, 37th and O Streets NW, Washington, DC, 20057, USA
- Cornell Lab of Ornithology and Department of Natural Resources and the Environment, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY, 14850, USA
| | - Lucas E Berrigan
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
- Motus Wildlife Tracking System, Birds Canada, Port Rowan, ON, N0E 1M0, Canada
| | - J Morgan Brown
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
- Wildlife Conservation Society Canada, 169 Titanium Way, Whitehorse, YT, Y1A 0E9, Canada
| | - Dominic A Cormier
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
| | - Camille Bégin-Marchand
- Wildlife Research Division, Environment and Climate Change Canada, 1550 Av. D'Estimauville, Québec, QC, G1J 0C3, Canada
| | - Amanda D Rodewald
- Cornell Lab of Ornithology and Department of Natural Resources and the Environment, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY, 14850, USA
| | - Philip D Taylor
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
| | - Junior A Tremblay
- Wildlife Research Division, Environment and Climate Change Canada, 1550 Av. D'Estimauville, Québec, QC, G1J 0C3, Canada
| | - Peter P Marra
- Department of Biology and McCourt School of Public Policy, Georgetown University, 37th and O Streets NW, Washington, DC, 20057, USA
| |
Collapse
|
7
|
Navigating Storms: Examining Vultures’ Behavior in Response to Extreme Weather Events. DIVERSITY 2023. [DOI: 10.3390/d15030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Extreme weather events such as hurricanes and tornadoes have been found to change the spatial and temporal abundance of raptors by decreasing survival and forcing the emigration of individuals, or by increasing habitat heterogeneity and facilitating recolonization of disturbed areas. Nonetheless, little is known about how extreme weather events could affect raptors’ movements and their space use in areas disturbed by large-scale weather events. We studied how extreme weather affected the movements of black and turkey vultures (Coragyps atratus and Cathartes aura, respectively) in Mississippi, USA, facing Hurricane Zeta in November 2020, winter storm Viola in February 2021, and tornados MS-43 and MS-44 in May 2021. We GPS-tracked 28 vultures in the paths of these events. We compared movement rates, net-squared displacements, and use of forest cover, before, during, and after the events. Since storm avoidance behavior has been observed in other birds, we expected that vultures would shift their movements out of the path of these events before storms hit. Further, we forecasted that vultures would make greater use of forested areas as protection against harsh conditions such as strong winds and heavy rain. Vultures responded differently to each weather event; they shifted their movements out of the predicted path of the hurricane and tornadoes but not the snowstorm. These findings reveal that both species use avoidance behavior and adjust their navigation and hazard detection accordingly. Avoidance behavior was more pronounced in turkey vultures than in black vultures. In general, vultures did not make greater use of forest areas as we expected, but turkey vultures did select forest areas during the snowstorm. We propose that olfaction and audition may be key in vultures’ response to extreme weather events.
Collapse
|
8
|
Andrews CP. On the use of body mass measures in severity assessment in laboratory passerine birds. Anim Welf 2022. [DOI: 10.7120/09627286.31.1.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Criteria for assessing the severity of scientific procedures in laboratory rodents include the loss of body mass. However, guidance is limited for passerine birds and application of criteria developed for mammals risks poor welfare decisions. Here, I ask whether, and how, body mass
criteria could be incorporated into laboratory welfare assessment of passerines. Passerine birds strategically adjust their body mass to minimise combined mortality risk from starvation and predation. A systematic literature review found that strategic mass changes can be sizeable (sometimes
> 10%) even over short timescales. Many aspects of a bird's current or past environment, including husbandry and experimental procedures, may alter perceived starvation or predation risks and thus drive strategic mass change via evolved mechanisms. Therefore, body mass criteria used for
rodents may be too stringent for passerines, potentially leading to over-estimated severity. Strategic mass changes might obscure those stemming from experimental interventions yet could also offer insights into whether birds perceive an intervention or altered husbandry as a threat. Mass
criteria for severity assessment should be species- and context-specific in order to balance needs for refinement and reduction. To guide the development of appropriate criteria, a future research priority is for greater data collection and sharing based on standardised routine monitoring
of mass variation under a representative range of husbandry conditions and procedures.
Collapse
Affiliation(s)
- CP Andrews
- University of Stirling, Division of Psychology, Faculty of Natural Sciences, Stirling FK9 4LA, UK
| |
Collapse
|
9
|
Automated Barometric Chamber for Entomology Experiments: Arthropods’ Behavior and Insect-Plant Interactions. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Insect behaviors, such as flying, oviposition, parasitism, mating/calling, response to semiochemicals, and others, might be influenced by barometric pressure fluctuations. Abiotic factors controlled in the laboratory facilitate the observation of particularities related to development, behavior, and/or habits of arthropods and plants and their interactions. This study aimed to design an automated barometric chamber for research on arthropod behaviors and insect–plant interactions in the laboratory. The barometric chamber is a transparent box equipped with a single-board computer. An air pump and two proportional solenoid valves were used as actuators to control the air flow, while barometric pressure, air humidity, and temperature sensors were used to monitor the conditions within the chamber. A graphical user interface to operate the barometric chamber was developed to run in a web browser. The barometric chamber was designed to allow the barometric pressure to be changed by up to 15 hPa with respect to the local barometric pressure. In addition, the control system makes it possible to set the rise/fall time (ramp) corresponding to the duration in which a change of pressure will be conditioned. Short- and long-term evaluations demonstrated that the control system can assure pressure stability of ±0.1 hPa with respect to the setpoint value. For demonstration purposes, two experiments were carried out to evaluate the influence of barometric pressure on the feeding activity of Euschistus heros and Diabrotica speciosa. For E. heros, the number of stylet sheath was significantly increased under high pressure conditions compared to the low pressure. However, for D. speciosa, there was no statistical difference in leaf consumption at the evaluated testing conditions.
Collapse
|
10
|
National scale habitat suitability analysis to evaluate and improve conservation areas for a mature forest specialist species. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Wightman PH, Martin JA, Kilgo JC, Rushton E, Collier BA, Chamberlain MJ. Influence of weather on gobbling activity of male wild turkeys. Ecol Evol 2022; 12:e9018. [PMID: 35784066 PMCID: PMC9204850 DOI: 10.1002/ece3.9018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Gobbling activity of Eastern wild turkeys (Meleagris gallopavo silvestris; hereafter, turkeys) has been widely studied, focusing on drivers of daily variation. Weather variables are widely believed to influence gobbling activity, but results across studies are contradictory and often equivocal, leading to uncertainty in the relative contribution of weather variables to daily fluctuations in gobbling activity. Previous works relied on road-based auditory surveys to collect gobbling data, which limits data consistency, duration, and quantity due to logistical difficulties associated with human observers and restricted sampling frames. Development of new methods using autonomous recording units (ARUs) allows researchers to collect continuous data in more locations for longer periods of time, providing the opportunity to delve into factors influencing daily gobbling activity. We used ARUs from 1 March to 31 May to detail gobbling activity across multiple study sites in the southeastern United States during 2014-2018. We used state-space modeling to investigate the effects of weather variables on daily gobbling activity. Our findings suggest rainfall, greater wind speeds, and greater temperatures negatively affected gobbling activity, whereas increasing barometric pressure positively affected gobbling activity. Therefore, when using daily gobbling activity to make inferences relative to gobbling chronology, reproductive phenology, and hunting season frameworks, stakeholders should recognize and consider the potential influences of extended periods of inclement weather.
Collapse
Affiliation(s)
- Patrick H. Wightman
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGeorgiaUSA
| | - James A. Martin
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGeorgiaUSA
| | - John C. Kilgo
- Southern Research StationUSDA Forest ServiceNew EllentonSouth CarolinaUSA
| | - Emily Rushton
- Georgia Department of Natural Resources – Wildlife Resources DivisionSocial CircleGeorgiaUSA
| | - Bret A. Collier
- School of Renewable Natural ResourcesLouisiana State University Agricultural CenterBaton RougeLouisianaUSA
| | | |
Collapse
|
12
|
Chu JJ, Gillis DP, Riskin SH. Community science reveals links between migration arrival timing advance, migration distance, and wing shape. J Anim Ecol 2022; 91:1651-1665. [PMID: 35668666 DOI: 10.1111/1365-2656.13755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/11/2022] [Indexed: 11/29/2022]
Abstract
Substantial global data show that many taxa are shifting their phenologies in response to climate change. For birds, migration arrival dates in breeding regions have been shifting earlier, and there is evidence that both evolutionary adaptation and behavioural flexibility influence these shifts. As more efficient flyers may be able to demonstrate more flexibility to respond to changing conditions during migratory flight, we hypothesize that differences among passerine species in flight efficiency, as reflected by morphology, may be associated with the magnitude of shifts in arrival date in response to climate warming. We applied a logistic model to eighteen years of eBird data to estimate mean arrival date for 44 common passerines migrating to northeast North America. We then used linear mixed-effects models to estimate changes in mean arrival date and compared these changes to morphological proxies for flight efficiency and migratory distance using phylogenetic generalized least squares models. On average, passerine species shifted their arrival dates 0.120 days earlier each year, with 27 of the 44 species shifting to significantly earlier arrival times, and two shifting to significantly later ones. Of the 15 species with non-significant shifts, 13 trended toward earlier arrivals. Longer migration distances and higher wing aspect ratios were associated with greater shifts towards earlier arrivals. Migration distance and aspect ratio were also significantly correlated to each other. This suggests that changes in arrival date are affected by factors pertaining to migratory flight over long distances namely, flight efficiency and migration distance. These traits may be able predict the magnitude of arrival date shift, and by extension identify species that are most at risk to climate change due to inflexible arrival timing.
Collapse
Affiliation(s)
- J J Chu
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada
| | - D P Gillis
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada
| | - S H Riskin
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Moscicki DJ, Gerrits AP, Cantrell JR, Hardin JB, Chamberlain MJ, Collier BA. Hurricane effects on wild turkey survival, daily movements, and roost fidelity. WILDLIFE SOC B 2022. [DOI: 10.1002/wsb.1272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- David J. Moscicki
- School of Renewable Natural Resources Louisiana State University Baton Rouge 70803 LA USA
| | - Alaina P. Gerrits
- School of Renewable Natural Resources Louisiana State University Baton Rouge 70803 LA USA
| | - Jay R. Cantrell
- South Carolina Department of Natural Resources Columbia 29202 SC USA
| | | | - Michael J. Chamberlain
- Warnell School of Forestry and Natural Resources University of Georgia Athens 30602 GA USA
| | - Bret A. Collier
- School of Renewable Natural Resources Louisiana State University Baton Rouge 70803 LA USA
| |
Collapse
|
14
|
Word KR, Austin SH, Wingfield JC. Allostatic Load in Gambel’s White Crowned Sparrow, Zonotrichia leucophrys gambelii: Relationships With Glucocorticoids. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.855152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Regulation of energetic expenditure in a changing environment, considered here as allostatic load, is central to organism-environment interactions. The value of responses that modify behavior or physiology in coping strategies is often measured in terms of energetic benefits. In this study, the total energetic cost incurred by Gambel’s white-crowned sparrows, Zonotrichia leucophrys gambelii, was assessed using heart-rate transmitters. The use of heart rate was validated as a proxy for metabolic rate via flow-through respirometry. Applying heart rate as an indicator of allostatic load, we confirmed that ambient temperature under wintering conditions influences allostatic load. However, baseline corticosterone, proposed to mediate physiological responses to variation in allostatic load, does not appear to vary with heart rate or temperature in captivity, or with temperature under ambient conditions in the field. The relationship between allostatic load and plasma corticosterone levels was also investigated by manipulating feeding effort for captive Gambel’s white-crowned sparrows using a sand-excavation challenge that approximated a type of foraging work that these birds normally perform in the wild. This experiment was designed to test the hypothesis that experimentally increased allostatic load induces elevation in baseline corticosteroids. We did not find support for this hypothesis. We suggest that the adrenocortical response to increased allostatic load may be limited to overload or environmental conditions that meaningfully threaten energy imbalance, indicating new targets for further research.
Collapse
|
15
|
Ariano‐Sánchez D, Mortensen RM, Wilson RP, Bjureke P, Reinhardt S, Rosell F. Temperature and barometric pressure affect the activity intensity and movement of an endangered thermoconforming lizard. Ecosphere 2022. [DOI: 10.1002/ecs2.3990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Daniel Ariano‐Sánchez
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences University of South‐Eastern Norway Bø Telemark Norway
- Centro de Estudios Ambientales y Biodiversidad Universidad del Valle de Guatemala Guatemala City Guatemala
| | - Rasmus M. Mortensen
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences University of South‐Eastern Norway Bø Telemark Norway
| | - Rory P. Wilson
- Biosciences, College of Science Swansea University Swansea Wales UK
| | - Peder Bjureke
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences University of South‐Eastern Norway Bø Telemark Norway
| | - Stefanie Reinhardt
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences University of South‐Eastern Norway Bø Telemark Norway
| | - Frank Rosell
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences University of South‐Eastern Norway Bø Telemark Norway
| |
Collapse
|
16
|
Imoro ZA, Imoro AZ, Duwiejuah AB, Abukari A. Harnessing Indigenous Technologies for Sustainable Management of Land, Water, and Food Resources Amidst Climate Change. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.691603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Through advancements in technology humans have cultivated more food, used more fossil fuel reserves, polluted the environment, and caused climate change. This was not the case some few decades ago where indigenous technologies were used in exploiting natural resources. Unfortunately, the effects of climate change on the planet are no more distant reality. The melting of glaciers, rising sea levels, extreme rainfall, and prolonged drought are already being experienced. These have affected water resources, land, and food security across the world. The limits of conventional climate change adaptation and mitigation strategies call for the integration of indigenous knowledge and technologies for tackling climate change issues. This is because of the importance that indigenous knowledge and technologies have for identifying the impacts and as well providing effective adaption and mitigation strategies to climate change. Thus, this chapter explores the potential of indigenous knowledge and technologies for the sustainable management of water, land, and food security amidst climate change. The applications of indigenous technologies and knowledge such as agroforestry, the use of sacred groves to conserve water, land, and biodiversity resources, and the practising of conservation-agriculture are discussed as solutions for reducing greenhouse gas emissions, water shortages, land degradation, and pollution. However, these indigenous technologies will be less useful in today's world if not harnessed. Thus also in this chapter, the scientific know-how available to improve the effectiveness of indigenous technologies for the sustainable use of water, land, and food resources have been identified (Robotics, sensors/detectors, internet of things) and discussed.
Collapse
|
17
|
Movements of Non-Migrant European Eels in an Urbanised Channel Linking a Mediterranean Lagoon to the Sea. WATER 2021. [DOI: 10.3390/w13060839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transitional ecosystems and, particularly, Mediterranean lagoons represent important habitats for the European eel (Anguilla anguilla) population. In these habitats many anthropogenic pressures can disturb eel movements and, in turn, negatively affect the population. Despite the importance of movements during the non-migrant growing stage in eels, this topic is understudied in Mediterranean lagoons. We thus aim to describe the diel and seasonal phenology and the effect of environmental drivers on non-migrant eel movements. Videos obtained from an Adaptive Resolution Imaging Sonar (ARIS) acoustic camera that continuously recorded from October 2018 to April 2020 were processed to evaluate the daily number of eels swimming toward the lagoon. More than 60% of the 7207 eels observed were females with a size >45 cm. Movements were year-round and predominantly during the night. A Boosted Regression Tree analysis demonstrated that, among the 10 environmental drivers studied, flow velocity, water temperature, discharge of the main tributary, wind velocity and atmospheric pressure, had the strongest influence on eel movement activity. Non-migrant eel movements should be better incorporated into lagoon management plans through actions such as limiting dredging activities from 18:00 to midnight, especially when the water flows toward the lagoon and when the water temperature is higher than 12 °C.
Collapse
|
18
|
Boyer AC, MacDougall-Shackleton SA. High Rates of Exposure to Simulated Winter Storm Cues Negatively Affect White-Throated Sparrow (Zonotrichia albicollis) Energy Reserves. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Golawski A, Mroz E, Golawska S. The function of food storing in shrikes: the importance of larders for the condition of females and during inclement weather. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1769208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- A. Golawski
- Siedlce University of Natural Sciences and Humanities, Faculty of Exact and Natural Sciences, Siedlce, Poland
| | - E. Mroz
- Siedlce University of Natural Sciences and Humanities, Faculty of Exact and Natural Sciences, Siedlce, Poland
| | - S. Golawska
- Siedlce University of Natural Sciences and Humanities, Faculty of Exact and Natural Sciences, Siedlce, Poland
| |
Collapse
|
20
|
Serres JR, Evans TJ, Åkesson S, Duriez O, Shamoun-Baranes J, Ruffier F, Hedenström A. Optic flow cues help explain altitude control over sea in freely flying gulls. J R Soc Interface 2019; 16:20190486. [PMID: 31594521 DOI: 10.1098/rsif.2019.0486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
For studies of how birds control their altitude, seabirds are of particular interest because they forage offshore where the visual environment can be simply modelled by a flat world textured by waves then generating only ventral visual cues. This study suggests that optic flow, i.e. the rate at which the sea moves across the eye's retina, can explain gulls' altitude control over seas. In particular, a new flight model that includes both energy and optical invariants helps explain the gulls' trajectories during offshore takeoff and cruising flight. A linear mixed model applied to 352 flights from 16 individual lesser black backed gulls (Larus fuscus) revealed a statistically significant optic flow set-point of ca 25° s-1. Thereafter, an optic flow-based flight model was applied to 18 offshore takeoff flights from nine individual gulls. By introducing an upper limit in climb rate on the elevation dynamics, coupled with an optic flow set-point, the predicted altitude gives an optimized fit factor value of 63% on average (30-83% in range) with respect to the GPS data. We conclude that the optic flow regulation principle helps gulls to adjust their altitude over sea without having to directly measure their current altitude.
Collapse
Affiliation(s)
| | - Thomas J Evans
- Department of Biology, CAnMove, Lund University, Ecology Building, 223 62 Lund, Sweden.,Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, UK
| | - Susanne Åkesson
- Department of Biology, CAnMove, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Olivier Duriez
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE - 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Judy Shamoun-Baranes
- Theoretical and Computational Ecology, Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94 248, 1090 GE Amsterdam, The Netherlands
| | | | - Anders Hedenström
- Department of Biology, CAnMove, Lund University, Ecology Building, 223 62 Lund, Sweden
| |
Collapse
|
21
|
Wilkinson BP, Satgé YG, Lamb JS, Jodice PGR. Tropical cyclones alter short-term activity patterns of a coastal seabird. MOVEMENT ECOLOGY 2019; 7:30. [PMID: 31673358 PMCID: PMC6816181 DOI: 10.1186/s40462-019-0178-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/09/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Mobile organisms in marine environments are expected to modify their behavior in response to external stressors. Among environmental drivers of animal movement are long-term climatic indices influencing organism distribution and short-term meteorological events anticipated to alter acute movement behavior. However, few studies exist documenting the response of vagile species to meteorological anomalies in coastal and marine systems. METHODS Here we examined the movements of Eastern brown pelicans (Pelecanus occidentalis carolinensis) in the South Atlantic Bight in response to the passage of three separate hurricane events in 2 years. Pelicans (n = 32) were tracked with GPS satellite transmitters from four colonies in coastal South Carolina, USA, for the entirety of at least one storm event. An Expectation Maximization binary Clustering algorithm was used to discretize pelican behavioral states, which were pooled into 'active' versus 'inactive' states. Multinomial logistic regression was used to assess behavioral state probabilities in relation to changes in barometric pressure and wind velocity. RESULTS Individual pelicans were more likely to remain inactive during tropical cyclone passage compared to baseline conditions generally, although responses varied by hurricane. When inactive, pelicans tended to seek shelter using local geomorphological features along the coastline such as barrier islands and estuarine systems. CONCLUSIONS Our telemetry data showed that large subtropical seabirds such as pelicans may mitigate risk associated with spatially-extensive meteorological events by decreasing daily movements. Sheltering may be related to changes in barometric pressure and wind velocity, and represents a strategy common to several other classes of marine vertebrate predators for increasing survival probabilities.
Collapse
Affiliation(s)
- Bradley P. Wilkinson
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634 USA
- South Carolina Cooperative Fish and Wildlife Research Unit, Clemson, SC 29634 USA
| | - Yvan G. Satgé
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634 USA
- South Carolina Cooperative Fish and Wildlife Research Unit, Clemson, SC 29634 USA
| | - Juliet S. Lamb
- Department of Natural Resource Science, University of Rhode Island, Kingston, RI 02881 USA
| | - Patrick G. R. Jodice
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634 USA
- U.S. Geological Survey South Carolina Cooperative Fish and Wildlife Research Unit, Clemson, Clemson, SC 29634 USA
| |
Collapse
|
22
|
Hume T, Geiser F, Currie SE, Körtner G, Stawski C. Responding to the weather: energy budgeting by a small mammal in the wild. Curr Zool 2019; 66:15-20. [PMID: 32467700 PMCID: PMC7245004 DOI: 10.1093/cz/zoz023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/02/2019] [Indexed: 11/12/2022] Open
Abstract
Energy conservation is paramount for small mammals because of their small size, large surface area to volume ratio, and the resultant high heat loss to the environment. To survive on limited food resources and to fuel their expensive metabolism during activity, many small mammals employ daily torpor to reduce energy expenditure during the rest phase. We hypothesized that a small terrestrial semelparous marsupial, the brown antechinus Antechinus stuartii, would maximize activity when foraging conditions were favorable to gain fat reserves before their intense breeding period, but would increase torpor use when conditions were poor to conserve these fat reserves. Female antechinus were trapped and implanted with small temperature-sensitive radio transmitters to record body temperature and to quantify torpor expression and activity patterns in the wild. Most antechinus used torpor at least once per day over the entire study period. Total daily torpor use increased and mean daily body temperature decreased significantly with a reduction in minimum ambient temperature. Interestingly, antechinus employed less torpor on days with more rain and decreasing barometric pressure. In contrast to torpor expression, activity was directly related to ambient temperature and inversely related to barometric pressure. Our results reveal that antechinus use a flexible combination of physiology and behavior that can be adjusted to manage their energy budget according to weather variables.
Collapse
Affiliation(s)
- Taylor Hume
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, 2351, Australia
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, 2351, Australia
| | - Shannon E Currie
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, 2351, Australia.,Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, Berlin, 10315, Germany
| | - Gerhard Körtner
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, 2351, Australia
| | - Clare Stawski
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, 2351, Australia.,Department of Biology, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| |
Collapse
|
23
|
Forecasting the response to global warming in a heat-sensitive species. Sci Rep 2019; 9:3048. [PMID: 30816191 PMCID: PMC6395821 DOI: 10.1038/s41598-019-39450-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/21/2019] [Indexed: 01/02/2023] Open
Abstract
Avoiding hyperthermia entails considerable metabolic costs for endotherms. Such costs increase in warm conditions, when endotherms may trade food intake for cooler areas to avoid heat stress and maximize their energy balance. The need to reduce heat stress may involve the adoption of tactics affecting space use and foraging behaviour, which are important to understand and predict the effects of climate change and inform conservation. We used resource selection models to examine the behavioural response to heat stress in the Alpine ibex (Capra ibex), a cold-adapted endotherm particularly prone to overheating. Ibex avoided heat stress by selecting the space based on the maximum daily temperature rather than moving hourly to ‘surf the heat wave’, which minimised movement costs but prevented optimal foraging. By integrating these findings with new climate forecasts, we predict that rising temperatures will force mountain ungulates to move upward and overcrowd thermal refugia with reduced carrying capacity. Our approach helps in identifying priority areas for the conservation of mountain species.
Collapse
|
24
|
Lowering barometric pressure induces neuronal activation in the superior vestibular nucleus in mice. PLoS One 2019; 14:e0211297. [PMID: 30682203 PMCID: PMC6347159 DOI: 10.1371/journal.pone.0211297] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/10/2019] [Indexed: 12/03/2022] Open
Abstract
Weather changes accompanied by decreases in barometric pressure are suggested to trigger meteoropathy, i.e., weather-related pain. We previously reported that neuropathic pain-related behavior in rats is aggravated by lowering barometric pressure, and that this effect is abolished by inner ear lesions. These results suggest that mechanisms that increase vestibular neuronal activity may parallel those that contribute to meteoropathy generation. However, it remains unknown whether changes in barometric pressure activate vestibular neuronal activity. To address this issue, we used expression of c-Fos protein as a marker for neural activation. Male and female mice were placed in a climatic chamber, and the barometric pressure was lowered by 40 hPa, from 1013 hPa, for 50 min (LP stimulation). The total number of c-Fos-positive cells in the vestibular nuclei was counted bilaterally after LP stimulation. We also video-recorded mouse behaviors and calculated the total activity score during the LP stimulation. LP stimulation resulted in significant c-Fos expression in the superior vestibular nucleus (SuVe) of male and female mice. There was no effect of LP stimulation on the total activity score. These data show that distinct neurons in the SuVe respond to LP stimulation. Similar mechanisms may contribute to the generation of meteoropathy in humans.
Collapse
|
25
|
Jessop TS, Webb J, Dempster T, Feit B, Letnic M. Interactions between corticosterone phenotype, environmental stressor pervasiveness and irruptive movement-related survival in the cane toad. J Exp Biol 2018; 221:jeb.187930. [PMID: 30352824 DOI: 10.1242/jeb.187930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/19/2018] [Indexed: 11/20/2022]
Abstract
Animals use irruptive movement to avoid exposure to stochastic and pervasive environmental stressors that impact fitness. Beneficial irruptive movements transfer individuals from high-stress areas (conferring low fitness) to alternative localities that may improve survival or reproduction. However, being stochastic, environmental stressors can limit an animal's preparatory capacity to enhance irruptive movement performance. Thus individuals must rely on pre-existing, or rapidly induced, physiological and behavioural responses. Rapid elevation of glucocorticoid hormones in response to environmental stressors are widely implicated in adjusting physiological and behaviour processes that could influence irruptive movement capacity. However, there remains little direct evidence demonstrating that corticosterone-regulated movement performance or interaction with pervasiveness of environmental stress, confers adaptive movement outcomes. Here, we compared how movement-related survival of cane toads (Rhinella marina) varied with three different experimental corticosterone phenotypes across four increments of increasing environmental stressor pervasiveness (i.e. distance from water in a semi-arid landscape). Our results indicated that toads with phenotypically increased corticosterone levels attained higher movement-related survival compared with individuals with control or lowered corticosterone phenotypes. However, the effects of corticosterone phenotypes on movement-related survival to some extent co-varied with stressor pervasiveness. Thus, our study demonstrates how the interplay between an individual's corticosterone phenotype and movement capacity alongside the arising costs of movement and the pervasiveness of the environmental stressor can affect survival outcomes.
Collapse
Affiliation(s)
- Tim S Jessop
- Centre for Integrative Ecology, Deakin University, Victoria, 3220, Australia
| | - Jonathan Webb
- School of the Environment, University of Technology Sydney, NSW 2007, Australia
| | - Tim Dempster
- School of Biosciences, University of Melbourne, Victoria, 3010, Australia
| | - Benjamin Feit
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW 2052, Australia
| | - Mike Letnic
- School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW 2052, Australia
| |
Collapse
|
26
|
The Effect of Rainfall on Predation of Diamond-Backed Terrapin (Malaclemys terrapin) Nests. J HERPETOL 2018. [DOI: 10.1670/17-167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
de Bruijn R, Romero LM. The role of glucocorticoids in the vertebrate response to weather. Gen Comp Endocrinol 2018; 269:11-32. [PMID: 30012539 DOI: 10.1016/j.ygcen.2018.07.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/29/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022]
Abstract
Changes in the environment related to inclement weather can threaten survival and reproductive success both through direct adverse exposure and indirectly by decreasing food availability. Glucocorticoids, released during activation of the hypothalamic-pituitary-adrenal axis as part of the stress response, are an important candidate for linking vertebrate coping mechanisms to weather. This review attempts to determine if there is a consensus response of glucocorticoids to exposure to weather-related stimuli, including food availability, precipitation, temperature and barometric pressure. The included studies cover field and laboratory studies for all vertebrate taxa, and are separated into four exposure periods, e.g., hours, days, weeks and months. Each reported result was assigned a score based on the glucocorticoid response, e.g., increased, no change, or decreased. Short-term exposure to weather-related stimuli, of up to 24 h, is generally associated with increased glucocorticoids (79% of studies), suggesting that these stimuli are perceived as stressors by most animals. In contrast, the pattern for exposures longer than 24 h shows more variation, even though a majority of studies still report an increase (64%). Lack of glucocorticoid increases appeared to result from instances where: (1) prolonged exposure was a predictable part of the life history of an animal; (2) environmental context was important for the ultimate effect of a stimulus (e.g., precipitation limited food availability in one environment, but increased food in another); (3) prolonged exposure induced chronic stress; and (4) long-term responses appeared to reflect adaptations to seasonal shifts, instead of to short-term weather. However, there is a strong bias towards studies in domesticated laboratory species and wild animals held in captivity, indicating a need for field studies, especially in reptiles and amphibians. In conclusion, the accumulated literature supports the hypothesis that glucocorticoids can serve as the physiological mechanism promoting fitness during inclement weather.
Collapse
Affiliation(s)
- Robert de Bruijn
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| | - L Michael Romero
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
28
|
Newell Wohner PJ, Cooper RJ, Schweitzer SH, Greenberg RS. Rusty blackbird patch use during winter in suburban landscapes. J Wildl Manage 2018. [DOI: 10.1002/jwmg.21548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Robert J. Cooper
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGA30602USA
| | - Sara H. Schweitzer
- Wildlife Diversity ProgramNorth Carolina Wildlife Resources Commission106 Ferret Run LaneNew BernNC28562USA
| | | |
Collapse
|
29
|
van Berkel M, Bateson M, Nettle D, Dunn J. Can starlings use a reliable cue of future food deprivation to adaptively modify foraging and fat reserves? Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Norman JA, Christidis L, Schodde R. Ecological and evolutionary diversification in the Australo-Papuan scrubwrens (Sericornis) and mouse-warblers (Crateroscelis), with a revision of the subfamily Sericornithinae (Aves: Passeriformes: Acanthizidae). ORG DIVERS EVOL 2018. [DOI: 10.1007/s13127-018-0364-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Watts HE, Cornelius JM, Fudickar AM, Pérez J, Ramenofsky M. Understanding variation in migratory movements: A mechanistic approach. Gen Comp Endocrinol 2018; 256:112-122. [PMID: 28756245 DOI: 10.1016/j.ygcen.2017.07.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022]
Abstract
Spatial and temporal fluctuations in resource availability have led to the evolution of varied migration patterns. In order to appropriately time movements in relation to resources, environmental cues are used to provide proximate information for timing and the endocrine system serves to integrate these external cues and behavioral and physiological responses. Yet, the regulatory mechanisms underlying migratory timing have rarely been compared across a broad range of migratory patterns. First, we offer an updated nomenclature of migration using a mechanistic perspective to clarify terminology describing migratory types in relation to ecology, behavior and endocrinology. We divide migratory patterns into three types: obligate, nomadic, and fugitive. Obligate migration is characterized by regular and directed annual movements between locations, most commonly for breeding and overwintering, where resources are predictable and sufficient. Nomadic migrations occur less predictably than do obligate migrations as animals make use of potentially rich but ephemeral resources that occur unpredictably in space or time. Fugitive migrations move animals away from an area in response to severe disruption of environmental conditions and occur as part of an emergency life history stage. We also consider partially migratory populations, which include a mix of sedentary and migratory individuals; the movement patterns of partial migrants are expected to fall into one of the three types above. For these various forms of migration, we review our understanding of the environmental cues and endocrine mechanisms that underlie the expression of a migratory state. Several common hormonal mechanisms exist across the varied migratory forms, but there are also important areas where further investigations are needed in order to gain broad insight into the origin of movements and the diversity of migratory patterns. We propose that taking a comparative approach across the migratory types that considers endocrine mechanisms will advance a new understanding of migration biology.
Collapse
Affiliation(s)
- Heather E Watts
- Department of Biology, Loyola Marymount University, Los Angeles, CA 90045, USA; School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
| | | | - Adam M Fudickar
- Environmental Resilience Institute, Indiana University, Bloomington, IN 47405, USA
| | - Jonathan Pérez
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, CA 95616, USA
| | - Marilyn Ramenofsky
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, CA 95616, USA
| |
Collapse
|
32
|
Dagaeff AC, Pocheville A, Nöbel S, Loyau A, Isabel G, Danchin E. Drosophila mate copying correlates with atmospheric pressure in a speed learning situation. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.08.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Metcalfe J, Schmidt KL, Bezner Kerr W, Guglielmo CG, MacDougall-Shackleton SA. White-throated sparrows adjust behaviour in response to manipulations of barometric pressure and temperature. Anim Behav 2013. [DOI: 10.1016/j.anbehav.2013.09.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Pellegrino AC, Peñaflor MFGV, Nardi C, Bezner-Kerr W, Guglielmo CG, Bento JMS, McNeil JN. Weather forecasting by insects: modified sexual behaviour in response to atmospheric pressure changes. PLoS One 2013; 8:e75004. [PMID: 24098362 PMCID: PMC3788776 DOI: 10.1371/journal.pone.0075004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/07/2013] [Indexed: 12/04/2022] Open
Abstract
Prevailing abiotic conditions may positively or negatively impact insects at both the individual and population levels. For example while moderate rainfall and wind velocity may provide conditions that favour development, as well as movement within and between habitats, high winds and heavy rains can significantly decrease life expectancy. There is some evidence that insects adjust their behaviours associated with flight, mating and foraging in response to changes in barometric pressure. We studied changes in different mating behaviours of three taxonomically unrelated insects, the curcurbit beetle, Diabrotica speciosa (Coleoptera), the true armyworm moth, Pseudaletia unipuncta (Lepidoptera) and the potato aphid, Macrosiphum euphorbiae (Hemiptera), when subjected to natural or experimentally manipulated changes in atmospheric pressure. In response to decreasing barometric pressure, male beetles exhibited decreased locomotory activity in a Y-tube olfactometer with female pheromone extracts. However, when placed in close proximity to females, they exhibited reduced courtship sequences and the precopulatory period. Under the same situations, females of the true armyworm and the potato aphid exhibited significantly reduced calling behaviour. Neither the movement of male beetles nor the calling of armyworm females differed between stable and increasing atmospheric pressure conditions. However, in the case of the armyworm there was a significant decrease in the incidence of mating under rising atmospheric conditions, suggesting an effect on male behaviour. When atmospheric pressure rose, very few M. euphorbiae oviparae called. This was similar to the situation observed under decreasing conditions, and consequently very little mating was observed in this species except under stable conditions. All species exhibited behavioural modifications, but there were interspecific differences related to size-related flight ability and the diel periodicity of mating activity. We postulate that the observed behavioral modifications, especially under decreasing barometric pressure would reduce the probability of injury or death under adverse weather conditions.
Collapse
Affiliation(s)
- Ana Cristina Pellegrino
- Department of Entomology and Acarology, University of São Paulo, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), Piracicaba, SP, Brazil
| | | | - Cristiane Nardi
- Department of Agronomy, Universidade Estadual do Centro-Oeste (UNICENTRO), Guarapuava, PR, Brazil
| | - Wayne Bezner-Kerr
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | | | - José Maurício Simões Bento
- Department of Entomology and Acarology, University of São Paulo, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), Piracicaba, SP, Brazil
- * E-mail:
| | - Jeremy N. McNeil
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
35
|
Stead N. BIRDS STOCK UP AS PRESSURE DROPS. J Exp Biol 2013. [DOI: 10.1242/jeb.088740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|